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Abstract

The superconducting diode effect (SDE) refers to the nonreciprocity of superconducting
critical currents. Generally, the SDE has a positive and a negative critical currents jc±
corresponding to two opposite directions with unequal amplitudes. It is demonstrated
that an extreme nonreciprocity where two critical currents can become both positive
(or negative) has been observed in twisted graphene systems. In this work, we theoreti-
cally propose a possible mechanism to realize an extreme nonreciprocal SDE. Based on a
simple microscopic model, we demonstrate that depairing currents required to dissolve
Cooper pairs can be remodulated under the interplay between valley polarizations and
applied currents. Near the disappearance of the superconductivity, the remodulation is
shown to induce extreme nonreciprocity and also the current-induced re-entrant super-
conductivity where the system has two different critical current intervals. Our study may
provide new horizons for understanding the coexistence of superconductivity and spon-
taneous valley polarizations, and pave a way for designing SDE with 100% efficiency.
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1 Introduction

Superconducting diode effect (SDE) is a recently observed superconducting phenomenon with
a nonreciprocity of the non-dissipative supercurrents [1,2], and has been attracting substantial
attention. Such nonreciprocity means amplitudes of critical currents required to destroy the su-
perconductivity are unequal in opposite directions. As a novel transport phenomenon, SDE can
not only uncover underlying features in exotic superconducting systems [3,4], but also serve
as a non-dissipative circuit which has promising applications in low-power superconducting
electronics [5], superconducting spintronics [6,7], quantum information and communication
technology [8,9]. Since the observation of SDE in artificial superlattice [Nb/V/Ta]n [10], sim-
ilar nonreciprocity of supercurrents has been observed in series of experiments, including bulk
materials of diverse dimensions [11–16], Josephson junction devices [17–24], engineered su-
perconducting structures [25, 26]. In theory, the rise of SDE usually relies on simultaneous
breaking of time-reversal symmetry (TRS) and inversion symmetry [27–29], which is closely
related to magnetochiral anisotropy [30–34], and finite-momentum Cooper pairings [35–38].

The performance of the SDE can be measured by the superconducting diode efficiency
η = jc+−| jc−|

jc++| jc−|
, with the critical currents jc± for positive and negative directions [39, 40]. The

value of η generally depends on the relevant system parameters like working temperature,
applied magnetic field and chemical potentials [34, 41–43]. In most experiments, η can be
optimized to several tens of percent. One notable exception appears in the experiment for
zero-field SDE in small-twist-angle trilayer graphene where critical currents jc± are found to
even cross zero and become both positive or negative at some regimes [15]. This so-called
extreme nonreciprocity indicates a realization of SDE with 100% efficiency. It is a very coun-
terintuitive feature since the electric current does not destroy superconductivity as traditionally
believed, but rather promotes a normal state into a superconducting state. Some recent theo-
retical studies implies that the coupling between the symmetry-breaking order parameter and
supercurrents could significantly enhance SDE efficiency η [44], and dissipations induced by
the out-of plane electric field may falicite 100% SDE efficiency [45]. However, the emergence
of extreme nonreciprocal SDE still remains an issue that requires further illuminations.

Due to its unique massless Dirac dispersion, the graphene system has been an excellent
platform for exploring various novel physical phenomena [46–48]. Except for the charge and
spin, the electrons in graphene have an additional degree of freedom, valley [49, 50]. In
twisted graphene systems, a non-negligible phenomenon is that a dc current can modulate
and even switch the valley polarization [51–56]. From the view of the bulk transport, the

2

https://scipost.org
https://scipost.org/SciPostPhys.20.1.021


SciPost Phys. 20, 021 (2026)

applied current can redistribute electron occupations in different valley bands near the Fermi
level, and then induce energy band shifts due to the Coulomb interaction [53]. Considering
the spontaneous valley polarization plays an important role in the SDE in twisted trilayer
graphene, it is worth investigating the connection between the extreme nonreciprocal SDE
and the current-induced valley polarization modulation.

In this work, based on the current-induced valley polarization modulation, we theoreti-
cally propose a possible mechanism to achieve the extreme nonreciprocity. By a simple valley-
polarized system with intervalley pairings, we first study the nonreciprocity of intrinsic depair-
ing current j̃c [41]. Then, we point out j̃c should be further remodulated to the actual critical
current jc because of the interplay between the current and valley occupations. In a large val-
ley splitting regime close to the disappearance of superconductivity, this remodulation could
lead to extreme nonreciprocity. The effects of variations of fillings and external magnetic fields
on jc are also investigated. Moreover, we raise a new phenomenon, the current-induced re-
entrant superconductivity, where the system has two different superconducting regions with
distinct critical current intervals. Our study provides a possible routine to achieve SDE with
100% efficiency and also sheds light on the extreme nonreciprocity observed in the twisted
graphene experiment.

The remainder of this article is organized as follows. In Sec. 2, we demonstrate our the-
oretical formalism to achieve the extreme nonreciprocity. In Sec. 2.1, we first construct a
microscopic model to describe the spontaneous valley polarization. In Sec. 2.2, based on a
simple valley-polarized model, we further show a physical mechanism to illustrate the current-
induced valley polarization modulation. In Sec. 2.3, we study superconducting depairing cur-
rents and demonstrate a physical process to show how intrinsic depairing currents are remod-
ulated as actual critical currents measured in the experiment. In Sec. 3, with a specific model,
we use numerical calculations to verify our proposed physical mechanism. The critical cur-
rents before and after the remodulation, the variation of actual critical currents with electron
occupations and external magnetic fields are investigated in detail, respectively. In Sec. 4, we
give some discussions and a brief conclusion. The detailed formulations of the current-induced
valley polarization modulation are shown in Appendix. A. In Appendix. B, we give some theo-
retical discussions to evaluate the self-consistent manner due to the effect of applied currents.
In Appendix. C and D, we give some discussions about the trigonal warping effect and the
coupling between supercurrents and valley polarizations. An estimation of the modulation
coefficient α± of currents and the effect of band asymmetry are shown in Appendix. E. The
demonstration for the convergence of our results for the system size is put in Appendix. F.

2 Formalism

2.1 The mean-field model and the interaction-induced valley polarization

To depict the spontaneous valley polarizations, We simply consider a two-band Hamiltonian
to implement a valley-polarized system with an intervalley interaction [53]:

H v =
∑

k,τ

(εk,τ −µ)c
†
k,τck,τ +

Uv

V

∑

k,k′
c†

k,+ck,+c†
k′ ,−

ck′ ,− , (1)

where τ= ± label the valley index K , K ′, Uv > 0 denotes the repulsive intervalley interaction.
V and µ are the systemic size and chemical potential, respectively. εk,τ denotes the single-
particle band, which satisfies TRS: εk,+ = ε−k,−. Taking the mean-field approximation, the
Hamiltonian becomes H v

M F =
∑

k,τ Ek,τc†
k,τck,τ+ const where Ek,τ = εk,τ − µ +

Uv
V n−τ. Here

nτ denotes the average electron occupation for τ valley: nτ =
∑

k

¬

c†
k,τck,τ

¶

=
∑

k f (Ek,τ)

3

https://scipost.org
https://scipost.org/SciPostPhys.20.1.021


SciPost Phys. 20, 021 (2026)

with the Fermi distribution f (Ek,τ) = 1/
�

1+ e
Ek,τ

T

�

(T is the thermal energy). The

const = −Uv
V n+n− is a constant arising from the mean-field approximation. Note that this

mean-field model is similar to the rigid band flavor Stoner model with a SU(4) symmetric
Coulomb interaction energy Vint ∝

∑

α̸=β nαnβ (α,β denote four flavors K ↑, K ↓, K ′ ↑, K ′ ↓),
which is often used to study flavor polarizations in graphene [57,58]. Since the valley polar-
ization plays the most important role in the experiment [15], we first focus on valley flavors
and neglect spin flavors.

(a)

(b) (c)

A

c

D

B

Figure 1: (a) Schematic illustration of the current-induced valley polarization mod-
ulation. The red and blue solid line denote two effective valley bands with the index
τ = ± (i.e., K , K ′). The purple dots denote the occupied electrons on each band.
Once an electric current jex t (magenta arrow line) is applied, the local Fermi level
for electrons with positive (negative) group velocities will climb (descend) by eV/2
relative to Fermi level E f in equilibrium (black dashed lines). (b) The red and dark
blue solid lines respectively denote intrinsic depairing currents j̃c± versus the val-
ley splitting field hv . The magenta solid lines and cyan dashed lines denote several
hv− jex t relations of Eq. (5) with different h0

v . At magenta solid lines, the system stays
in the normal phase. While for cyan dashed lines, the system has entered the super-
conducting phase. The magenta arrows denote the direction of the phase transition
starting from the normal phase to the superconducting phase, which is the focus of
our theory. The intersection points (dark green stars) denote predicted actual critical
currents jc±. (c) The colormap for (α+ −α−)/N versus h0

v and µ̃0.

4

https://scipost.org
https://scipost.org/SciPostPhys.20.1.021


SciPost Phys. 20, 021 (2026)

It is easy to find that the growth of the electron occupation nτ could lift the energy of −τ
valley, and thus influence the free energy Fv of the system:

Fv(n, m) = −T
∑

k,τ

ln
�

1+ e−
Ek,τ

T

�

−
Uv

4V
(n2 −m2) +µn , (2)

where n = n+ + n− is the total electron occupation, m = n+ − n− denotes the valley polar-
ization. Generally, the system is fixed with a definite total electron occupation n and reaches
a state where m is just the minimum point of the free energy Fv(n, m). Therefore, the valley
polarization can be solved by:

∂ Fv

∂m
=

Uv

2V

 

m−
∑

k,τ

τ

1+ e
Ek,τ

T

!

= 0 . (3)

Once Uv g(E f )/V > 1 where g(E f ) is the density of states at the Fermi level E f , the strong
repulsive Coulomb interaction overwhelms the kinetic energy and make the system favor a
nonequal electron distribution between two valleys. This is analogous to the well-known
Stoner criterion and at this time the solution m in Eq. (3) is nonzero [59]. The spontaneous
valley polarization further introduces a valley splitting field hv =

Uv m
2V and a modified chemical

potential µ̃= µ− Uv n
2V in mean-field bands Ek,τ = εk,τ − µ̃− hvτ.

2.2 The current-induced valley polarization modulations

In twisted graphene systems, it is found that a dc current could modulate and even switch
the valley polarization [51–56]. We here illustrate it from a nonequilibrium ballistic quantum
transport. In Fig. 1(a), the red solid line and blue solid line schematically correspond to two
bands with valley K and valley K ′, respectively. Due to intervalley interaction, there is a spon-
taneous symmetry breaking as a consequence of two valley band splittings (e.g., the red band
is below the blue band). Then, under an external bias V , an applied current jex t (magenta
arrow) will flow through the system and be carried by the energy bands. It leads to the Fermi
level of electrons with positive (negative) velocities will rise (fall), for simplicity, eV

2 relative to
the Fermi level E f in equilibrium [60]. Moreover, if the valley bands are intravalley inversion
symmetry-broken bands (i.e., εk,τ ̸= ε−k,τ), the variation of electron occupation for opposite
velocities cannot be offset due to unequal density of states at the Fermi level, as indicated by
purple dots (electron occupations) on colored solid lines in Fig. 1(a). Therefore, nτ will be
changed in each valley and is approximately proportional to jex t at a small bias V (see detailed
derivations in Appendix. A):

nτ = n0
τ +ατ jex t . (4)

The modulation coefficient ατ is a function of the modified chemical potential µ̃ and also the
valley splitting field hv . It relies on the difference between the positive and negative Fermi
velocities and will be zero once εk,τ = ε−k,τ (see Appendix. A), which is again consistent with
our picture shown in Fig. 1(a).

The variation of nτ in Eq. (4) will further alter valley polarization m = n+ − n− and the
valley splitting field:

hv =
Uv

2V
m=

Uv

2V
(α+ −α−) jex t + h0

v . (5)

Here h0
v are the initial valley splitting field at jex t = 0. It should be noted that the linear

relation in Eq. (5) is only an approximation. In principle, the applied current jex t which re-
distributes electron occupations in each valley can also refresh the value of h0

v simultaneously.
The rigorous self-consistent calculation of h0

v including the nonequilibrium electric current is a
subtle question. For simplicity, we focus on a small current range where the impact of jex t on
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h0
v should be minor (see further discussions in Appendix. B). And thus in the calculations, we

just ignore the influence of jex t on h0
v in the right side of Eq. (5). We fix the modified chemical

potential µ̃ = µ̃0 (considering the electron occupation is fixed) and ignore the dependence of
α± on hv (consider the variation of hv is not large at a small current). Then, the coefficient α±
on the right of Eq. (5) is just set as α±(h0

v , µ̃0), for simplicity.
The breaking of intravalley inversion symmetry on the energy bands could naturally exist

in twisted graphene systems [53], as well as some materials with trigonal warping effect on
the Fermi surface [61] (see more discussions in Appendix. C). Additionally, TRS guarantees
opposite signs of α±. See Fig. 1(a), jex t will make n− larger and n+ smaller, thereby reducing
the valley polarization m and valley splitting field hv .

2.3 The remodulation of critical currents and extreme nonreciprocity

Based on the valley-polarized system shown in Sec. 2.1, we further consider an s-wave finite-
momentum intervalley pairing Hs = −

Us
V
∑

k,q c†
k+q,+c†

−k+q,−c−k+q,−ck+q,+ in the system. Here
2q denotes the center-of-mass momentum of Cooper pairs. Although there is a competition
between valley ferromagnetism and superconductivity, the traits of the coexistence between
them have been found in twisted graphene systems [15,62]. To simplify the problem, we here
consider the spontaneous valley polarization and superconducting pairing as two separate
steps. At first, we regard the system as a normal state with valley-polarized bands determined
from the mean-field solution in Eq. (1). Next, following ref. [41], we further add the s-wave
intervalley pairing on it and now focus on its Bardeen-Cooper-Schrieffer (BCS) mean-field
Hamiltonian:

H =
∑

k,τ

Ek,τc†
k,τck,τ −

∑

k,q

∆(q)c†
k+q,+c†

−k+q,− +H.c. , (6)

where the first term is from the mean-field Hamiltonian of Eq. (1) and the second term de-
notes s-wave intervalley superconducting order parameter ∆(q), which should also be de-
termined self-consistently. Note that ∆(q) in Eq. (6) corresponds to a periodic modulated
order parameter ∆(x) = ∆ei2qx in space. A nonzero Cooper pair momentum in equilib-
rium state indicates a generation of a helical phase (Fulde-Fellel state) [42, 63–65]. Note
that there is also a constant in Eq. (6) arising from the mean-field approximation for BCS
mean-field Hamiltonian: const =

∑

k E−k+q,− +
V
Us
∆2(q). It is neglected in Eq. (6) since

it does not affect the following self-consistent calculation. Using Bogoliubov-de-Gennes
(BdG) transformation, the Hamiltonian in Eq. (6) for every fixed q can be further di-
agonalized as: H(q) =

∑

k Ẽ+(k, q)α†
k+qαk+q + Ẽ−(k, q)β−k+qβ

†
−k+q with the eigenvalues

Ẽ±(k, q) = E1(k, q)±
q

E2
2(k, q) +∆2(q) and E1,2(k, q) =

Ek+q,+∓E−k+q,−
2 . For every fixed q, ∆(q)

should be self-consistently determined by a gap equation [41]:

∆(q) =
Us

V

∑

k




c−k+q,−ck+q,+
�

= −
Us

V

∑

k

∆(q)

2
q

E2
2(k, q) +∆2(q)

�¬

α†
k+qαk+q

¶

−
¬

β−k+qβ
†
−k+q

¶�

= −
Us

V

∑

k

∆(q)

2
q

E2
2(k, q) +∆2(q)

�

f (Ẽ+(k, q))− f (Ẽ−(k, q))
�

.

(7)

Based on ∆(q) in Eq. (7), we can calculate the free energy Ω(q) per volume:

Ω(q) =
∆2(q)

Us
+

1
V

∑

k

E−k+q,− −
T
V

∑

k,η=±
ln
�

1+ e
−Ẽη(k,q)

T

�

. (8)
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Following the previous derivations [41], the superconducting current flowing through the sys-
tem js is evaluated as:

js(∆(q), q) =
e
ħh
∂qΩ(∆(q), q)

=
e
ħh
∂q [Ω(∆(q), q)−Ω(∆(q) = 0, q = 0)]

=
e
ħh
∂qFs(q) .

(9)

Fs(q) = Ω(∆(q), q)−Ω(∆(q) = 0, q) is the condensation energy per volume to quantize the dif-
ference of free energy density between the superconducting state and the normal state. In ad-
dition, the last equation uses the fact thatΩ(∆(q) = 0, q) = Ω(∆(q) = 0, q = 0). Note that once
Fs(q)> 0, we set it as zero regarding the superconducting phase is no longer stable. Eq. (9) ac-
tually follows the standard expression js = −∂AΩwith the gauge vector A [41,42]. In addition,
the intrinsic depairing currents j̃c± just corresponds the global maximum j̃c+ = maxq[ js(q)]
and the global minimum j̃c− =minq[ js(q)], respectively.

For the usual case, the depairing currents which are demanded to dissolve Cooper pairings
are just equal to superconducting critical currents. No superconducting state can sustain once
the applied normal current jex t > j̃c+ or jex t < j̃c− for a definite valley polarization hv . How-
ever, the situation becomes more complex after including the effect of the current-induced
valley polarization modulation. See magenta solid lines and cyan dashed lines Fig. 1(b), as
the applied current jex t varies, the hv will also change following the relation of Eq. (5). Note
that hv in turn affects the superconducting order parameter ∆(q) as well as corresponding
depairing currents j̃c±(hv) (red and dark blue solid lines). Therefore, the relations between
jex t and j̃c± should now be reevaluated. In Fig. 1(b), we use dark green stars to denote in-
tersection points between the hv − jex t line and the j̃c± − hv lines. At the regions between
these intersection points (cyan dashed lines), | jex t | is found to be always smaller than | j̃c±|,
indicating that the system should stay in the superconducting phase. While in the other re-
gions (magenta solid lines), jex t > j̃c+ or jex t < j̃c−, meaning that the normal phase should
be favored. Therefore, the intersection points can define actual critical currents jc± in metal-
superconductor transitions. Moreover, we can find the characteristics of jc± strongly depends
on the initial valley splitting field h0

v (intersections with the vertical axis). One notable exam-
ple that the system stays in the normal phase at A point (magenta region) with jex t = 0, but
is driven into a superconductor (cyan region) after acrossing B point with jex t > 0. This will
lead to two positive critical currents ( jc± > 0), which is quite similar to extreme nonreciprocity
observed in previous experiment [15].

One point may be noticed that the physical picture shown in Fig. 1(a) will not hold when
the system has been driven into the superconducting phase (cyan regions) where the electron
distribution is equilibrium. Actually, our work focuses on the process of driving the system
into superconductivity with a normal current. The intersection points in Fig. 1(b) are still
reasonable to define critical currents for the phase transition process starting from normal
phases to the superconducting phases [denoted by the arrows in Fig. 1(b)]. Once crossing the
intersection points (e.g., B point) from the magenta regions to cyan regions, the system cannot
remain in the normal phase; otherwise, the normal current jex t has to continue to weaken hv
along cyan dashed lines. At this time, the corresponding depairing currents j̃c+(hv) allowed by
the superconducting phase will inevitably exceed the applied normal current Jex t , indicating
that the normal phase is no longer favored. This judgement does not yet involve the specific
behaviors of currents and valley polarizations within the superconducting phase.

On the other hand, although the system has reached equilibrium when entering the su-
perconducting phase, we emphasis equilibrium supercurrents can still couple to valley polar-
izations [44]. Similar to the Fig. 1(a), the finite momentum 2q of Cooper pairs carrying the
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Figure 2: (a) The initial valley splitting field h0
v (dark line) and initial modified chem-

ical potential µ̃0 (red line) versus the electron occupation n. (b, c, d) The distribution
of superconducting order parameter∆(q), the condensation energy Fs(q) and super-
current js(q) for several n. (e) The variation of intrinsic deparing currents j̃c± versus
the filling n.

supercurrent will also lift or lower the energy bands according to band dispersions. For valley
bands with the broken intravalley inversion symmetry, this band shifts induced by Cooper-pair
momentum cannot be simply offset, still leading to the change of valley polarizations (see
some discussions in Appendix. D). Within the superconducting phases, the interplay between
supercurrents-induced valley polarization modulations and superconductivity will also modu-
late critical currents.

In Eq. (5), a larger coefficient α+ − α− implies jex t can weaken hv more quickly and
drive the system into superconducting phase more easily. Below we choose a simple one-
dimensional (1D) two-band toy model with εk,+ = −2t cos[ 8

15(k −
7π
8 )] for −π ⩽ k ⩽ 7π

8 ,
εk,+ = −2t cos(8k −π) for 7π

8 < k < π, and εk,+ = ε−k,−. Similar model is used to illustrate
the interplay between spontaneous valley polarization and applied currents, and could capture
the asymmetric features of low-energy bands in twisted graphene [53]. In numerical calcula-
tions, V = Na with a periodic boundary condition and N = 2000. t = 1, e

h t = 1, and a = 1
are set as energy, current and length units, respectively. We also set Uv = 2.8, Us = 1.86 and
thermal energy T = 0.1. In Fig. 1(c), the coefficient (α+ −α−)/N versus the initial h0

v and µ̃0

is shown. (α+−α−)/N dives as µ̃0 becomes lower, considering Fermi velocities approach zero
and ατ becomes divergent near the bottom of bands. Furthermore, we also demonstrate a rel-
atively significant α+ −α− coefficient exist in a more realistic tight-binding model for twisted
bilayer graphene. And the more asymmetrical the bands are, the larger α+ − α− is (see both
discussions in Appendix. E).

3 Numerical results

In this section, we will use a series of numerical calculations to validate our physical pictures
illustrated in Fig. 1. We first study the initial valley splitting field h0

v and corresponding de-
pairing currents j̃c± without the effect of current-induced valley polarization modulation, see
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Sec. 3.1. Then, through the remodulation process shown in Fig. 1(b), we demonstrate actual
critical currents jc and explore the situation where the extreme nonreciprocity appears, see
Sec. 3.2. We will also investigate the influence on jc by the electron occupation n and the
external magnetic field B, see Sec. 3.3.

3.1 The calculations without the effect of current-induced valley polarizations

For a given electron occupation n (or filling factor ν= n/N), the initial µ̃0 and h0
v can be solved

self-consistently from H v
M F and are shown in Fig. 2(a). Notice that ±h0

v are degenerate solu-
tions but we choose the positive one like the magnetic training in the experiment [15]. Here
µ̃0 naturally declines as n decreases. Especially, a non-zero h0

v appears around 240< n< 600.
Based on h0

v , the ∆(q) is solved from the self-consistent gap equation in Eq. (7), and is shown
in Fig. 2(b). As n declines from n = 640 to n = 480, h0

v becomes stronger and ∆(q) becomes
weaker and more asymmetric with∆(q) ̸=∆(−q). This is because h0

v breaks TRS and destroys
the Cooper pairs from intervalley pairings. Additionally, when n < 545, the strong h0

v causes
that the center of ∆(q) wholely shifts from q0 = 0 to q0 ≈ −0.1π, which apparently suggests
Cooper pairs have large non-zero center of mass momenta [Fig. 2(b)].

Based on ∆(q), we also calculate corresponding condensation energy density Fs(q), as
shown in Fig. 2(c). As n changes from n = 640 to n = 480, the initial valley splitting field
increases to break TRS and intervalley pairing, thus Fs(q) becomes much more asymmetric and
narrower. At around n = 480, Fs(q) reaches almost zero and indicates superconductivity is
highly unstable. Specially, a single-well structure of Fs(q) with one global minimum assigning
the ground state at q0 = 0 (n = 640) gradually evolves into a double-well structure under
a moderate valley splitting field (e.g. n = 560) with two local minimums. It goes back to
the single-well structure with one minimum at q0 ≈ −0.1π under a high valley splitting field
(e.g. n = 545). Overall, the shift of the minimum point for Fs(q) implies the superconductor
transforms from a “weak” helical phase to a “strong” helical phase as the valley splitting field
climbs [43].

We further estimate supercurrents js(q) and depairing currents j̃c± versus n [Figs. 2(d, e)].
For about n> 600, js appears as an odd function with j̃c+ = − j̃c− since the initial valley splitting
field h0

v is zero [Fig. 2(a)]. As n decreases, h0
v climbs and js(q) becomes asymmetrical. | j̃c−|

gradually decays while j̃c+ lifts slightly because a small h0
v gives Cooper pairs finite momenta

to flow towards one direction more easily [Fig. 2(e)]. By further decreasing n, two additional
local extrema appear in js(q) around a relatively high momentum q0 ≈ −0.1π [Fig. 2(d)], and
they successively become the new global minimum j̃c− (n< 585) and maximum j̃c+ (n< 545)
[denoted by black dashed lines in Fig. 2(e)]. Especially, the difference between j̃c± appears to
be tiny after a transition from the “weak” helical phase in low h0

v to the “strong” helical phase
in high h0

v , see Figs. 2(c,d).

3.2 The actual critical currents through the remodulation process

Including the effect of current-induced valley polarization modulation, we state that depair-
ing currents j̃c can be further remodulated as the actual critical currents jc . As illustrated in
Fig. 1(b), jc can be determined by intersection points between the curve j̃c(hv) and the curve
hv( jex t). Note that jex t and hv have a definite relation in Eq. (5). Equivalently, we show dia-
grams with curves j̃c,±( jex t) (colored solid lines) and curves j̃c = jex t (colored dashed lines)
for four different n in Fig. 3.

In Fig. 3(a) with n = 640, h0
v is zero and depairing currents satisfy j̃c+ = − j̃c− at jex t = 0.

A non-zero applied current jex t can evolve hv to finite [inset in Fig. 3(a)], and simultane-
ously affect j̃c±. While, intersection points still satisfy jc+ = − jc− indicating no SDE (dark
green stars), due to the fact that j̃c+(hv) = − j̃c−(−hv) and hv( jex t) = −hv(− jex t) at this case.
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When n= 560, a small h0
v appears and j̃c+ ̸= | j̃c−| at jex t = 0 in Fig. 3(b). The forward current

( jex t > 0) reduces hv while the backward current ( jex t < 0) enhances the hv[inset in Fig. 3(b)].
SDE persists with two modified jc± (dark green stars). When n = 510 [Fig. 3(c)], h0

v is rela-
tively strong and the system enters a “strong” helical superconducting phase as indicated by
Figs. 2(c,d). The depairing currents j̃c± are relatively small at jex t = 0.

Interestingly, since there is a sudden change in the slope of curve j̃c+( jex t) [as indicated in
Fig. 2(e)], the number of intersection points could be four, which are symbolized by four ac-
tual critical currents ( j1c− and j1−3

c+ ). Regarding that there exist two different superconducting
phases with two distinct critical current intervals [66], We call this phenomenon as current-
induced re-entrant superconductivity. Once h0

v becomes too large [see Fig. 3(d) with n= 480],
j1c± obviously shrink towards zero and hard to be measured in the experiment, while j2,3

c+ per-
sist. Now it exhibits the extreme nonreciprocity only with two positive actual critical currents.

Similar to the schematic diagram in Fig. 1(b), we use magenta solid lines to mark normal
phase regions and use cyan dashed lines to denote superconducting regions in Fig. 3. Following
the magenta arrows, when the system is initially prepared in normal phases (magenta regions)
and driven by the normal current to cross intersection points, the normal phase cannot be
maintained, otherwise hv will continue to be weakened along the cyan dashed line. Our theory
focuses on the current-induced phase transition from normal phases to superconducting phases
and offers a possible mechanism for the observation of extreme nonreciprocal SDE in ref. [15].

(a) (b)

(c) (d)

Figure 3: (a-d) The intrinsic depairing currents j̃c (main panels) and hv versus jex t
(insets) for n= 640 (a), n= 560 (b), n= 510 (c) and n= 480 (d). The intersection
points (dark green stars) between the j̃c,± − jex t (red and dark blue solid lines) and
j̃c = jex t (magenta solid lines and cyan dashed lines) are jc,±. Similar to Fig. 1(b), the
magenta parts denote the regions of the normal phases and the cyan parts denote the
regions where the systems eventually transition into superconducting phases. The
magenta arrows denote the phase transition from normal states to superconducting
states that our theory focuses.

10

https://scipost.org
https://scipost.org/SciPostPhys.20.1.021


SciPost Phys. 20, 021 (2026)

-0.010 -0.005 0.000 0.005 0.010
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

h0
vt

hB

 n=510
 n=560

-0.008 -0.004 0.000 0.004 0.008

0.00

0.08

0.16

0.24

0.32

j c

hB

 - jc- for h0 £ 0
 - jc+ for h0 £ 0
 jc+ for h0 ³ 0
 jc- for h0 ³ 0

-0.0030 -0.0015 0.0000 0.0015 0.0030

0.0

0.1

0.2

0.3

j c

hB

 - jc- for h0 £ 0
 - jc+ for h0 £ 0
 jc+ for h0 ³ 0
 jc- for h0 ³ 0

(a) (b)

(c) (d)

IIIIIIIV

Figure 4: (a) The variation of jc± as a function of n. (b) The modulation of the
total valley splitting field h0

vt with hB induced by the external magnetic field. (c,d)
jc± versus hB for n = 560 (c) and n = 510 (d).1 The dark green arrows denote the
scanning directions of the magnetic field B or hB.

Additionally, when the system stays in the superconducting phase, the supercurrents will still
couple to supercurrents [44]. As the supercurrent-induced valley polarization modulation is
not completely the same as the normal current case, there may be a hysteresis behaviour when
the system in turn transitions from the superconducting phase and the normal phase.

3.3 The variation of actual critical currents with different parameters

To study the SDE comprehensively, in Fig. 4(a) we extract jc± based on the intersection points
in Fig. 3 and show them in a wide range of electron occupations n. Here four regions are
denoted. In region I, the system does not exhibit SDE due to zero h0

v . In region II, h0
v is

moderate and the conventional SDE with jc+ ̸= | jc−| is observed. jc+ − | jc−| becomes roughly
larger as n decreases (h0

v climbs). In region III, h0
v is relatively large. The system exhibits

re-entrant superconductivity with four actual critical currents ( j1c− and j1−3
c+ ). In region IV, h0

v

is stronger and j1c± become too small to be observed. Only j2,3
c+ are left and thus the system

exhibits an obvious extreme nonreciprocity. When h0
v becomes too large (n is small), both j2,3

c+
will disappear and the superconducting phase cannot exist. The extreme nonreciprocity occurs
near the disappearance of superconductivity in our theory is akin the feature in ref [15].

1In all calculated results, we discard both I1
c± as long as one of the I1

c± is smaller than 0.01 which roughly
corresponds to 1nA for a narrow bandwidth with 4t = 10meV , considering it is too small to measure in the
experiment.
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Figure 5: (a-d) The change of the total valley splitting field h0
vt as a function of the hB

for electron occupation n= 640 (a), n= 560 (b), n= 510 (c) and n= 480 (d). The
system is initially prepared at the stable state at m≥ 0 without the external magnetic
field B. And the magnetic field as well as the additional valley splitting field hB is
scanned from positive to negative which influences the self-consistent result h0

vt in
every step. (e-h) the change of the actual critical currents jc as a function of hB,
corresponding to the cases in (a-d), respectively. The dark green arrows denote the
scanning direction.

Besides varying fillings, we also investigate how an external magnetic field B can modulate
jc±. Enlightened by ref. [15], we now consider the valley τ is locked with the spin sz , which
can arise from the Ising spin-orbit coupling [67, 68]. Thus, B can couple to valley through
a Zeeman effect and induce an additional valley splitting field hB ∝ B into the Hamiltonian
H v

M F =
∑

k,τ(Ek,τ − hBτ)c
†
k,τck,τ. Through similar self-consistent calculations in Eq. (3), the

total valley splitting field h0
vt = h0

v + hB is refreshed along with the magnetic field.
In Fig. 4(b), we plot the calculated h0

vt versus hB. Note that here the system is initially
prepared at h0

v > 0 (h0
v < 0) before applying the magnetic field B > 0 (B < 0). It roughly

corresponds to magnetic field B scanned from positive (negative) direction to zero (see dark
green arrows). Actually, these two cases are antisymmetric due to TRS. We can find |h0

vt | decays
as |hB| weakens, reflecting the modulation of valley polarizations by the external magnetic
field. We also plot jc versus hB for two distinct n. For n= 560 in Fig. 4(c), as hB sweeps from
positive to zero, the decay of h0

vt drives the number of actual critical currents from 4 to 2. It
means, the system evolves from a re-entrant superconducting phase to a conventional SDE.
For n= 510 in Fig. 4(d), the system is initially an extreme nonreciprocal SDE with two positive
jc at |hB| ≈ 0.002. The decline of |hB| pulls down h0

vt and impels the system into re-entrant
superconducting phase with four distinct jc .

Additionally, the polarity of SDE may be also reversed when scanning B from the positive
to negative direction, see Fig. 5. At these cases, the system is initially prepared at m ≥ 0
for n = 640 [Figs. 5(a,e)], n = 560 [Figs. 5(b,f)], n = 510 [Figs. 5(c,g)] and n = 480
[Figs. 5(d,h)], respectively. Then, we apply and scan hB∝ B from positive to negative (dark
green arrows). For n = 640, since no valley polarization appears without the external mag-
netic field (hB = 0), both the sign of h0

vt and the polarity of SDE correlates well with hB
[Figs. 5(a,e)]. For the case of n= 560 and n= 510, a sudden sign change of h0

vt appears as hB
reaches about −0.0027 [Fig. 5(b)] and −0.007 [Fig. 5(c)]. This switching could also reverse
the polarity of SDE in Fig. 5(f). Note that the switching of h0

vt in Fig. 5(c) is so large that jc±
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disappears in Fig. 5(g). Similar to Fig. 4, the number of jc also varies with hB which manifests
the transformation of types of SDE [Figs. 5(f,g)]. Since the initial valley splitting field h0

v for
hB = 0 is too large for n = 480, a small variation of magnetic field is not enough to switch
total valley splitting field h0

vt [Fig. 5(d)]. But the superconducting phase gradually transforms
from an extreme nonreciprocity with two positive jc to the re-entrant superconductivity with
four jc and then to the conventional SDE with jc+ > 0, jc− < 0 [Fig. 5(h)].

In summary, our results in Fig. 4 and Fig. 5 both demonstrate that the extreme nonre-
ciprocity can occur and be adjusted by the variation of the electron occupation n and the
external magnetic field B. Additionally, our results are robust to changes in system size (see
Appendix. F).

4 Discussions and conclusion

The toy model we calculated can qualitatively explain the phenomena observed in experi-
ments. In fact, through a rough estimation, we also find that the calculated results are also
similar in magnitude to experimental measurements. Considering a narrow bandwidth of the
flat band with 4t = 10 meV [69–72], the energy unit becomes t = 2.5 meV and the current
unit becomes e

h t ≈ 96.6 nA. Thus, the set temperature T in the unit of Kelvin is around 2.9 K.
In Fig. 2, the initial valley splitting field h0

v varies from 0 to about 0.2t (0.5 meV) and the max-
imal superconducting order parameter is ∆ ≈ 0.33t ≈ 0.83 meV. In Fig. 4(a), we can roughly
estimate the amplitudes of critical currents jc± varying from 0 to 34 nA, which is in order of
magnitude consistent with the previous experiment results [15]. It is also worth noting that
the normal currents arranging from several nA to tens of nA is experimentally confirmed to
be able to affect magnetizations in twisted bilayer graphene [51, 52], which are still similar
in magnitudes for current-induced valley polarization modulations in our theoretical scheme.
Totally speaking, the modulation of valley splitting field caused by the weak current is not
strong in our results. See Fig. 3, hv changes by about 0.1t (about 0.25 meV) as the current
changes by about 0.4 e

h t (about 40 nA).
In conclusion, based on a simple valley-polarized model, we have revealed that intrinsic

depairing currents can be remodulated due to the current-induced valley polarization modu-
lation. Depending on specific features, we have demonstrated that such a remodulation can
induce the extreme nonreciprocity and also the current-induced re-entrant superconductivity.
These special SDE can be further adjusted by varing electron occupations and external mag-
netic fields. Our study reflects the peculiarity in the interplay between valley ferromagnetism
and superconductivity, provides a possible mechanism to explain experimental observations of
extreme nonreciprocal SDE and opens a new way to implement SDE with 100% efficiency.
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A Formulations of the current-induced valley polarization modu-
lation

When the applied current jex t flows through the valley-polarized system shown in Eq. (1),
occupations for electrons with opposite group velocities should be further imbalanced. In
detail, taking a 1D system shown in Fig. 1(a) as an example with V = Na where a = 1 is the
length unit, the Fermi level of electrons with positive (negative) velocities, coming from the
source (drain) will rise (fall) eV

2 , respectively. Then, the electron occupation nτ on each valley
τ changes into:

nτ =
∑

k

f
�

εk,τ − µ̃− hvτ−
eV
2

sgn
�

ε′k,τ

�

�

, (A.1)

with sgn(x > 0) = 1, sgn(x = 0) = 0, sgn(x < 0) = −1. And e is the electron charge. For a
small bias V → 0, Eq. (A.1) can be further approximated as:

nτ ≈ n0
τ −

eV
2

∑

k

sgn
�

ε′k,τ

�

f ′
�

εk,τ − µ̃− hvτ
�

, (A.2)

where n0
τ =

∑

k f (εk,τ−µ̃−hvτ) is the original electron occupation before applying the current
jex t . Furthermore, the current jex t flowing through the system which is closely related to the
voltage V can be also calculated:

jex t =
e
ħhN

∑

k,τ

ε′k,τ f
�

εk,τ − µ̃− hvτ−
eV
2

sgn
�

ε′k,τ

�

�

≈
e
h

∫

dk
∑

τ

ε′k,τ f
�

εk,τ − µ̃− hvτ−
eV
2

sgn
�

ε′k,τ

�

�

.

(A.3)

Here we regard the N →∞ and thus the summation of k changes into the integral for simplic-
ity. Similarly, when the bias is small with V → 0, the current in Eq. (A.3) can be approximated
as:

jex t ≈
e2V
h

∑

τ

�

− f
�

εmax
k,τ − µ̃− hvτ

�

+ f
�

εmin
k,τ − µ̃− hvτ

��

, (A.4)

where εmax
k,τ and εmin

k,τ is the global maximum and minimum value of εk,τ. For a low temperature

T → 0 and µ̃ ∈ (εmin
k,τ − hvτ,εmax

k,τ − hvτ), jex t =
2e2V

h well corresponds to Landauer-Büttiker
formula in a ballistic regime [60]. Substituting Eq. (A.4) into Eq. (A.2), we can get the relation
between nτ and jex t as

nτ = n0
τ +ατ jex t , (A.5)

and also the change of valley splitting field hv:

hv =
Uv

2V
(n+ − n−) =

Uv

2V
(α+ −α−) jex t + h0

v , (A.6)

where h0
v is the initial valley splitting field when jex t = 0. The Eq. (A.6) is just Eq. (5) in the

main text. The coefficient ατ to measure the ability for the current to modulate the valley
polarization is a function of modified chemical potential µ̃ and valley splitting field hv:

ατ(µ̃, hv) =
h
∑

k sgn
�

ε′k,τ

�

f ′
�

εk,τ − µ̃− hvτ
�

2e
∑

τ

�

f
�

εmax
k,τ − µ̃− hvτ

�

− f
�

εmin
k,τ − µ̃− hvτ

�� . (A.7)

During applying an electric current jex t , the change of hv and µ̃ could alter the value of ατ in
time. For simplicity, we ignore this effect and directly set ατ(µ̃, hv) as ατ(µ̃0, h0

v). The detailed
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distribution of ατ(µ̃0, h0
v) for an 1D toy model in Sec. 2.3 is shown in Fig. 1(c). Note that its

unit is h/et.
Especially when T → 0, ατ ∝

∑

n
1

ε′τ(k
n
F )

where kn
F is the n-th Fermi wave vector at the

Fermi level E f . Thus, the value of ατ is closely related to the inverse of Fermi velocities
vn

F =
1
ħhε
′
τ(k

n
F ). If the energy band has the intravalley inversion symmetry: εk,τ = ε−k,τ. It

leads to ε′k,τ = −ε
′
−k,τ and ατ as well as the change in Eq. (A.6) should be canceled to be zero.

The necessity of intravalley inversion breaking is consistent with the finding in ref. [53]. In
addition, the intravalley inversion symmetry breaking is also found as a crucial condition to
realize the SDE in the valley polarized system [61]. This coincidence implies the possibility
for the combination between the current-induced valley polarization modulation and SDE.

In numerical calculations, we do not directly use the ατ to obtain the results of current-
induced valley modulation in Eq. (A.6). To be more accurate, after given the applied current
Iex t , we use Eq. (A.4) to obtain the corresponding bias energy eV . Then we bring eV into
Eq. (A.1) to get the electron occupation nτ on each valley and also use hv =

Uv
2V (n+ − n−)

to obtain the corresponding hv . Note that the modified chemical potential µ̃ and the valley
splitting field hv are fixed as µ̃0 and h0

v in the right parts in Eq. (A.1)−Eq. (A.4). In Eq. (A.1),
we do not assume that the bias eV is small, so that hv =

Uv
2V (n+−n−) versus the bias eV deviates

slightly from the linear relation (see the insets of Fig. 3).

B The self-consistent manner including the effect of applied cur-
rents

In the main text, we set the total valley polarization in Eq. (5) is the summation of the current-
induced part and the spontaneous polarization part from the Coulomb interaction. The influ-
ence on h0

v by the applied current jex t is just neglected. In this Appendix, we will discuss this
self-consistent process theoretically and demonstrate the rationality of our linear approxima-
tion in Eq. (5) for a small jex t .

Actually, Eq. (5) is easy to recall from the relationship between the magnetic induction B
and magnetic field strength H:

B/µ0 =M+H , (B.1)

where M is the magnetization and µ0 is the permeability of free space. Neglecting the coeffi-
cients, jex t , h0

v and hv in Eq. (5) just corresponds to H, M and B in Eq. (B.1), respectively. In
the magnetization process, the external magnetic field strength H could also affect the intrin-
sic magnetization M(H), causing the relationship between B and H more complicated, usually
along with magnetic hysteresis loops. Based on a rough analogy, we can draw on the magnetic
curve of M = F(H) to further speculate the behaviors of h0

v = F(Iex t).
Strictly speaking, spin and valley cannot be simply equivalent, considering there are some

differences between them. Thus, the analogy between valley and spin is just a crude mean
to help understanding. However, given that valley and spin also have some similarities in our
model, this analogy is still plausible to some extent. At first, our theory is simply built on a
two-band Stoner Hamiltonian where valley only serves as a flavor degree of the energy bands.
In principle, replacing the valley index with the spin index has no intrinsic influence on our
theoretical analysis and the physical picture in Fig. 1. In some previous studies in graphene
systems, the polarization of spin and valley flavors is often regarded as isospin magnetism as
a whole [58, 73]. Secondly, the spin and valley are found to be locked together due to the
presence of proximity-induced Ising SOC [15], which also indicates the effect of valley and
spin has some equivalence in the experiment.

In the following part, we will explain the influence on h0
v by jex t based on two fashioned

theoretical perspectives: Stoner-Wohlfarth model and Rayleigh law.
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Figure 6: (a) The model for a single-domain spheroidal particle endowed with uni-
axial magnetic anisotropy. The magnetization M is aligned with an angle θ between
the easy axis z and the external magnetic field H is aligned with an angle θH between
the easy axis z. (b) The numerical calculated magnetization curves between Mp/M
and h for different angles θH .

To analyze the function of h0
v = F(Iex t ) from Stoner-Wohlfarth model. The theory of

Stoner-Wohlfarth model is based on the coherent rotation of the magnetization in a single-
domain particle [74]. This is a simple theoretical model, but it could illustrate the rationality
of our approximation to some extent. As shown in Fig. 6 (a), a spheroidal single-domain
particle endowed with uniaxial anisotropy. The magnetization M is aligned with an angle θ
between the easy axis. The internal energy density is expressed as a function of θ as [75]:

uan(θ ) = Kusin2(θ ) . (B.2)

Here Ku is the anisotropy parameter which is related to the magnetocrystalline anisotropy
and shape effects. Then we consider the single domain subjected an applied magnetic field H
making the angle θH with the easy axis, and the field interaction energy density is [75]:

uH(θ ) = −µ0MHcos(θH − θ ) . (B.3)

Thus, the total Gibbs free energy density is:

g(θ ) = uan(θ ) + uH(θ ) = Kusin2(θ )−µ0MHcos(θH − θ ) . (B.4)

Note that here we only pay attention on the coherent rotation of M with the strength of M
unchanged. And the value of H oscillating between positive and negative values with θH
varying between 0◦ and 90◦. The equilibrium conditions are obtained as g(θ ) reaches the
minimum. For convenience, we reduce the g(θ ) as g̃(θ ) = g(θ )/(2Ku). The equilibrium
conditions are:

d g̃
dθ
=

1
2

sin(2θ )− hsin(θH − θ ) = 0 , (B.5a)

d2 g̃
d2θ

= cos(2θ ) + hcos(θH − θ )> 0 , (B.5b)

where h = µ0MH/2Ku = H/HK . The solution of Eqs. (B.5) can be studied analytically in
some cases. For example, when θH = 0, the magnetic field H is aligned with the easy axis,
and the solution of Eq. (B.5a) is sin(θ ) = 0 and cos(θ ) = −h. For the first case, θ = 0,π and
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Eq. (B.5b) gives d2 g̃
d2θ
= 1± h > 0. For the second case, θ = arccos(−h) and Eq. (B.5b) gives

d2 g̃
d2θ
= h2−1> 0. In general, h< −1,θ = π; h> 1,θ = 0; −1≤ h≤ 1,θ = 0 or π (depending

on the initial path). To further demonstrate, we plot the magnetization resolved in the field
direction Mp(θH) = Mcos(θH−θ ) under the cyclic variation of the field h= H/HK in Fig. 6(b)
with θH = 0◦, 15◦, 45◦, 75◦, 90◦. The Fig. 6(b) is numerically calculated from Eq. (B.5). It
can be found that a change in h causes hysteresis loops where Mp can be reversed at certain
critical value hc (i.e. the coercive field). The characteristics of hysteresis loops are strongly
dependent on the aligned angle θH of H. For θH = 0, we can find a square hysteresis loop with
Mp = ±M [see the black solid line in Fig. 6(b)]. For the larger θH , the hysteresis loop shrinks
and finally becomes a linear function at θH = 90◦ [see the magenta solid line in Fig. 6(b)].
For an isotropic system of randomly oriented identical particles, the overall mean behaviour
stems from an averaged hysteresis loop for different angles.

Next, we refer to the Mp = F(H) of the Stoner-Wohlfarth model shown in Fig. 6(b), and
analyze the relationship h0

v = F(Iex t). There is a difference between the valley-polarization
and the magnetization in ferromagnets. For the latter, a spin-rotation symmetry is maintained
and the ferromagnetism is described by a vector order parameter. In contrast, the valley po-
larization in our system is Ising-like and not a vector [54]. The system is either polarized at
K valley or K ′ valley, but never polarized at a valley-coherence state like 1p

2
(|K〉+ |K ′〉). This

means the direction of the valley polarization is only aligned along the easy axis (z axis). In
addition, since the applied current Iex t will influence the valley polarization but cannot mix
two valleys, the effect of Iex t should be analogous to the effect of H at θH = 0◦. Therefore,
the curve of h0

v(Iex t) should be similar to the curve of Mp(H) at θH = 0◦ as shown by black
solid lines in Fig. 6 (b) in a small single-domain valley-polarized system. Actually, even if
in a multi-domain system, the averaged hysteresis loop could be somehow like the curve at
θH = 0◦, because the easy axis of each domain is along the z direction. Therefore, we can
conclude that h0

v remains nearly unchanged as long as Iex t is not too large. Considering the
current to flip the valley polarization sometimes demands to reach several tens of nA [51],
which is basically larger than the critical currents obtained by our numerical calculations, our
linear approximation in Eq. (5) has some rationality.

To analyze the function of h0
v = F(Iex t ) from the Rayleigh law. For a further comparison,

we next refer to another theory called as Rayleigh law, which is used to describe the behavior of
ferromagnetic materials at low fields [76,77]. The Rayleigh law is a technical model describing
the magnetic hysteresis phenomenon with simple mathematical functions. It quantizes the
initial magnetization curve as a second order equation [78]:

B(H) = aH + bH2 . (B.6)

Here a corresponds to reversible part of the magnetization process with a = limH→0
∂ B
∂ H = µ0µi

(µi is the initial permeability), and b corresponds to the irreversible part of the magnetization
process. Based on this initial magnetization curve, Rayleigh law describes the magnetic hys-
teresis loop by two symmetrical, intersecting parabolic curves [78]:

B(H) = (a+ bHm)H ±
b
2

�

H2
m −H2

�

. (B.7)

Note that this function describes the behavior of magnetic induction B with the magnetic field
H. Hm is the amplitude of the scanning magnetic field during the magnetization process. The
“+” sign denotes the upper branch of the loop, while the “-” sign denotes the lower branch of
the loop. We can draw an analogy from Eqs. (B.6, B.7), and give the innitial valley polarization
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curve and the hysteresis for hv as a function of the applied current jex t , respectively:

hv( jex t) = a jex t + b j2ex t , (B.8a)

hv( jex t) = (a+ b jex t,m) jex t ±
b
2

�

j2ex t,m − j2ex t

�

. (B.8b)

Similarly, jex t,m is the amplitude of scanning current, i.e. Eq. (B.8b) is valid when
| jex t | ≤ jex t,m. Once jex t,m is fixed, the form of hv( jex t) is determined by the parameter a
and b.

In general, the value of a and b can be obtained by experimental fittings. Here, we try
to estimate them theoretically. According to Eq. (B.6), the parameter a reflects the reversible
part of the initial magnetization curve, which shows the relationship between H and M as the
field strength is increased from a demagnetized magnet (H = M = 0). To simulate this curve
in a valley-polarized system, we use such an expression:

hv =
Uv

4V

∑

k,τ,τ′
τ f
�

εk,τ − µ̃0 −
eV
2

sgn
�

ε′k,τ

�

− h0
vττ
′
�

. (B.9)

Here τ,τ′ = ±. Actually, this expression is an average of the initial positive valley polarization
h0

v state and initial negative valley polarization −h0
v state, which can be used to simulate a

demagnetized state, roughly. When the current is absent (eV = 0), hv will be zero. In detail,
the parameter a is evaluated as:

a =
∂ hv

∂ Iex t

�

�

�

�

Iex t=0
=
∂ hv

∂ eV

�

�

�

�

eV=0

∂ eV
∂ Iex t

�

�

�

�

Iex t=0

= −
Uv

4V

∑

k,τ

τ f
�

εk,τ − µ̃0 − h0
vτ
�

sgn
�

ε′k,τ

�

2
γ

−
Uv

4V

∑

k,τ

τ f
�

εk,τ − µ̃0 + h0
vτ
�

sgn
�

ε′k,τ

�

2
γ

= −
Uv

4V

∑

k,τ

τ f
�

εk,τ − µ̃0 − h0
vτ
�

sgn
�

ε′k,τ

�

2
γ

−
Uv

4V

∑

−k,−τ
(−τ) f

�

ε−k,−τ − µ̃0 + (−τ)h0
v

�

sgn
�

ε′−k,−τ

�

2
γ

= −
Uv

4V

∑

k,τ

τ f
�

εk,τ − µ̃0 − h0
vτ
�

sgn
�

ε′k,τ

�

γ .

(B.10)

Here we use the relation: εk,τ = ε−k,−τ and ε′k,τ = −ε
′
−k,−τ . Referring to our derivation of

Eq. (A.4), the parameter γ is:

γ=
∂ eV
∂ jex t

�

�

�

�

jex t=0
≈

h
e

∑

τ

�

− f
�

εmax
k,τ − µ̃

0 − h0
vτ
�

+ f
�

εmin
k,τ − µ̃

0 − h0
vτ
��−1

. (B.11)

Substituting Eq. (B.11) into Eq. (B.10), we can find the value of a is just equal to the value
of Uv

2V (α+ − α−) as shown in Eq. (A.7), in view of µ̃ = µ̃0 and hv = h0
v at jex t = 0 (eV = 0).

For the parameter b, it is related to the irreversible part of the initial magnetization curve
and cannot be evaluated easily. However, we can assume a case for soft materials where the
coercive field jc

ex t is very small [74]. The coercive field jc
ex t is the zero point of the function
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hv( jex t), satisfying (a + b jex t,m) jc
ex t ±

b
2

�

j2ex t,m − ( j
c
ex t)

2
�

= 0. We take the case for “+” as an
example (the case for “−” is similar) and get:

jc
ex t =

�

a+ b jex t,m

�

− a
Ç

1+ 2 b
a jex t,m + 2 b2

a2 j2ex t,m

b
. (B.12)

By using the condition of soft materials (| jc
ex t | is small), we deduce that b

a jex t,m ≪ 1 from
Eq. (B.12). Therefore, in the case of soft materials, a≫ b jex t,m, Eq. (B.8b) can be simplified
as: hv( jex t) = a jex t ±

b
2 j2ex t,m = a jex t ± h0

v . This just corresponds to the linear relation shown
in Eq. (5) in the main text.

Additionally, even if we expand the function in Eq. (B.9) into the second order of Iex t , we
can find the expansion coefficient:

b̃ ≡
∂ 2hv

∂ 2 jex t

�

�

�

�

jex t=0
=
∂ 2hv

∂ 2eV
γ2

�

�

�

�

eV=0

=
Uvγ

2

16V

∑

k,τ

τ f ′′
�

εk,τ − µ̃0 − h0
vτ
�

+
Uvγ

2

16V

∑

k,τ

τ f ′′
�

εk,τ − µ̃0 + h0
vτ
�

= 0 .
(B.13)

Although not rigorously, Eq. (B.13) implies that the coefficient b is small at the bias eV = 0.
This is some justification to assume bIex t,m≪ a in our case.

In summary, from two fashioned theoretical perspectives, we demonstrate that the linear
approximation between hv and jex t in Eq. (5) is still plausible when jex t is relatively small, even
though the effect of current or voltage is taken into account in the self-consistent process. Once
jex t becomes too large, the weak equilibrium of valley-dependent electron occupations can
indeed be broken, and the total valley polarization will be reversed by the flowing current.
But in principle, as long as the intersection points shown in Fig. 3 exist before valley flip
happens, our physical picutures are still qualitatively valid.

C The effect of trigonal warping effect

Trigonal warping is a fundamental effect of the energy bands for graphene and (twisted) mul-
tilayer graphene systems, which means that the originally rotationally symmetrical Fermi con-
tour (isoenergetical line) is deformed into a shape like the triangle/triangle star, reflecting
C3z symmetry of the system [62, 79, 80]. In some special cases, the trigonally warped closed
Fermi surface may be further broken into three disconnected pockets, which corresponds to a
so-called Lifshitz transformation [58,81].

In realistic graphene and (twisted) multilayer graphene systems, the trigonal warping ef-
fect is one origin of the broken intravalley inversion symmetry within each two-dimensional
(2D) valley band. Regardless of whether the Fermi surface has been broken into three pock-
ets, the trigonally warped bands can allow the current-induced valley polarization modulation
and the finite-momentum Cooper pairs with a three-fold degeneracy. To see this, we here take
a low-energy effective 2D continuum bands Ekx ,ky ,τ near the Γm point of the moiré Brillouin
zone. A related and more comprehensive tight-binding model will be further presented in Ap-
pendix. E. The discussion is basically similar for other twisted multilayer graphene systems.
The 2D valley bands Ekx ,ky ,τ with a finite valley splitting hv can be written as [61,82]:

Ee f f
kx ,ky ,τ = ε

e f f
kx ,ky ,τ −τhv − µ̃= λ0

�

k2
x + k2

y

�

+τλ1kx

�

k2
x − 3k2

y

�

−τhv − µ̃ . (C.1)

The parameters λ0 and λ1 denote the kinetic coefficient and trigonal warping coefficient,
respectively. k = (kx , ky) is the wave vector relative to the Γm point in the moiré Brillouin

19

https://scipost.org
https://scipost.org/SciPostPhys.20.1.021


SciPost Phys. 20, 021 (2026)

Γ
m

Γ
m

Γ
m

(a) (b)

(c)

Figure 7: (a) The schematic diagram for an isotropically circular Fermi contour of
Ee f f
τ around Γm point with λ1 = 0. (b) The schematic diagram for typically trig-

onally warped Fermi contours around Γm point of Ee f f
τ with λ1 ̸= 0. The red/blue

color denotes K/K ′ valley, which are plotted separately for clarity. Purple arrows and
yellow arrows schematically indicate local Fermi velocities of right and left movers,
respectively. The electric current j x

ex t is applied along x direction. (c) the effective

1D valley bands Ee f f
kx ,ky ,τ for the fixed ky = 0 (left panel) and ky = 0.3 nm−1 (right

panel). The colored arrows also schematically indicate amplitudes of local Fermi ve-
locities of effective 1D bands at the Fermi level (dark dashed lines). Here the model
parameters (with units) are chosen as λ0 = 0.5 eV nm2, λ1 = −0.1 eV nm3, µ̃= 0.65
eV, hv = −0.08 eV.

zone. Actually, the effective low-energy band Ee f f
τ can be also rewritten in polar coordinates:

Ee f f
kr ,φ,τ = λ0k2

r +λ1k3
r cos(3φ)τ−τhv − µ̃ with the radial wave vector kr =

q

k2
x + k2

y and the
polar angle φ. We can see the term cos(3φ) indeed indicates a three-fold symmetry.

In Figs. 7(a,b), we schematically demonstrate two typical types of Fermi contours of Ee f f
kx ,ky ,τ

close to Γm point with and without the trigonal warping effect. Compared to the isotropically
circular Fermi contour (λ1 = 0) [Fig. 7(a)], the trigonally warped Fermi contour has been
deformed into a triangle-like shape with C3z symmetry (λ1 ̸= 0) [Fig. 7(b)]. Additionally, we
use red and blue colors to distinguish K band and K ′ band (plotted separately) in Fig. 7(b), and
use distinct sizes of Fermi contours to imply a finite valley splitting. When applying an electric
current j x

ex t in the bulk along the x direction, the Fermi level of right movers and left movers
should be respectively lifted and declined by the electric voltage. Due to the asymmetry of
trigonally warped Fermi contours, we can find the cases of Fermi velocities for right movers
(purple arrows) and left movers (yellow arrows) are evidently different, which may also lead
to a variation of the carrier occupation within each valley. For convenience, we simply fix
the quantum number ky and regard the 2D effective model as an 1D effective model [61].
Due to the symmetry breaking Ee f f

kx ,τ ̸= Ee f f
−kx ,τ, the Fermi velocities along x direction for right

movers v+F,τ and right movers v−F,τ is usually unequal, which is quite similar to Fig. 1(a) in our
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manuscript. In Fig. 7(c), we respectively show the 1D effective bands Ee f f
τ (kx) for ky = 0

(left panel) and ky = 0.3 nm−1 (right panel). They all exhibit asymmetrical feature with
unequal Fermi velocities (colored arrows) at the Fermi level (dark dashed lines). Due to the
time reversal relation between K band and K ′ band (Ee f f

kx ,τ = Ee f f
−kx ,−τ), the relative relationship

between Fermi velocities of left movers and right movers is also opposite. For example, in
Fig. 7(c), v+F,τ < v−F,τ for τ = + (red band) while v+F,τ > v−F,τ for τ = − (blue band). This
guarantees the opposite modulation of electron occupations induced by the electric currents
in two valley bands.

We can also generalize the formulas for current-induced valley polarization modulations
in Appendix. A from 1D model to 2D model. Considering an applied current j x

ex t along x
direction with a bias V , the electron occupation n and normal current j x

ex t can be respectively
written as:











nτ =
∑

ky ,kx
f
h

Ee f f
kx ,ky ,τ −

eV
2 sgn

�

∂ Ee f f
τ

∂ kx

�i

,

j x
ex t =

e
ħhV
∑

ky ,kx ,τ
∂ Ee f f
τ

∂ kx
f
h

Ee f f
kx ,ky ,τ −

eV
2 sgn

�

∂ Ee f f
τ

∂ kx

�i

.
(C.2)

Compared to formulas for 1D model, the formulas for 2D model additionally involves the sum-
mation over the quantum number ky . Here V represents the size of the 2D system. Similarly,
considering a small bias V → 0, we can still derive a linear relation between nτ, hv and j x

ex t
(sheet current density), by using a Taylor expansion of eV :







nτ ≈ n0
τ +α

x
τ j x

ex t ,

hv =
Uv
2V (n+ − n−)≈

Uv
2V (α

x
+ −α

x
−) j

x
ex t + h0

v .
(C.3)

The n0
τ and h0

v denote the initial electron number and valley spitting without the applied cur-
rent, respectively. The coefficient αx

τ can be arranged as:

αx
τ =

Vħh
e

∑

kx ,ky
f ′
�

Ee f f
kx ,ky ,τ

�

sgn
�

∂ Ee f f
τ

∂ kx

�

∑

kx ,ky ,τ
∂ Ee f f
τ

∂ kx
f ′
�

Ee f f
kx ,ky ,τ

�

sgn
�

∂ Ee f f
τ

∂ kx

�
. (C.4)

For the zero temperature limit and small bias, we can simply approximate the modulation of
electron occupation ∆nτ for valley τ as:

∆nτ = nτ − n0
τ ≈

V
(2π)2

eV
2
×

�

∫

l1

dl
|∇kEτ|

−
∫

l2

dl
|∇kEτ|

�

. (C.5)

Here l1 and l2 represent the part of Fermi contour for right movers (purple arrows) and left
movers (yellow arrows), respectively. |∇kEτ| is related to the magnitude of local Fermi velocity.
Since the trigonal warping breaks intravalley inversion symmetry, the subtraction between two
integrals in Eq. (C.5) is generally nonzero. A finite bias (electric current) can thus induce the
modulation of electron occupation in one valley.

D The coupling between supercurrents and valley polarizations

In Fig. 1(a) of the main text, we have demonstrated the normal-current-induced valley po-
larization modulation. The key point is nonequilibrium Fermi levels for moving forward and
backward electrons. In this section, we will demonstrate that even an equilibrium supercurrent
can also couple to valley polarizations.
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In detail, when the system enters the superconducting phase, the supercurrent js is no
longer driven by the finite electric voltage V but instead carried by finite-momentum Cooper
pairs. In other words, the coupling between the valley polarization and supercurrents is equal
to discuss the influences of the Cooper-pair momentum 2q and the superconducting order
parameter ∆ on hv . To investigate this effect, we simultaneously consider the inter-valley
repulsive interaction and inter-valley superconducting pairing in the Hamiltonian, and treat
them simultaneously in the mean-field approximation [44]. Thereby, the total free energy Ft
should be a combination of free energies shown in Eq. (2) and Eq. (8). It will be a function of
order parameters ∆(q), hv and also the momentum q:

Ft (q,∆(q), hv) = −T
∑

k,η=±
ln
�

1+ e−
Ẽη(k,q)

T

�

+
∑

k

E−k+q,− +
V∆(q)2

Us
+
Vh2

v

Uv
−

Uv

V
n2 +µn .

(D.1)

Note that the parameters in Eq. (D.1) are parallel to those in Eq. (2) and Eq. (8). For simplicity,
we set the averaged total electron number n and the chemical potential µ as constants, which
will not influence the total free energy Ft .

To keep the system in the minimum point of the free energy, we demand that the first-order
derivatives of Ft with respect to hv and ∆ are both zero for the fixed q. These lead to a set of
self-consistent equations:






∂ Ft (q,∆,hv)
∂ hv

= 0 ,

∂ Ft (q,∆,hv)
∂∆ = 0 ,

⇒







hv(∆, q) = Uv
2V
∑

k

�

f
�

Ẽ−(k, q)
�

− f
�

−Ẽ+(k, q)
��

,

∆(q, hv) = −
Us
V
∑

k
∆(q,hv)

2
q

E2
2 (k,q)+∆2(q,hv)

�

f
�

Ẽ+(k, q)
�

− f
�

Ẽ−(k, q)
��

.

(D.2)
Compared to Eq. (3) in the main text, it can be found that the first line of Eq. (D.2) has
corrected the self-consistent expression for hv , where the occupation difference between two
valley bands Ek,± is replaced by the occupation difference between two Bogoliubov quasiparti-
cle bands Ẽ−(k, q) and −Ẽ+(k, q). Once the superconducting order parameter∆ becomes zero
(in the normal phase), the self-consistent equation for hv in Eq. (D.2) can be verified to be the
same as Eq. (3) and the physical picture just returns to Fig. 1(a). Especially, once ∆ becomes
very large, the Bogoliubov quasiparticle band Ẽ−(k, q) = E1(k, q)−

q

E2
2(k, q) +∆2(q) will be

totally negative while Ẽ+(k, q) = E1(k, q) +
q

E2
2(k, q) +∆2(q) will be totally positive. This

indicates the summation of
∑

k f
�

Ẽ−(k, q)
�

and −
∑

k f
�

−Ẽ+(k, q)
�

will be exactly canceled,
resulting a zero hv . This phenomenon reflects that the formation of superconducting Cooper
pairs will suppress the valley polarization.

Restricting to the single-q order parameter, the supercurrent Js(q) is approximately propor-
tional to |∆|2q near the superconducting phase transition [42]. In view of this, to investigate
the effect of supercurrents js on valley polarizations, we consider a non-zero order parameter
∆ and focus on the effect of q on hv . Assuming q is a small quantity, we perform a Taylor
expansion for the right part of the first-line equation in Eq. (D.2):

hv(∆, q)≈ hv(∆, q = 0) + β(∆, q = 0)q+O(q2) . (D.3)

Here the first-order expansion coefficient β(∆, q = 0) is derived as:

β(∆, q = 0) =
Uv

2V

∑

k

�

f ′
�

Ẽ−(k, q = 0)
� ∂ Ẽ−(k, q)

∂ q

�

�

�

�

q=0
+ f ′

�

Ẽ+(k, q = 0)
� ∂ Ẽ+(k, q)

∂ q

�

�

�

�

q=0

�

=
Uv

2V

∑

k

�

f ′
�

Ẽ+(k, q = 0)
�

+ f ′
�

Ẽ−(k, q = 0)
��

ε′k,+ . (D.4)
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Figure 8: (a) The schematic diagram for 1D effective valley bands Ek,+ (red color) and
Ek,− (blue color) with a finite valley splitting hv > 0. (b) The schematic diagram for
K band Ek,+ (red color) and K ′ band −E−k,− (blue color) based on the BdG transfor-
mation. (c) The schematic diagram for Bogoliubov quasiparticle bands Ẽ+(k) (blue
color) and Ẽ−(k) (red color) with a fixed superconducting order parameter ∆ ̸= 0.
(c) The schematic diagram for Bogoliubov quasiparticle bands Ẽ+(k, q) (blue color)
and Ẽ−(k, q) (red color) with a fixed superconducting order parameter ∆ ̸= 0 and a
finite momentum q > 0. The purple arrows indicate band shifts, depending on band
dispersions of Ek,+.

In Eq. (D.4), we can find the the first-order expansion coefficient β(∆, q = 0) is still related
to the energy band dispersion ε′k,+, which is somehow consistent with the linear expansion
coefficient ατ in Eq. (A.7). Especially, when the valley bands preserve intravalley inversion
symmetry: εk,τ = ε−k,τ, the summation in Eq. (D.4) will automatically be canceled, indicat-
ing that the finite Cooper-pair momentum 2q is uneasy to influence hv . In short, Eq. (D.4)
demonstrates a relation where the valley polarization is approximately proportional to the
finite Cooper-pair momentum 2q and also the corresponding supercurrent js∝ q.

The similarity between the finite-momentum-induced valley polarization modulation in
Eq. (D.2) and the voltage-induced valley polarization modulation in Eq. (A.6) can be also
elucidated from the BdG Hamiltonian. Performing the Taylor expansion of q, the origin BdG
Hamiltonian H(q) can be rewritten as:

H(q) =
∑

k

(c†
k+q,+, c−k+q,−)

�

Ek+q,+ −∆(q)
−∆(q) −E−k+q,−

�

� ck+q,+

c†
−k+q,−

�

=
∑

k

(c†
k+q,+, c−k+q,−)

�

εk+q,+ − µ̃− hv −∆(q)
−∆(q) −εk−q,+ + µ̃− hv

�

� ck+q,+

c†
−k+q,−

�

(D.5)

≈
∑

k,τ

(c†
k+q,+, c−k+q,−)

�

εk,+ + ε′k,+q− µ̃− hv −∆(q)
−∆(q) −εk,+ + ε′k,+q+ µ̃− hv

�

� ck+q,+

c†
−k+q,−

�

.
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In Eq. (D.5), although the finite Cooper-pair momentum does not induce a non-equilibrium
electron distribution similar to Fig. 1(a), it effectively alters the band structure by an energy
shift ε′k,+q, which still depends on the sign of band dispersions. Taking 1D effective valley
bands shown in Fig. 1(a) as an example, in Fig. 8, we schematically demonstrate the effect of
this energy shift. In Fig. 8(a), the K valley band Ek,+ = εk,+− µ̃−hv (red color) and K ′ valley
band Ek,− = εk,− − µ̃ + hv (blue color) are respectively plotted with a finite valley splitting
hv > 0. In Fig. 8(b), we convert the K ′ valley band Ek,− into −E−k,− corresponding to the
BdG transformation in Eq. (D.5). By introducing a finite superconducting order parameter
∆ ̸= 0, the superconducting gap will open, and the K and K ′ valley bands are recombined
into two Bogoliubov quasiparticle bands Ẽ+(k) (blue color) and Ẽ−(k) (red color). Accord-
ing to Eq. (D.2), the valley polarization is now related to the occupation difference between
∑

k f (Ẽ−(k)) and
∑

k f (−Ẽ+(k)). Especially, considering a contribution of the small momen-
tum q, the energy shift ε′k,+q will break the alignment of right and left parts of BdG bands. See
Fig. 8(d), a finite momentum q respectively induces downward and upward energy shift (pur-
ple arrows) around right and left crossing points between Ek,+ and E−k,−. When valley bands
possess intravalley inversion symmetry, the downward and upward energy shifts should be
equal and the occupations on each Bogoliubov quasiparticle band Ẽ−(k, q) and −Ẽ+(k, q) are
approximately unchanged, also making valley polarizations still. Conversely, when intravalley
inversion symmetry has been broken, the unequal band dispersions indicate opposing energy
shifts cannot be equal, and the occupations on each Bogoliubov quasiparticle band Ẽ−(k, q)
and −Ẽ+(k, q) can be changed. Moreover, the variations of occupations on two Bogoliubov
quasiparticle bands may also not be offset [e.g., Fig. 8(d)], thereby modulating hv based on
Eq. (D.2).

E The estimation of α± in a more realistic tight-binding model and
the effect of band asymmetry

In numerical calculations of the main text, we pick an 1D effective toy model to generally
demonstrate the broken intravalley inverison symmetry will lead to current-induced valley
polarization modulations. Actually, in some more realistic system, the parameters for α± in
Eq. (A.6) are likewise significant. Here we use a tight-binding Hamiltonian on the honeycomb
lattice with (px , py) orbitals which are often used to simulate the four lowest moiré bands of
twisted bilayer graphene [61,83,84]. It is written as:

H2D
τ =

∑

〈i j〉

t1c†
i,τc j,τ +

∑

〈i j〉′

�

t2 − iτt ′2
�

c†
i,τc j,τ +H.c.−

∑

i,τ

(µ̃+τhv)c
†
i,τci,τ , (E.1)

where 〈i j〉 denotes the nearest-neighbor hopping terms with the hopping energy t1, 〈i j〉′ de-
notes the fifth nearest-neighbor hopping terms with the hopping energy t2 and t ′2. c†

i,τ and
ci,τ respectively denote the creation and annihilation operator for the electron at the lattice
site i with px + iτpy orbital (τ = ± represent K and K ′ valley). Actually, the low-energy ef-
fective 2D continuum valley bands in Appendix. C are just derived from an expansion of H2D

τ

at Γm point where λ0 is directly related to t1 and t2, λ1 is directly related to t ′2 [61, 82, 83].
Similar to the procedure in our main text, we choose t1 as the energy unit (t1 = 1), and set
t2 = 0.05t1 and t ′2 = 0.2t1 according to the previous Reference [61]. Usually, for magic-angle
twisted bilayer graphene, the hopping energy of t1 roughly corresponds to 4 meV [61]. Note
that t ′2 characterizes the trigonal warping effect, as is shown by the triangular-shaped Fermi
surfaces of H2D

τ (kx , ky) in Fig. 9(a). It is evident for twisted bilayer graphene bands to break
the intravalley inversion symmetry.
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(a) (b) (c)

Figure 9: (a) The trigonally-warped Fermi surfaces of H2D
τ (kx , ky) for effective

twisted bilayer graphene bands with t1 = 1, t2 = 0.05, t ′2 = 0.2, hv = 0 and µ= −1.4.
The red and blue Fermi surfaces denote K and K ′ valley, respectively. The hexago-
nal frame mark the moiré Brillouin zone. Note that kx and ky are in the units of
L−1

M . Here LM is the moiré lattice constant and be set to LM = 1 in calculations. (b)
The 1D effective valley bands of E2D

kx ,ky=0,τ of H2D
τ with a finite valley splitting field

hv = 0.1. (c) The change of modulation coefficient (α+ − α−)/N versus the initial
chemical potential µ̃0 for several initial valley splitting field h0

v . Here the coefficient
ατ is in the unit of h/et1.
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Figure 10: (a) A series of K bands with distinct band asymmetries characterized by
s. The K ′ bands are just their TRS counterparts and not shown here. kc denotes
the position of the local minimum for the energy band. (b) the change of coefficient
(α+ −α−)/N as a function of s for different µ̃0 with h0

v = 0.1.

For simplicity, we also fix ky = 0 and reduce the 2D energy bands of twisted bilayer
graphene as an 1D energy band. In Fig. 9(b), we plot two valley bands E2D

kx ,ky=0,τ near the

Fermi surface with a initial finite valley splitting hv . Similar to Fig. 1(a), we can see they
both exhibit an evident band asymmetry: E2D

kx ,ky=0,τ ̸= E2D
−kx ,ky=0,τ. Analogous to Fig. 1(c),

we use Eq. (A.7) to calculate the modulation coefficient (α+ − α−)/N of the 1D energy band
E2D

kx ,ky=0,τ versus the initial chemical potential µ̃0 for several initial valley splitting field h0
v .

Here T = 0.1t1 and N = 2000 corresponds to the number of discrete kx points. It can be
found that (α+−α−)/N has demonstrated relatively large values at some chemical potentials.

In addition, in Fig. 10, we also investigate how the band asymmetry affects α+ − α−. In
Fig. 10(a), a series of 1D K valley bands are considered: εk,+ = −2t cos[ s

2s−1(k −
s−1

s π)]
for −π ≤ k ≤ (s−1)

s π and εk,+ = −2t cos(sk − π) × (−1)s for (s−1)
s π < k < π. Note that

εk,− = ε−k,+. Here s is introduced to denote the location of the wavevector for the global
minimum kc =

s−1
s π [see Fig. 10(a)]. As s increases from 1, kc tends to be close to π and
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Figure 11: (a,b) the change of actual critical currents jc+ (a) and jc− (b) as a
function of the system size N for the fixed proportion of the number of electrons
υ= 0.24,0.255, 0.28.

the energy band εk,τ becomes more asymmetric. For the calculations in the main text, s is set
as s = 8. In Fig. 10(b), under an fixed initial valley splitting field h0

v = 0.1, the magnitude of
(α+−α−)/N shows an apparent tendency to grow as s climbs, see Fig. 10(b) for three different
µ̃. Since a larger coefficient α+−α− implies the current jex t can weaken the valley polarization
hv faster, more asymmetric energy bands are more likely to induce the extreme nonreciprocity.

F The convergence of results for the system size

In principle, as long as the proportion of the number of electrons (the filling factor) υ = n/N
in the system is fixed, our conclusions in the main text should remain unchanged as N →∞.
To confirm our calculations have converged, we increase the system size Na (a = 1) by fixing
υ = 0.24,0.255, 0.28 respectively. The changes of actual critical current jc+ and jc− as a
function of N are shown in Fig. 11, respectively. Actually, υ = 0.24 corresponds to n = 480
when N = 2000 [Fig. 3(d)] where the system enters an extreme nonreciprocity only with
two positive jc+ [red lines in Fig. 11(a)]. υ = 0.255 corresponds to n = 510 with N = 2000
[Fig. 3(c)] and the system enters the re-entrant superconductivity with four distinct critical
currents jc [dark blue lines in Figs. 11(a,b)]. υ= 0.28 corresponds to n= 560 with N = 2000
[Fig. 3(b)]where the system enters the conventional SDE with jc+ > 0 and jc− < 0 [light green
lines in Fig. 11]. Fig. 11 clearly indicate actual critical currents jc remain nearly unchanged
as the system size N varies from 800 to 3200.
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