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Simulating the interplay of dipolar and quadrupolar interactions
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Abstract

The simulation of nuclear magnetic resonance (NMR) experiments is a notoriously dif-
ficult task, if many spins participate in the dynamics. The recently established dynamic
mean-field theory for high-temperature spin systems (spinDMFT) represents an efficient
yet accurate method to deal with this scenario. SpinDMFT reduces a complex lattice sys-
tem to a time-dependent single-site problem, which can be solved numerically with small
computational effort. Since the approach retains local quantum degrees of freedom, a
quadrupolar term can be exactly incorporated. This allows us to study the interplay of
dipolar and quadrupolar interactions for any parameter range, i.e., without the need for
a perturbative treatment. We obtain a remarkable agreement with experimental data
for an aluminium nitride monocrystal, which strongly suggests the use of spinDMFT as
a prediction tool. Furthermore, we draw a comparison between a quantum-mechanical
and a classical version of spinDMFT showing that local quantum effects are of great
importance for the studied type of system.
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1 Introduction

Atomic nuclei with a spin S > 1/2 experience an electric quadrupolar interaction in an
anisotropic electronic environment. This is relevant in the broad field of nuclear magnetic
resonance (NMR) [1, 2], but also for the spin dynamics in charged quantum dots [3–8]. Dis-
covered in the 1930s, NMR has continuously evolved into a widely used technique in material
physics, chemistry, biology and medicine. The principle of NMR is to resonantly address the
nuclear spins of a sample in order to gain information about the sample’s composition and
molecular structure. This is based on the fact that nuclear spins interact with their chemical
environment through the associated magnetic moments. Important contributions to the nu-
clear spin dynamics include the chemical shift, the J-coupling, the dipole-dipole interaction
and the aforementioned quadrupolar interaction [9]. The latter two are the focus of this arti-
cle. The dipolar interaction couples nearby nuclear spins to one another proportional to 1/r3,
where r is the relative distance. This implies a many-particle problem. The quadrupolar inter-
action, on the other hand, is completely local. It results from a coupling between the electric
quadrupole moment of a deformed atomic nucleus with an electric field gradient generated
by the surrounding electron cloud.

In general, the simulation of a large spin system represents a notoriously difficult task. As
the Hilbert space grows exponentially with the system size, exact simulations [10] are only
feasible for a few tens of spins and therefore suffer from finite-size effects. In many systems,
dipolar interactions are well captured by classical simulations [11,12]. In this case, the com-
putational effort grows only polynomially with the system size so that, in practice, finite-size
effects can be essentially removed. Despite this clear advantage, it is not a priori clear how
well the classical approximation works in a specific geometry. The accuracy is expected to be
reduced in low-dimensional systems or systems with well-separated, small groups of spins,
where quantum effects tend to be more relevant. Hybrid quantum-classical approaches can
assist to some degree [13], but as they do not make use of translational invariance, they can
become quite demanding. Besides this, it is not clear, how well an additional quadrupolar in-
teraction can be treated in classical or hybrid simulations. The key question is how important
the local quantum nature of the spins is.

In many scenarios, the quadrupolar interaction strongly dominates the dipolar one [9]. If,
in addition, the quadrupolar coupling varies from nucleus to nucleus in the sample, the dipolar
contribution to the line shapes is not visible and can essentially be neglected. But this is not
always the case. Prominent counter-examples include samples containing 7Li [14,15], where
homonuclear dipolar interactions have been observed to significantly affect stimulated-echo
spectra [16,17]. Often, a perturbative treatment of the dipolar interaction [18,19] or an exact
simulation of a few adjacent spins [17, 20] suffices to capture the main physics. However, it
is not clear how reliable such approaches are if the quadrupolar and dipolar interaction are of
the same order of magnitude.

In this article, we introduce spin dynamic mean-field theory, short spinDMFT, as an alterna-
tive approach for simulating the interplay of dipolar and quadrupolar interactions. SpinDMFT
is developed for dense spin systems at infinite temperature [21]. “Dense” in this context means
that the approach is accurate in the limit where each spin has an infinite number of interac-
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tion partners. “Infinite temperature” corresponds to the thermal energy being much larger
than any internal energy scale of the considered system. Then, the initial statistical operator
corresponds to completely disordered spins. On the one hand, this is a strong constraint, but
on the other hand it makes spinDMFT perfectly tailored to the field of NMR because nuclear
spins are disordered in most experiments due to the smallness of their gyromagnetic ratios. A
strong advantage of spinDMFT is that it requires only small computational effort, which allows
for systematic extensions such as cluster spinDMFT [22] and non-local spinDMFT [23]. More-
over, the method is highly versatile because it works with an effective single-site Hamiltonian.
This easily allows for the inclusion of local spin terms such as local magnetic fields, static or
time dependent, as well as quadrupolar interactions.

The article is set up as follows. First, we formulate a basic model for a spin system con-
taining a dipolar and quadrupolar interaction in Sec. 2. Subsequently, in Sec. 3.1, we apply
spinDMFT to this model obtaining a single-site model that can be solved numerically. The
results are presented and discussed in Secs. 3.2 and 3.3. In Sec. 4, we benchmark the method
by a comparison with experimental results for an aluminium nitride (AlN) monocrystal. In
Sec. 5, we draw a comparison to a classical analogue system. Finally, the article is concluded
in Sec. 6.

2 Basic model

We consider a high-temperature nuclear spin ensemble of homogeneous, spatially-fixed spins
with S > 1/2. The ensemble shall be subject to a strong magnetic field as usual in NMR exper-
iments. The spins interact with one another via the secular homonuclear Hamiltonian [9]

HDD =
1
2

∑

i, j

di j

�

2Sz
i S

z
j − Sx

i Sx
j − Sy

i Sy
j

�

, (1)

with

di j := dr⃗i j
(n⃗B) =

1− 3
�

n⃗i j · n⃗B

�2

2
µ0

4π

γiγ jħh
|r⃗i j|3

, n⃗i j :=
r⃗i j

|r⃗i j|
, n⃗B :=

B⃗

|B⃗|
, (2)

where r⃗i j = r⃗ j − r⃗i is the distance vector between spins i and j and B⃗ is the magnetic field.
Any self-interactions are ruled out, i.e., we set dii := 0. In Eq. (1) and henceforth, we label
operators by boldface symbols. Each nucleus locally interacts with an electric field gradient
(EFG), which is captured by the secular quadrupolar interaction term [9]

HQ = Ω
∑

i

�

3Sz
i
2 − S⃗2

i

�

, (3)

with
Ω :=

χ

2S(2S − 1)
V zz(n⃗B) , (4)

where χ is the electric quadrupole moment of the nucleus and V zz is the zz-component of
the EFG tensor. The square of the spin vector operator is a constant and thus corresponds to a
constant energy shift, which is irrelevant for the spin dynamics and will be omitted henceforth.
The Hamiltonian

H= HDD +HQ , (5)

describes a complex many-body quantum system, which cannot be exactly solved for large
numbers of spins. An approximation has to be made.
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3 Spin dynamic mean-field theory

3.1 Single-site model and closed self consistency

Spin dynamic mean-field theory is an elegant and efficient way to describe this many-body
system approximately [21]. The approximation is reliable if each spin has a large number
of interaction partners. This implies that the fields describing the local spin environments
(henceforth called local-environment fields) defined by

V⃗i(t) :=
∑

j

di j D S⃗ j , D =





−1 0 0
0 −1 0
0 0 2



 , (6)

consist of many contributions. A measure for the number of contributions is the effective
coordination number [21]

zeff :=

�

∑

j d2
i j

�2

∑

j d4
i j

, (7)

which is independent of i as the system is homogeneous. If zeff is large (⪆ 5), it is well-justified
to replace each local-environment field by a dynamic Gaussian mean-field V⃗ (t). This results
in a local mean-field Hamiltonian

Hmf(t) = V⃗ (t) · S⃗+ 3ΩSz2 . (8)

The mean-field is zero on average and its second moments result from the self-consistency
condition [21]

Vα(t)Vβ(0)
mf
= J2

Qδ
αβDαα2〈Sα(t)Sα(0)〉 , (9)

where Dαα are diagonal matrix elements of D and we defined the quadratic coupling constant

J2
Q :=
∑

j

d2
i j . (10)

The formal equation to compute the spin autocorrelations is given by

〈Sα(t)Sα(0)〉=
∫

DV p(V) 〈Sα(t)Sα(0)〉loc(V) . (11)

Here, V is a mean-field time series and p(V) its multivariate Gaussian probability distribution.
The expectation value 〈Sα(t)Sα(0)〉loc(V) is carried out in the Hilbert space of a single spin
considering the time evolution generated by the Hamiltonian in Eq. (8) for a specific V . Since
the system is at infinite temperature, the density matrix is proportional to the identity in all
considered expectation values.

The defined self-consistency problem is solved by numerical iteration. Starting from an
initial guess for the spin autocorrelations, one computes the second mean-field moments via
Eq. (9) and uses them to update the spin autocorrelations by means of Eq. (11). This pro-
cess is repeated until the spin autocorrelations are converged, which requires only about 5
iteration steps. In practice, the path integral in Eq. (11) is evaluated by discretizing the time
and applying a Monte-Carlo simulation. For more details on the derivation and numerical
implementation of the approach, we refer to the original article in Ref. [21].
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Figure 1: Results for the normalized spin autocorrelation Gαα from spinDMFT for
different spin lengths and quadrupolar interaction strengths in the time domain. The
top row shows the transverse and the bottom row the longitudinal results. The spin
length is increased from left to right. Different quadrupolar strengths are indicated
by different colors according to the provided legend. Numerical errors are of the
order 1 % or smaller of the signal amplitude at t = 0.

3.2 Results in the time domain

Figure 1 displays the converged results of the normalized autocorrelations

Gαα(t) :=
3

S(S + 1)
gαα(t) , (12)

with
gαα(t) := 〈Sα(t)Sα(0)〉 , (13)

for different spin lengths S and quadrupolar interaction strengths in the time domain. The
top panels each show the transverse autocorrelation G x x = G y y and the bottom panels the
longitudinal autocorrelation Gzz . Any off-diagonal autocorrelations vanish due to rotational
symmetry about the z-axis. The time is given in units of 1/eJQ defining

eJQ :=

√

√S(S + 1)
3

JQ , (14)

where JQ is the quadratic coupling constant defined in Eq. (10) and ħh is set to one. We choose
this specific spin-dependent rescaling for better comparison of the results of different spin
lengths. Increasing S means increasing the strength of the mean-field and thus the speed of
the decay. This scaling effect is compensated when depicting the time in units of 1/eJQ. Yet,
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Figure 2: Results of the longitudinal spin autocorrelations in the time domain in
logarithmic representation. The dashed lines display exponential fits, which work
exceptionally well. Numerical errors are of the order 1% or smaller of the signal
amplitude at t = 0. The wiggles of the data, which become visible for small Gzz ,
result from the statistical error of the Monte-Carlo simulation.

the results for different spin lengths are visibly different. The quadrupolar interaction leads to
oscillations in the transverse autocorrelations. This behavior is similar to a Larmor precession
due to a magnetic field in z-direction. However, it is clearly not the same as the quadrupolar
interaction term is quadratic in Sz in contrast to the Zeeman term. The oscillation frequencies
depend on the quadrupolar interaction strength

eΩ :=
Ω

JQ
. (15)

In the case of S = 2, two oscillations with different frequencies are overlapping. This behav-
ior is best understood in the spectra, which will be considered in the next subsection. The
longitudinal results do not oscillate, but nevertheless depend on the quadrupolar interaction
strength. They show a monotonic decay which slows down upon increasing eΩ. This is not
surprising as the quadrupolar interaction destabilizes the transverse spin components so that
they average out faster. In return, the longitudinal correlation decays slower because its decay
is driven by the transversal components. A qualitatively similar behavior was obtained when
adding a static Gaussian noise in the z-direction, see Ref. [21].

For large values of eΩ, the longitudinal correlations depend only weakly on eΩ. We analyze
this further by fitting exponentials exp(−t/T ) to the results. The fits work moderately well for
small eΩ and exceptionally well for large eΩ, see Fig. 2 and Tab. 1. The extracted relaxation
times reach a spin-length dependent saturation value for eΩ→∞ as can be seen in Fig. 3.
This is evidence that the system can be described by an effective Hamiltonian in this limit.
Specifically for spin S = 1, we obtain

Heff,i j = U†
Q,i j(t)Hi jUQ,i j(t)−HQ,i j (16a)

= di j

�

2Sz
i S

z
j −

1
2

�

Sx
i Sx

j + Sy
i Sy

j + {S
x
i ,Sz

i }{S
x
j ,Sz

j}+ {S
y
i ,Sz

i }{S
y
j ,Sz

j}
�

�

, (16b)

by average Hamiltonian theory [24] similar to the secular approximation [9]. The overline

6

https://scipost.org
https://scipost.org/SciPostPhys.20.2.031


SciPost Phys. 20, 031 (2026)

Table 1: Extracted decay times of the longitudinal autocorrelations Gzz in depen-
dence of eΩ for different spin lengths. The corresponding exponential fits are shown
in Fig. 2. The provided errors result from the finite time discretization, which is the
dominant source of numerical error. For small eΩ the error of the fit procedure is
larger than the discretization error.

S = 1 S = 3/2 S = 2
eΩ T/eJ−1

Q T/eJ−1
Q T/eJ−1

Q

0 1.45(1) 1.434(1) 1.432(3)

0.5 1.883(6) 2.020(6) 2.073(2)

1 2.57(1) 3.05(1) 3.24(1)

1.5 2.88(1) 3.90(7) 4.42(6)

2 2.92(5) 4.39(7) 5.4(1)

2.5 2.93(4) 4.50(5) 5.89(2)

3 2.94(2) 4.54(5) 6.13(5)

5 2.95(5) 4.6(1) 6.3(2)

10 2.95(5) 4.6(1) 6.3(2)
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Figure 3: Plot of the extracted decay times of the longitudinal autocorrelations Gzz

in dependence of eΩ for different spin lengths. The corresponding exponential fits are
shown in Fig. 2. The error bars result from the finite time discretization, which is the
dominant source of numerical error.

denotes a time average, the curly brackets denote the anticommutator and we defined

HQ,i j := 3Ω
�

Sz
i
2 + Sz

j
2
�

, (17a)

UQ,i j(t) := eiHQ,i j t , (17b)

Hi j := di j

�

2Sz
i S

z
j − Sx

i Sx
j − Sy

i Sy
j

�

+HQ,i j . (17c)

It is important to note that this effective Hamiltonian results specifically for S = 1 and has a
different form for different spin lengths. The effective Hamiltonian may be treated directly by
spinDMFT, but this is beyond the scope of the present article.
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Figure 4: Fourier transform f x x(ω) :=
∫∞
−∞ e−iωt g x x(t)dt of the transverse spin au-

tocorrelation g x x(t) for different quadrupolar interaction strengths and spin lengths.
The spin length is increased from left to right and the quadrupolar interaction from
top to bottom. The orange dashed line corresponds to the Gaussian fit described in
Eq. (19). Small deviations are seen at some of the peak maxima. These become
smaller when allowing for an individual amplitude Ai for each peak in the fit func-
tion. However, we prefer the shown fits because they require only a single parameter,
namely, the standard deviation σ. The numerical errors of the simulation data are
smaller than the width of the lines.

3.3 Results in the frequency domain

The spectra are shown in Fig. 4 for different spin lengths and strengths of the quadrupolar
coupling. They are obtained by fast Fourier transform of the symmetrized temporal results.
We stress that the spectra are not referring to the free-induction decay (FID), but to the spin
autocorrelation. The latter can be considered a first-order approximation of the FID, which
corresponds to a superposition of the autocorrelation with pair correlations. These are not
directly accessible in single-site spinDMFT, but may be computed by the extension non-local
spinDMFT [23]. This is beyond the scope of the present article. However, it is worth men-
tioning that the inclusion of a quadrupolar coupling makes the spin dynamics more local so
that paircorrelations become less relevant with respect to the autocorrelation. We therefore
consider the autocorrelation spectra to be a good approximation of the FID for large Ω.
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Figure 5: Possible quadrupolar transitions with ∆m = ±1 for different spin lengths.
The quadrupolar energy is given by EQ = 3Ωm2.

The peaks in Fig. 4 are located rather precisely at

ωi = 6Ω
�

S − i +
1
2

�

, i ∈ {1, . . . , 2S} . (18)

This can be understood from the local quantum mechanics: The peaks correspond to the
expected quadrupolar transitions, see Fig. 5 for visualization. The advantage of spinDMFT
consists in the ab initio prediction of the continuous line shapes induced by the dipolar inter-
actions. Remarkably, we find that spinDMFT predicts a Gaussian broadening of the resonance
lines over the full considered parameter range. This can be well seen from the dashed lines in
Fig. 4 which correspond to the fit function

fσ(ω) = π
2S
∑

i=1

i
2

�

1−
i

2S + 1

� exp
�

− (ω−3Ω(2S−2i+1))2

2σ2

�

+ exp
�

− (ω+3Ω(2S−2i+1))2

2σ2

�

p
2πσ2

, (19)

which is derived from considering the exact local result and replacing the δ-functions by Gaus-
sian distributions. The fit parameters are listed in Tab. 2. To account for the main effect of
the spin length, the standard deviations are provided in units of eJQ. In this unit, they depend
only weakly on the spin length S and the quadrupolar interaction strength eΩ. A Gaussian line
broadening results for static Gaussian-distributed Ising mean-fields [25] and zero quadrupolar
interactions.1 SpinDMFT predicted that this behavior is stable upon introducing transverse in-
teractions as they occur in a secular dipolar Hamiltonian [21]. As we obtain here, an additional
quadrupolar interaction does not affect the line broadening qualitatively.

The longitudinal autocorrelations are well captured by exponential fits in the time domain,
see Fig. 2. Therefore, their spectra are very well described by Lorenz curves Γ/(Γ 2+ω2) with
decay rates Γ = 1/T . We refrain from showing the corresponding plots. The decay times T are
shown in Tab. 1. The longitudinal autocorrelations are important for the spin dynamics, but
difficult to access experimentally, because one would need to polarize an individual spin in a
homogeneous ensemble. In principle, the same holds for the transverse autocorrelation, but as
we mentioned before, the latter is not much different from the experimentally accessible FID.
Hence, we consider a comparison to experimentally measured FID’s in the following section.

1By Gaussian-distributed mean-fields, we refer to the distribution functional from which the mean-fields are
drawn and not to their correlation in time. The latter is constant in case of static mean-fields.
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Table 2: Resulting fit parameters for the spectra shown in Fig. 4 corresponding to the
fit function in Eq. (19). The provided errors result from the finite time discretization,
which is the main source of numerical error.

S = 1 S = 3/2 S = 2
eΩ σ/eJQ σ/eJQ σ/eJQ

0.5 2.21(1) 2.210(3) 2.208(2)
1.5 2.343(8) 2.456(5) 2.53(1)
10 2.335(3) 2.43(1) 2.530(9)
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y/
Å

0

1

2

3

4

5

z
/Å
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Figure 6: Schematic representation of the unit cell of the wurtzite crystal structure
with two different atomic species, here aluminium (grey) and nitrogen (blue). The
labels a, b and c denote the crystallographic axes.

4 Comparison to experimental data

4.1 Test system

We compare our approach with experimental data from Ref. [26] measuring FID signals of an
aluminium nitride (AlN) monocrystal. AlN is a salt crystal composed of aluminum and nitrogen
ions arranged in a hexagonal wurtzite structure. The unit cell is shown schematically in Fig. 6.
The isotopes 27Al and 14N make up for about 100% and 99.6%, respectively, of the natural
abundance. Both are NMR active carrying a nuclear spin of S = 5/2 (27Al) and I = 1 (14N)
with gyromagnetic ratios of γAl = 11.103 MHzT−1 and γN = 3.077MHz T−1. With a length
of r ≈ 1.90Å, the Al-N bonds along the crystallographic c axis are slightly larger than the
remaining bonds with r ≈ 1.89 Å [26]. This induces an EFG at the nuclear sites, which leads
to strong quadrupolar interactions. The quadrupolar coupling constants have been measured
in Ref. [26] to be χAl ≈ 1.914MHz and χN ≈ 8.19kHz. Since the principle-axis system and
the crystal lattice frame coincide, the orientation-dependent EFG tensor can be deduced by

V zz(n⃗B) =
1
2

�

3 cos2(ϑ)− 1
�

, (20)

where ϑ is the angle between the magnetic field direction and the crystallographic c axis. For
the sake of completeness, we mention that the nuclear spins are also subject to chemical shifts.
However, as they do not vary among spins of the same species, they only shift the spectra and
do not affect the lineshapes. Hence, we neglect them in the modelling for simplicity.

10

https://scipost.org
https://scipost.org/SciPostPhys.20.2.031


SciPost Phys. 20, 031 (2026)

4.2 Adaptation of spinDMFT

The AlN crystal structure contains two distinct aluminium and two distinct nitrogen sites per
unit cell. While each two sites of the same spin species are equivalent with respect to quadrupo-
lar interactions and chemical shifts, the non-local dipolar couplings may vary. An adequate
treatment by spinDMFT requires thus to distinguish four different sites, which we denote AlX
and NX with X ∈ {A, B}. Analogous to Eq. (8), the mean-field Hamiltonians are given by

Hmf
AlX(t) = V⃗AlX(t) · S⃗X + 3ΩAlS

z
X

2 , Hmf
NX(t) = V⃗NX(t) · I⃗X + 3ΩNIz

X
2 . (21)

The mean-fields V⃗AlX and V⃗NX contain contributions from all four sites. However, the secular
approximation reduces the interaction between different spin species to Ising couplings only.
The adapted self-consistency conditions for this scenario read

VαAlX(t)V
α

AlX(0)
mf
=
∑

X′

�

JAlX,AlX′

Q

�2
〈SαX′(t)S

α
X′(0)〉 , (22a)

V z
AlX(t)V

z
AlX(0)

mf
= 4
∑

X′

�

JAlX,AlX′

Q

�2
〈Sz

X′(t)S
z
X′(0)〉+
�

JAlX,NX′

Q

�2
〈Iz

X′(t)I
z
X′(0)〉 , (22b)

VαNX(t)V
α

NX(0)
mf
=
∑

X′

�

JNX,NX′

Q

�2
〈IαX′(t)I

α
X′(0)〉 , (22c)

V z
NX(t)V

z
NX(0)

mf
= 4
∑

X′

�

JNX,NX′

Q

�2
〈Iz

X′(t)I
z
X′(0)〉+
�

JNX,AlX′

Q

�2
〈Sz

X′(t)S
z
X′(0)〉 , (22d)

with α ∈ {x , y}. The defined quadratic coupling constants sum only over bonds connecting
the involved sites, e.g.,

�

JAlA,NB
Q

�2
=
∑

j

�

dAlA,NB
i j

�2
, (23)

where dAlA,NB
i j is the dipolar coupling between the aluminium spin on site A of unit cell i and

the nitrogen spin on site B of unit cell j. Since each mean-field depends on the autocorrelations
of all four sites, one has to solve all self-consistency conditions simultaneously. This entails
simulating the four single-site problems at once, superposing the resulting autocorrelations
according to Eq. (22) and repeating the procedure with updated mean-fields until convergence
is reached. The resulting converged autocorrelations are averaged with respect to the two
distinct sites per spin species to obtain the final results for aluminium and nitrogen.

The experiment was carried out for various orientations of the magnetic field with respect
to the crystal lattice frame. For the quadrupolar coupling, only the angle ϑ matters as can be
seen in Eq. (20).2 The dipolar couplings, however, are affected also by the azimuthal angle ϕ.
The rotation axis in Ref. [26] is perpendicular to c and to one of the axes a or b. Corresponding
to Fig. 6, we consider the rotation axis to be parallel to y, but the magnitude of deviations from
this axis is not entirely clear. Two exemplary quadratic coupling matrices for specific pairs of
angles are provided in Tab. 3.

4.3 Results

The results for nitrogen are shown in Fig. 7 for different crystal rotation angles ϑ. The exper-
imental data are shown by black and the spinDMFT data by blue solid lines. The intensity of
both spectra are normalized with respect to the peak maxima. The agreement between theory
and experiment is excellent for all considered rotation angles ϑ. The peak positions are located

2We highlight the different naming of angles here and in Ref. [26]. The crystal rotation angle is denoted ϑ in
the present study and ϕ in the experimental article.
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Table 3: Quadratic coupling matrices
�

JµX,νX′

Q

�2
for two different pairs of angles,

ϑ = 45◦ − 0.65◦, ϕ = 0◦ (left) and ϑ = 45◦ − 0.65◦, ϕ = 30◦ (right). All values are
in units of (2πkHz)2. The blue entries depend on the azimuthal angle ϕ.

Al,A Al,B N,A N,B

Al,A 0.066 0.20 0.013 0.068
Al,B 0.20 0.066 0.068 0.013
N,A 0.013 0.068 0.00030 0.00090
N,B 0.068 0.013 0.00090 0.00030

Al,A Al,B N,A N,B

0.066 0.20 0.013 0.13
0.20 0.066 0.0082 0.013

0.013 0.0082 0.00030 0.00090
0.13 0.013 0.00090 0.00030

0.00

0.25

0.50

0.75

1.00
ϑ =45°−ϑ0 experiment

spinDMFT, ϕ = 0◦

spinDMFT, ϕ = 30◦

0.00

0.25

0.50

0.75

1.00

S
(ν

)[
a
.u
.]

ϑ =30°−ϑ0

−400 −300 −200 −100 0 100 200 300 400

(ν − ν0 − δ)/ν0[ppm]

0.0

0.5

1.0 ϑ =15°−ϑ0

Figure 7: FID spectra of 14N spins in an AlN monocrystal for different crystal rotation
angles ϑ. The solid black lines correspond to the experimental data from Ref. [26].
The experimentally determined correction angle is given by ϑ0 = −0.74◦ and the Lar-
mor frequency of 14N is ν0 = 28.905 MHz. The blue solid lines correpond to the sim-
ulation results obtained by spinDMFT forϕ = 0◦, i.e., a rotation axis perpendicular to
c and a or b. The numerical errors of spinDMFT are indicated by the transparent blue
1σ-interval. By the vertical grey lines, we indicate the expected quadrupolar transi-
tion frequencies (without second-order secular correction). Note that the chemical
shift has been ignored in the simulations and therefore needs to be removed from
the experimental data for a proper comparison. We consider δiso = −292.6ppm and
δ∆ = −1.9ppm [26] and subtract δ = δiso−δ∆(3cos2(ϑ)−1)/2 from the experimen-
tal frequencies. For demonstration purposes, we also include the spinDMFT result
for ϑ = 45◦,ϕ = 30◦ as a dashed line. This underlines our claim that the azimuthal
angle ϕ has a visible influence on the spectra.
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0.00
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1.00
ϑ =45°−ϑ0

Figure 8: FID spectra of 27Al spins in an AlN monocrystal for different crystal ro-
tation angles ϑ. The solid black lines correspond to the experimental data from
Ref. [26]. The experimentally determined correction angle is given by ϑ0 = 0.65◦

and the Larmor frequency of 27Al is ν0 = 104.263MHz. The blue lines correpond to
the simulation results obtained by spinDMFT. The numerical errors of spinDMFT are
smaller than the widths of the lines. By the vertical grey lines, we indicate the ex-
pected quadrupolar transition frequencies (without second-order secular correction).
Note that the chemical shift has been ignored in the simulations and therefore needs
to be removed from the experimental data for a proper comparison. We consider
δiso = 113.6 ppm and δ∆ = 12.7 ppm [26] and subtract δ = δiso−δ∆(3cos2(ϑ)−1)/2
from the experimental frequencies.

at the expected quadrupolar transition frequencies, which we indicate by vertical grey lines.
While this matching is not surprising, the accurate prediction of the line shapes by spinDMFT
is indeed remarkable. We emphasize that the lineshapes are still close to Gaussian functions.
Deviations from this behavior partially result from the superposition of the results from two
distinct nitrogen sites. To highlight the relevance of the second orientation angle ϕ, we also
present the result for ϕ = 30◦ as dashed lines. Especially for ϑ = 45◦, the line shapes strongly
differ from the ones for the ϕ = 0◦ case.

In Fig. 8, we present the results for the aluminium spectra. Here, the situation is different.
First of all, we note that the variation of the azimuthal angle ϕ has a non-visible effect on the
line shapes. This is because the gyromagnetic ratio of the aluminium spins is larger by a factor
of almost 4 with respect to the nitrogen spins. Thus, the aluminium lineshapes are dominanted
by the much stronger Al-Al couplings, which do not depend on ϕ, as can be seen, for example,
in the matrices in Tab. 3. The agreement between theory and experiment is very good for the
central peak. However, the satellite transition peaks differ in height, width and even slightly
in position. The small discrepancy in the positions can be attributed to second-order effects
from the secular approximation, since the quadrupolar coupling of aluminium is fairly large.
This is thoroughly discussed in Ref. [26]. The origin of the differences in height and width is
less clear. We list a few possible reasons in the following.
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First, we mention that the simulated spectra correspond only to the spin autocorrelations
and not the FID. As discussed before, the FID contains also pair correlations, which typi-
cally broaden the line shapes. However, while such an effect becomes significant for FID’s
of homonuclear S = 1/2 ensembles [23], we speculate that its influence is less pronounced
under strong quadrupolar interactions because the latter render the spin dynamics more local.
Moreover, we would expect such a deviation to be visible also in the central peak, which is not
the case here. Second, the mean-field approximation itself can lead to deviations. However,
the aluminium spectrum is dominated by Al-Al couplings and each aluminium spin has already
12 nearest neighbors of the same species. This should perfectly justify spinDMFT, which was
shown to work excellently already for less dense and less local spin systems [21,23].

For these reasons, we consider the modelling rather than the mean-field approximation to
be the source of the discrepancies. One possible reason could be a variation of the quadrupolar
coupling over the lattice due to impurities or mosaicity. Slight variations of χAl would broaden
the satellite peaks and explain the observed deviation partially. Another factor could be that
the nutation frequencies of the satellite peaks deviate from those of the central peak. The em-
ployed pulses are typically optimized to the central peak leading to reduced signal intensities
of the satellite transitions. Finally, we also mention that second order effects from the secu-
lar approximation affect not only the peak position, but also the line shapes. Second-order
corrections may be calculated and included in the simulations in future studies.

5 Comparison to classical dynamics

As pointed out in Ref. [21], the dynamics of a single spin in a classical mean-field is essen-
tially classical. This is because the spin’s equation of motion is linear in spin operators which
makes it equivalent to that of a classical spin according to Ehrenfest’s theorem. However,
with the bilinear quadrupolar term included, this conclusion does not hold anymore. Despite
being completely local, spinDMFT captures beyond-classical behavior for finite quadrupolar
interactions.

To highlight the importance of simulating the local degrees of freedom quantum mechan-
ically, we perform a simulation of the classical analogue system for comparison. The classical
equation of motion can be derived as in Ref. [27] yielding

∂ S⃗
∂ t
=
∂ H

∂ S⃗
× S⃗ . (24)

Inserting the mean-field Hamiltonian from Eq. (8), we obtain

∂ S⃗
∂ t
= V⃗ (t)× S⃗ + 6ΩSz





−S y

S x

0



 , (25)

which is equivalent to the quantum equation of motion, when replacing S⃗→ S⃗ and symmetriz-
ing the last term. To simulate the classical dynamics, we average over the mean-field at all
times as well as over the initial spin values at t = 0. The mean-field average works in the
same way as for the quantum case. For the spin average, we fix the spins length to

p

S(S + 1)
ensuring

Sα2 = 〈Sα2〉 , (26)

and choose the initial orientation uniformly distributed over the Bloch sphere due to the high-
temperature limit.
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Figure 9: Universal results of the spin autocorrelations from classical spinDMFT pre-
sented in the main text. The spin length is incorporated in the time axis which is
given in inverse units of the rescaled quadratic coupling constant eJQ. Numerical er-
rors are of the order 1% or smaller of the signal amplitude at t = 0.

The difference between quantum and classical dynamics already becomes apparent when
considering the effect of a varied spin length S. The obtained equation of motion can be
rewritten as

∂ n⃗
∂ et
= W⃗ (et)× n⃗+ 6Ωnz





−ny

nx

0



 , (27)

using the renormalized quantities

n⃗ :=
1
p

S(S + 1)
S⃗ , W⃗ :=

1
p

S(S + 1)
V⃗ , et :=
Æ

S(S + 1)t . (28)

Note that a renormalization of S⃗ automatically implies a renormalization of V⃗ due to the self-
consistency condition. The consequence of Eq. (27) is that the dynamics is independent of
the spin length except for a rescaling of the time axis. This fact is already in stark contrast to
the quantum results shown in the previous section, where changing the spin length leads to
qualitatively different behavior beyond a sheer scaling factor. The universal classical results
for arbitrary spin length are presented in Fig. 9 versus the time. Both the transverse and
longitudinal autocorrelations clearly differ from the quantum results shown in Fig. 1. The
difference to the quantum mechanical results is the smallest for the largest value of the spin,
S = 2. This is not surprising because larger spins tend to behave more classically.

This can be underlined analytically by the Frobenius norm

∥A∥ :=
1
d

Tr
�

A†A
	

, (29)

of an operator A, where d denotes the Hilbert space dimension. Similar to the consideration
in Ref. [28], we compare the norm of the commutator of two spin components







�

Sα,Sβ
�



= ∥Sα∥=
S(S + 1)

3
, α ̸= β , (30)

to the norm of a product of two spin components





SαSβ




=
1
15

S(S + 1)
�

S(S + 1) +
1
2

�

, α ̸= β . (31)
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Figure 10: Comparison of quantum spinDMFT for different spin lengths with the uni-
versal result of classical spinDMFT for a fixed quadrupolar coupling strength eΩ = 1.
Numerical errors are of the order 0.5% or smaller of the signal amplitude at t = 0.

We find that the relative commutator norm is suppressed by






�

Sα,Sβ
�









SαSβ






∝
1
S2

. (32)

Hence, the error from ignoring the non-commutativity of spin operators becomes smaller and
smaller if S is increased resembling more and more classical behavior. As can be seen in
Fig. 10, this behavior is confirmed numerically by a direct comparison of the quantum results
for increasing spin length with the classical ones.

In Fig. 11, we provide the classical spectra of the transverse autocorrelation. As the classical
spin is continuous, there is an infinite number of possible transitions so that even for largeΩ, no
peak structure is obtained in contrast to the quantum case. Instead, one obtains a superposition
of an infinite number of peaks. For Ω≪ σ, these peaks are very close to one another which
leads to shapes strongly ressembling Gaussian curves in total, since the individual peaks are
Gaussian. For Ω ≫ σ, the shape of an individual peak becomes unimportant and only its
position and weight matters.

Starting from the exact local result for quantum spins (see Eq. (19) with the Gaussian
functions replaced by δ-distributions), it can be shown that

F x x
class(ω) =

3
S(S + 1)

π

2S
∑

i=1

i
2

�

1−
i

2S + 1

�

×
�

δ
�

ω− 3Ω(2S − 2i + 1)
�

+δ
�

ω+ 3Ω(2S − 2i + 1)
�

�

(33a)

=
π(2S + 1)

8ΩS(S + 1)

2S−1
∑

x=1−2S
odd

�

1−
� x

2S + 1

�2�h

δ
� ω

3Ω
− x
�

+δ
� ω

3Ω
+ x
�
i

(33b)

=
π(2S + 1)

16ΩS(S + 1)

∫ 2S−1

1−2S
dx
�

1−
� x

2S + 1

�2�h

δ
� ω

3Ω
− x
�

+δ
� ω

3Ω
+ x
�i

(33c)

=
1
eJQeΩ

π

4
p

3



1−

�

ω/eJQ

6
p

3eΩ

�2


ϑ

�

1−
|ω|/eJQ

6
p

3eΩ

�

. (33d)

In the first step, we altered the sum index according to x = 2i − 2S − 1; note that x is altered
in steps of 2. In the second step, we approximated the sum by an integral considering the limit

16

https://scipost.org
https://scipost.org/SciPostPhys.20.2.031


SciPost Phys. 20, 031 (2026)

−5 0 5

ω (units of J̃Q)

0.0

0.1

0.2

0.3

0.4

0.5
F
x
x

(u
n

it
s

o
f
J̃
−

1
Q

Ω̃
−

1
)

Ω̃ = 0.5

−10 0 10

ω (units of J̃Q)

Ω̃ = 1

−20 0 20

ω (units of J̃Q)

Ω̃ = 2.5

Figure 11: Fourier transform F x x(ω) :=
∫∞
−∞ e−iωt G x x(t)dt of the classical trans-

verse spin autocorrelation G x x(t) for different quadrupolar interaction strengths.
The spin length is incorporated in the units through eJQ. The signal F x x is shown
in units of eJ−1

Q
eΩ−1 to enhance the comparability of the results. The orange dashed

lines indicate the exact classical result for large Ω according to Eq. (33). The numer-
ical errors of the simulation data are smaller than the width of the lines.

of large S. Finally, we evaluated the integral and omitted any terms that are subdominant in
S. This analytical result is shown in Fig. 11 by the orange dashed line. In case of Ω ≫ σ,
the classical spectrum consists of a single parabola instead of distinct Gaussian peaks. This
further underlines the need for a quantum-mechanical simulation of quadrupolar systems. A
calculation treating all spins as classical vectors can capture the spin dynamics only for large
spins at best.

6 Conclusion

Spin dynamic mean-field theory (spinDMFT) is an efficient numerical approach to compute
the dynamics of completely disordered dipolar spin systems. The key idea is to replace the
environment of a spin by a time-dependent mean-field which is Gaussian distributed. This
allows one to define a single-site problem and a self-consistency condition, which connects
the variances of the mean-field to the spin autocorrelations. In this article, we showed how
a quadrupolar interaction can be incorporated in spinDMFT: Since the quadrupolar term is
completely local, it can be directly and exactly added to the single-site model.

The numerical evaluation yields an exponential longitudinal relaxation and an oscillat-
ing transverse relaxation. The latter is best understood in the frequency spectrum, where
peaks can be identified at the expected quadrupolar transitions with ∆m = ±1. According to
spinDMFT, the dipolar interaction broadens the resonance lines to Gaussian functions over the
full range of parameters, i.e., spin lengths and quadrupolar interaction strengths. Remarkably,
a fit with a single parameter, namely, the peak standard deviation, suffices for an adequate
description of the spectrum.

Real systems are usually more complex and involve for example different spin species. We
demonstrated the versatility of spinDMFT by simulating the spin dynamics of quadrupolar 14N
and 27Al nuclei in an AlN monocrystal. The obtained spectra were compared to experimental
data for various crystal orientations. For 14N, the agreement between theory and experiment is
excellent for all orientations, which strongly supports spinDMFT as a prediction tool for dipolar
broadening in quadrupolar spectra. Discrepancies are only visible in the 27Al satellite peaks
and can be attributed to model imperfections such as variations of the quadrupolar coupling
over the lattice. In future works, such effects may be included in the approach.
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Another goal of this article was to draw a comparison to the classical analogue system.
While classical simulations often capture purely dipolar systems well, it turns out that the
presence of a quadrupolar interaction precludes a classical description. The local spin degrees
of freedom need to be simulated quantum-mechanically.

Typically, dipolar interactions are considered deleterious in NMR experiments due to the
induced line broadening and associated difficulties in obtaining information from the spectra.
However, if the dipolar line broadening can be predicted, systems with moderate dipolar in-
teractions become accessible. As we demonstrated in this article, spinDMFT can be a suitable
prediction tool for this scenario. We emphasize that the computational effort of spinDMFT
is small allowing for extensive parameter sweeps and/or various extensions to increase the
accuracy of the approach and access more complex systems. The mean-field framework can
be extended to include inhomogeneous systems as well as explicit time dependencies, such as
pulses.

In future works, spinDMFT could be extended to magic-angle spinning (MAS) in order to
study residual dipolar broadening [29, 30]. This would also allow comparison to and predic-
tion of experiments measuring MAS spectra of quadrupolar nuclei [15,31]. Since quadrupolar
interactions and explicit time-dependencies are accessible, spinDMFT could also be a useful
simulation tool to study motion in Li-ion conductors [32,33]. The results presented pave the
way to a quantitative analysis and understanding of NMR results in a large variety of experi-
ments.
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