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Abstract

We study the decay of phase coherence in an extended bosonic Josephson junction real-
ized via two tunnel-coupled Bose-Einstein condensates. Specifically, we focus on the π-
trapped state of large population and phase imbalance, which, similar to the breakdown
of macroscopic quantum self-trapping, becomes dynamically unstable due to the amplifi-
cation of quantum fluctuations. We analytically identify early tachyonic and parametric
instabilities connected to the excitation of atom pairs from the condensate to higher
momentum modes along the extended direction. Furthermore, we perform Truncated
Wigner numerical simulations to observe the build-up of non-linearities at later times
and explore realistic experimental parameters.
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1 Introduction

The Josephson effect based on quantum tunneling through a potential barrier between two
superconductors or superfluids [1, 2] is a clear manifestation of macroscopic quantum phase
coherence, which is a central resource [3] for fundamental studies and technological appli-
cations. Ultracold atomic gases provide a particularly rich platform for studying the physics
of Josephson tunneling [4–6]. Not only do they provide exceptional control over system pa-
rameters and advanced imaging techniques to monitor the details of equilibrium and out-of-
equilibrium properties, most interestingly, they provide an additional richness by the ability to
control the interaction within the superfluid.

Even the simplest zero-dimensional (0D) Josephson junction exhibits remarkably rich dy-
namics and strongly depends on whether the atom-atom interaction energy or the tunneling
energy dominates. The first theoretical prediction of coherent atom exchange between two
weakly linked atomic Bose-Einstein condensates (BEC) was proposed by Javanainen [4], Mil-
burn et al. [5] then formulated the first explicit two-mode Hamiltonian for this system. The
resulting Josephson-like dynamics in weakly coupled condensates was then described in detail
for both DC and AC Josephson regimes in [6].

A systematic classification of dynamical regimes within the two-mode approximation tak-
ing into account the atom-atom interactions was worked out in [7,8]. Depending on the rela-
tion between the difference of the interaction energy between the wells (∆Eint) and the tunnel-
ing energy (ħhJ) one observes either regular full Josephson oscillations around a zero average
population difference (∆Eint < ħhJ), or an unbalanced state with nonzero average population
difference and only a small fraction of atoms tunnel between the two wires (∆Eint > ħhJ).
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In the latter, the relative phase between the two condensates can either monotonically in-
crease in time, corresponding to a running phase, referred to as macroscopic quantum self-
trapping (MQST), or be trapped, oscillating close to π, referred to as the π-trapped state, or
π-oscillation [7].

To study relaxation and decay of Josephson oscillations in these bosonic Josephson junc-
tions (BJJ), one has to extend beyond the two-mode approach. [9] investigated a multimode
expansion demonstrating that π-trapped states and self-trapped configurations can dynami-
cally destabilize through internal coupling, even in the absence of dissipation. Similarly, cou-
pling the two-mode Josephson oscillations to a bath of higher quasiparticle modes leads to
eventual relaxation of the BJJ [10].

Albiez et al. [11, 12] first observed Josephson oscillations and macroscopic self-trapping
in 0D double-well BECs. Cataliotti et al. [13] realized a one-dimensional array of bosonic
Josephson junctions using an optical lattice and observed coherent atomic current oscillations,
enabling the study of phase-coherent dynamics in extended Bose-Einstein condensate systems.
Levy et al. [14] later demonstrated both the AC and DC Josephson effects in such condensates
further enriching our understanding of these phenomena. The physics of BJJ was also studied
in exciton-polariton condensates [15].

Moving from zero-dimensional to extended bosonic Josephson junctions (eBJJ) introduces
qualitatively new phenomena. This system hosts a number of different instabilities, enabled
by the extended spatial direction, which are absent in 0D. Previous theoretical studies include
the pure Josephson regime [16–19], connecting the eBJJ to the Sine-Gordon (SG) model [20],
the formation of oscillons (long-lived, spatially localized excitations of the SG-model) [21,22]
or parametric instabilities induced by explicit modulation of the tunneling coupling [23].
Phenomenological damping has also been incorporated to model relaxation toward equilib-
rium [24]. In the macroscopic quantum self-trapping (MQST) regime, a dynamical instability
is predicted to emit correlated quasiparticle pairs, consistent with Truncated Wigner simula-
tions [25].

Experimentally, a promising approach to an extended-junction geometry employs, start-
ing from a one-dimensional array of bosonic Josephson junctions [13], two parallel, weakly
coupled elongated BECs [26–31], which allows direct measurement of density and phase fluc-
tuations along the junction and thereby characterize the physics in full detail [32–34]. Decay
of both the Josephson and MQST regimes has been observed experimentally in coupled con-
densates [35, 36], although precise comparison with theory is limited by harmonic confine-
ment [36, 37]. To date, the only direct realization of a metastable π-trapped state was in a
superfluid 3He weak link [38], and its observation in extended cold-atom junctions remains
an open challenge.

In this work, we present the first detailed theoretical analysis of π-trapped state instabili-
ties in extended bosonic Josephson junctions. We combine analytic predictions for tachyonic
and parametric instability bands with Truncated Wigner simulations that capture nonlinear
secondary processes. Importantly, we identify concrete experimental signatures — from imbal-
ance dynamics to momentum-resolved twin-beam correlations — that provide a clear pathway
toward observing these instabilities with present-day cold-atom technology.

First, we recapitulate the spatially uniform mean-field dynamics, which is stable. Next, we
analyze small, spatially dependent fluctuations. Specifically, first we expand the dynamics up
to first order in space-time dependent perturbations. We find that bands of momentum modes
with nonzero wave-vector are exponentially growing and quantify the corresponding growth
rate. One can distinguish primary instabilities where the growth of characteristic modes is
shown to be of tachyonic and parametric resonance origin [39–41]. To go beyond the lin-
earized analysis, we compare with the numerical results obtained from simulations using a
Truncated Wigner Approximation (TWA) [42]. This allows us to identify secondary instabil-
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ities [39, 40], which represent the even faster non-linear growth of modes triggered by the
primary instabilities [39,40]. Our study provides the basis for quantitative comparisons with
future experimental implementations.

This paper is organized as follows. In Sec. 2, we introduce the theoretical model and
the dynamical regime of the π-trapped state. In Sec. 3, we analyze the early dynamics of this
many-body system, focusing on the instability chart for the primary instabilities. In the follow-
ing section 4, we demonstrate numerically the existence of secondaries being present in this
system and discuss their generation. Then, we also relate to possible experimental realizations
in Sec. 5. Finally, Sec. 6 concludes and gives an outlook. The appendices provide a brief review
of dynamical instabilities, the mean-field picture, and information on the implementation of
the numerical classical-statistical simulations.

2 Tunnel-coupled Bose condensates

We consider a system of two weakly tunnel-coupled elongated BECs, which are trapped in a
double-well potential [43,44]. This section summarizes the theoretical model and derives the
relevant equations for the π-trapped state using a density-phase representation. For a more
detailed discussion on the experimental implementation and feasibility, we refer to Sec. 5.

2.1 Theoretical model

The system under consideration comprises two one-dimensional Bose gases, each trapped in
one well of a double-well potential, as depicted in Fig. 1. They are described by the following
Hamiltonian [16]

Ĥ =

∫ L

0

dx
�

−
ħh2

2m

2
∑

j=1

Ψ̂†
j ∂

2
x Ψ̂ j +

g
2

2
∑

j=1

:
�

Ψ̂†
j Ψ̂ j

�2
:
�

− ħhJ

∫ L

0

dx
�

Ψ̂†
1Ψ̂2 + Ψ̂

†
2Ψ̂1

�

. (1)

Here L is the system size, m is the atom mass, and Ψ̂ j(t, x) ( j = 1,2) represents the bosonic
field operator, which obeys the canonical equal-time commutation relations

�

Ψ̂i(t, x), Ψ̂ j(t, x ′)
�

=
�

Ψ̂†
i (t, x), Ψ̂†

j (t, x ′)
�

= 0 ,
�

Ψ̂i(t, x), Ψ̂†
j (t, x ′)
�

= ħhδi jδ(x − x ′) ,
(2)

with i, j = 1,2. The Hamiltonian consists of kinetic energy, contact interactions of strength g,
and tunneling of amplitude J between the two condensates. Due to the spatial separation of
the two condensates, inter-species interactions are considered to be negligible.

| |

Figure 1: Sketch of the experimental setup under study, consisting of two elongated
condensates (left 1 and right 2). The BECs are characterized by an atomic density
ρ1,2 and a phase φ1,2. The BECs are coupled by a single-particle tunnel interaction
J .
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Throughout we adopt a spatially resolved two-mode description that retains the full x-
dependence of the fields Ψ̂1,2(x , t). In the homogeneous mean-field limit (Subsec. 2.3), i.e.,
for spatially uniform fields, we recover the Smerzi two-mode approximation [45]; beyond that
limit (Sec. 3), spatial fluctuations couple to the zero mode, leading to instabilities absent in
the standard two-mode model.

2.2 Equations of motion

The coupled evolution equations for the 2-component BEC follow from the Heisenberg equa-
tions of motion derived from the Hamiltonian in Eq. (1),

iħh
∂

∂ t
Ψ̂1 = −[Ĥ, Ψ̂1] =

�

−
ħh2∂ 2

x

2m
+ g|Ψ̂1|2
�

Ψ̂1 −ħhJΨ̂2 , (3)

and similarly for Ψ̂2 by replacing Ψ̂1↔ Ψ̂2 in Eq. (3).
In order to study the quantum dynamics approximately, we adopt a semi-classical per-

spective. Specifically, we consider the Gross-Pitaevskii equations (GPEs) of motion that are
obtained after replacing the Bose field operator in Eq. (3) by a corresponding classical field
with Ψ̂ j(t, x)→ Ψ j(t, x). In the semi-classical description, the statistical averages of the classi-
cal fields have to fulfill the same initial conditions at a given time t0 as the quantum fields for
the quantum expectation values of their means, 〈Ψ̂ j(t0, x)〉, and their fluctuations encoded in
two-point correlations, 〈Ψ̂ j(t0, x)Ψ̂k(t0, y)〉 or also higher correlations, which are suitably sym-
metrized to describe the equal initial times. The semi-classical approach is particularly useful
to derive the linearized evolution equations for fluctuations below and for the non-linear TWA
description of Sec. 4. For more details, we refer to Appendix C.

Furthermore, it is convenient to consider the Madelung representation, where the fields
Ψ j(t, x) for j = 1, 2 are expressed in terms of the condensate densities ρ j(t, x) and phases
φ j(t, x), such that

Ψ j =
p

ρ j eiφ j . (4)

In terms of these variables the coupled GPEs become for the densities and phases

ħhρ̇1 =−
ħh2

m

�

ρ1∂
2
x φ1 + ∂xρ1 · ∂xφ1

�

− 2ħhJ
p

ρ1ρ2 sin (φ2 −φ1) ,

ħhφ̇1 =
ħh2

2m

�

∂ 2
x ρ1

2ρ1
−
(∂xρ1)

2

4ρ2
1

− (∂xφ1)
2

�

− gρ1 +ħhJ

√

√ρ2

ρ1
cos (φ2 −φ1) ,

(5)

respectively and correspondingly for ρ2 and φ2. Here, ρ̇ j ≡ ∂ ρ j/∂ t, and equivalently for φ j ,
denotes the derivative with respect to time. It is convenient to define the relative degrees of
freedom, z ≡ (ρ1 −ρ2)/(ρ1 +ρ2), with −1< z < 1, and the relative phase φ ≡ φ1 −φ2.

2.3 Two-mode approximation

We first consider the mean field evolution of a purely homogeneous background field con-
figuration such that ρ j(x , t) = ρ̄ j(t),φ j(x , t) = φ̄ j(t). In terms of the mean field relative
imbalance z̄ and phase φ̄ they are given by

ħh˙̄z(t) = −2ħhJ
Æ

1− z̄2(t) sin φ̄(t) ,

ħh ˙̄φ(t) = ħhJ

�

Λz̄(t) +
2z̄(t)
p

1− z̄2(t)
cos φ̄(t)

�

,
(6)
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Figure 2: Parameter space (Λ, z0) showing the dynamical regimes delineated by Λb
[Eq. (9)] and Λu [Eq. (10)], for an initial phase difference of φ0 = π. The horizontal
lines represent Λ= {1.00, 3.55,7.10}.

which are invariant under discrete shift symmetry φ̄→ φ̄+2πl, l ∈ N. We refer to Ref. [7] and
Appendix B for details of the derivation. In Eq. (6), the dimensionless parameter Λ, defined
by

Λ≡
µ

ħhJ
, (7)

characterizes the ratio between the interatomic interaction and the tunneling energies,
µ j = ρ j g is the chemical potential in each well, and µ = µ1 + µ2 denotes the total chemi-
cal potential. In this work, we consider repulsive interatomic interactions, such that g and Λ
are always positive.

2.3.1 Dynamical regimes

The system exhibits a range of different behaviors for various initial conditions. The dynamical
modes are fully determined by the initial conditions (φ0, z0) and the dimensionless parameter
Λ. In the following, we focus our discussion on the π-trapped state dynamics and, therefore,
without loss of generality, fix the initial condition for the relative phase to φ0 = π.1 The differ-
ent possible dynamical regimes are conveniently represented in parameter space (Λ, z0) [36],
which are illustrated in Fig. 2. Let us review the three qualitatively different regimes for a
fixed initial condition for z0.

• (Only) phase trapping, occurring for Λ < Λb(z0). The dynamics in this regime presents
slightly deformed oscillations of the imbalance, such that 〈z̄〉t = 0. The expression 〈...〉t
indicates the temporal average. The relative phase is trapped around π, i.e., 〈φ̄〉t = ±π.
This phenomenon is called π0-oscillations and is shown in the left panel of Fig. 3.

• Phase and density trapping, occurring for Λ ∈ (Λb,Λu). This phenomenon is known as
the π-oscillations. In this case, 〈φ̄〉t = ±π and 〈z̄〉t ̸= 0. As shown in the central and
right panels of Fig. 3, the imbalance oscillations are centered around one of the four
limiting points ±z∗0, where the amplitude of the oscillations drops to zero. Analytically,
these points are located at [36]

(φ̄, z̄) =

�

±π,±

√

√

1−
4
Λ2

�

. (8)

1It is important to note that the commonly discussed Josephson oscillation regime is excluded due to the initial
condition choice of φ0 = π. We have indicated this regime with the gray shaded area in Fig. 3.
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Figure 3: The dynamics of the mean fields φ̄ and z̄ corresponding to Fig. 2. For
Λ < Λb(z0), the system exhibits π0-oscillations, characterized by 〈φ̄〉t = π, 〈z̄〉t = 0
as visible in the left and center panels. For Λb(z0)< Λ< Λu(z0), the system displays
π-oscillations, where 〈φ̄〉t = π, 〈z̄〉t ̸= 0 as visible in the center and right panels (blue
lines). For Λ > Λu(z0), the system exhibits MQST self-trapped modes, characterized
by 〈φ̄〉t = 0, 〈z̄〉t ̸= 0 and it is shown in the right plot (green lines). In all plots, the
gradient bar indicates the initial condition for z0.

In order to observe the π-oscillations, it is essential to carefully choose the initial condi-
tion z0 (or Λ). The lower bound Λb is determined by the initial imbalance z0. It arises
from the requirement that the effective potential for the imbalance (see Appendix B.2
and, in particular, Eq. (B.7) for more details) must be in the symmetry-broken phase to
ensure that the imbalance remains trapped at all times. Additionally, the total energy
must be negative to prevent the imbalance from surpassing the potential barrier. This
energy condition is even more stringent, as discussed in Refs. [25,45], and gives

Λb =
4
�

1−
q

1− z2
0

�

z2
0

. (9)

The upper bound Λu amounts to

Λu =
4
q

1− z2
0

. (10)

This bound results from the condition that the phase remains trapped at all times.

• (Only) imbalance trapping, occurring for Λ > Λu. This regime corresponds to macro-
scopic quantum self-trapping (MQST), characterized by 〈z̄〉t ̸= 0 and the circular mean of
the relative phase given by 〈φ̄ mod 2π〉t = 0. The corresponding time evolution of the
mean fields is shown in the right panel of Fig. 3.

In this work, unless stated otherwise, we set Λ = 3.55. This value ensures that, for nearly all
initial values of z0, the system remains in the π-trapped regime [see Fig. 2]. At the same time,
it places the system close to the perturbative regime in the coupling (1/Λ≪ 1).

3 Instabilities from linearized fluctuation equations

In this section, we investigate the stability of the mean-field trajectories when transitioning
from the 0D bosonic Josephson junction to an extended junction. Here, we focus on the break-
down of the π-oscillations. In general, the extended direction enables the decay of this state
through the excitation of correlated pairs of atoms, energetically prohibited in 0D.
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At short times, when the occupation of the non-condensate modes is small, we linearize
the equations of motion in the fluctuations around the previously discussed mean fields ρ̄ j

and φ̄ j , which allows us to obtain analytical predictions of the instability bands in different
regimes.

We characterize the instabilities by their dispersion relations. In particular, the non-zero
imaginary components lead to their exponential growth. First, we consider the simple case
where the relative phase and the density of the condensates are initialized at a mean-field
stationary point. Then, we extend the calculation of the linearized evolution to more general
cases, considering the presence of oscillations around the mean-field stable point. In this case,
parametric oscillations lead to further instability bands.

3.1 Exponential amplification of fluctuations

We write each condensate density ρ j and phaseφ j in terms of their homogeneous means ρ̄ j(t)
and φ̄ j(t), with small fluctuations δρ j(t, x) and δφ j(t, x) on top as

ρ j(t, x) = ρ̄ j(t) +δρ j(t, x) ,

φ j(t, x) = φ̄ j(t) +δφ j(t, x) .
(11)

Linearizing Eq. (5), we recover to zeroth order in the phase and density fluctuations the mean-
field equations corresponding to Eq. (6). To linear order in the fluctuations, the following
equations are obtained [46,47]:

ħhδρ̇1 = −
ħh2ρ̄1

m
∂ 2

x δφ1 −ħhJ
p

ρ̄1ρ̄2 sin φ̄ (δ1 +δ2)− 2ħhJ
p

ρ̄1ρ̄2 cos φ̄ (δφ2 −δφ1) ,

ħhδρ̇2 = −
ħh2ρ̄2

m
∂ 2

x δφ2 +ħhJ
p

ρ̄1ρ̄2 sin φ̄ (δ1 +δ2) + 2ħhJ
p

ρ̄1ρ̄2 cos φ̄ (δφ2 −δφ1) ,

ħhδφ̇1 =
ħh2

4mρ̄1
∂ 2

x δρ1 − gδρ1 +ħhJ

√

√ ρ̄2

ρ̄1

�

cos φ̄
(δ2 −δ1)

2
− sin φ̄ (δφ2 −δφ1)

�

,

ħhδφ̇2 =
ħh2

4mρ̄2
∂ 2

x δρ2 − gδρ2 −ħhJ

√

√ ρ̄1

ρ̄2

�

cos φ̄
(δ2 −δ1)

2
+ sin φ̄ (δφ2 −δφ1)

�

,

(12)

where we define δ j = δρ j/ρ̄ j . These equations are valid for linear perturbations around
any arbitrary time-dependent homogeneous background. From now on, we focus on the π-
trapped state, which is characterized by closed classical trajectories in (φ, z) space around one
of the non-equilibrium points, see Eq. (8). In this state, both the imbalance and the relative
phase oscillate around a non-zero value. For more details on the dynamical regimes and the
conditions for the π trapping, we refer to the discussion in Appendix B.1.

3.2 Tachyonic instability

We specify the linearized equations [Eq. (12)] to the π-trapped case by setting the fields to
their stationary values [Eq. (8)]

ρ̄ j → ρ∗j , φ̄→ π , (13)

and we choose, without loss of generality, that ρ∗1 > ρ
∗
2.

For the analysis, it is convenient to introduce rescaled time τ and space x̃ as

τ≡
µ

ħh
t , x̃ ≡

1
ξ

x , (14)
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where the healing length ξ is defined as

ξ=
ħh
p

mµ
. (15)

Note that, therefore, frequencies are in units of µ/ħh and hence have the same dimension as
energies. Note that in the interest of readability, we omit the tilde when there is no risk of
confusion. In terms of the rescaled variables, Eq. (12) reads in momentum space

δρ̇1 = ρ
∗
1k̃2δφ1 +

2
Λ

q

ρ∗1ρ
∗
2 (δφ2 −δφ1) ,

δρ̇2 = ρ
∗
2k̃2δφ2 −

2
Λ

q

ρ∗1ρ
∗
2 (δφ2 −δφ1) ,

δφ̇1 = −
�

k̃2

4ρ∗1
+ 1

�

δρ1 −

√

√

√

ρ∗2
ρ∗1

(δ2 −δ1)
2Λ

,

δφ̇2 = −
�

k̃2

4ρ∗2
+ 1

�

δρ2 +

√

√

√

ρ∗1
ρ∗2

(δ2 −δ1)
2Λ

,

(16)

where now the dot refers to the derivative with respect to τ. One observes from Eq. (16)
that the dynamics of δρ1,δρ2,δφ1 and δφ2 is coupled to each other. Assuming the solutions
have a time dependence ∼ e−iω(k̃)τ, we find by diagonalization two pairs of eigenfrequencies
ω±(k̃). Their squared dispersion relations are given by

ω2
±(k̃) =

X (k̃)
4ρ12
±

Æ

∆(k̃)
2ρ2

12

, (17)

where
X (k) = 2Λ−2 − 2Λ−1pρ12

�

4ρ12 + k2
�

+ρ12k2(2+ k2) , (18)

and

∆(k) = Λ−2
�

−4(ρ12)
3/2 +Λ−1
�2
− 2Λ−2pρ12

�

Λ−2 +
p

ρ12

�

(ρ∗1)
2 − 6ρ12 + (ρ

∗
2)

2
��

k2

+ρ12

�

2Λ−1pρ12(∆ρ)
2 +ρ12(∆ρ)

2 +Λ−2
�

k4 , (19)

where, for brevity, ρ12 = ρ∗1ρ
∗
2 and ∆ρ = ρ1 −ρ2. The squared eigenvalues ω2

± are shown in
the top plot of Fig. 4 as a function of scaled momentum. The real parts Re(ω2

±) and imaginary
parts Im(ω2

±) are indicated by dashed and solid lines, respectively. From this, one can conclude
that the system becomes unstable in two sets of momentum modes for different reasons. The
population of these sets of unstable momentum modes grows exponentially. In fact, there is a
first range of modes that experience a positive growth rate because Re(ω2

−) < 0. This kind of
instability is commonly referred to as tachyonic instability in a cosmological context [48]. The
second region of dynamical instability in the system arises when, in the squared dispersion
relation, the square root argument ∆(k) < 0. We note that there are no additional primary
unstable regions in the system.

The growth rates γ+ and γ−, associated with the analytical prediction for the imaginary
part of the eigenvalues ω+ and ω−, are shown in the bottom plot of Fig. 4 by the dashed and
thin solid lines, respectively. The γl in represents the growth rate computed numerically by
solving the linearized equations of motion [Eq. (12)], and the thick solid line indicates it. The
analytical results match the numerically computed growth rates derived by the full solution of
the system of linearized equations.

For clarity, the general mechanism of tachyonic instabilities and their distinction from the
single-field case with unstable modes at k = 0 is reviewed in Appendix A.1, which explains how
the finite-momentum instability bands seen in Fig. 4 arise in the two-component condensate
system.
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Figure 4: Top: Squared dispersion relationω2
± [Eq. (17)] as a function of momentum

k̃ for Λ = 3.55. The real parts Re (ω2
±) and imaginary parts Im (ω2

±) of the squared
dispersion relation ω2

± are represented by solid and dashed lines, respectively. Bot-
tom: Growth rates γ+ (dashed line) and γ− (thin solid line) corresponding to the
imaginary part of ω+ and ω−, respectively [from Eq. (17)]. The growth rate γl in
(thick solid line) is obtained from solving Eq. (12).

3.2.1 Physical interpretation

We now provide a physical interpretation of the instability. Because the first condensate has a
higher energy than the second, the tunneling of quasiparticles into the lower-energy well re-
leases excess potential energy, which is converted into kinetic energy. Since the initial momen-
tum is approximately zero, energy conservation requires the creation of a pair of quasiparticles
with opposite momenta that share this released energy (similar to twin-atom beams [49]).
This process gives rise to a well-defined instability band in the momentum spectrum. The two
resulting momentum peaks can be understood as signatures of pair emission: one or both
quasiparticles tunnel into the lower-energy condensate, while momentum conservation en-
forces their back-to-back emission with total momentum zero. The resulting correlated pair
can be experimentally detected via opposite-momentum correlations (see Sec. 5.5). There are
exactly two main processes allowed by energy conservation:

1. Single tunneling: One quasiparticle remains in the original well while its partner tunnels
to the second well.

2. Pair tunneling: Both quasiparticles tunnel together into the lower-energy condensate.
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Figure 5: Physical processes related to the primary instability of the coupled BEC
system with components Ψ1 and Ψ2, indicated by the upper and lower elongated
shapes, respectively: a) excitation of a pair of particles from the first condensate,
where one particle further tunnels to the second condensate; b): excitation of a pair
from the first condensate that tunnels to the second one; c) and d): excitation of a
pair of particles from each of the two condensates.

We will refer to the processes as (1, 1) → (l, m) for two particles starting from the first
condensate and produced in the wells l and m, where l, m= 1, 2. Note that in contrast to the
twin beam experiment [50], no further selection rules apply here, such that all processes that
conserve energy are allowed. Furthermore, note that in zero spatial dimensions, this is not
possible due to energy and momentum conservation.

A simple perturbative calculation treating the tunneling term as a perturbation can help
gain further physical insight. First, let us examine more in detail the (1, 1)→ (1,2) process,
shown in Fig. 5a). The dominant contribution to particle creation comes from the momentum
mode satisfying the resonant condition

ε1(k̃) + ε2(k̃) =
∆µ

µ
, (20)

which equals the sum of energies of the particles each excited in one well, given by the Bo-
goliubov dispersion relation for the case of a free condensate

ε j(k̃) =

√

√

√

k̃2

�

µ j

µ
+

k̃2

4

�

, (21)

to the scaled difference of chemical potentials ∆µ/µ = (µ1 − µ2)/(µ1 + µ2). The solution of
Eq. (20) gives the resonant momentum

k̃∗1 =

�

z̄∗0
2

�1/2

=
�

1
4
−

1
Λ

�1/4

, (22)

that corresponds to the center of the first instability peak in the bottom plot in Fig. 4. Therefore,
the specific location of the peak only depends on the specific choice of the dimensionless pa-
rameter Λ. A comparison between the analytical and numerical results can be seen in Fig. 6.
The analytical prediction [Eq. (22)], shown with dashed lines and detailed in Ref. [36], is
compared to the numerical result obtained by solving the linearized equation and fitting the
growth rate, shown with a solid line. The deviation from the analytical, theoretical prediction
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Figure 6: Prediction of the primary peak location at momentum k̃∗1 versus the di-
mensionless ratio Λ. The analytical [Eq. (22)], numerical, and asymptotic results are
indicated by a solid, dashed-dotted, and a dotted line, respectively.

is due to numerical uncertainty and the approximation to a weakly tunnel-coupled system.
Asymptotically, for Λ≫ 1, k̃∗1→ 1/

p
2, indicated as a dotted horizontal line in the Fig. 6.

The second process which is energetically allowed is (1, 1) → (2,2), shown in Fig. 5b).
Energy conservation gives the resonant condition

2ε2(k̃) = 2
∆µ

µ
. (23)

Proceeding in a similar fashion as in the previous case, the solution of Eq. (23) gives the
resonant momentum k̃∗2 that corresponds to the center of the second instability peak in Fig. 4.

In both cases, we obtain the same results for the peak location for the instability as dis-
cussed in Ref. [25] for the limiting case of large Λ, even though the reference studies the
different dynamical regime of MQST. In fact, the actual physical process of pair creation and
redistribution in the wells is identical to our case.

3.3 Linearization for oscillating mean fields: Parametric instabilities

After discussing the linearization around the stationary point in (φ, z) space, we now want
to generalize this approach to generic (time-dependent) closed trajectories around it. In this
case, there is an additional instability, parametric resonance, caused by the oscillatory behavior
of the mean fields. The oscillations around the minimum of the effective potential act as a
source for a parametric resonance instability, in addition to the tachyonic instability discussed
before. In fact, an entire range of modes experiences a positive growth rate, and the width
of this instability band increases with the modulation amplitude ∆z = z0 − z∗0. First, we get a
qualitative understanding of the mechanisms behind the additional peaks.

3.3.1 Physical interpretation

Once again, we can use energy arguments, as explained below, to gain an intuitive under-
standing of the underlying physical processes that lead to the different peaks. We will treat
the condensate as very weakly coupled to use the free dispersion relation. This procedure is
justified because the ratio 1/Λ is small. In the following, we explain the origins from resonance
conditions. As in the previous subsection, we will indicate the process where two particles from
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condensate j are excited, and end up in the l and m wells as ( j, j)
r
−→ (l, m), where the ’r ’ is

indicating that the mechanism behind the excitation of the pair is parametric resonance. The
allowed processes are the following:

• ( j, j)
r
−→ ( j, j)

These two cases correspond to a pair of particles leaving a condensate in a given well
j = 1,2, which gets excited by higher momentum modes in the same well. The resonance
occurs when the Bogoliubov dispersion relations [Eq. (21)] match the frequency ωr
of the oscillation frequency of the imbalance densities ρ̄ j (which equals the oscillation
frequency of the trapped relative phase φ̄ since they are conjugate variables). In this
case, energy conservation yields

2ε j =ωr . (24)

The same result for the location of the unstable modes can also be estimated in a different
way, which connects with the usual discussion of parametric resonance in field theory.
Specifically, for small oscillation amplitudes (i.e., when ∆z ≪ 1), by taking a further
time derivative of the density equations in Eq. (16) and taking the limit of uncoupled
condensates, and slowly varying mean fields, the resulting equations can be brought to
the form of a Mathieu equation [51,52] in terms of the δρ j alone,

�

∂ 2

∂ s2
+ Ak̃ − 2qk̃ cos(2s)

�

δρ j(s, k̃) = 0 , (25)

with the dimensionless time s = ωrτ/2, and parameters Ak̃ = ε
2
j (k̃)/(ωr/2)2 and

qk̃ = ∆zεk̃,0µ j/(ωr/2)2. Equation (25) admits oscillatory solutions with exponentially
growing amplitudes that describe parametric resonance. The width of this instability
band is delimited by the modes satisfying

Ak̃ = 1± qk̃ , (26)

which increases with the amplitude r of the oscillation. That is, resonance occurs for
those momentum modes whose energy equals half a quantum of energy ħhωr/2 injected
in the system through the oscillation at frequencyωr . Note that the same type of Mathieu
equation is discussed in Ref. [23] to describe the higher-order resonances. We note that
the Mathieu equation governing the instability coincides with our Eq. (25). However,
while in Ref. [23] the instability arises from an external drive implemented through
explicit modulation of the tunneling coupling (thereby enforcing parametric growth),
here it is the oscillations of the mean field that act as the periodic drive.

For clarity, the general mechanism of parametric instabilities and their relation to
Mathieu-type resonance equations is reviewed in Appendix A.2, which explains how
the oscillating mean fields in our system give rise to the finite-momentum resonance
bands identified here.

• (1,1)
r
−→ (2,2)

It can also occur that from the first condensate, a pair of atoms gets excited to the second
condensate. In Fig. 5, c) and d) represent the physical process of two particles leaving
the condensate end and getting excited at opposite momenta from

2(ε2 −
∆µ

µ
) =ωr . (27)
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Figure 7: Instability chart as a function of the wavenumber k̃ for the oscillating π-
trapped state with varying initial conditions ∆z. The oscillations and amplitude of
the mean fields are shown in the inset and legend, respectively. We choose Λ= 7.10
for better comparison with the analytical predictions for the location of the peaks,
see the main text for details. The vertical dashed lines indicate the position of the
maximum of the instability band from the analytical calculation. The tachyonic in-
stabilities (1,1) → (1,2) and (1, 1) → (2,2) are indicated with dashed lines. Para-
metric instabilities from left to right: leading resonance (1,1)

r
−→ (1,1) and leading

resonance (2,2)
r
−→ (2, 2) [Eq. (24)], resonance (1,1)

r
−→ (1, 2) [Eq. (28)], leading

resonance (1,1)
r
−→ (2,2) [Eq. (27)], second order resonance (1, 1)

2r
−→ (2,2), third

order resonance (1,1)
3r
−→ (2,2).

• (1,1)
r
−→ (1,2)

The last case occurs when a pair of particles from the first condensate gets excited by
the driving force of the oscillations, and only one atom tunnels to the other condensate.
In this case,

ε1 + ε2 =ωr +
∆µ

µ
. (28)

The resonance peak overlaps with the tachyonic peak discussed in the previous subsec-
tion. Still, we see that for increasing oscillation amplitude, the corresponding growth
rate first appears even without oscillations being present (∆z = 0), then diminishes, and
then takes over growing in amplitude.

Moreover, for each resonance process, the above analysis only concerned the first (order)
instability band. Still, in general, multiples of the resonance, so higher frequency harmonics
are also in resonance. Each band in momentum space has a width of order δk̃ = l2, l ∈ N.
So they will be located at higher frequencies (but not multiples), with a narrower width, and

a lower growth rate. We denote these processes in Figure 7 as (i, j)
l r
−→ (i, j) to indicate the

l-order resonance.
In general, for increasing the oscillation amplitude ∆z, the width of the parametric insta-

bility bands increases and the bands become higher. There are no further resonance processes
apart from the ones discussed. For instance, the process involving a pair of particles from the
second condensate with one (or more) particles tunneling to the second condensate is ener-
getically forbidden. The instability chart is summarized in the left panel of Fig. 7, along with
the evolution of the mean fields displayed in the right panel. Energetically possible processes
are represented by vertical lines. The dashed green line illustrates the limiting case where only
tachyonic instabilities are present, occurring when the amplitude of the mean fields’ oscillation
approaches zero.
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Figure 8: Time evolution of the densities in the two condensates ρ̄ j(τ), relative
imbalance z̄(τ) and relative phase φ̄(τ). The π-trapped state was initialized in
(z0,φ0) = (0.95,π) with Λ = 3.55. The oscillations of the fields are followed by
the equilibration of the imbalance and relative phase to zero at late times (dashed
line).

4 Beyond linearization with numerical simulations

The previous section gave a linearized analysis of the evolution of perturbations, allowing us
to gain an analytic understanding of the primary instabilities. In this section, we solve the full
GPE equations with initial fluctuations as a seed for the instabilities. We refer to Appendix C
for a review of the method and the implementation details. In order to observe the instabilities
more clearly, we first reduce the noise to η= 0.001 (see Eq. (C.1) for the definition of the noise
factor η). Later in Sec. 4.1, we will examine the case of vacuum and thermal noise.

For all simulations, we have considered typical values for an experiment using 87Rb: m=87
amu, as ≈ 5.2 nm, the longitudinal trapping potentialω⊥ = 2πν⊥, ν⊥ = 1.4 kHz. We consider
a homogeneous system (ω∥ = 0). The tunneling coupling J = 2πνJ , has been set to νJ = 200
Hz. Furthermore, we consider 20000 particles and 2048 lattice points with equal spacing
a = 0.1 µm, corresponding to typical experimental densities ρ ≈ 100 atoms per µm. In our
classical-statistical simulations, we typically average over at least 200 runs.

As in the previous section, we first present results for initial conditions for the fields at the
saddle point and then generalize to small oscillations around it. These numerical simulations
enable us to study also the non-linear dynamics: In Fig. 8, the time evolution of the fractional
imbalance z and relative phaseφ is shown. At late times, the system deviates from the classical
trapped trajectory, showing damping [8] and eventually approaching equilibrium where both
the relative phase and the imbalance vanish. As z and φ are canonically conjugate variables,
density fluctuations reach their maximum when phase fluctuations cross zero and vice versa.

The relevant observable for the study of the growth of fluctuations is the momentum dis-
tribution

ρ j(τ, k̃) =
1
L
Ψ j(τ, k̃)Ψ∗j (τ, k̃) , (29)

where Ψ j(τ, k̃) =
∫

d x̃Ψ j(τ, x̃)e−ik̃ x̃ denotes the Fourier transform of the field and the bar
denotes the ensemble average across all realizations. The momentum distribution is shown in
Fig. 9 for the two cases with identical parameters as examined earlier.

The simulations show the primary instabilities at early times already discussed using the
Bogoliubov approximation in Sec. 3. As the occupation number of unstable modes increases
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Figure 9: Momentum distribution of the condensates (solid and dashed lines cor-
respond to the first and second condensate, respectively) for the π-trapped state at
different times. The black dashed lines show the maximally unstable momentum
modes obtained using energy considerations (see Sec. 3.2.1). Upper: Fields initial-
ized in the mean field stationary point (φ0, z0) ≈ (π, z∗0). Lower: Fields initialized in
(φ0, z0) = (π, 0.95), corresponding to weak oscillations around the mean-field sta-
tionary points, i.e., ∆z ̸= 0. These initial conditions cause the same instabilities as
the ∆z = 0 case, but additional peaks arise due to oscillations in phase and imbal-
ance that cause parametric resonance.

exponentially, they become highly occupied, and the system enters a non-linear regime. The
Bogoliubov approximation breaks down, and the stage of secondary amplification sets in. As
time progresses, the system deviates from the linear regime, which we discuss next. Our
analysis follows a similar approach as in Ref. [39].

The emergence of both primary as well as secondary instabilities can be observed from
the results of the numerical lattice simulations shown in Fig. 9. The black dashed lines show
the predicted peaks according to energy conservation (as already discussed in Sec. 3.3.1).
The peaks correspond to the maximally unstable modes of the linearized theory within each
instability band (cf. Fig. 7).

Figure 10 shows the time evolution of the most unstable modes corresponding to the pri-
mary and secondary peaks in the first wire. The dotted blue and dashed-dotted red curves
represent the primary unstable modes, while the black dotted and green solid curves corre-
spond to the secondary unstable modes with enhanced growth rates. As it can be observed,
the secondary modes begin to grow later, around τ ≈ 600 − 800, but then grow at a faster
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Figure 10: Time evolution of the occupation number of primary and secondary ex-
ponentially unstable modes in the first wire. The dashed and dotted-solid lines cor-
respond to the two maximally unstable modes, also shown in Fig. 9. The straight
lines indicate the corresponding growth rate γ j,l in as predicted by the linearized the-
ory. The black-dotted and green solid curves are the secondary unstable modes with
enhanced growth rates.

rate than the primaries. The straight lines represent exponential growth with a corresponding
growth rate γ j,l in, where j = 1,2 indicates the prediction by the linearized theory, correspond-
ing to momenta k̃∗j . It is worth noting that the result from the linearized theory is slightly
higher than the GPE, but the presence of noise can account for this difference.

When macroscopically occupied modes start interacting, the mode with momentum 3k̃∗

starts growing due to the dominant scattering process (k̃∗, k̃∗) → (−k̃∗, 3k̃∗) [39]. Further-
more, the momentum modes at ±k̃∗ can also engage in interactions with the condensate mode
of Ψ1. This process is expected to increase the occupation number of the 2k̃∗ mode [39].

Over time, the process of the secondary instabilities continues, resulting in the occupation
of progressively higher modes. An alternative approach to study these secondary instabilities
is, rather than letting the time evolution fill these excited modes, to directly seed the primary
modes, as discussed in Ref. [39]. At later times, the growth of all modes deviates from the
exponential growth and then eventually stops, as no single process dominates the dynamics.
In this final phase, the distinct peak structure of the spectrum is lost, particles spread across
various momentum modes, and the system undergoes thermalization (represented by gray
lines for τ→∞ in Fig. 9).

4.1 Non-zero temperature

One of the major experimental limitations for observing the presented dynamics is the amount
of noise in the system. At the beginning of this section, we considered a reduced noise level to
make the different stages of the evolution visible. For increasing noise, this clear separation
into periods of linear primaries, a limited number of non-linear secondaries, and a late stage
of complete non-linear thermalization disappears. This, in general, presents one of the major
challenges in experimentally observing secondaries in analog field theory simulations, with a
recent measurement for classical water-air interfacial waves [53].

We display in Fig. 11 the momentum distribution of the empty well ρ2 at t = 3.8 ms for
different initial temperatures T = 0 − 50nK. The empty well was initialized by sampling
the quantum noise within the quasiparticle basis (see Appendix C for more details on the
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Figure 11: Momentum distribution in the second well ρ2 for temperature
T = {0, 10,20, 30,40,50} nK at t = 3.8 ms (this timescale corresponds in dimen-
sionless units to τ≈ 300 in Fig. 9).

numerical implementation). Around this timescale, the primary instability peaks are clearly
visible at T = 0, with the two momentum peaks located at k̃∗1 and k̃∗2. The primary instability
peak located at k̃∗1 remains visible and in good agreement with theoretical predictions for
temperatures easily achievable with current cold-atom experiments. Note that for even higher
temperatures, we find a slight shift of the instability peaks to higher momenta.

Detecting the relevant higher-loop processes experimentally could be difficult at higher
temperatures. To overcome this limitation, one approach is to seed the primary instabilities,
as done, e.g., in Ref. [39], and/or further decrease the temperature [54, 55]. Further, the
decay processes are expected to create excitations in pairs, leading to higher-order correlations
between different momentum modes, similar to the studies performed in Refs. [50, 56]. A
detailed analysis of the pair-correlations and their decoherence due to non-zero temperature
is beyond the scope of this paper.

5 Experimental feasibility

In this section, we outline the requirements needed to fulfill to investigate experimentally the
π-trapped state dynamics studied in this work. The parameter regimes required to be reached
can be inferred from Figs. 2 and 3, and Eqs. (9) and (10). These define the necessary initial
conditions z0 and Λ ∈ (Λb(z0),Λu(z0)) for the appearance of the π-oscillations in the dimen-
sionless (Λ, z0) space for 〈z〉t > 0. These specific parameter regimes are readily implementable
in present-day experiments with one-dimensional Bose gases on AtomChips [36].

As discussed above (see Sec. 3), the stability of the π-trapped state dynamics is determined
by the appearance of non-trivial scattering solutions related to the emission of correlated pairs
of excitations. Increasing the system size L along the extended direction of the bosonic Joseph-
son junction, the system transitions from stable π-oscillations, as predicted by the two-mode
(mean-field) model, to the reported instabilities.

5.1 Validity of the one-dimensional model under experimental conditions

Our analysis so far has been based on an idealized, strictly one-dimensional scenario. The one-
dimensional approximation we considered neglects interaction-induced modifications (broad-

18

https://scipost.org
https://scipost.org/SciPostPhys.20.2.026


SciPost Phys. 20, 026 (2026)

ening) of the ground state wavefunction in the radial directions [57, 58], the system be-
comes non-integrable and described by the non-polynomial Schrödinger equation [57]. Con-
sequently, a more realistic one-dimensional model leads to a non-trivial density dependencies
of the coupling constants (see e.g. [37]). The resulting dominant effect on the dynamics of
the linearized fluctuations is a small renormalization of the tunnel-coupling J and the speed
of sound cs. While the former only needs to be considered when determining the correct
parameter regime (i.e., the dimensionless Λ), the latter simply leads to a trivial shift of the
resonances.

The validity of the one-dimensional model Eq. (1) [58–60], as well as its low-energy effec-
tive description in terms of the sine-Gordon model [20], has been shown in previous AtomChip
experiments. In particular, this has been shown for Josephson oscillations [30, 31], Floquet
engineered bosonic Josephson junctions [61], and the effective low-energy description for
balanced condensates [29,62,63].

Another imperfection in relation to our theoretical models is the longitudinal confinement
potential and the finite size of the experimental system. Even though Digital Micromirror
Devices (DMDs) enable precise control over the shape of the longitudinal trapping potential
on the AtomChip [64–66] allowing to implement homogeneous box traps and the dynamics
within the bulk is well approximated by a homogeneous system, the finite size of the trap is
felt at timescales larger than propagation speed of fluctuations originating from the boundary.

5.2 State preparation

A detailed analysis of the dynamics involved in preparing the initial state goes beyond the
scope of this paper; nevertheless, we will argue that a combination of already established and
often applied techniques will allow for experimental implementation of the π-trapped state.
AtomChips [67–69] enable precise creation and control of a double-well (DW) potential for
one-dimensional quantum gases [70–72] on timescales much faster than the typical timescale
of the reported instabilities. In particular, this includes: (i) variation of the tunneling coupling
J (see e.g. [29]), (ii) tilting or rotation of the DW potential [70], and (iii) Floquet engineering
[61].

The precise control of the DW potential facilitates a number of prospective preparation
sequences. Reaching the desired dimensionless parameters (Λ, z0) is a matter of designing
the loading sequence of the DW. Tilting allows to set the initial imbalance z0 when loading the
atomic cloud in the DW. With the total atom number and the initial imbalance z0 known, adjust-
ing the tunneling J will then allow for dialing in the desired Λ. This way, we have independent
control of the initial state in the (Λ, z0) space. Applying optimal control techniques, similar
to the ones recently demonstrated for regular splitting into a one-dimensional DW [73], will
allow us to establish fast and reliable preparation of the initial state with minimal disturbance.

Finally, the preparation of the initial relative phase difference will allow for the preparation
of the π-trapped state, as opposed to MQST. Coherent splitting of a single one-dimensional
quasi-condensate into a DW sets the initial relative phase between the two condensates close
to zero. An additional subsequent tilt of the DW potential can be used to tune the desired
phase difference between the split quasi condensates [30,36], and thereby populating the π-
trapped state. This phase imprinting by tilting the DW potential can be directly integrated in
the optimal control sequence for preparing the (Λ, z0) state. A different approach reaching the
π-trapped state, relies on imprinting the initial relative phase using a DMD.

As a final consideration for the preparation of the π-trapped state, we assess the impact
of thermal fluctuations in the quantum gas. The initial temperature of the quantum gas will
determine the global fluctuations of the system. The π-trapped state itself will see the fluc-
tuations between the two tunnel-coupled quantum gases. These can be dramatically reduced
using specific splitting ramps [31,74] or by optimal control techniques as proposed in [75,76].
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A completely different pathway is through Floquet engineering the bosonic Josephson junc-
tion [61], which allows to adjust the initial relative phase difference between the two conden-
sates. Varying its magnitude changes the Floquet assisted effective tunneling rate, and hence
the relevant parameter Λ. While in theory this method to prepare the π-trapped state is com-
paratively simple, in experiment, Floquet driving might increase the amount of noise present
in the system.

In addition to mean-field observables, fluctuations provide crucial information: enhanced
variance in the imbalance or deviations from sinusoidal phase dynamics are expected hall-
marks of the onset of instabilities. Quantifying such higher moments will therefore allow one
to discriminate between regular Josephson oscillations and instability-driven dynamics.

5.3 Relevant observables and their measurement

Cold atom quantum gas experiments have the advantage that there are many techniques to
probe the quantum state of the system under study available. If one experiments with single
systems, then the experiment delivers not only the expectation value of an observable but
also its full distribution function (= full counting statistic) [77], and higher order correlation
functions [29], which both contain detailed information about the system. In an elongated
one-dimensional system, all these observables can be obtained as a function of the coordinate
along the length of the system.

The simplest and most straightforward observables to study the π-trapped state are the
time evolution of the (local) imbalance z(t) = n1 − n2 and (local) phase φ(t). The ensemble
average of many experiments then corresponds to the (local) mean-fields z̄(t) and φ̄(t), as
presented in Fig. 8. In addition the experiment delivers the full counting statistics of these
averaged observables.

A second insightful observable for studying the specifics of the dynamics and decay of the
π-trapped state is the momentum distribution of excitations, which becomes visible after a
long time of flight (see twin atom experiment [49, 50] and Fig. 13) or through condensate
focusing [78].

In cold-atom quantum gas experiments, the time evolution is commonly measured via
repeated destructive measurement of observables. A measurement cycle consists of:

(i) Preparation of the initial state: Initializing the π-trapped state.

(ii) Holding the quantum gas in the trap for a predetermined holding time thold during which
the system evolves with (unitary) dynamics.

(iii) Releasing the atoms by switching off all external trapping potentials, and applying an
optional additional manipulation to select the observable to be measured.

(iv) Letting the system evolve freely for an additional time-of-flight tToF, which can be short
for ’in situ’ observables, is medium when looking at interference and can be very long
when measuring momentum.

(v) Finally the (local) atomic density is measured by taking an image. The desired observ-
able is then extracted from the image of the atomic density.

This cycle is then repeated many times, and the expectation values (and the full distribution
function) of the observable are obtained from many independent realizations. The time evo-
lution is then reconstructed by varying the holding time thold .

If in step (iii), the two clouds are simply released from the trap, they expand and over-
lap transversely in time of flight, and a measurement of atomic density gives direct access to

20

https://scipost.org
https://scipost.org/SciPostPhys.20.2.026


SciPost Phys. 20, 026 (2026)

the spatially-resolved relative phase between the two condensates through matter-wave in-
terference [79–81]. The spatially resolved interference along the extended direction allows
the extraction of the occupation of the fluctuations in the quantum gas. The higher-order
correlations give insight into the interactions of the excitations [29,62].

From these measured interference pattern the spatially resolved fluctuations in the com-
mon mode can be extracted following [82]. The spatially resolved relative density fluctuations
are, in principle, accessible through full tomography of the relative degree of freedom [83].

If in step (iii), the atoms are given an additional outward (in the double-well direction) mo-
mentum kick, the two clouds separate, and one can measure the spatially-resolved density in
the left and right well. This allows to extract the spatially-resolved density imbalance directly.
Employing single atom sensitive fluorescence imaging [84], these measurements can have an
atom noise far below shot noise and reveal number squeezing and entanglement between the
two clouds [31,73,74].

Recent developments combining these two techniques through partial out-coupling of
atoms, which allows simultaneous measurement of both quadratures [85], give direct access
to the Husimi-distribution of the non-commuting relative density and phase variables.

The individual momentum distributions of the atoms in the left and right well can be
measured after a long time-of-flight tToF ≈ 46 ms in a light-sheet with single-atom sensitiv-
ity [49,50,84]. Note that due to the rapid expansion in the tightly confined radial directions,
the interactions switch off very fast and for tToF ≳ 1 ms the time-of-flight evolution can be well
approximated by freely propagating atoms and hence conserves the momentum distribution
along the extended direction. Additionally, the effective momentum resolution of the exper-
iment can be further enhanced into the infrared through condensate focusing [78], which
results in a perfect mapping of momentum on position in the imaging plane.

Finally, beyond single-particle spectra, a decisive experimental signature is the appearance
of correlations between atoms with opposite longitudinal momenta. Such back-to-back corre-
lations, directly analogous to the twin-atom beams observed in Ref. [49,50], would constitute
a smoking-gun signal of pair emission from the unstable condensate. Measuring second-order
correlation functions g(2)(k,−k) in the time-of-flight images would thus provide unambiguous
evidence for the predicted tachyonic and parametric instabilities.

interference

population in DW

0 20 40   60
holding time [ms]

0 20 40   60
holding time [ms]

R

L

po
si

tio
n

1

0

-1

-2

-3

-4

𝜙
  

𝜙  

Figure 12: Decay of macroscopic quantum self trapping (MQST) to a phase locked
state with z ≈ 0 and Φ ≈ 0. Left: Relaxation of the phase Φ. Center: Relaxation of
imbalance measured by applying a transverse kick. Right: Trajectory of the decay in
the z-Φ plane. Inserts: Time evolution of the interference pattern (atomic patterns
representing the left and the right wells) put together from the original images. Data
from experiments carried out during the thesis of M. Pigneur [36].
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z(0)=0.97     self trapping

- 8 - 4 0 4 8
longitudinal velocity [mm/s]

z(0)=0.37     Josephson oscillation

- 8 - 4 0 4 8
longitudinal velocity [mm/s]

Figure 13: Longitudinal momentum distribution. Left: Josephson oscillation regime
(red: Initial; blue: After a full oscillation). Right: MQST regime. Halfway through
the decay of the imbalance (blue), two shoulders left and right from the central peak
indicate the two opposite momenta of the pairs of excitations, which carry away
the potential difference between the two wells in their kinetic energy. Data from
experiments carried out during the thesis of T. Berrada [35].

5.4 Illustration of the accessible observables

We now highlight the experimental feasibility of observing the details of the physics involving
the dynamics and decay of the π-trapped state. To illustrate the different observables one
can employ, we show here data from initial exploratory experiments probing a very similar
physical situation: the decay of macroscopic quantum self trapping (MQST).

Figure 12 shows a typical experimental run probing the dynamics and decay of MQST.
From the atom images we extract in one experimental run the interference pattern and in a
separate experimental run, employing the transverse kick, the atomic density. From there, we
build the interference and population ’carpets’ (inserts in Fig. 12). From the extracted phase
and imbalance, we can reconstruct the decay path as plotted in the right-most graph. A similar
measurement protocol can be applied to study the dynamics and decay of the π-trapped state.

Figure 13 shows a test experiment where we measured the longitudinal momentum dis-
tribution after a long (46 ms) time of flight and compare a regular Josephson oscillation (left)
with the decay of MQST (right). The measured momentum distribution in the case of the
decay of MQST shows clearly two opposite shoulders, indicating the pairs that carry away the
potential difference between the two wells in their kinetic energy. The data is not good enough
to show sub-shot noise correlations, which would be a clear signature of the pairs. Employ-
ing condensate focusing [78] will make the central peak much narrower and the momentum
peaks associated with the excitations produced in the decay of MQST more pronounced and
background free. A similar measurement protocol can be applied to study the momentum
distribution of the excitations created in the decay of the π-trapped state.

5.5 Correlation measurements as key signatures

While mean-field observables such as the imbalance z(t) and the relative phase φ(t) already
provide valuable insight into the decay of the π-trapped state, the most decisive signatures
of the underlying instabilities are encoded in fluctuations and correlations. Enhanced vari-
ance in the imbalance or deviations from sinusoidal phase oscillations are expected hallmarks
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of the onset of instability-driven dynamics. Quantifying such higher moments allows one to
discriminate between regular Josephson oscillations and dynamics triggered by tachyonic or
parametric instabilities.

A particularly striking observable is the momentum-resolved two-particle correlation func-
tion

g(2)(k,−k) =
〈n̂k n̂−k〉
〈n̂k〉〈n̂−k〉

, (30)

which directly probes correlations between atoms with opposite momenta. The unstable quasi-
particle pairs produced during the decay of the π-trapped state are emitted back-to-back, such
that g(2)(k,−k) is strongly enhanced in the unstable momentum bands. This situation is di-
rectly analogous to the twin-atom beams observed in Refs. [49, 50], where correlated pairs
emerged from a driven instability in an elongated condensate. In the present context, the
amplification of correlations between ±k modes constitutes a smoking-gun signature of both
tachyonic and parametric instabilities. While primary instabilities are most accessible, sec-
ondary processes leading to higher-momentum excitations (Sec. 3) could in principle be de-
tected via extended correlation analyses, albeit with more stringent requirements on noise and
statistics.

State-of-the-art fluorescence imaging with single-atom sensitivity and large statistics al-
lows the extraction of both momentum distributions and correlation functions from the same
dataset. In particular, detecting sub-shot-noise correlations between ±k modes would estab-
lish a direct parallel to non-classical pair production processes in quantum optics and cosmol-
ogy. In this way, the cold-atom realization of extended bosonic Josephson junctions provides
an experimentally accessible platform to observe universal instability mechanisms and their
associated correlation signatures in real time.

6 Conclusions
In this work, we investigated the dynamics of two weakly tunnel-coupled one-dimensional
Bose gases in the π-trapped state. While the system exhibits π-oscillations classically under
the condition that the ratio of the chemical potential to the tunneling energy is sufficiently large
and the initial energy is above a critical value, this state becomes unstable due to quantum
fluctuations.

We studied the early time dynamics by linearizing the theory and observed that the state
deviates from the mean-field prediction. At first, we examined the simpler case of the system
initialized such that the oscillations are suppressed, and the fields remain constant, identi-
fying tachyonic instabilities. Secondly, we also generalized our analysis to oscillating fields,
producing additional parametric resonance instabilities. Physically, the instability is due to
the excitation of quasiparticle pairs from the two condensates to characteristic bands of mo-
menta. The occupation of these modes grows exponentially, and the momentum peaks can be
predicted analytically using energy considerations. We analyzed in detail the different mech-
anisms underlying the pair production.

Later in the dynamics, the system develops a very sharp momentum distribution, where
the linear theory breaks down. We go beyond linearization by means of GPE numerical simula-
tions, in particular, to study the formation of secondary instabilities. Eventually, at late times,
the system generally reaches a steady state, at which point the momentum distributions in the
two wires become the same, and the relative phase vanishes.

Our analysis provides detailed results on the instability dynamics and decay of the π-
trapped state. This provides an important prerequisite for possible experimental realizations
in a BEC system. To this end, our analysis of non-zero temperature initial states shows that
the primary instability peaks remain robust within experimentally achievable regimes, under-
scoring the immediate feasibility of observing these effects.
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Looking ahead, our analysis establishes a framework for probing fundamental instability
mechanisms in a controlled cold-atom setting. The π-trapped state dynamics of an extended
bosonic Josephson junction provide a unique opportunity to connect condensed-matter realiza-
tions of tachyonic and parametric instabilities to paradigms familiar from high-energy physics
and cosmology, such as spinodal decomposition and preheating after inflation. Beyond these
fundamental links, the ability to prepare, control, and detect correlated quasiparticle pairs in
real time paves the way toward quantum simulation of early-universe scenarios and nonequi-
librium field theory phenomena in the laboratory. In particular, correlation measurements be-
tween opposite-momentum modes, as outlined in Sec. 4, provide a smoking-gun experimen-
tal signature directly linking our predictions to feasible detection schemes. Experimentally,
sub-shot-noise correlations in the emitted twin beams, accessible with state-of-the-art imag-
ing techniques, would offer a striking signature of these instabilities. More broadly, exploring
the crossover from linear instabilities to nonlinear thermalization in such systems may open
new avenues for designing quantum devices, engineering entangled matter-wave sources, and
benchmarking theories of far-from-equilibrium quantum dynamics.
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A Dynamical instabilities

In quantum field theory out of equilibrium, instabilities are characterized by exponential am-
plification of quantum fluctuations. These behaviors typically manifest in two-point correlation
functions. This mechanism leads to rapid amplification of low-energy fluctuations. Exponen-
tially growing correlations can arise via different physical mechanisms. In the following, we
introduce the two different types that arise in our model presented in Sec. 3.

A.1 Tachyonic instability

The tachyonic instability is often referred to as spinodal decomposition, or simply spinodal
instability. Consider a single-component real scalar field ϕ with potential

V (ϕ) = −
m2

2
ϕ2 +

λ

4!
ϕ4 , m2 > 0 , V ′′(0) = −m2 . (A.1)

Writing the Fourier modes as

ϕk(t) =

∫

d3 x e−ik·x ϕ(x, t) , (A.2)

the linearized equation of motion around φ ≡ 〈ϕ〉= 0 is
�

∂ 2
t + k2 −m2
�

ϕk = 0 , (A.3)
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which implies the dispersion relation

ω2(k) = k2 −m2 . (A.4)

For modes with k < m,ω becomes purely imaginary and the general solution grows (or decays)
exponentially:

ϕk(t)∝ e±γ(k) t , γ(k) =
p

m2 − k2 . (A.5)

Hence the band of unstable (tachyonic) modes extends from k = 0 up to k = m, characteristic
of spinodal decomposition. In the case of two coupled condensates one works with a complex
two-component field (equivalently four real degrees of freedom). The fluctuation operator
is then a 4× 4 matrix; diagonalizing it yields dispersion relations which are in general com-
plex. As before, the imaginary parts of the eigenfrequencies determine the growth rates of the
unstable momentum modes.

A.2 Parametric instability

The parametric instability, closely related to classical parametric resonance, is the second key
mechanism in our study. In classical mechanics, parametric resonance occurs when, for exam-
ple, an oscillating pendulum has its length (and hence its natural frequency) varied periodi-
cally: The periodic “pumping” of the frequency excites and amplifies specific oscillation modes.
In quantum field theory a directly analogous effect arises whenever the background field os-
cillates in time. If the homogeneous condensate φ(t) induces a time-dependent mass term
m2[φ(t)], certain fluctuation modes of the field obey equations with periodically modulated
frequency and can grow exponentially in the linear regime [40]. Similarly, one may consider
explicit temporal modulation of couplings (e.g. the tunnel rate or interaction strength), which
yields the same mathematical structure. By differentiating the fluctuation equation once more
and eliminating the conjugate momentum, one finds, in the uncoupled-condensate limit, the
Mathieu equation for the density perturbation [Eq. (25)].

B Mean-field approximation

This appendix contains the derivation of the mean field equations [Eq. (6)].

B.1 Equations of motion

The classical equations of motion correspond to the zeroth order in a perturbative expansion
of the full GPE [Eq. (3)] in terms of fluctuations. The equation for the Ψ j field becomes, in the
phase-density representation [Eq. (4)]

iħh ˙̄ρ j

2
Æ

ρ̄ j
eiφ̄ j −ħh ˙̄φ j
Æ

ρ̄ je
iφ̄ j = gρ̄ j
Æ

ρ̄ je
iφ̄ j −ħhJ
p

ρ̄le
iφ̄l , (B.1)

with j ̸= l. Multiplying both sides by
Æ

ρ̄ j leads to

iħh ˙̄ρ j

2
−ħhρ̄ j

˙̄φ j = −ħhJ
Æ

ρ̄ jρ̄l[cos(φ̄l − φ̄ j)− i sin(φ̄l − φ̄ j)] + gρ̄2
j . (B.2)

Now, the equations of motion for the density and phase fields can be deduced by separating
Eq. (B.2) into the imaginary and real parts, respectively, giving

ħh ˙̄ρ j = 2Jħh
Æ

ρ̄ jρ̄l sin(φ̄l − φ̄ j) ,

ħh ˙̄φ j = ħhJ

√

√

√

ρ̄l

ρ̄ j
cos(φ̄l − φ̄ j)− gρ̄ j .

(B.3)
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Finally, the equations of motion can be expressed in terms of the relative degrees of freedom
z̄ and φ̄, leading to Eq. (6).

B.2 An effective motion in a quartic potential

The equations of motion for the background fields z,φ [according to Eq. (6), where we drop
the bar and the explicit dependence on time here for the sake of notational simplicity] can be
recast in an effective equation of motion for the fractional population imbalance moving in an
effective potential V (z) as the following. To reduce the number of variables to a single one,
we can use that energy (from now on we set ħh= 1)

H =
µz2

4
− J
p

1− z2 cosφ , (B.4)

is conserved, i.e.,

H = H0 ≡ H(t = 0) =
µz2

0

4
− J
q

1− z2
0 cos(φ0) . (B.5)

As a result, the phase variable φ can be eliminated, and the resulting equation of motion for
z is given by the following equation

z̈ =
�

2µH0 − 4J2
�

z −
µ2

2
z3 ≡ −

∂ V
∂ z

. (B.6)

In other words, the imbalance is effectively moving in a classical effective potential V (z). The
potential is obtained by integrating Eq. (B.6) and results in

V (z) = −
�

µH0 − 2J2
�

z2 +
µ2

8
z4 . (B.7)

The stationary point occurs when the initial condition z0 aligns with the minimum of the
effective potential, leading to Eq. (8).

In the case where the initial imbalance is very strong and Λ≪ 1, we have H0 ≈ µ/4. In
this scenario, Eq. (B.6) reduces to

z̈ +

�

µ2

2
− 4J2

�

z −
µ2

2
z3 = 0 . (B.8)

The exact solution can be expressed in terms of Jacobi elliptic functions [86]

z(τ) = dn
�

2τ
µ

,
Λ

4

�

. (B.9)

B.3 π-trapping

For a given initial phase φ0 = π and population imbalance z0, the two-mode dynamics depend
sensitively on the interaction parameter Λ. It is instructive to contrast the π-trapped state of
the two-mode Josephson junction with the inverted equilibrium state of the Kapitza pendu-
lum. In the strict two-mode (0D) limit, the junction dynamics map onto a nonrigid pendulum
whose effective length varies with the population imbalance z. For interaction strengths in
the window Λb < Λ< Λu (see subsect. 2.3.1 for a detailed discussion), intrinsic π-oscillations
around the inverted angle (φ = π) occur. By contrast, the Kapitza pendulum is a rigid pendu-
lum whose upside-down equilibrium is unstable unless one applies a high-frequency vertical
drive to its pivot: the rapid shaking reshapes the time-averaged potential to carve out a stabi-
lizing well at θ = π. Thus, while both systems support small oscillations around an inverted
configuration, the Josephson π-oscillations stem purely from nonlinear interactions within a
closed system, whereas the Kapitza oscillations require an external parametric drive.
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C Classical-statistical simulations

In this appendix, we summarize the main information about the implementation of the GPE
numerical simulations presented in Sec. 4.

C.1 Numerical implementation

The numerical technique of classical-statistical simulations (also known as Truncated Wigner
simulations) incorporates quantum fluctuations through stochastic initial conditions, while the
time evolution is deterministic and defined by classical equations of motion (see e.g. [87,88]).
The observables consist of quantum expectation values obtained via statistical averages across
a large number of independent realizations [42]. In this work, we examine homogeneous
scalar BECs, either at zero or non-zero temperature, defined on a spatial grid of length L with
periodic boundary conditions. For a single realization, we sample the initial field configura-
tion from the Wigner distribution of the initial state, here taken to be the vacuum or thermal
equilibrium state of the Bogoliubov quasiparticles, as

Ψ j(0, x) =
q

ρ j(0)e
iφ j(0) +
s

η

2

∑

k ̸=0

�

αk, juk, j(x)−α∗k, j v
∗
k, j(x)
�

. (C.1)

The parameter η is used to control the level of noise, with η < 1 reducing the vacuum
noise below the average occupancy of half a particle per mode, i.e., the “quantum one-
half”. Explicit expressions for uk, j(x) and vk, j(x) are given by uk, j(x) = uk, je

ikx/ħh/
p

L and
vk, j(x) = vk, je

ikx/ħh/
p

L, and

uk, j =

√

√

√1
2

�

ξk, j

εk, j
+ 1

�

, vk, j =

√

√

√1
2

�

ξk, j

εk, j
− 1

�

, (C.2)

are the solutions of the Bogoliubov-de-Gennes equations for a uniform system in a periodic box,
with real coefficients εk, j =

Æ

εk,0(εk,0 +ρ0, j g), ξk, j = εk,0 +ρ0, j g, and εk,0 = (ħhk)2/(2m). It

holds that
�

�uk, j

�

�

2 −
�

�vk, j

�

�

2
= 1. The quasiparticle amplitudes αk, j in Eq. (C.2) are sampled as

αk, j =

√

√

nBE,k j +
1
2

xk + i ykp
2

, (C.3)

in order to mimic quantum fluctuations. In the last expression, nBE,k j = 1/(exp(εk, j/kbT )−1)
is the Bose-Einstein distribution, and xk, yk are normally distributed Gaussian random num-
bers with mean zero and unit variance:

αp, j = αp, jαq, j = 0 ,

α∗p, jαq,k = (nBE,p j + 1/2)δp,qδ j,k .
(C.4)

C.2 Dimensionless units

We define a spatial discretization aG corresponding to the spacing of the numerical grid. We
define the dimensionless time t̃, space x̃ and j-field Ψ̃ j using the following transformations

z→ aG z̃ , t →
t̃
ωG

, Ψ j →
1
p

aG
Ψ̃ j , (C.5)

where ωG = ħh/(ma2
G). Expressing Eq. (3) in ˜ units results in

i∂ t̃ Ψ̃1 =
�

−
1
2
∂ 2

x̃ + g̃|Ψ̃1|2
�

Ψ̃1 − J̃Ψ̃2 , (C.6)
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with the dimensionless couplings

g̃ = 2
as

aG

ω⊥
ωG

, J̃ =
ωJ

ωG
, (C.7)

using the fact that g = 2ħhasω⊥, where as is the s-wave scattering length andω⊥ the frequency
of the radial confinement [7]. Explicitly, the left-hand side of Eq. (3) becomes

iħh∂tΨ1 =
iħhωGp

aG
∂ t̃ Ψ̃1 , (C.8)

while the right-hand side becomes

�

−
ħh2

2m
∂ 2

x + g |Ψ1|
2

�

Ψ1 −ħhJΨ2 =









−
1
2
ħh2

maG
2
︸ ︷︷ ︸

ħhωG

∂ x̃
2 +

g
aG
|Ψ̃1|2









1
p

aG
Ψ̃1 −ħhJ

1
p

aG
Ψ̃2 . (C.9)

Dividing both sides by ħhωG/
p

aG leads to Eq. (C.6).
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