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Abstract

In the multichannel Kondo effect, overscreening of a magnetic impurity by conduction
electrons leads to a frustrated exotic ground state. It has been proposed that multi-
channel topological Kondo (MCTK) model involving topological Cooper pair boxes with
M Majorana modes [SO(M) “spin”] and N spinless electron channels exhibits an ex-
otic intermediate coupling fixed point. This intermediate fixed point has been analyzed
through large-N perturbative calculations, which gives a zero-temperature conductance
decaying as 1/N? in the large-N limit. However, the conductance at this intermediate
fixed point has not been calculated for generic N. Using representation theory, we ver-
ify the existence of this intermediate-coupling fixed point and find the strong-coupling
effective Hamiltonian for the case M = 4. Using conformal field theory techniques for
SO(M), we generalize the notion of overscreening and conclude that the MCTK model is
an overscreened Kondo model. We find the fixed-point finite-size energy spectrum and
the leading irrelevant operator (LIO). We express the fixed-point conductance in terms
of the modular S-matrix of SO(M) for general N, confirming the previous large-N result.
We describe the finite-temperature corrections to the conductance by the LIO and find
that they are qualitatively different for the cases N =1 and N > 2 due to the different fu-
sion outcomes with the current operator. We also compare the multichannel topological
Kondo model to the topological symplectic Kondo model.
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1 Introduction

The Kondo model explains the local minimum resistivity at low temperatures in certain noble
metals using a spin-spin exchange interaction between the magnetic impurity and conduction
electrons [1]. The multichannel generalization of it [2] with fruitful experimental develop-
ments in mesoscopic devices [3-9] leads Kondo physics to a new era due to not only the
experimental measurement of conductance, but also the potential applications to topological
quantum computations using emergent anyonic excitations [10-15]. The key requirement is
overscreening: the impurity spin (S) is smaller than the largest possible local total spin (N /2)
for N-channel conduction electrons. Overscreening indicates an intermediate coupling fixed
point [2], whose existence was verified in the large-N limit where the intermediate coupling
fixed point moves toward weak coupling and becomes perturbatively accessible in the 1/N
expansion [16].

The intermediate coupling fixed point of the N > 2-channel Kondo model is an exotic
state not described by free electrons. As first demonstrated using the Bethe Ansatz tech-
nique [17,18] the impurity entropy is Siy,, = In[g(N)] where the generally irrational number
g(N) = 2cos[n/(N + 2)] can be interpreted as the effective ground state degeneracy of the
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impurity problem. Crucially, it coincides with the quantum dimension of the anyon “1/2”,
labeled by its representation in the SU(2)y fusion category [10]. As shown by Emery and
Kivelson [19] (see also Refs. [20-22]) for the two-channel Kondo (2CK) model, an emergent
Majorana at the impurity spin will be decoupled from the conduction electrons.

Since the 1990s (multichannel) Kondo physics has also been realized in artificial quantum
emulators. Of particular relevance are strongly interacting quantum dots coupled to electronic
leads [4]. In this context, while there has been progress towards measuring the entropy of a
mesoscopic device [23-25], a somewhat more natural experimental observable than the impu-
rity entropy is the (trans-)conductance across the dot. Crucially, at zero temperature it takes
an N-dependent universal value, while the conductance correction near T = 0 is given by
the leading perturbation, namely the least irrelevant operator (LIO). The first-order correction
TAuo~! with Ajjo = 1+2/(N +2) dominates unless it vanishes in which case one considers the
second-order correction T2(*uo=V [5 7], In any case, the temperature dependence demon-
strates non-Fermi liquid behavior, i.e., non-T2 behavior. Here, the LIO is formed by the first
descendants of the adjoint (spin-1) primary operators [10,26-33].

Theoretically, further platforms of Kondo effects in mesoscopic devices with non-Fermi lig-
uid behavior have been proposed for setups with symmetry groups [34] other than SU(2).
These include SO(M), e.g. the (multichannel) topological Kondo model whose impurity con-
sists of M Majorana zero modes on a floating topological superconducting island coupled to
normal spin-polarized metallic leads [35-39], as well as Sp(2k), e.g. the topological symplec-
tic Kondo model whose impurity consists of k one-dimensional topological end states that are
coupled to spinful leads [40-42]. The existence of the intermediate coupling fixed point of
the topological symplectic Kondo model has been demonstrated through the strong coupling
analysis [40]. However the strong coupling of the SO(M) topological Kondo model has not
been well studied and thus the existence of the intermediate coupling fixed point has not been
fully demonstrated generally for any M, although the mapping from the M = 3,4 topological
Kondo models to the MCK models and the large-N results of the N-channel topological Kondo
model both indicate its existence [35,37]. In this paper we show that the strong-coupling fixed
point of the SO(M) topological Kondo model is indeed unstable, suggesting flow towards an
intermediate fixed point. We will also clarify the meaning of overscreening in the topological
Kondo model.

Another open question that we will address in this work concerns the low-temperature
conductance. The low-temperature conductance correction calculated in the large-N limit is
T(M=2)/@N) [37] which suggests T2 where A = (M —2)/(2N +M —2) is the scaling dimension
for the adjoint primary operator. The first descendant of this primary operator gives the LIO
with scaling dimension 1+ A. However, it is also known that the N = 1 topological Kondo
model has a conductance correction T?2 [35,36,43], which seems contradictory to the above.
A similar change in the temperature exponent of the conductance correction occurs in the
multichannel charge-Kondo effect [8,44]. In this paper, by developing the boundary conformal
field theory for the topological Kondo model, we address the reason for this change in the
temperature exponent.

This manuscript is structured as follows. In Sec. 2, we first analyze the SO(M) topological
Kondo exchange interaction using representation theory and show that it is an overscreened
Kondo interaction which supports the existence of the intermediate coupling fixed point. In
Sec. 3, we introduce the conformal field theory techniques and the Kac-Moody algebra for the
topological Kondo intermediate coupling fixed point. In Sec. 4, by identifying the important
operators from the intermediate fixed point, we give the analytical results of the zero tem-
perature conductance and the finite-temperature conductance correction for the N-channel
topological Kondo model with M Majoranas. In Sec. 5, we further discuss the analogous con-
ductance correction of the topological Sp(2k) Kondo model.
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Figure 1: (a) Setup of the multichannel topological Kondo model implemented as
a Coulomb blockaded Majorana island with M Majoranas (flavors) coupled to N
metallic leads (channels) for each Majorana. (b) Each channel is assumed to host
linearly dispersing left (L) and right (R) moving modes on a half axis, coupled to the
impurity at x = 0. (c) Unfolding to chiral model: The right movers can be considered
as a continuation of the left movers defined on the full axis, see Eq. (1). (d) The RG
flow of the Kondo coupling A.

2 Instability of the strong coupling fixed point for SO(M) Kondo
models

The total Hamiltonian H, + Hycrk of the N channel topological Kondo model consists of the
linearized kinetic energy of the itinerant fermions (H,), and the N-channel SO(M) topological
Kondo interaction Hycrx (see Fig. 1a):

L N M
_VF -
Ho= 27 J;l dx ;agllwn,a(x)aan,a(x); D
N
Hycrx = AZ;SAJ?(X =0), @)

where v is the Fermi velocity and 21 is the length of the system, which can be taken to infinity
at the end [45]. Here, we considered the right mover as a continuation of the left mover to the
negative axis [10,45] (see Fig. 1b-c). The SO(M) impurity operators are SA=(%F) = —iyqYp/2
with y; __; denoting the M Majorana zero modes. The conduction electron operators in the

nth channel are J,?z(a’ﬁ) = —i(wi,a%bn,/s — wz’ﬁwn,a) and there are M(M —1)/2 (a, 8) pairs
that satisfy @ < 8 when a, 3 = 1,..., M label flavors. The operators S* and Jﬁ are different
representations of the SO(M) generators.

A weak Kondo coupling A > 0 flows to the stronger coupling under renormalization group
(RG) flow [35] (see Fig. 1d). For simplicity we consider an idealized case of only one Kondo
coupling, i.e. fully isotropic exchange; while weak flavor anisotropies are irrelevant under the
RG flow [35,37,46], channel anisotropy is not [37]. In the large-N limit, in Ref. [37] some
of us perturbatively calculated the RG equations and found that there is a stable intermediate
coupling fixed point A, = 1/(2Np) where p = 1/(7mvg) is the constant density of states per
length. This intermediate-coupling fixed point indicates an unstable strong-coupling fixed
point (see Fig. 1d). However, the perturbative results can no longer be trusted in the case
N ~ O(1), where the intermediate fixed point (if any) no longer resides in the weak coupling
regime.

Here we first evince the presence of the intermediate non-trivial fixed point. Trivially, as
for any Kondo problem, the fixed point A = 0 is unstable (because A is marginally relevant).
Next we consider A = oo and study if this fixed point is stable or not. To this end, we assume
dominant Hycrk, EqQ. (2), in the strong coupling regime and momentarily neglect kinetic en-
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ergy, Eq. (1) [2]. In the lattice version of Fig. 1b, x takes discrete values 0,1,2,... and O
denotes the closest site to the impurity. At x = 0, we notice that

JA=—i(vorYpr+ YarYpi)/2 =S+ S, (3)

when introducing Majorana representation v, = (Y, g +1y4,)/2 for each conduction electron
channel n (the channel index n is omitted). Thus, the impurity represented by operator $4
is screened by conduction electrons represented by 2N S%s (see also [47-50] for the case of
single conduction $%). Since two $%s can combine into a singlet, see Eq. (9), this means that
Eq. (2) is an overscreened Kondo interaction. This overscreening in terms of the number of
S4 indicates the instability of the strong-coupling fixed point and therefore leads to a stable
intermediate-coupling fixed point. By analogy with the 2CK model, i.e., when the Majorana
island is screened by two conduction Majorana channels, we expect that the ground states of
Eq. (2) with N = 1 form a new impurity that is represented by S* and will be further screened
by the next nearest (x = 1) conduction electrons.

The above analogy can be shown by solving the ground states of Eq. (2) using the following
standard Casimir form:

ZSAJA: 1 Z(SA+JA)2_(SA)2_(JA)2 ) 4)
A 2 A

These three operators on the right are the Casimir operators, and the Casimir invariant c(R) for
each Casimir operator is determined by its representation R. In terms of the Dynkin’s labels g;
(non-negative integers), i.e., R = Zir=1 a;u; where the integer r is the rank of the Lie algebra
[r = m for SO(M = 2m) and SO(M = 2m + 1)] and u; are the fundamental representations,
the Casimir invariant is

c(R) = Z(ai‘ai)(ai/2+1)(c_1)ijaj~ (5)

ij=1

The vector a; are the simple roots and the matrix C;; = 2(«; - a;)/(a; - @;) is the Cartan matrix
[51-54]. Thus, the ground states and their energy of Eq. (4) are both determined by the
representations of S* and J4.

Before going to the representation theory, one can calculate the Casimir invariant of S*
using only the commutation relations {y;,y;} = 20;;:

DS == Ya¥prarp/4=M(M—1)/8. ©)
A

a<p

This result can be verified by plugging the Dynkin’s labels of R(S*) (see Appendix A),
_1® Uy, ifM=2m,
R(SA) — Um—1 © Um ‘ 7)
Yo > ifM=2m+1,

into Eq. (5), which also results in the right side of Eq. (6). For the following part in this
section, we focus on the even case M = 2m. The representations u,,_; and u,, are the two
spinor fundamental representations which have the same dimension 2™~ but different total
parities 12" y, = +1.

In order to obtain the Casimir invariant for J4, we note that J4(x = 0) commutes with the
number operator and thus is block diagonal in the single-site x = 0 Fock space. Therefore R(J*)
is areducible representation. Consequently, we introduce the K-particle sector at the site x = 0

and define J*X the corresponding block in J4. The dimension of the K-particle representation
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R is (212" ). The total dimension of R(J*) is 212(";0 (sz) = 22™ where 0 < K < M this total
dimension agrees with what we expect from Eq. (3).

The K-particle sector and M —K-particle sector are identical due to particle-hole symmetry.
This can be seen from the Casimir operator for J4 in the K-particle sector

DIAKGAK =Nl ap (1 =) = K(M —K). ®)
A aFp

The second equality above is obtained by noting that for any K-particle state, in order to have
a nonzero average for ¢Zﬂ/’a(1 — 1/)%1/) p), a should be one of the K occupied flavors, and f3
should be one of the M — K unoccupied flavors. In total, there are K(M —K) (a, 8) pairs.
Eq. (3) means that the representation R(J*) can be given by R(Sg) ®R(S‘I“) and thus we get the
representations of J* for SO(M = 2m) (see Appendix A):

2m
R(J*) =R(s") ® R(s") = P RUK), )
K=0

using the representation R(SY), i.e., Eq. (7). We check that Eq. (8) matches the result by
plugging the Dynkin’s labels of R(J*K) [Eq. (9)] into Eq. (5).

Now, we can decompose R(5*) ® R(J*K) for each K-particle sector. While the correspond-
ing Casimir invariant can be evaluated, its full expression is too complex to show here, but the
reader can refer to Appendix A.2 for more information. Nevertheless, we find that u,,_; and
W, have the smallest Casimir invariant c¢(R) [Eq. (6)] except the trivial representation R = 0
and always exist in the decompositions of R(5*) ® R(J*K) for any 0 < K < 2m. Thus, the
ground states of Eq. (2) lie in the K = m-particle sector (half-filling), where Eq. (8) is maximal
and Eq. (4) has its minimum. These ground states labeled by u,,_; ® u,,, form a new impurity
[same representation as the original impurity, see Eq. (7)]. We thus expect by symmetry that
it couples to conduction electrons as in Eq. (2) and thus will be screened by the electrons at
site x = 1, which confirms that the leads can be considered as two-channel Majorana-lead
according to Eq. (3), which will overscreen the Majorana-island just as in the conventional
2CK effect. Moreover, the effective Hamiltonian of strong coupling is still a topological Kondo
interaction but with a new Kondo coupling A’ ~ t2/A where t is the kinetic energy of the
itinerant electrons. The strong coupling limit of A is the weak coupling limit of A’, which we
know to be unstable. This weak-strong duality predicts a self-dual point, which is the inter-
mediate fixed point (see Fig. 1d). We show an explicit example in the Appendix B for M = 4
and N = 1. The ground states in the strong coupling fixed point are in the K = m = 2-particle
sector, which can be represented by two decoupled spin-1s (a six-dimensional space formed
by placing K = 2 particles into M = 4 available orbitals). The impurity can be represented by
two decoupled spin-1/2s. Thus, the 1-channel topological SO(4) Kondo model is equivalent
to 2CK and is overscreened. This equivalence comes from the fact SO(4) ~ SU(2) x SU(2)
(see Appendix B.1 and the supplementary material of Ref. [37]). Similar arguments about
overscreening from the strong-coupling perspective are also used in Refs. [2,55,56].

The multichannel case (N > 1) with more screening is also an overscreened Kondo model.
In conclusion, we have shown the instability of the strong-coupling fixed point and thus the
existence of the intermediate-coupling fixed point (see the A = A, point in Fig. 1d).

3 Conformal field theory at the intermediate-coupling fixed point

The powerful boundary conformal field theory method was successfully applied to the
intermediate-coupling fixed point of the multichannel SU(2) Kondo model [10,27-29,31,45].

6
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As we verified the strong-coupling instability of the multichannel SO(M) topological Kondo
model in the last section, suggesting the existence of an intermediate-coupling fixed point, we
introduce in this section the SO(M) generalization of the conformal field theory description.

3.1 The definition of overscreening

Below Eq. (3) we argued that the topological Kondo model is overscreened. In this section we
make this notion more precise. Recall that overscreening in the N-channel (spin-1/2 conduc-
tion electrons) SU(2) Kondo model with impurity spin-s means 2s < N [2]. This constraint
for the impurity spin is also the cut-off for the allowed spins (representations) in the SU(2)y
affine Lie algebra, i.e., the Kac-Moody algebra, which is part of the conformal field theory de-
scribing the intermediate-coupling fixed point [10]. Thus, we can think of overscreening as
the requirement that the impurity representation is allowed in the affine Lie algebra. We note
however the following two exceptions: (i) the case s = N /2 corresponding to exact or perfect
screening, and (ii) the (trivial) case of a scalar impurity [spin-0], which are both allowed in
the Kac-Moody algebra but flow to the same free fermion theory as the free fixed point. Next,
we generalize the definition of overscreening using the representation cut-off for the SO(M)
case.

The symmetry current operator for the N-channel SO(M) Kondo model, Eq. (2), is defined
as

N N M
TA)=D00= 7 >l Tt p(x), (10)

n=1 n=1a,=1

where T“s are the traceless generators of the SO(M) group, defined as
(T)ap = (T™)gp = i(6,,6% —6,65).

Here the generators are labeled by the pair r,s of indices r <s = 1,...,M. We may alterna-
tively label the generators by a single integer A=1,...,M(M — 1)/2. The generators satisfy
Tr(TATB) = 268 and [TA, TB] = iZCfABCTC where fABC = (—i/2)Tr([TA, TB]T®) is the
structure constant. The Kac-Moody algebra for the Fourier components of Eq. (10) is

(11

p+p —p’>

[74,781=1)  fACTC, , +2N ps*®s,
c
with the prefactor in the second term defining the level 2N (see Appendix C). Thus, the affine
Lie algebra for the N-channel topological Kondo model is SO(M ),y (see Ref. [57] forthe N =1
case) because each screening fermion channel is two screening Majorana channels as shown
by Eq. (3). For N Majorana channels one finds SO(M)y [47].
By requiring primary states to have non-negative norm, we can find that the allowed rep-
resentations R = Z:’;l a;u; = { for the SO(M )on Kac-Moody algebra must satisfy (see Ap-
pendix D.2 and D.3 for derivations)

l;£L0; <2N, if M =2m, (12)
(;£{; <2N, and {; <2N, ifM=2m+1,
where1<i<j=1,...,ma=4¢;—¢;;;,i=1,..,m—1and
b_1+1L,, ifM=2m,
a, = m—1 m ‘ (13)
20, ifM=2m+1.
The necessary requirements are thus that the Dynkin labels
<oy 4 _ [N, ifm=2m, s
a— _1<2N, and q, < )
=homl "= 14N, fM=2m+1.

7
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Table 1: The quantum dimensions for all the allowed representations in SO(4),, see
Sec. 3.2. The anyons denoted by u, , appear at the topological Kondo intermediate
fixed point. The presence of quantum dimensions larger than one indicate over-
screening. The trivial screening cases are given by the representations with quantum
dimension 1.

10| wa [ b [ +pe | 201 | 2up | 200 +pp | gy +2us | 201 + 20, |
(1]v2fv2] 2 |1 [1] v2 | v2 | 1 |

When the impurity representation satisfies all inequalities in Eq. (12) but upon fusion with
the conduction electrons (see Sec. 3.2) still gives the free-fermion spectrum [45], we define
this case as “trivial screening”. The overscreening is when the representation satisfies Eq. (12)
but does not belong to trivial screening. For the SU(2)y case, the trivial screening occurs
when the impurity spin s = 0 or N/2. All other cases with spins =1/2,1,...,(N —1)/2 are
overscreening. We can easily check that the impurity representation R(S%), i.e., Eq. (7) satisfy
Eq. (12) for any N > 1 and does not belong to the trivial screening. Thus, we conclude that
the multichannel topological Kondo model is an overscreened Kondo model which matches
our conclusion in the last section that the strong-coupling fixed point is unstable.

3.2 Fusion rules, quantum dimensions, and scaling dimensions

The fusion rule for two allowed representations R; and R, of the Kac-Moody algebra is
RixRy =2, N:fRzRg where lefRz =2k, S, RySRy.R Sk, g,/ S0k, DY the Verlinde formula [58],
Swr,,r, 1s the modular S-matrix for SO(M),y [59] and * denotes complex conjugation. (These
SO(M),y fusion rules for all pairs of representations define a fusion category [60].) Based
on the fusion rule (see Appendix D for example), one can calculate the effective dimension
for each representation, that is, the quantum dimension which is generally noninteger be-
cause of the cut-off Eq. (12). The quantum dimension is given by the modular S-matrix
g[R] =Sy r/So,, and it further gives the impurity entropy [10,61]

lS'imp = lng[R(SA)] = lng[um] 5 (15)

for the SO(M = 2m)yy and SO(M = 2m + 1),y topological Kondo models, which matches
with the N = 1 result in Ref. [62]. For example, the quantum dimensions for all the allowed
representations of SO(4), by Eq. (12) are listed in Tab. 1. Because the representation of the im-
purity is u, or u, as shown by Eq. (7), the impurity entropy is In +/2 for the SO(4), topological
Kondo model.

In order to obtain the scaling dimensions of leading operators in the Kondo intermediate
fixed point, we now proceed with the construction of the conformal field theory description.
The kinetic energy H,, [Eq. (1)] in its Sugawara form after non-Abelian bosonization [Eq. (10) ]
becomes [45,61,63]:

(o)
Vg Tpp -pp
H,= —~ + , 16
T4 ;M+2N—2 Za:2N+M—2 (16

where JN;‘ [T ;‘] are the pth component from the Fourier transformation of the SO(M)qyn
[SO(2N),,] generators; the normal ordering : --- : moves operators with p > 0 to the right.
The central charge for the SO(M ),y and SO(2N),, sectors are (2N)[M(M—1)/2]/(M+2N—2)
and M[2N (2N —1)/2]/(M + 2N —2) respectively. Adding up these two numbers gives the total
central charge 2N M for SO(2N M), [34]. The fermion operator ,, , or 1/)}'1 o Of scaling dimen-
sion 1/2 decomposes into vector primaries with scaling dimensions [(M —1)/2]/(M + 2N —2)

8
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and [(2N —1)/2](2N + M — 2) in the two sectors. The Kondo interaction Hycrx [Eq. (2)]
becomes

oo

5 TV ~
HMCTK:ATF Z ZJ;SA, (17)
A

p=—00

where 4 = pA = A/(mvg). At a critical value (the intermediate-coupling fixed point)
A = A, = 2/(M + 2N — 2), the Kondo interaction Hycrg can be absorbed into Eq. (16)
by defining the currents J/ = JN;‘ + $* which still satisfy the SO(M),y Kac-Moody algebra
Eq. (11) [10,45]. However, this will only work if the representation obtained by fusing the
impurity and conduction electron representations is in the Kac-Moody algebra, i.e., satisfies
Eq. (12).

The most fundamental states in the spectrum of Eq. (16) are called primary states which
are annihilated by .7;’;‘>0 and j§>0. Excited states can be obtained from them by acting with

f;‘ <o and j}‘j _o [45,64]. Thus, the primary states can be labeled by the representations of the
SO(M ),y and SO(2N),, Lie algebra. Another way to see this is from Eq. (16) which is in the
standard Casimir form, so that its eigenvalues can be labeled by the representations of the
SO(M),y and SO(2N),, Lie algebra. For example, when M = 4 and N = 1, the primary states
(see Tab. 2) are labeled by the representations (Dynkin’s label) of the SO(4) (a;, a,) and SO(2)
(Q) Lie algebra. In the free fixed point, only vector representations (even a; +a,) are allowed
because the current operators Eq. (10) are defined using fermions and not Majoranas. The
primary-state energies are [for (M =4,N = 1)]

2 2
(a1,0,Q) _ Vg | 1 ay a 15
EO1 2 —T[g(a1+3+az+3 +§Q . (18)

If we take a; = 2j and a, = 2j;, Eq. (18) becomes identical to the SU(2), conformal data
[45,64]. The conformal scaling dimension of the primary operator that creates the primary
state (aq, a,, Q) when applied to the vacuum is E(()al’az’Q)l/(nvF) (see Tab. 2) [65].

By the Affleck-Ludwig fusion hypothesis [29,30], the Kondo fixed point (the intermediate-
coupling fixed point, see Fig. 1d) primary states are determined by fusion of the free fixed
point primary states [45] with the representation of the impurity. For the case SO(4),, where
the impurity representation is R(S*) = u; ®u,, see Tab. 2. The allowed boundary operators are
found from the free fixed point primary operators after double fusion with the impurity [45].
We are particularly interested in the leading irrelevant boundary operator (LIO) that charac-
terizes for instance finite-temperature corrections to observables near the Kondo intermediate
fixed point. Although R(S?) is reducible, we only consider the fusions relevant to fixed fermion
parity sectors, 1 ® u; ®(a; iy +asis) and Uy ® Uy ®(a; iy +as i, (see the Appendix D.7 for the
cross terms). The leading irrelevant operators are obtained from a; =a, =0and a; =a, =2
with Q = 0. When a; = a, = 0 (the a; = a, = 2 case gives identical results), we get

M12® U1 2®0=2u,,®0, (19)

where 2u; (a; = 2,a, =0,Q = 0) and 2u, (a; = 0,a, = 2,Q = 0) both have scaling dimension
1/2, calculated from Eq. (18). These resulting primaries 2u, 5 transform under the adjoint
representation of the SO(4) Lie algebra.

In the next section, we discuss the conductance correction given by the LIO, which is the
first descendant of adjoint primary fields (5, ie,J ;- q_5 [29,34]. In the SO(4), case, these
operators are fi’f ! (,5 241 and fi‘fz . qg 242 where qg 2012 are the dimension 1/2 primary operators
that correspond to the representations 2u; , in Eq. (19). The current operators fiﬁtl’z are the
generators that transform under the representation 2u, , and their scaling dimensions are 1.
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Table 2: Primary states/operators (a;,a,,Q) and their scaling dimensions
E(()al’az’Q)l /mvg of the SO(4), Kac-Moody algebra. Upper table: free fixed point.
Lower table: Kondo fixed point obtained from free fixed point after single fusion
with the impurity representation ;. The single fusion results with impurity u, can
be found by interchanging a; < a,.

| a; | a, | Qmod4 | E(()al’az’Q)l/nvF | multiplicity

0|0 0 0 1
1)1 1 1/2 1
210 2 1 1
01| 2 2 1 1
2| 2 0 1 1
1] 1 3 3/2 1
a; | ay | Qmod4 E(()al’az’Q)l /mvg | multiplicity
110 0 3/16 1
01 1 5/16 1
211 1 13/16 1
110 2 11/16 1
1] 2 2 19/16 1
1] 2 0 11/16 1
01 3 21/16 1
2 |1 3 29/16 1

Thus, the scaling dimension of the LIO f_l . ¢_§ for the case SO(4), is 1+ 1/2 = 3/2. Generally
for any M, N, the scaling dimension for the LIO of the SO(M ),y case is [61]
M—-2

2N+M -2’

where A, = n+A, is the scaling dimension of the corresponding nth descendant of the primary
operator with scaling dimension A,. Special cases of Eq. (20) can be found in the SO(3),
Kondo model [35] which was mapped to the SU(2), Kondo model, in the SO(M), model [62,
66,67], in the N-channel SO(4),y model which was mapped to the SU(2),5 Kondo model [37],
and in the perturbative large-N limit of the multichannel topological Kondo model [37].

Ar=1+0p=1+ (20)

4 Low-temperature conductance

The low-temperature conductance near the intermediate-coupling fixed point can be calcu-
lated using conformal field theory techniques [4,10,35,50,68,69]. The charge transport is de-
termined by the conduction electron current in the leads; for flavor a and channel j, the current
operator is I; ,=Ip.; o—I}.; o where the chiral currents are I} p.; ,(x) =evoI’R;j’a(x)wL,R;j’a(x)
(see Fig. 1). One can calculate the linear response conductance by using the Kubo formula
that involves the equilibrium current-current correlation functions, see Ref. [40] for details on
a fully analogous calculation. For simplicity and practical relevance [37] we focus on charge
transport in one of the channels, say j = 1. Because of charge conservation, it is sufficient to
evaluate the off-diagonal elements of the conductance matrix G, = limvﬁ_w (I1,4)/ Vg which
characterizes the current in lead a generated by a weak voltage Vg in lead . The presence of a
Kondo impurity modifies only the correlation functions (I} .; ,Ir. p) between opposite chirality
currents [68,69]. We suppress the position and time arguments in the correlation functions
for brevity;! this omission is not important for our derivations below.

ISee the supplementary material of Ref. [40] for similar calculations in full detail.

10
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4.1 Zero-temperature conductance

The channel and flavor symmetries exhibited by the Hamiltonian Egs. (1)-(2) in both
the free and Kondo fixed points restrict the current-current correlation functions to only
two independent ones: (I;jalrka) = Ojx{lL11lr1,1) and (Ipjalrrp) = 6jcllr1,1lR1,2)
for a # . At the Kondo fixed point, we can relate these two correlation func-
tions to a single correlator evaluated at the free fixed point. In order to do this, we
first define chiral (y = L,R) densities that transform properly under SO(M) rotations:
J)(CC)(X) = Zj J;;j(x) . mljx;j(x) = Zj,a I}, r.j,o(x) which transforms as the representation 0

(singlet) and J)((d)(x) = Zj @;;j(x)qu,Z;X;j(x) = Zj[Ix;j’l(x) —1I,,.;2(x)] which transforms as
the representation 4u, (or spin-2, see the supplementary materials of Ref. [35]) for SO(3),
22U, + 2u, for SO(4), and 2u, for SO(M > 5). Here, 1/_5” = (Y1, ..,ll)x;j’M)T and
D, = diag(1,—1,0,...,0) (a symmetric traceless M x M matrix). Note that the density J@ is
one of the M — 1 + M(M — 1)/2 densities given by the symmetric traceless M x M matrices
(see Appendix E).

The current-current correlation functions can be written in terms of the above density-
density correlations functions:

_ 1 oo, M—1, @ (@

(Ipa1lra1) = M2N< L JR )+ SMN (J77JR ), (21)
_ © @y _ 1 @@

<IL;1,11R;1,2>_ MzN(JL JR ) 2MN<JL JR > (22)

These equations are true with or without Kondo interaction. At the free fixed point (denoted
from hereon by subscript f), we have no flavor mixing so (I;.1 1Iz.1 2)f = 0 (leading to G;5 = 0)
and

(Jéc)Jfgc))f =NM(I;q11p11)s> (23)
4) ,(d
(J£ )J}E )>f: 2N(Ip g1l R 1)t (24)

At the Kondo intermediate-coupling fixed point (denoted by subscript K), the density-density
correlation function (Jic’d)Jl({C’d))K is given by its free fixed point value multiplied by a constant
factor that is fully determined by representation theory [10]. The density J( is a singlet
and thus its factor will be 1; its correlation function is not modified by Kondo interaction.
The density J@ transforms non-trivially with a representation R(J®)) that depends on M
[see above Eq. (21)]. The corresponding factor is given by the following modular S-matrix
values [10, 65]:

RU@),R(s4)/ SRU@),0

S
Sy(M) = (25)

Sr(s4),0/S0,0

In other words, (JiC)J}gC))K = (JﬁC)J}({:))f and (Jid)J}gd))K =Sy (J£d)J}gd))f. By using these relation
in Egs. (21)-(24), we get

1+ (M —1)Sy

(Ipaalraa)x = T(IL;l,IIR;l,l)f: (26)
1—8y

(Ipa1lga2)k = (Ipa1lra)es (27)

which relate the Kondo fixed point correlation functions to a single free fixed point correlation
function. A similar relation holds for the zero-temperature conductance matrix elements [40].
Thus, the transconductance Gy, of the N-channel SO(M) topological Kondo model is

G1a(N, M) _ 1-5y(M)

, Go=e?/h. 28
Go M oe/ (28)

11
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Figure 2: (a) The zero-temperature conductance forN =1,...,5and M = 3,...,203.

All the points above are given by analytical results Eq. (28) and Eq. (25) [for illus-
tration the (N, M) = (5, 4) point is shown explicitly]. The N = 1, 2 points are degen-
erate but we horizontally shifted the N = 2 points in order to show both of them.
The inset shows the definition of an off-diagonal conductance matrix element for the
case N =1, M = 4. In the large-M limit, the conductance G;,/G, is asymptotically
2/(MN). (b) In the large-N limit, the conductance is asymptotically 72/(4N?).

Unfortunately there is no simple closed formula for Sy (M) with general N and M [59]. We
can nevertheless evaluate Sy (M) and Gy, for any given N, M, see Fig. 2 for some small values.
For M = 3,4,5,6,7 and generic N, we have

Sy(3)=1 —2cos(

T
=2
Sy(4) COS(N+1

Sy(5) = 2cos(
Sy(6) = cos(

Sy(7) = 2cos(

ZNfF1)+2COS(2NF+1)’ (29)
)—1 (30)
) [1 2cos(2N 3)]_1, (31)

) { ) (32)
) +[200 (ZN' 5)_2C°S(2N>r5)_ql_l' (33)

2N +5

We will mention some special cases of Eq. (28) that have been previously discussed in
the literature. In the conventional N = 1 topological Kondo model, one has Sy—; = —1 and
G, = (2/M)(e?/h) for all M, which matches with previous results [35,36,43,57,67,70,71].
The result for M = 3,4 and generic N can also be verified by mapping to previous results on
the SU(2) multichannel Kondo effect. The N-channel SO(3) topological Kondo model can be
mapped to the 4NCK, i.e., SU(2)4y Kac-Moody algebra and the N-channel SO(4) topological
Kondo model can be mapped to the 2N CK, i.e., SU(2),y Kac-Moody algebra at the intermediate

12
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coupling fixed point. After the mapping, we use the modular S-matrix for SU(2); [10,59,72]

m(2j +1)(2s + 1)} . (3

2
S..= sin
I k+2 [ k+2

The representation of J¢ is spin-2 (j = 2) for the SU(2)4y case and spin-1 (j = 1) for the
SU(2),y case. The representation of impurity is spin-1/2 (s = 1/2) for both cases. The Sys
calculated from Eq. (34) match with Egs. (29)-(30) that are calculated using the modular
S-matrix of SO(M = 3,4),y.

Finally, we can comment on the limits N,M — oo of Eq. (28). The perturbative large-N
limit [37] can be seen from Egs. (29)-(33) which yield

lim Gi,(N,M =3,...,7)/Gy = %/(4N?)
N—oo

(see Fig. 2b), matching with the large-N conductance of Ref. [37]. For a fixed N, we nu-
merically show that the conductance vanishes as 2/(MN) in the large-M limit (see Fig. 2a).
However, in perturbation theory in the Kondo interaction, the conductance G, is proportional
to ii [37], which is ii ~ 1/M? because A, = 2/(M +2N —2) ~ 1/M in the large-M limit [see
below Eq. (17)]. This mismatch of the large-M conductance between the conformal field the-
ory method and the perturbation theory indicates that, unlike the large-N limit, the large-M
limit is not perturbatively accessible.

4.2 Leading finite-temperature correction to the conductance

Next, we discuss the finite-temperature correction to the conductance, Eq. (28). This correc-
tion arises from the deviation A — A, of the Kondo coupling from its fixed point value, also
known as correction to scaling [45]. We will show that the conductance correction depends
on the channel number N as,

THAMTD ) N =1

GIZ(T) - GIZ(O) ~ {T(Al_l) ) N > 2’ (35)

where A; is given by Eq. (20). The result Eq. (35) agrees with the cases N =1 and N — oo
that were previously studied in the literature [35-37,43,57,67,70,71]. The contrast between
the N =1 and N > 2 cases highlights the importance of a careful CFT analysis in determining
the temperature dependence.
The piecewise result Eq. (35) is due to different fusion results of the operator J¢ for N = 1
and N > 2 cases, i.e.,
0 N=1

R (d) R (d) ’
)< RUF) = {0+ , N>2. (36)

The operator J¢ is used to calculate the fixed point conductance by using Eqs. (21)-(22) and
the conductance correction is given by the correction to (J4J9) due to the LIO J_; - ¢ with
scaling dimension shown in Eq. (20). The first-order conductance correction is

/5/2 B/2

lim — f dx’ f dt,el®”

w—0 wlL —B/2 /2 (37)
(TodD(x, 0)ID(x, 00T - $(0,77)),

where 3 = 1/T and 7 = it [40,44,73]. By power counting, each integral contributes T~! and
the correlation function contributes ~ T2721, Thus, the first-order correction Eq. (37) gives

13
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conductance correction ~ T®171_ This is the case in the multichannel N > 2 topological
Kondo model [37] which allows fusion results other than 0. However, the first-order correction
vanishes at N = 1 because the fusion rule, Eq. (36), of two J dg gives only 0, i.e., J dyd ~ T and
thus (J4J4T |- ¢) ~ (7 _;-¢) = 0 (see also the supplementary materials of Ref. [35]). It means
that the temperature dependence of the conductance correction for the 1-channel topological
Kondo model arises from the second order in the LIO,

_1 (P L B/2 B/2 .
lim — dTJ dx’f drlf dt,e'“”
00wl J g Jo iz J-pp2 (38)

(Ted D, I D(x’,0)T_1 - $(0, 7)1 - $(0,75)),

and is of order T221~1) = T2(M=2)/M 43 57 67].

5 Comparison to the symplectic case

In the above sections, we mainly discussed the application of conformal field theory to calculate
the conductance of the multichannel SO(M) topological Kondo model. One may wonder how
these techniques are applicable to other Lie groups such as the recently studied symplectic
Sp(2k) Kondo model [40,41]. In the symplectic Kondo case, the low-temperature conductance
correction was found to be the Fermi liquid T2 [40,41]. However, as we show below, this is
only true for the Sp(4); case.

Due to a similar representation cutoff as Eq. (12), the allowed representations of the
Sp(2k); Kac-Moody algebra are the fundamental ones u;—; _; where u; represents the im-
purity. The double fusion rule of the impurity u; gives

.....

U1 ®u; ®0=2p70 U, ®0, (39)

where 2p7 means this adjoint representation 2u; is not allowed by the Kac-Moody algebra
(see also the supplemental material of Ref. [40]). Thus, the LIO J_; - $Z“1 is not allowed
in the boundary operators. However, one can consider high-order descendants and contract
them with the representations allowed by the Sp(2k); Kac-Moody algebra. It turns out that
the LIO is (J_jJ_;)2 - 5“2 with scaling dimension Agz =2+ Agz where Agz = k/(k + 2).
The operators (J_,J_;)"2 are the u, operators constructed from the product of two 2u; (the
adjoint representation) operators J_;. This construction always exists because of the following
representation decomposition [54]:

201 ® 201 =4y & (201 + Ug) © 2U; O 22Uy © Uy ®0. (40)

The u, at the right site of Eq. (40) denotes the representation of J_;J_;.

Similar to the SO(M) Kondo model, the charge conductance in the symplectic Sp(2k) case
is determined by the operator J¢ [see Eq. (21) for the SO(M) case], which transforms as the
representation u, of Sp(2k) [40]. The first-order low-temperature conductance correction re-
sulting from the LIO (J_;J_{)"2 - q_5”2 is proportional to T(42*~1) As mentioned in Sec. 4, if
the fusion rule of the operator J¢ gives only a trivial representation 0, the first-order correc-
tion vanishes and one should consider the second-order perturbation. The fusion rule of the
Sp(2k), affine Lie algebra is identical to that of the SU(2), affine Lie algebra: the impurity
representation u, of Sp(2k); is equivalent to the “1/2” of SU(2); and the u, is equivalent to
the “1” of SU(2), [see also Eq. (39) as a verification]. At k = 2, we have u, ® u, = 0, which is
equivalent to 1 x 1 = 0 in SU(2),. Thus, one considers the second-order perturbation which
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would lead to T222"~1D = T3, However, this is subleading compared to the Fermi liquid cor-
rection T2 given by the operator J2*1 - J2*1 [34]. When k > 3, one considers the first-order
correction. Thus, the conductance correction of the Sp(2k); Kondo model is

5 T2, k=2,
GO patrn _p2bd | gs 3, “h

k+2
b

Note that in the Sp(4); setup of Ref. [49, 50], the first-order conductance correction does
not vanish because their conductance is not calculated using J¢ and thus they obtain a non-
Fermi liquid behavior T(85°~1) = T3/2 3¢ k = 2. This difference in conductance correction
between their SO(5); or Sp(4); Kondo model [49, 50] and the recently studied symplectic
Sp(4); Kondo model [40, 41] is similar to the difference between the spin-2CK model and
charge-2CK model [44].

Furthermore, in the multichannel Sp(2k)y>, case, the adjoint primary operator 52“1 will

7 . B2 wi i Uz . fl2
be allowed. Its descendant J_; - ¢“#1 will compete with the operator (J_;J_;)*2 - p#2. The

former becomes the leading irrelevant operator since its scaling dimension satisfies A1“ < A‘ZL2
where

22U 204 k+1
A =14+ =14 ———— 42
1 0 N+k+1 (42)
A2 =24 A2 =04 — 43
2 0 N+k+1 (43)

Depending on the fusion rule, the conductance correction will exhibit a non-Fermi liquid be-
. 2pq 2ur
havior, T? or T??o , similar to Eq. (35).

6 Conclusions

In this paper, we demonstrated the instability of the strong coupling fixed point in the SO(M)
topological Kondo model, demonstrating the existence of the intermediate coupling fixed
point. By developing the generalized Affleck-Ludwig conformal field theory technique, we
extended the concept of overscreening to higher rank Lie groups, finding a set of inequalities
for the impurity representation, see Eq. (12). We also clarified the conductance correction of
the multichannel topological Kondo model, showing that a first order correction given by the
LIO exists in the multichannel model but not for single channel. Similarly, in the N-channel
charge-Kondo model, the first-order correction exists for N > 3 but not for N = 2 [8] because
the fusion rule of two J9s, spin-1s, gives only spin-0 at N = 2. The method of determining the
LIO can be applied to other compact Lie groups as we have shown with Sp(2k). The analysis
for getting the Sp(2k) conductance correction, Eq. (41), is also useful if the spin-1/2 2-flavor
Kondo model in Ref. [49,50] is further generalized to a spin-1/2 k-flavor Kondo model, which
is a possible regime for a similar spin-kCK quantum dot device. In addition to the charge con-
ductance, calculating the heat conductance [74] of multichannel topological Kondo model is
also feasible based on the methods in our paper.
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A SO(2m) Lie algebra and spinor representation

In this section, we introduce the basics of the SO(2m) Lie algebra and show that the ground
states of the SO(2m) topological Kondo interaction (no kinetic energy) are at half-filling (the
m-particle sector).

A.1 SO(2m) Lie algebra

The group SO(2m) is generated by m(2m — 1) generators. In our case, they can be Majorana
bilinears —iy,yp/2 with @ < 8. The rank of s0(2m) Lie algebra is m, which means that we
have m Cartan generators. The corresponding Cartan generators and the 2m(m — 1) roots
are [51,53]

H; =—iygi1v2i/2,  Ej =—i(yai1 +isva)(raj1 +isr2;)/4, (A.D
wherei <j=1,2,...,mands,s’ = +1. We can check the commutation relations are

[H;,E$ ] =sES

i Ejg o [Hi, Ejp 1= s’E;f( . (A.2)

Other H;s with i # j, k will commute with Ejf{/ From above, we obtain the simple roots, which
are

a; = (1,-1,0,...,0), (A.3)
ay = (0,1,—1,0,...,0), (A.4)
Xm—1 :(0)"'702 17_1)5 (A-S)
@, =(0,...,0,1,1). (A.6)

Cartan matrix is defined as C;; = 2(a; - a;)/(a; - @;). The fundamental weights are

WUy = (1)05"'50)) (A'7)
U = (1) 150)"‘J0)J (AS)
Uy =(1,...,1,0,0), (A.9)
U =(1,...,1,-1)/2, (A.10)
un=(1,...,1)/2. (A.11)

Any representation can be written as y = Z:n:l a;u; where qa;s are Dynkin’s labels. The corre-
sponding Casimir invariant for this representation u is given by [52]

m

cR)= D (o a)(@;/2+1)(CVya;. (A.12)

i,j=1

16


https://scipost.org
https://scipost.org/SciPostPhys.20.2.032

e SciPost Phys. 20, 032 (2026)

A.2 Representation of S4, J4 and decomposition of R(S*) ® R(J4)

The spinor representations S* using Majorana operators can be further written in terms of
Pauli matrices 0;,i =1,2,3:

Y1=019®030--®03, Y2=02803®:-®03,
'}’3=]I®O'1®O-3®"'®O'3, Y4=]I®O-2®O-3®"'®O'3,..., (A.]_B)
Yome1 =1®---®I®0q, Yomn=1®---®I®0,.

The natural basis for the above m spin-1/2 operators is the spin-T, | states. Then, the Cartan
generators measure the z-component of each spin because H; ~ og). The root Eﬁ(/ is nearly
os(j )ai,k) where o, = 0, +iso,. Representations are defined through their highest weights. We
can easily find that the highest weights of this spinor representation are |1 ... T1) and [T ... T]).
These two highest-weight states are eigenstates of Cartan generators, and the eigenvalues are
tm—1 [Eq. (A.10)] and u,, [Eq. (A.11)], which gives Eq. (7): R(S?) = (u,,) ® (U,,_1) in the
main text. The difference between the (u,,—;) and (u,,,) subspaces is their parities, which can
be measured by (—1)™ ]_[12;“1 Y;i =03 ®-++® 05. They are both 2™ 1-dimensional.

When it comes to the representations of J4, we need to consider the particle sectors sepa-
rately. The dimension of the K-particle sector is equal to the dimension of the linear space in
which the states live. As we defined in Sec. 2, the number of states that live in the K-particle

sector is (212" ) The total dimension for J4 is thus the sum of the dimensions of all K-particle

sectors Ziz:o (2;{“ ) = 22™ which verifies our conclusion that the representation of J# is the
same as the representation given by R(S*) ® R(S*) [Eq. (3)] in terms of its dimensions. We can
decompose R(JA) = R(S*) ® R(S?) as @1.2;”0 R(J4Y) with

RUJM)=RUM™ ) = (u;), for0<i<m—2; (A.14)
RUMY = (g + ), RUA™) = (2u—1) ® (2u,,) . (A.15)

We used the following three decomposition rules:

[m/2] [m/2]
Un1) ® Un1) = Cli 1) B W)y (W) ® (W) = 2tt) B (Wm2i),  (A16)
i=1 i=1
[(m—1)/2]
(1) ® W) = W1 + ) €D (Winesjon) - (A17)
j=1

Note that uy = 0 and the above equations are symmetric for u,,_; and y,,. We can verify using
LieART [54] that R(S*)®R(J*X) contains (u,,)®(u,,_ ) for every 0 < K < 2m. The representa-
tion u,,_; and u,, have the smallest Casimir invariant according to Eq. (A.12). Thus, the lowest
Kondo energy [Eq. (4)] is at K = m (half-filling), which maximizes c[R(J*X)] = K(2m —K)
[see also Eq. (8)].

B Effective Hamiltonian of SO(4) topological Kondo at strong cou-
pling

In this section, we calculate the ground states of the SO(4) topological Kondo interaction and
find the strong coupling effective Hamiltonian of it, i.e., Eq. (B.53).
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B.1 Ground states of the SO(4) topological Kondo interaction

The simple roots and fundamental weights of SO(4) are [51,53]

aq :(1)_1): (Xz:(l,l), Aulz(l/z)_]-/z)) “2:(1/23 1/2) (Bl)

The Casimir invariant is thus
1 1
clauq +aguq) = Eal(az +2)+ Eal(az +2). (B.2)

The representation R(S*) = (u;) @ (u,) gives that c(R(S?*)) = 3/2 which agrees with Eq. (6).
The dimension of the K-particle sector R(J*X) is (;) The corresponding representations

R =R(SMHN®R(SM) =[(u1) ® (u3)]1® [(u1) @ (115)] can be written as 69142:0 R(JAK) where

RUZ)=RU2M=(0), RUI)=RUI)=(u1+uy), and R =(2u;) @ (2us).

(B.3)
Here, we used a fact that (u;) ® (uy) = (0) ® (2uq1), (u2) ® () = (0) & (2uy) and
(1) ® (ug) = (g + p2). We can check that ¢(R(J#X)) = K(4 — K) which agrees with Eq. (8).
The decompositions of R(S*) ® R(J4) = @;:o R(S*) ® R(JAK) where

R(SM) @ R = [(u1) @ (u2)1® (0) = (1) @ (), (B.4)
R(SY) ®R(IS®) = [(11) @ (u2)]® (1 + o) = (42) @ (21 + p) ® (U1 +202) @ (u1), (B.5)

R(SM ®RUM) = [(11) ® (u2)]® [(2u1) ® (205)]
= (u1) @ (Buq) @ (uq +2u2) ® (2uq + uz) © (Buz) ® (U2). (B.6)

The above expansions verify our conclusion that (u;) ® (u,) always exists in R(S*) ® R(JAX)
for every K. The Kondo energy Eq. (4) for SO(4) is

Bxonto = 5 {cTR(S") 8 RUM)] = c[R(s")] — c[RU)T} 8.7
- %{C[R(SA)@»R(JA’K)]—%—K(4—K)}. ®.8)

The nontrivial minima of c(a;u; + ayu,) when a; , are both nonnegative integers are given
by (a;,a;) = (1,0) or (0,1), i.e. u; or py, which is contained in any R(S*) ® R(J%K).
Thus, we conclude that the lowest SO(4) Kondo energy is at K = 2 where it maximizes the
c(RUIA)) =K(4—K).

It is knowm that SO(4) ~ SU(2) x SU(2) which can be seen from Eq. (B.2) where the
Casimir invariant of SO(4) can be reformulated as c(a;u; +asus) = 2[s1(s7+1)]+2[s5(s9+1)]
for spin-s; , = a; 5/2. Based on the fact that (u;)®(u;) = (0)®(2u4), (U2)®(uy) = (0)®(2u,)
and (u1) ® (uy) = (U7 + us), one can consider the above decomposition as the decompo-
sition for two independent spins. Furthermore, the conduction electrons are two indepen-
dent spin-1 particles for the lowest energy case J*? which is (2u;) ® (2u,). The lowest
energy in this 2-particle sector is (u;) and (u5) given by (u;) ® (2u;) = (u;) ® (3u;) and
(up) ® (2us) = (ug) ® (3uy). In the language of SU(2) spin decompositions, they are
1/2® 1 = 1/2 & 3/2, which is the same decomposition used for getting the ground state
of the 2-channel SU(2) Kondo model at the strong coupling and also half-filling.

B.2 Representations and strong coupling solutions

The Casimir invariant c(a;,a,) for a representation of generators R* labeled by a;u; + asus
is given by Eq. (B.2), which gives > ,(R*)? = ¢ Ijimxdim- The K = 0, 4-particle sector contain
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only one state |0) or |full) = p!vpT4pl4p1]0) for electrons. This leads to J4° = (0]J4|0) = 0 and
Hy = 0. For the 1,3-particle sector, we get J4X=1:2 = T4 and the representation is p; + u-,
a 4 dimensional representation with ZA(TA)2 = 31,4,4. Next, we define the 2-particle states
as |a) = Zij(B“)ijlpfzijO) witha = 1,...,6, (B4)T = —B® and (B%)" = B%. Normalization
of state |a) requires 2Tr(B“Bb) = 5%, Thus, the 2-particle matrix representation for the
generator J4 is

[J4K=2], = (blJ%|a) = Z (B (T oo (B)ij 01y bl 3pTI0) = 4 Tr (BPT7B7).

ii'jj'po
(B.9)
Let us consider the following B tensor
[BP=(brb2)], = 5”15b2 +— 5”15b2 with b, <b,. (B.10)

21

Here, by, by,1,j = 1,2,3,4. This six-dimensional space spanned by |a) is reducible and the
representation is 2u; ® 2u, because we checked that Y_,[J*K=2]% = 41, 4. Each of these two
representations is three-dimensional.

After figuring out the representations of K-particle J4, we show the decompositions for
each JAK with $4 (u; ® u,) in the following: Hy:

R(SMH @ RUMT12) = (ug @ o) ® (g + o) = g @ (20 + ug) @ (ug +2u) ® iy, (B.11)
R(SY) @ RUM2) = (ug @ ) © (201 © 2,)
= U1 © 3uq ® (U1 +2uy) & (2u1 + U2) ® 3u, ® Uy, (B.12)

where we used the following decomposition rules
P1®u =0®2u;, U ®Uy=082uy, U ® Uy =y +Uy. (B.13)
We include all the results in the following tables.

Table 3: 1,3-particle decomposition with dimension and energy. The numbers near
the representations are dimensions.

| K | (U @) ® (g + ) (4x4) | DS+ [ =0 (SN | =20 =1°) | 2H /A |

1,3 207 + iy (6) 11/2 —3/2 —3 1
1,3 1 + 205 (6) 11/2 —3/2 -3 1
1,3 Uy (2) 3/2 —3/2 =3 =3
1,3 oy (2) 3/2 —3/2 -3 -3

Table 4: 2-particle decomposition with dimension and energy. The numbers near the
representations are dimensions.

LK | (41 @ pp) ® Cuy @25) (4% 6) [ D(SH+IM T2 [ =20, (8N | =20, 2% [ 2Hk /A |
2 3, (4) 15/2 —3/2 —4 2
2 30, (4) 15/2 —3/2 —4 2
2 U1 + 205 (6) 11/2 —3/2 4 0
2 27 + Uy (6) 11/2 —3/2 —4 0
2 U1 (2) 3/2 —3/2 4 —4
2 s (2) 3/2 =3/2 —4 —4

We conclude that the ground states are represented by u; and u, at 2-particle sector (half-
filling). Also, the above energies have two copies because y; and u, are interchangeable.
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B.3 Eigenstates

Next, we define the eigenstates of Hy in 1, 2, 3-particle sector. At 1-particle sector, the general
form for the states are

K=1,a) =Z(t“)ij|i)®x/)ji|o>, i,j=1,....,4; a=1,...16. (B.14)
ij

Based on the above decomposition, we define that

(QH¢/MDK=1,a=1,...,12)=K=1,a=1,...,12), (B.15)
(2Hg /MK =1,a=13,...,16)=—3K=1,a =13,...,16). (B.16)

Similarly, at 2-particle, we define

K =2,8)= > (rP)li) & la) = > (rP)li) @ D (B 4] 10),
kl

ia ia (B.17)
i,k,l=1,...,4; a=1,...,6; p=1,...,24,
and
(Hg/MDK=2,f=1,...,8) =2K=2,f=1,...,8), (B.18)
(2Hg /MK =2,=09,...,20) =0, (B.19)
(2Hg /MK =2, =21,...,24) =—4[K =2, = 21,...,24). (B.20)
At 3-particle, we define
K =3,0/)= > ()l @y,lfull), ij=1,...,4; a'=1,...16. (B.21)
ij
Under the electrons states 1) ;|full), J (3)A = JWA = TA which means that t’ = ¢. Thus,
(Hg /MK =3,a=1,...,12)=[K=2,a=1,...,12), (B.22)
(2Hg /MK =3,a =13,...,16) = —3|K =2,a = 13,..., 16). (B.23)

B.4 Perturbative inclusion of the leads

The lead fermion is v, ; where s labels the site and i = 1,...4 labels the flavor. The near-
est site to the impurity is at s = 1 and we ignored this s = 1 on the above nearest lead
fermion. But now we include the hopping energy between the first site and the second site

Hiy=—g Zp(/{/)i,pwz,p + w;,pwl,p)i

_i (K=2,=20+ilHplK=1a)(K=1,a|H,|K=2,5=20+])

.. B.2
( eff)l] o (_ZA_A/Z) ( 4)
+ 126: (K=2,6=20+iHpK=1a)K=1alHpK=2p=20+))
2 (—22+31/2)
12 [ ]
(K=2,8=20+ilHp,|K =3,a)(K=3,a|H;,|K =2, =20+))
N B.26
;1 (=21 —2/2) o
+ i (K =2,6=20+iHpK=3a)K=3alHpK=2p=20+))
2 (—2A +31/2)
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We need to calculate the following terms:

(K=1,alH,|K =2,6) = —¢ ZZ&% G Z(Ba)kz (#1000 by 10V

<K = 2)ﬂ|H12|K = 1’ a)

<K = Z,ﬂllelK = 3,a

where we define (C%);, =

(Heff)ll =-

(Hegf)14 =

(Heff)a1 =

(H eff)22 =

(Heff)33 = —

(Heff)oz =

(Hegf)sp =

(Heff)as = —

ia

2gZZ(t (P (B

p ila

=28 3 D P B

p ila

(B.28)

(B.29)

—gZZ(f“XZ Z(rﬁ)wZ(B it (i 11) (Bl 2 o 10) 4,

—gZZ(ta);(rﬂ)laZ €ipkl B 2,p

D ija

ZgZZ(t“):Z rﬁ)ia(ca)jpwz,p,

ija

2gZZ(r“)U(rﬁ)* (o IRV

ija

1
—7 2k €;pk1 (B )i~ Thus,

1§§ 2125g7L Zq:(le + T34)pqw;,pw2’q ’
%g; %:(T“’ = T2 T T2 ] 4o,
%g; Z(TIB —T*—iT - ing)pfﬂ/);,plpz"l ’
1§§ 2125g7L2 Zq:(le - T34)pqw;,p¢2’q >
8 S0,
%g; ;(TIB + T2 —iT™ + iTZS)pql/);,pll)z"l ’
%g; pZ:(T13 + T2 4iTH — iT23)p<1q‘/)12-,pq‘/)2’q ’
o2 S

21

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)
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Before calculating the whole H, we write down all matrix S4=(%A) = —%yayﬁ according to
the definitions Eq. (A.13):

N =

gl2_

N—=

Thus,

N

D=

=

1
13 2
) S - _l
2
_1 i
2
_1
2
1
24 2
E) S - _l
_i
2
§12 4 ¢34 —
gl2 _g34 —

1 cel3 _ :o24 14 23

E(—IS —iS*" =5 +8%) =
1. 13 | :c24 14 23
5(18 +iS*" -5+ 8%°) =

1
E(_i813 + i824 —814—823) —

22

\ o

\ o

\ o

_1
_1 2
514_ 1 2 ,
12
2
(B.40)
1
2 1
§34 — 2 1
2
.
(B.41)
\
0 5 (B.42)
1)
\
i , (B.43)
0
h)
0 5 (B.44)
J
°)
1 ) (B.45)
J
°)
0 s (B.46)
J
°)
0 . (B.47)
J
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Finally;,
1 0 0
0 1 0
Hef = 0 (Hefe)11 + (Heff)oo + 1 (Hegf)33
0 0 0
0 1 \ 0
0 1
+ 0 (Hetf)as + (Hefr)14 0 + (Hegf)23 0
1 0 j 0
0 0 \
0 0
+ (Hefr)32 1 + (Hef)a1 0 (B.48)
0 1 )
16g2 22 g 12 34 12 34 i
— L= S (84S );(T + T3 h P2
228 gl2 _g34 T12 _ 34
T )Z( Dpgth P2
1 g*
+% 2287 (ig13 _jg24 _gl4_ 523)Z(T13 T24+1T14+1T23)pq1,/)2p1/)2q
pq
1182 13, .24 14 23 13 524 :ml4 =723 T
o (ISP +is¥ s —s ) D (T = 72— T2 gl
pq
11g% 13 .24 14, @23 13, 724 :ml4 | :m23 T
o (ISt —is* —strs ) D (TR T =i HiT2) 0] 4o
pq
1
ETT) (1513+1524 S14+52) 3 (T2 + T2 4T —iT2) ) (B.49)
pq
16g2 44g> + ; ; .
_ Si aa— 15«3 [S1zw.T12w+534w.Ts4w+814w.T13w+813w.T14w
_ 824¢'6'T23¢ _823¢'6'T24w:| . (B.50)

We can perform the following rotations
exp (—ETIZ) T13 exp (ETH) =T%, exp (—ETIZ) T'%exp (ETH) =T7%, (B.51)
2 2 2 2
exp (—%le) T3 exp (%le) =-T2, exp (—%Tu) T4 exp (%Tu) =-T'", (B.52)

such that

- _ leg®  44g?
eff — 5 4x4 154

(B.53)
+ 524 T T34 + SZBQPJ"TM#J]-

One can interchange the definitions of y1,y, and y3,y4 in S? such that the second term in
Eq. (B.53) becomes the N =1, M = 4 topological Kondo model.
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C Current algebra of the N-channel topological Kondo model

In this section, we derive the Kac-Moody algebra for the N-channel topological SO(M) Kondo
model. The current operator for N-channel topological SO(M) Kondo model is defined as

N N M
T =D 08 = >3l Tt p(x), (C.1)
n=1

n=1 a,f
where T%s are the traceless generators of SO(M) group. They are defined as
(Tap = (T™)ap = i(5,55 — 5},57,)- (C.2)

By definition, 1 < r <s < M. Thus, A= 1,...,M(M — 1)/2. They satisfy Tr(TAT?) = 2548
and [T4 TB] =i, fABCTC where f48¢ = (—i/2)Tr([T#, TB]TC) is the structure constant.
We define the normal order with respect to the (zero-temperature) Fermi sea, which means
that we move creation (annihilation) operators to the right when this particle exists (does not
exist) in the Fermi sea. The normal order of the current operator is

N M N M
L) = 0 > (T g ] p(x) = D D (TN, (P p(x) = TA(x), (C.3)

n=1 a,f n=1a,f

where the normal order of fermions gives an expectation value with 6,5 which was canceled
by traceless (TA)aﬂ. The product of two current operators (with/without normal order) is

7)) =TT =D D (Tap(TP)poth] 00 g GO (N0 (3) . (C.4)
Lj a.p.p,0

By Wick’s theorem, the product for fermions is
N EYTIICI I GO I
=l ) i p YT () .0 + (iG] (Y] (Y0 (1) (C.5)
=] (i CPT (.0 (r) : ] G o (1)) iG] () :
+ (iG] () ] 0.0 (0) 1+ p YT W], C;0(0))  (C.6)
=] GG (.0 (¥) : +G(x = 385800 : i p Y] (1) :
+G(x—y)8;8p, : P! ;0 () : +G*(x = ¥)57:6466p, » (C.7)

where the contraction <¢1Ta(x)¢i,o(.y)> = (lpi’a(x)tpj.a(y)) = G(x—y)5;;6 4 is evaluated in
Eg. (C.12) below. Thus, we can find the commutator

[T4(), T2 ()]
= 2. 2,66 =TT g o (], (1) 1 =Gy = )T T ] (Y )Whi0(x) 1 (C8)
+ Gl =y )T TP - ] (10 (y) 1 =Gy = XNTATP)ag : i (Y] 4 (x) : (C.9)

+[G%*(x —y)—G?(y —x)INTr(TAT®).

Here, as we can check : @bi’a(x)i,bj'a(y) = w,bja(y)wi’a(x) : for a # 0. When a = o, we
simply have

oY () 1 = Y] ()= Glx—¥)

. (C.10)
==Y (Wi a(x) : +6(x —y) = G(y —x) = G(x —y).

24


https://scipost.org
https://scipost.org/SciPostPhys.20.2.032

e SciPost Phys. 20, 032 (2026)

The zero-temperature fermion Green’s function is evaluated as follows. We start with

. 1 oy . 1 oy
(Il/)i,a(x)r(/)],‘,a-(y)> = Tzelpx P y(Cp,iaC;,’jo.> = T Zelpx P yaij5a0'6pp’0(p/)

p.p’ p.p’

(C.11)
— %Zeip(x—y)g(p)_
p
By definition, we have
1 1 * 1
Glx—y)=- P=)g(p) = — i dp elPC—y+0) — — —. (C.12
(x =) l;e 2 2nég(r)1+L pe 2n51>r{)1+x—y+i5 ( )
Thus,
G(x )+G(y—x) = ! lim ! + L =o(x ) (C.13)
Y Y _2n6—»0+x—y+i6 y—x+i5_ Yo ’
1 1
G (x —y)—G*(y—x) = lim +
(x=y) (v =x) 4n2 5-0+ (x—y+i0)2 (y—x +i06)>2
i
= 526 =)+ 6y —x)]
= 1 5.6(x—y). (C.14)
2m
From the equation above, we have : wi’a(x)"t,bja(y) =— wg'a(y)gbi’a(x) : for all @, o. This

means the first two lines of Eq. (C.8,C.9) can be combined as a commutator of T4 and TB,
which can be replaced by i), f ABCTC | The last term is simply

[G(x—y)*—G(y —x)?*INTr(TATE) = % d,.6(x —y)5%. (C.15)
Finally, we have
[TA0), T ()] = iZfABCfC(x)a(x —y)+ % 3,.6(x —y)58. (C.16)
C

By a Fourier transformation,

l
j;‘,‘l = f dx P/ jA(x), (C.17)
-1

the above commutator will satisfy the Kac-Moody algebra,

[~
[T 5] = f f dx dy ePm /Py LA, 75y )] (C.18)
—1J-1
I rl .
:J f dx dy efPrx/I+p'my /1 [iZfABCjC(x)5(x—y)+ﬂ3x5(x—y)5AB:| (C.19)
=i T, + 2N p5"5, . (C.20)

Cc

25


https://scipost.org
https://scipost.org/SciPostPhys.20.2.032

e SciPost Phys. 20, 032 (2026)

This is Eq. (11) of the main text. The integral for the second term is

. l
IN _sp : -
?5 f f dxdy elpmx/I+ip’my /1 3X5(X—y)

= _5ABJ f dx dy 1pﬂ:x/l+1p ny/l 5(x — y)] ipr e1pﬂ:x/l+1p ny/l 5(x — }/)} (C.21)
l

= _5AB J J dx dy P/ Ty /L5 (5 — y) (C.22)
L —1J-1
Np
= T‘SAB(ZZ‘SP"P’) =2Np&*85, . (C.23)
The SO(M ), Kac-Moody algebra is defined to be
FA FB_ ; ABCF AB
(72,751 = 1;)( JC + psts, (C.24)

D Primary states and fusion rules

The primary states, Eq. (D.7), are the most fundamental states in the Kac-Moody algebra.
Excited states can be constructed from primary states by using raising operators [45,64]. Here,
we use a general method to derive the allowed primary states (representations) in SO(M). The
fusion rules (including the single and double fusion with the impurity) and the energies of the
allowed representations are also given for the SO(4), case.

D.1 The representation cut off of SO(4),
The Kac-Moody algebra for SO(4), [see Eq. (C.24)] is
(74,781 = 1ZfABC © +2p5s,

- (.1

where A,B € {12, 13,14,23,24, 34} and we can define A,B =1, 2, 3,4, 5,6 for simplicity. This
gives

(0 0 0 00 0) 00 0 —100)
00 0 100 00 0 0 00
00 0 010 00 0 0 01

1BC _ 2BC _

=l o<1 0000 - =100 0o 00| »®?
0 0 -1 000 00 0 0 00
\o 0 0 000/, 00 -1 0 oo)BC
(0000 -1 0\ 0100 0 0
0000 0 -1 -1 000 0 0
0000 0 0 0000 0 0

3BC _ 4BC _

"=l 0000 0 o0 ’ =1 0o 000 0 o] »®¥
1000 0 0 K000001
\o 100 0 o0/, 0000—10]13C
(0 0100 0) (000000
0 0000 O 001 0 00
-1 0000 0 0-10 0 00

5BC _ 6BC _

7=l 0 0000 -1 | - =10 000 10| -®¥
0 0000 00 0-100
\o o010 0]/, oooooo)BC
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In the following, we write J as J for simplicity. The lowering operators are

1 1
—1,1 _ Zrq13 4 -ql4_ c723  : 124 —1,-1 _ 7713 _ :714 _ - 723 _ - 124
F, _Z[JP +iJ, l(Jp +iJ; )1, F, —2[JP i, l(Jp i, )]. (D.5)
The raising operators are

1 1
1,1 _ ~rg13 4 :714 | 0723 | - 724 1,-1 _ 21713 __ 714 | - 723 _ 24
F, —Z[Jp +iJ, +1(Jp +iJ; )1, F, —2[Jp i, +1(Jp iy )]. (D.6)

The highest-weight primary states |{,{,) are defined to have the following properties:

primary states: Jg‘lﬁl,ﬁz) =0, forp>0, (D.7)
highest wight:  F'[¢1,€,) =0, and Fy" '€y, £,) =0, (D.8)
eigenstates of Cartan generators : Hélﬂ L) =14;18q,L5). (D.9)

In order to derive the bound for the values of £, 5, we consider two excited states Fi’ll 1€1,25)

and Fi’l_l |€,,€,) by acting on all the two raising operators (positive roots) above. Their norms
should be non-negative, which are

(€1,€2|F1_1’_1Fi’11|€1,€2) = (£1,£2|[F1_1’_1,Fi’ll]|e1,ez>

U (D.10)
= (01,£5l(2—Hy—H)y,05) =2—£1—€,>0,
and
—1,1,1,-1 “1,1,1,-1
<€1,£2|F1 F2) €1, €5) = (51352”:1:1 F2y 1104, €5) = (51:€2|(2_H(1) +H(2))|€1,€2> (D.11)
=2 _él + ZZ > O,
where we used the following Kac-Moody algebra
1 1 . . . . . .
[y F = g0 =i =i — i), T+ + i + 2D (D.12)
1 . .
= Z{4 x 2 +i[J13 T4 [0, 03] — (13, g
=il I BT+ IR+ il U2
=i, IR+ WP I+, U2
- [J124,J3 —i[J124,JiA{ —i[J124,JE?]} (D.13)
1
=2+ Zr{21[J113,Ji‘1‘] +2[J %, UB ]+ 204, 0%+ 218,041} (0.14)
Tosg 1o 1ogp 1.3 1 2
=2—§J0 —50 —50 —EJO =2_HO_HO’ (D].S)
and
_ - 1 . . . . . .
[F VL= Z[le FUM =12+ 2N, g8 — M 02 - 2] (D.16)

1
= {ex2-i P N+ R - .02
+ils IR 1= L S I+l 2]
=17, I 5] = 2 ] =i, J2]]
+ 24, T3] 1[I, T4+l 2, 0B} (D.17)
1
=2+ Zr{ — 213,74+ 2113, 58] + 2014, 7] - 207,024} (D.18)

1 1 1 1
=2+ §J§4 — EJ(}Z — EJ(}Z + Ejg‘* =2—H,+H;. (D.19)

27


https://scipost.org
https://scipost.org/SciPostPhys.20.2.032

e SciPost Phys. 20, 032 (2026)

The above results from the Lie algebra satisfy [F%, F~%] = @ - H (see Howard Georgi’s Lie
algebra textbook [51] and the Chapter 14 of Ref. [65]), which can be used for further gen-
eralization with SO(M);. In terms of the highest weights of the fundamental representation
u; =(1/2,1/2) and u, = (1/2,—1/2), we get

(£1,€5) =y +L3)uq + (L1 — L)y (D.20)

As we know, the highest weight of any representation can be written as a;u; + a,us, i.e.,
the sum of the fundamental ones with a; € Zs,. Thus, the two requirements Eq. (D.10) and
Eq. (D.11) are equivalent to a; , < 2, which can be considered as the requirements of two
SU(2),.

D.2 The representation cut off for SO(2m),

For SO(2m);, the two fundamental spinor representations are u,,_; and u,. The m(m —1)
positive roots are e; £e;i < j = 1,...,m where ¢; = (0, .., 1, ..,0) which has 1 at the ith position
and O elsewhere. The simple roots are e; —e;,,i = 1,m—1 and e,,_; + e,,. By considering
the m(m— 1) lowering operators acting on the state |Z) for all the positive roots and requiring
the new states to have non-negative norm [same as we did in Eq. (D.10) and Eq. (D.11)], we
get constrains for {s:

(il <k, i<j=1,..,m. (D.21)

Thus, in terms of { = Z:n:l a;u; with the fundamental weights

U = (150) 0: (ELS) 0: O) 0); (D~22)
Ua =(1J 1)05"'1050)0)> (D~23)
us =(1,1,1,...,0,0,0), (D.24)
Pm—=(1,1,1,..,1,0,0), (D.25)
1
Um—1 = 5(1: 1’ 1:---; 1: 1)_1): (D26)
1
Y = 5(1,1,1,...,1,1,1), (D.27)
we get
m—2 1 1
Ei:Zai+§am_1+5am, i=1,m—2, (D.28)
n=i
1 1
gm—l = Eam_l + Eam 5 fm = —Eam_l + Eam 5 (D.29)
and inversely
ai=€i—€l~+1, l=1,,m—1, am=€m_1 +€m (DBO)
Thus, the simple roots give a;—; _,, < k.

.....

For the case of SO(6),, we have 15 generators, which are 3 Cartan generators, 6 positive
roots and 6 negative roots. The above representation cut off is generally given by considering

F‘_Xi’az’aB |€1,05,€5) when @ = (a;, ay, ag) are the positive roots. Here, we give all the positive
roots:

d=(1,-1,0), B =(0,1,-1), p=(0,1,1), (D.31)

a+f=(1,0-1), &+p=(1,01),  a@+f+p=(1,1,0), (D.32)
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where the upper line gives 3 simple roots. By calculating the norm of Ffi’az’ae’lﬂ 1,05,€5) and

the commutator [F% F~%] = G- H, we get the requirements correspondingly for each postive
root:

b=l <k, ly—l3<k, €y+0s5<k, (D.33)
C—l3<k, 0 +l;<k, {,+0,<k. (D.34)

In terms of Dynkin labels a;—; 5 3, we have ({1,{5,{3) = a;&; + ay&, + az&; with

111 11 1

= 1>O:0 > =\z>5535) =\5>57 %) D'35
&1=( ) £2=(535-3) 8=(5373) (D.35)
a1=€1—£2, a2:€2—£3, a3=€2+£3. (D36)
Thus, we get requirements for the Dynkin labels a;—; 5 3:
a1,2’3Sk, Cl1+a2Sk, a1+a3Sk, a1+a2+a3£k. (D37)

D.3 The representation cut off for SO(2m + 1),

For SO(2m + 1), the only fundamental spinor representation is & ,,. The m? positive roots are
e; +e; and e; with i < j =1,...,m. The simple roots are ¢; —e;,1, 1 = 1,m —1 and ep,,. This
gives the requirements for £s:

Zi:I:EjSk, and EJSk,l<]:1,,m (D.38)

Thus, in terms of { = Z:n:l a;&; with the fundamental weights

w =(1,0,0,...,0,0,0), (D.39)
us =(1,1,0,...,0,0,0), (D.40)
us =(1,1,1,...,0,0,0), (D.41)
Um—o = (15 1) 15"': 1;0;0)7 (D.42)
Um—1 :(13 1’ 13"-’ 1, 1’0): (D43)
1
Y = 5(1,1,1,...,1,1,1), (D.44)
we get
m—1 1 1

Eiznz:;an+§am, i=1,m-—1; Zmziam, (D.45)

and inversely
a=4;—"0;1, i=1,.m—1; a,=2¢,. (D.46)

Thus, the simple roots give a;—; _n,—1 < k and q,, < 2k.

.....

D.4 The fusion rule of SO(4),

According to the above cut off (see Sec. D.1), the allowed representations for SO(4), are

spinor : Uy, Uy, 2ty + Uo, Uy + 2Us, (D.47)
vector : 0, g + o, 201, 29, 207 + 2Uy . (D.48)
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Their fusion rules are

Uy ®py =2, 0,
M1 ® Uy = U + Uz,
p1 ® (g + o) = (2u1 + u2) ® Uy,
U1 ® 20 = 3p7 ® Uy,
P ® 20y = (U + 2us),
1 ® (21 + o) = Bur+T2) ® (U1 + 1),
p1 ® (ug +2u2) = (2uq +2u5) © (2u,),
Py ® (207 + 2p2) = (Bur+205) @ (Ug +2u,),
U ® py =2, ©0,
po ® (g + o) = (U1 +2u2) ® Uy,
U ® 20y = 2 + Uy,
Uo ® 2Up = 37 © Uy,
po ® (27 + o) = (2p1 + 2u,) © 21y,
o ® (U1 +202) = (Us+3105) @ (U + ),
po ® (211 +2u9) = (2p4+302) @ (2uq + Ua),
(U1 + 12) ® (U1 + ) = (201 +2u2) ® 2u; ©2u, &0,
(U1 + o) ® 201 = 3p7 & Uy @ (2u1 + o),
(U1 + t2) ® 2y = (U + 20) © 33 © Uy,
(U + o) ® (2u1 + pp) = (Bua+205) © 347 © (U1 +202) ® Ug
(w1 + o) ® (U1 + 2u5) = (2ur+37105) © 345 © (2uq + o) ® U,
(uy + 142) ® (27 + 2u) = (3us—+-315) @ (Bus+T15) ® (Us+3105) ® (U1 + Ua) ,
201 ® 20y = 4pT @ 05 2u1 ® 2uy = (2u7 +2uy),
201 ® (201 + Up) = (4usr+T05) ® Uy,
201 ® (U1 + 2up) = (Busr+202) @ (g +2us),
201 ® (2uy + 2uy) = (4us+-205) © 2u;,
20 ® 21y =44 ©0,
209 ® (2u7 + Ug) = (2u4-312) @ (201 + 42),
22 ® (U + 205) = (Uy +-4105) @ U1,
200 ® (201 + 2u) = (2ur+415) ® 21y,
(207 + p2) ® (2uy + pp) = (Apr+-202) @ 4u7 © 2U, 0,
(2u1 + p2) ® (g +2u) = (3us—+-375) @ (Busr+Ti5) ® (Us+3105) ® (g + Ua) ,
(21 + p2) ® (2 + 2up) = (4r+-3102) © (4ur+T03) © 345 ® Uy,
(W1 +202) ® (uy + 2ug) = (2ps+-4103) © 4pz ® 2u, S0,
(1 + 2u2) ® (2 + 2up) = (Bur+4112) © (Us+4T05) © 347 ® Uy,
(2u1 + 2p5) ® (27 + 2up) = (Aus+4102) © 4p7 @ 4u3 © 0.

(D.49)
(D.50)
(D.51)
(D.52)
(D.53)
(D.54)
(D.55)
(D.56)
(D.57)
(D.58)
(D.59)
(D.60)
(D.61)
(D.62)
(D.63)
(D.64)
(D.65)
(D.66)
(D.67)
(D.68)
(D.69)
(D.70)
(D.71)
(D.72)
(D.73)
(D.74)
(D.75)
(D.76)
(D.77)
(D.78)
(D.79)
(D.80)
(D.81)
(D.82)
(D.83)

The above crossed terms will not be allowed in the fusion rules, but will appear in the repre-
sentation decompositions. The (matrix) representation dimensions are always integers when
the above crossed terms are kept. However, the effective “dimensions”, i.e. the quantum di-
mensions are non-integers in the above fusion rules where the crossed terms are absent. In
order to obtain the quantum dimensions, we first assume that the quantum dimensions of the

above representations are dg ;—;

.....
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Table 5: The quantum dimensions for all the allowed representations in SO(4),.

| Reps | 0| wy [ wo | wn+po | 200 | 2up [ 201 +up | pa +2up | 2uq +2u, |
[Qdim[1[v2][v2] 2 [ 1 [ 1] v2 | v2 | 1 |

are given by the above fusion rules, i.e., the product of quantum dimensions for the left-side
representations equals the sum of quantum dimensions for the right-side representations. The
solutions for the quantum dimensions d, ;-1 o are listed in Table 5. The general result for
the above representations a; u; + a, s is

.....

1, (@,a2)=(0,0),
dQ(aliaz): '\/z’ (51:52)=(0,1): 01‘(1,0), C’i'l :min(aiiz_ai)' (D84)
2, (@,a)=(1,1),

More general result can be found for SO(4);

SO(4)x _ 45U(2) Su(2) SU@)( - Sinlmla; +1)/(k +2)]
dy " (ay, ap) = AV Pk(ay) x dVPe(ay),  dSVP(qy) iG] 089

which explains how the SO(4), anyons are related to two copies of SU(2), anyons due to the
fact SO(4) ~ SU(2) x SU(2). This may be possible to generalize for any classical Lie group at
any level because they all have SU(2) subalgebras.

D.5 Energies of SO(4),

Following Ludwig’s lecture notes [45,64] and Ref. [34], we get the Hamiltonian

Hy = Hso(4), + Hso(2), (D.86)
Vg 1 4 a 1 A A
=__- _ . J g J2 T (D.87)
l Pl {2+hV[SO(4)] pp 4+ hV[SO(2)] PP }
19Y = 1 1
F a ja A A
= — — e J I —— 1 J T D.88
l p:_oo{2+2 PP 440 PP } ( )

The SO(2) has only one generator Jé‘:l that is a Cartan generator, which is like U(1). Thus,
we define the highest wight primary state as |Q) and get : prJ;‘ . |Q) = Q?|Q) where Q is the
eigenvalue of Jé‘zl. If the representation of SO(4) are given by a;u; + ay,u,, we get

2

2
mvp (11 a a 11
E-EO=—"Fi-“lag + Liag+2]+>2Q% +... D.89
- laglat g rar F14 507 (b-89)
If we take a; = 2j and a, = 2j;, we get
0) _ TVF 1, 5 . .2 Q2
E-E0="F {Z(Jﬂ +]f+1f)+—8}+..., (D.90)

which is identical to the SU(2), result.

D.6 Single fusion with the impurity for SO(4),

The representation for the impurity is u; ® u,. We consider the single fusion of the impurity
W1 (U is similar) with the above primary states. The results are listed in Table 7.
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Table 6: Table for the primary states and their energies/scaling dimensions at the
free case for SO(4),.

| a; | as | Qmod4 | Z[E—E(O)]/TL'VF | n |
0O 0 0 1
11 1 1/2 1
2 0 2 1 1
0 2 2 1 1
2 2 0 1 1
1] 1 3 3/2 1

Table 7: Table for the primary boundary operators and their energies/scaling dimen-
sions at the Kondo fixed point for SO(4), obtained by single fusion with the impu-
rity u;. The single fusion results with impurity u, can be found by interchanging
a; < a,.

a1| a2| Qmod4 |Z[E——E“»]/nvF

0 0 3/16
5/16
13/16
11/16
19/16
11/16
21/16
29/16

N|O|—|=|=[N O] =
el Rl Bl e e Rl e B |

=N N O] =~
W WIOIN[DNf =] =

D.7 Double fusion with the impurity for SO(4),

The representation for the impurity is u; ® u,. We consider the double fusion of the impurity
with the above primary states shown in Table 6 and allow the cross terms like u; 5 from the
first fusion with the impurity u; ®u, and u, ; from the second fusion with the impurity u, ®u,.
This is equivalent to not fixing the charge parity of the impurity. The double fusion results are
in the following:

[ @ o] ® [ © 2] ®0 =20 ®0S 20y ® 0 (g + ) & (g +2), (D.91)
(g ® uz] ® [ug & ua]® (g + ) =[2u @08 2uy, @0 D (g + Ug) & (Ug + Uy)]

= U1 © (2u1 + o) @ (U1 +ug) & (ug +2u,)
Sy @ (Uy +t2) @ (20 +20u,) © 201 ©2uy &0
®(2u; +2u,)®2u, ®2u, &0, (D.93)
[ @ pa]® [y © pa] ® 2y = [2u ® 0 20 ® 0 & (g + ) @ (g + u2)] ® 21y (D.94)
=00 2u; ® (2u; +2u2) ® 214

S ® (2u1 + o) ® Uy & (2u; + Ua), (D.95)

(1 @ U] ® [y ® ua] ® 20y = [20; @00 21 ® 0 (g + ) ® (U + 12)] ® 2uy (D.96)
= (2u1 +2u,) ® 2u, ® 08 2u,

O(uy +202) @ Uy @ (U1 + 2U2) © Uy, (D.97)
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(1 @ ua] ® [y ® pa] ® (2u1 +2u,) = [2u1 ©® 0O 21 ® 0 (g + o) @ (U + o) ]

®(2p1 + 2us) (D.98)
=2y ® (2u1 +2u2) © 27 & (201 +2u5)
(U1 + 12) & (g + u2). (D.99)

Thus, we get Table 8. The red representations will not appear in the double fusion results if we
fix the parity. If we do not fix the parity, the primary operators ¢ =72~ 2% have the small-
est scaling dimension 3/8 in the table. However, we can not construct a set of operators that
from this representation a; = a, = 1 using the generators J(>?. Thus, the leading irrelevant
operator will be ff‘}z) PO 4 fle’o) - 29 where ¢@9 are the three 2u,-primary opera-
tors and J0) are the 2uq-operators [three generators of all the six generators for SO(4) and
the other three operators are J(?)]. This leading irrelevant operator has scaling dimension
1+ 1/2 = 3/2 becayse the primary operators ¢©2) and ¢Z9 both have scaling dimension
1/2. If we fix the parity, we still use these two primary operators qB 0.2) and qZ; (20) to form the
same leading irrelevant operator.

E The representation of the density J(@

In Sec. 4.1, we defined J}({d)(x) = Zj lﬁ;;j(x)Dlﬁx;j(x) where D; = diag(1,—1,0,...,0). The
sum over channel index j means that J@ is a singlet in the channel sector. In the flavor
[SO(M)] sector, a general form for a density operator is ., c:’l'Bg‘bcb where a,b=1,...,M.
One finds that there are three sets of them: the first one is given by B! = I, ,,, a symmetric
traceful matrix; the second set of densities are the [M(M — 1)/2] antisymmetric traceless
matrices; the last set of densities are the [(M —1)+M(M —1)/2] symmetric traceless matrices.
The matrix D, is one of these M — 1 + M(M — 1)/2 symmetric traceless M x M matrices. The
representation of these three sets of densities can be determined by decomposition of two 1-
particle representations (the 1-particle representation has dimension M), which are two 2u,s
(spin-1s) for SO(3), two u; + u,s for SO(4) [see Eq. (B.3)] and two u;s for SO(M > 5). These
decompositions are listed in the following equation.

( 21 ®2U; =4u, ®2u; 0, for SO(3),
(1 + o) ® (g + p2) = (201 + 2u,) ® 2u; ® 2u, ®0,  for SO(4),
X U ® Uy =2uU; ®2u, ®0, for SO(5), (E.1)
P ® g =2u1 © (Uz +u3) ©0, for SO(6),
L Ui ®uU=2u,®u, @0, for SO(M > 7).

The 0 is the identity B!. The first representations on the right side (also the representation of
J@)Y are for the M — 1+ M(M —1)/2 real traceless M x M matrices; The rest of them are for
the [M(M — 1)/2] antisymmetric traceless (the adjoint) M x M matrices.
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Table 8: Table for the primary boundary operators and their energies/scaling dimen-
sions at the Kondo fixed point for SO(4), obtained by double fusion with the impurity.
The red representations will not appear in the double fusion results if we fix the par-

ity.

| a; | as | Qmod4 | Z[E—E(O)]/TEVF |

0

0

0

3/8

1/2

Ol N -

N|Of -

(o] o) fo) ol

1/2

NN S

1/8

5/16

5/16

1/2

5/8

5/8

13/16

13/16

NN OINFR[O]|—R]O

NN O|R[R|O|O

R|lR| R, R~ R+~

9/8

N[N NDN =] =] N

1/2

11/16

1

19/16

NINN| = O

N —|O|O| O

NINN| NN

3/2

NN N =

1/2

11/16

1

19/16

N—=[O|O|O

N[N =] O

NINN| NN

3/2

NN N =

3/8

1/2

1/2

N| O N

NN O| =

(o] o) fo) ol

1

N| |~ DN

1+1/8

1+5/16

1+5/16

1+1/2

1+5/8

1+5/8

1+13/16

1+13/16

NN O|INR[O]|R]O

NN O|R[Rr|O|O

Wl W W W[WW W wlw

14+9/8

N[N NDN =] =] DN
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