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Abstract

We study extremal and integrated correlators of half-BPS operators in four-dimensional
N = 2 SQCD and N = 4 SYM with SU(3) gauge group. We focus on the large R-charge
sector where the number of operators insertions becomes very large. In this regime, we
demonstrate that the correlators are described by a combination of Wishart and Jacobi
matrix models, coupled in a non-trivial way. The size of the matrices in each model
corresponds to the maximal number of insertions for each of the two single trace gen-
erators. This dual matrix model representation allows us to extract the behavior of the
correlators at weak and strong coupling in a ’t Hooft-like double scaling limit, including
nonperturbative corrections. Although this work focuses on SU(3), we expect that our
techniques can be extended to SU(N) for N > 3 as well.
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1 Introduction

Strongly coupled systems present significant challenges due to their complex behavior. How-
ever, certain aspects of these theories become more manageable when focusing on sectors
where specific quantum numbers are taken to be large. Well known examples include the
large N limit, where N denotes the rank of the gauge group [1,2], the large spin limit [3–6],
and the large R-charge limit [7]. More recently, a new approach based on effective field the-
ory (EFT) has gained importance for studying sectors of a theory where a given global charge
is considered to be very large [8–10], see [11] for a review and a more exhaustive list of
references.

Natural settings to rigorously understand and test these ideas are provided by N = 2 SQCD
and N = 4 SYM in four dimensions, where localization techniques [12] offer a concrete handle
on many observables. Such techniques are particularly useful for computing extremal [13] and
integrated [14] correlators of 1/2 BPS operators. These operators are charged under a global
R-symmetry, with the charge proportional to the number of operators insertions. Therefore,
studying the large R-charge regime corresponds to analyzing correlation functions with a very
large number of operators insertions.

For SU(2), N = 2 SQCD, an EFT approach was proposed in [15, 16], predicting that the
behavior of extremal correlators of Coulomb branch operators, in the limit of large R-charge,
essentially follows the form of a Gamma function with argument R. These predictions were
subsequently demonstrated in [17]. The key insight of this approach is that we can write ex-
tremal correlators as Wishart matrix models, where the size of the matrices corresponds to the
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number of operators insertions, i.e. the R-charge.1 Such matrix model representation provides
a systematic method for computing the large R expansion and gives an analytic prediction
for the non-perturbative corrections to the EFT. In addition, it explains why in this limit, ex-
tremal correlators obey a non-trivial double scaling limit, as conjectured empirically in [20],
see also [21,22].

The objective of this work is to extend [17] to higher-rank theories, where EFT predictions
are currently unavailable. We focus on the SU(3) gauge group, though we expect that many
of the structures can be generalized to SU(N) for N > 3 as well. We will first study extremal
correlators in N = 2 SQCD and N = 4 SYM and, then we apply our results to integrated
correlators in N = 4 SYM. Let us also mention that, for correlation functions of the so-called
“maximal-trace operators” in SU(N), N = 2 SQCD, a matrix model approach was proposed
in [23]. Although this approach works well for integrated correlators [24], it does not seem
to accurately reproduce flat space extremal correlators in SQCD. The discrepancy begins at
six loops and is due to the complex mixing structure of SQCD, which we discuss in detail in
section 3.

This paper is structured as follows. In section 2 we review the definition and the compu-
tation of extremal correlators of Coulomb branch operators in R4 following [25]. This set of
operators, endowed with the OPE, forms a freely generated ring. For SU(3) gauge theories
this ring is generated by

φ2 = Trϕ2 , φ3 = Trϕ3 , (1)

where ϕ is the complex scalar in the N = 2 vector multiplet. The computation of extremal
correlators in R4 can be then reduced to the computation of a minimal set of correlation
functions, which we denote by

Gm
n (τ,τ) , m, n≥ 0 , (2)

where τ = 4πi
g2

YM
+ θ

2π is the marginal coupling. Roughly speaking, the index n controls the

maximal number of insertions of φ2, and m controls the maximal number of insertions of φ3
into the correlation functions. See (49) for the definition of Gm

n (τ,τ) in N = 4 SYM, and
(81) for the analogous definition in N = 2 SQCD. For fixed values of m and n, an algorithm
was proposed in [25] to compute (2) starting from correlation functions on S4, which can be
computed using symmetric localization. However, extracting the large m and/or n behaviour
from this prescription is far from trivial and, to explore this asymptotic regime, we need to
rewrite the algorithm of [25] in the language of matrix models.

To achieve this, a key step is to understand the structure of the operator mixing, which
we analyse in section 3. For N = 2 SQCD, we will thoroughly examine such structure in the
double scaling limit where m and/or n are taken to be large and, simultaneously, we also take
Imτ to be large in such a way that

λ=
m

2πImτ
, κ=

n
2πImτ

, (3)

are kept fixed. We often refer to this as a ’t Hooft limit, following the matrix model terminology.
However, in this context, we are specifically studying SU(3) gauge theories, and the large
parameter is not the rank of the gauge group but the R-charge R = 2(3m+ 2n). In this limit
we find that the mixing structure in N = 2 SQCD behaves as the one of N = 4 SYM and hence
greatly simplifies. We expect a similar simplification to occur also if Imτ is kept fixed, but we
leave this for further investigation.

1It is important to emphasize that our matrix models are fundamentally different from those typically encoun-
tered in the context of supersymmetric localization, where the size of the matrices corresponds to the rank of the
gauge group and the models are hermitians. For a recent discussion on these other “Pestun”-type models, see for
instance [18,19].
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After making the mixing structure explicit, in section 4 and section 5 we show that the
correlation functions (2) are computed by a combination of two matrix models: a Wishart
matrix model, which controls the index n, and a Jacobi matrix model, which controls the index
m. More precisely, in section 4 we focus on N = 4 SYM, and we find an exact expression for
extremal correlators in term of Wishart and Jacobi models (134):

�

Gm
n (τ,τ)

�N=4
=

6−m−1p3
ZS4

Z (σm)
J

�

1+
�m

2

��

Z (σm)
J

��m
2

��

Z (m)(n+ 1)
Z (m)(n)

, (4)

where

Z (m)(n) =
1
n!

∫

Rn
+

dn y
∏

i< j

(yi − y j)
2

n
∏

i=1

e−2πImτyi y3m+3
i , (5)

is a Wishart-Laguerre matrix model and

Z (σm)
J (k) =

1
k!

∫

[0,1]k
dk x

∏

1≤i< j≤k

�

x i − x j

�2
k
∏

i=1

√

√ 1
x i
− 1 xσm , σm = m mod 2 , (6)

is a Jacobi matrix model, see Appendix A for more details on these models. Let us stress that
(4) is exact and holds even at finite values of m, n and Imτ.

In section 5, we demonstrate that, similarly to the rank 1 case [17], the extremal correlators
of N = 2 SQCD in the large charge regime are equivalent to the expectation values of the so-
called one-loop partition function ZG(x , y) (72) within the N = 4 SYM matrix models (4).
The presence of the one-loop partition function ZG(x , y) couples the two matrix models (5)
and (6) in a non-trivial way. These results enable us to study the large m and/or n regime
of extremal correlators, as well as the associated non-perturbative effects. Interestingly, if we
keep n finite and take m to be large, we find a description involving only a Jacobi matrix
model, that is

�

Gm
0 (τ,τ)

�N=2

�

Gm
0 (τ,τ)

�N=4
≃
〈ZG(x , 3λ)〉(⌊

m
2 ⌋+1)

J

〈ZG(x , 3λ)〉(⌊
m
2 ⌋)

J

, (7)

where 〈 · 〉(k)J denote the expectation value in the Jacobi matrix model, see equations (145)
and (147). In this case the behavior closely resembles that of SU(2) SQCD, even though the
matrix model involved is a Jacobi model rather than a Wishart model. Therefore, it seems
plausible that an EFT description similar to the one proposed in [15] exists in this special
sector of the SU(3) theory. However, if we take also n to be large, new structures emerge and
the description is richer, see subsection 5.2 and subsection 5.3. For example, in the ’t Hooft
limit (3) with β = n

m fixed, we find that the leading non-perturbative effect, in the regime
λ,κ≫ 1, is

e−A1(β)
p
λ , with A1(β) = 2π

p
6

q

2β + 2
p

β(β + 3) + 3
, β =

n
m

. (8)

In particular in the limit β →∞ we have

A1(β)
p

λ=
p

6π
p
κ

β
+O

�

1
β2

�

. (9)

This means that the leading instanton action vanishes in this limit and a new perturbative
series at large κ emerges, as we discuss in subsection 5.3.

In section 6 we apply our matrix model techniques to study integrated correlators in N = 4
SYM. This analysis is technically much simpler than the one of extremal correlators in N = 2
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SQCD, owing to the simpler mixing structure of N = 4 SYM. One important difference is that,
for N = 2 SQCD, subleading corrections to the ’t Hooft limit take contribution from subleading
corrections to the N = 2 mixing structure. Conversely, in the context of integrated correlators
in N = 4 SYM, our matrix models also capture all subleading corrections to the ’t Hooft limit,
as well as the large m, n limits at fixed Imτ, including subleading and non-perturbative effects.

Integrated correlators are defined by a certain spacetime integral of [14]

〈Ψ0
1(x1, y1)Ψ

0
1(x2, y2)Ψ

m
n (x3, y3)Ψ

m
n (x4, y4)〉R4 ,

where Ψ i
j(x , y) are half-BPS operators in N = 4 SYM, see discussion around (201). For a

particular choice of the polarization vectors yi , these reduced to extremal correlarors in N = 4
SYM, but for a generic polarization they have a richer structure. Similar to the case of extremal
correlators, we observe the emergence of two distinct matrix models: a Jacobi matrix model
that governs the index m, and a Wishart matrix model that governs the index n. For m= 0 and
n large our results agree with [24,26] and we have a description in terms of a Wishart model
only. In addition we can perform a systematic analysis for any fixed m, see subsubsection 6.2.1.
On the other hand, when taking n finite and m to be large, we find a description involving only
a Jacobi matrix model, see subsubsection 6.2.2. Interestingly, in this regime, the behaviour
is almost identical to the one of rank one case. Finally, the analysis of the large m, n regime
involve a combination of both type of matrix models, see subsubsection 6.2.3. Similar to the
example of extremal correlators in SQCD, in the ’t Hooft limit (3), and for λ,κ≫ 1, we find
the leading instanton effect to be of the form

e−A1(β)
p
λ , with A1(β) =

6π
p

2
q

2β + 2
p

β(β + 3) + 3
, β =

n
m

. (10)

In particular for β → ∞ this instanton action vanishes causing a new perurbative serie at
large κ to emerge, see subsubsection 6.2.4.

We conclude in section 7 with a discussion on some open questions. There are also four
appendices. In Appendix A, we collect background materials on matrix models. In Appendix B,
we provide some numerical tests of (8). Appendix C contains technical details on resurgence.
Finally, in Appendix D, we summarize the conventions for the different operators appearing
in the paper.

2 Extremal correlators

In this paper, we study extremal correlators in four-dimensional N = 2 superconformal field
theories (SCFTs). The underlying superconformal algebra is SU(2,2|2), which extends the
standard Poincaré and conformal generators by including additional supersymmetry genera-
tors. Specifically, this algebra has eight Poincaré supercharges, denoted as Qa

α and Q
a
α̇, and

eight conformal supercharges, denoted as Sa
α and S

a
α̇ where a = 1, 2 and α, α̇ = 1, . . . , 4.

Furthermore, the algebra incorporates an su(2)R × u(1)R R-symmetry. See [25, Sec. 1] for a
concise review and a list of references. Here we focus on a particular class of operators known
as (anti-) chiral primary operators, or Coulomb branch operators. Specifically, chiral primary
operators OI are those annihilated by S, S, and Q, while anti-chiral primary operators OI are
annihilated by S, S, and Q. These operators are Lorentz scalars and su(2)R singlets. It follows
from unitarity and supersymmetry that the scaling dimension ∆ and the u(1)R R-charge R of
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these operators are related by

∆=
R
2

, for chiral,

∆= −
R
2

, for anti-chiral.
(11)

An important property of these operators is the fact that their OPE is non-singular

OI(x)OI(0) =
∑

K

CK
IJOK(0) + · · · , (12)

where · · · denote regular terms when x → 0. Therefore (anti-) chiral primaries endowed with
the OPE form a ring, often dubbed chiral ring, which is commutative and freely generated.2

Thanks to this property it is always possible to choose a basis of operators and a normalization
such that the structure constants are trivial and the OPE reads

OI(x)OJ (x) =OIOJ (x) . (13)

Within this normalization the two point function of chiral and anti-chiral operators becomes
however non-trivial

〈OI(x)OJ (0)〉R4
=

GI J

|x |2∆I
δ∆I∆J

, (14)

where GI J is a non-trivial function of the marginal couplings.
Here we focus on two specific N = 2 four-dimensional SCFT:

1. N = 4 SYM with gauge group SU(N) whose matter content consists in a N = 2 vector
multiplet together with one (massless) adjoint hypermultiplet.

2. N = 2 SU(N) SQCD whose matter content consists in a N = 2 vector multiplet togethre
with N f = 2N (massless) fundamental hypermultiplets.

These theories have a marginal coupling

τ=
4πi

g2
YM

+
θ

2π
, θ , gYM ∈ R , (15)

which parametrizes the conformal manifold. The chiral ring is generated by

φk = Tr(ϕk) , k = 2, · · · , N , (16)

where ϕ is the complex adjoint scalars in the N = 2 vector multiplet. The operators (16) have
dimension

∆(φk) = k . (17)

In addition the φk ’s are charged under the global u(1)R symmetry, with the corresponding R
charge given by

R= 2∆ (φk) = 2k . (18)

It is convenient to denote “elementary” coulomb branch operator by

On =
N
∏

k=2

(φk)
nk , n = {n2, . . . , nN} , (19)

2For non-Lagrangian theories this is still conjectural, but in this paper we focus on Lagrangian theories.
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whose dimension is

∆ (Φn) =
N
∑

k=2

nkk . (20)

For these operators the OPE (13) simply reads

On1
(x)On2

(x) =On1+n2
(x) . (21)

The main object of study in this paper are extremal correlators of Coulomb branch oper-
ators. These are correlations function involving one anti-chiral primary OJ with an arbitrary
number of chiral primaries OIk

, namely

® n
∏

ℓ=1

OIℓ(xℓ)OJ (y)

¸

R4

, (22)

where the dimensions ∆ of the operators are subject to the constraint

∆
�

OJ

�

=
n
∑

ℓ=1

∆
�

OIℓ

�

. (23)

For a comprehensive review of the topic and additional references, we refer to [13, 25]. An
interesting characteristic of such correlation functions is the fact that their space-time depen-
dence is very simple, specifically we have [27]

® n
∏

ℓ=1

OIℓ(xℓ)OJ (y)

¸

R4

= GI1,...,In
(τ, τ̄)

n
∏

ℓ=1

|y − xℓ|
−2∆

�

OIℓ

�

. (24)

Moreover, no spacetime singularity is encountered in the limit xℓ → x j , and accordingly no
singular terms appears in the OPE. Therefore we can apply (21) repeatedly and reduce any
extremal correlators (24) to two point functions




OI(0)OJ (∞)
�

R4 = GI J (τ, τ̄) , (25)

where we use OI(∞) = limx→∞ |x |2∆(OI )OI(x). In particular, if we determine all the two-
point functions (25) of the elements of a chiral ring basis, then we can reconstruct all extremal
correlators. For sake of notation we will often omit the τ,τ dependence and simply note

GI J ≡ GI J (τ,τ) . (26)

Extremal correlators in four-dimensional N = 2 theories have been extensively studied in re-
cent years. In particular in [25] a systematic algorithm was found to compute such correlators
on R4. The strategy adopted in [25] is to first compute these correlators on S4, using localiza-
tion techniques [28–32], and then move on to R4. For instance, two-point functions on S4 of
operators of the form (19) are given by [25,32,33]3

〈On(N)Om(S)〉S4 =

∏N
i=2(−iπi/2)−ni (iπi/2)−mi

ZS4(τ,τ;0,0)
∂ n1
τ ∂

m1
τ

N
∏

i=3

∂
ni
τi ∂

mi

τi ZS4(τ,τ;τA,τA)
�

�

�

τA=τA=0
,

(27)
where ZS4(τ,τ;τA,τA) is the SU(N) partition function of the theory of interest, with N and S in
(27) denoting insertion at the North and South pole, respectively, and τA, A= 3, . . . , N are the

3Because of supersymmetry chiral operators are inserted at the North pole while anti-chiral operators are in-
serted at the South pole, see [25] and reference therein.
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sources. Any other operator in the chiral ring can be written in a unique way as a polynomial
in the Om’s and therefore the corresponding two point functions follows from (27) and (21).
We provide concrete examples below.

An important point is the fact that, although R4 and S4 are conformally equivalent, the
dictionary between the correlation functions on S4 and the correlation functions onR4 is highly
nontrivial because of conformal anomalies leading to operator mixing on the sphere [25].
Because of that, (27) can not be directly interpreted as a correlation function onR4. Indeed, on
the sphere, a Coulomb branch operator O∆ of dimension ∆, can mix with any other operator
of dimension ∆ − 2k, k = 1, 2,3, .. because of the presence of a scale, i.e. the radius of the
sphere. Hence we have4

O∆ → O∆ +α1RO∆−2 +α2R2O∆−4 + · · ·+α∆0/2R∆0/2I , (28)

where R is the Ricci scalar and αi some dimensionless coefficients, so that each term on the
rhs of (28) has the same dimension. Hence, to compute correlations functions on R4 starting
from S4, we need to find a way of dealing with this mixing. In [25] it was proposed that this
issue can be resolved via the Gram-Schmidt (GS) procedure by finding a new orthogonal basis
of operators {O′J} on the sphere such that [25]

〈O′J (N)O
′
I(S)〉S4 = 0 , if ∆

�

O′J
�

<∆
�

O′I
�

. (29)

Then, schematically, we have

〈OJ (N)OJ (S)〉R4 = 〈O′J (N)O
′
J (S)〉S4 . (30)

We will review this procedure below.
For sake of notation in the rest of the paper we will omit the position of insertion points,

that is
〈OIOJ 〉S4 ≡ 〈OI(N)OJ (S)〉S4 ,

〈OIOJ 〉R4 ≡ 〈OI(0)OJ (∞)〉R4 .
(31)

We will also note
ZS4 ≡ ZS4(τ,τ; 0, 0) . (32)

2.1 Rank 1 theories

When the theory has rank one the chiral ring has only one generator. For SU(2), N = 2 SQCD
and SU(2), N = 4 SYM this is

Tr(ϕ2) , (33)

and Coulomb branch operators are of the form On =
�

Tr(ϕ2)
�n

. The CFT data simply consist
of the two point functions

Gn = 〈OnOn〉R4 . (34)

In [25], the correlation functions (34) are computed starting from the two-point correlations
on the sphere as follows. Let M (n) denote the n× n matrix whose elements are

Mi, j = 〈OiO j〉S4 , i, j = 0, . . . n− 1 , (35)

where

〈OiO j〉S4 =
1

ZS4
((−iπ)−1∂τ)

i((iπ)−1∂τ)
j ZS4 . (36)

4Note that chiral operator can only mix among themselves [25].
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Since the operators On are not orthogonal, that is

〈OiO j〉S4 ̸= 0 , (37)

they undergo operator mixing. This mixing can be resolved by using the following orthogonal
basis of operators

O′n =On +
n−1
∑

j=0

(−1) j+n+1 det R( j)

det R(n)
O j , (38)

where R( j) is obtained from M (n+1) by erasing the j+1 column and the n+1 row. Equation (38)
is nothing else that the usual GS procedure where the scalar product is given by the two-point
function on S4. Then we obtain [25]

〈OnOn〉R4 = 〈O′nO′n〉S4 =
det M (n+1)

det M (n)
, (39)

that is

Gn =
det M (n+1)

det M (n)
. (40)

The result (40) is very powerful because it provides a systematic solution to the operator mixing
and makes it manifest the link between the rank 1 correlators Gn and the Toda equations
[25, 34–36]. In addition, as we will discuss later, representing the correlators as a ratio of
determinants also makes it manifest the emergence of matrix models.

2.2 SU(N), N = 4 SYM

The τ dependence in the partition function of N = 4 SYM is particularly simple as it is tree-
level exact:

ZS4(τ,τ;τA,τA) =

∫

RN−1

N−1
∏

i=1

dai

 

∏

1≤i< j≤N

(ai − a j)
2

!

e−2πIm(τ)Tr(ϕ2)−2
∑N

A=3π
A/2Im(τA)Tr(ϕA) , (41)

where

ϕ = diag (a1, a2, · · · aN ) ,
N
∑

i=1

ai = 0 . (42)

In this case one can resolve the mixing following [25, Sec. (3.2.1)].
We start with a set of coulomb branch operators which do not contain φ2, i.e. operators of

the form
N
∏

k=3

(φk)
nk . (43)

We order them in such a way that their dimension ∆ is growing. We note the ordered set of
operator by {Bm}m≥0 where by costruction ∆(Bm) ≤ ∆(Bm+1). Hence B0 = I, B1 = φ3, . . . .
We then construct another set of operators Om

0 which are built from Bm by employing the
GS procedure on S4 with operators of the same dimension which contains Bm′ as long as
∆(Bm′) < ∆(Bm). In this way we costruct a family of operators which are independent on τ
and such that

¬

Om
0 O

m′
0

¶N=4

S4
= 0 , if m ̸= m′ . (44)

Starting from Om
0 we built a tower of operators defined by

On
m = (φ2)

mOn
0 . (45)
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Since Om
0 are τ-independent, because of the particular form of the N = 4 partition function

(41), we also have the important implication

¬

Om
0 O

m′
0

¶N=4

S4
= 0 =⇒

D

φa
2O

m
0 φ

b
2O

m′
0

EN=4

S4
= 0 , (46)

when m ̸= m′. To obtain an orthogonal family, we simply need to do a GS procedure on
each tower constructed from a given Om

0 by acting with φ2, parallel to to the rank 1 example.
Therefore we define K(n)m to be the n× n matrix whose elements are

Ki, j =
¬

Om
i O

m
j

¶N=4

S4
, i, j = 0, . . . , n− 1 . (47)

Then the orthogonal operators on the sphere are5

�

Om
n

�′
=Om

n +
n−1
∑

j=0

(−1) j+n+1 det R( j)

det R(n)
Om

j , (48)

where R( j) is obtained from K(n+1)
m by erasing the j + 1 column and the n+ 1 row. We have

�

Gm
n

�N=4
=



Om
n Om

n

�N=4

R4 =
­

�

Om
n

�′ �Om
n

�′
·N=4

S4
=

det K(n+1)
m

det K(n)m

. (49)

It follows that index n in (49) is governed by a semi-infinite Toda Chain. This integrable
structure was exploited in [25] to derive the following expression [25, eq.(3.39)]

�

Gm
n

Gm
0

�N=4

=
4nn!

(Imτ)2n

�

N2 − 1
2

+∆(Bm)

�

n
, (50)

where (·)n is the Pochhammer symbol. However, since the index m is not governed by the
Toda chain, one can not fix Gm

0 in this way.

2.2.1 The SU(3) case

For our propose we write the SU(3) N = 4 partition function (41) using the variables

y = φ2 ∈ R+ , x =
6φ2

3

φ3
2

∈ [0,1] . (51)

As we discuss later, this change of variable is crucial to see the emergence of matrix models.
In these new variables we get

ZS4(τ,τ,τ3,τ3) =

∫

R+

dy

∫ 1

0

dx
y3

2
p

3

√

√1
x
− 1 e−2πImτy− 2π3/2

61/2 Imτ3

p
x y3

, (52)

and

ZS4 =
p

3
32π3Imτ4

. (53)

We take as staring point Bm = φm
3 , m≥ 0. The α×α matrix M (α)m has elements

Mi, j =

*

�

φ2
3

φ3
2

�i

φ
σm
3 φ2

3⌊m/2⌋
�

φ2
3

φ3
2

� j

φ
σm
3 φ2

3⌊m/2⌋

+N=4

S4

, i, j = 0, . . . ,α− 1 , (54)

5Note that since Om
0 are already orthogonal on the sphere we simply have

�

Om
0

�′
=Om

0 .
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where ⌊·⌋ is the floor function andσm = m mod 2. Assuming m even, the spectrum of operators
is organized as follows

∆= 3m : Om
0 , Om−2

3 , Om−4
6 , . . . , O0

3
2 m

, (55)

∆= 3m+ 2 : Om
1 , Om−2

4 , Om−4
5 , . . . , O0

3
2 m+1

, (56)

∆= 3m+ 3 : Om+1
0 , Om−1

3 , Om−3
6 , . . . , O1

3
2 m

, (57)

∆= 3m+ 4 : Om
2 , Om−2

5 , Om−6
8 , . . . , O0

3
2 m+2

, (58)

∆= 3m+ 5 : Om+1
1 , Om−1

4 , Om−3
7 , . . . , O1

3
2 m+1

, (59)

...

Similar for the case of m odd. The Om
n operators in this SU(3) example then reads

Om
0 = φ

m
3 +
⌊m/2⌋−1
∑

j=0

(−1) j+⌊m/2⌋
det R( j)

det R⌊m/2⌋
φ

2 j+σm
3 φ

3(⌊m/2⌋− j)
2 ,

Om
n = φ

n
2O

m
0 ,

(60)

where R(k)3 is obtained from M ⌊m/2⌋+1
m by erasing the kth + 1 column and the ⌊m/2⌋ + 1 row.

This gives
O1

0 = φ3 ,

O2
0 = φ

2
3 −
〈φ3

2φ
2
3〉S4

〈φ6
2〉S4

φ3
2 = φ

2
3 −

1
24
φ3

2 ,

O3
0 = φ

3
3 −
〈φ4

3φ
3
2〉S4

〈φ6
2φ

2
3〉S4

φ3φ
3
2 = φ

3
3 −

1
12
φ3φ

3
2 ,

O4
0 = φ

4
3 −

1
8
φ3

2φ
2
3 +

1
576
φ6

2 ,

O5
0 = φ

5
3 +
φ6

2φ3

192
−

1
6
φ3

2φ
3
3 ,

O6
0 = φ

6
3 −

5
24
φ3

2φ
4
3 +
φ6

2φ
2
3

96
−
φ9

2

13824
,

...

(61)

One can also write (60) in a more compact form similarly to [25], that is

Om
0 = φ

m
3 −

m
∑

j=1

D

φm
3 Om−2 j

0

EN=4

S4

D

Om−2 j
3 j Om−2 j

0

EN=4

S4

Om−2 j
3 j . (62)

Using (21), the OPE for these operators can be recursively derived from the simple relations

O1
0 O

m
0 =Om+1

0 +
1

24
Om−1

3 ,

O0
n1
Om

n2
=Om

n1+n2
.

(63)

For example

O2
0 O

m
0 =

�

O1
0 O

1
0 −

1
24

O(0)3

�

Om
0 =Om+2

0 +
1
24

Om
3 +

�

1
24

�2

Om−2
6 . (64)
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One can easily check that the Om
0 operators are indeed orthogonal, that is

〈Om
0 O

m′
0 〉S4 = 0 , m ̸= m′ , (65)

and we have
�

Gm
0

�N=4
= 〈Om

0 O
m
0 〉R4 = 〈Om

0 O
m
0 〉S4 . (66)

By explicitly computing the S4 correlators we get

�

Gm
0

�N=4
= Z−1

S4

detk,ℓ=0,...,⌊m2 ⌋
∫

R+
dy y3+3me−2πImτy

∫ 1
0

dx
2
p

3

q

1
x − 1

� x
6

�n+ℓ+σm

detk,ℓ=0,...,⌊m2 ⌋−1

∫

R+
dy y3+3me−2πImτy

∫ 1
0

dx
2
p

3

q

1
x − 1

� x
6

�n+ℓ+σm

=
det M (⌊m/2⌋+1)

m

det M (⌊m/2⌋)m

,

(67)

where M (α)m is defined in (54).
More generically if we consider n ̸= 0 we need to take into account an additional GS

orthogonalization, namely (48). This lead to




Om
n Om

n

�N=4

R4 =
¬

�

Om
n

�′ �Om
n

�′¶N=4

S4
= Z−1

S4

deti, j=0,...,n(−∂2πImτ)i+ j
�

ZS4
det M (⌊m/2⌋+1)

m

det M (⌊m/2⌋)m

�

deti, j=0,...,n−1(−∂2πImτ)i+ j
�

ZS4
det M (⌊m/2⌋+1)

m

det M (⌊m/2⌋)m

�
. (68)

For instance we have
¬

O2
0O

2
0

¶N=4

R4
=

105
(2πImτ)6

,
¬

O2
2O

2
2

¶N=4

R4
=

23100
(2πImτ)10

,

¬

O5
0O

5
0

¶N=4

R4
=

134008875
(2πImτ)15

,
¬

O5
1O

5
1

¶N=4

R4
=

2546168625
(2πImτ)17

.
(69)

2.3 SU(N) N = 2 SQCD with N f = 2N

The S4 partition function of SU(N)N = 2 SQCD with N f = 2N has the following structure [32]

ZS4(τ,τ;τA,τA) =

∫

RN−1

N−1
∏

i=1

dai

 

∏

1≤i< j≤N

(ai − a j)
2

!

ZG(a1, . . . , aN−1,τ)

× |Zinst(a1, . . . , aN−1,τ)|2e−2πIm(τ)Tr(ϕ2)−2
∑N

A=3π
A/2Im(τA)Tr(ϕA) ,

(70)

where

ϕ = diag (a1, a2, · · · aN ) ,
N
∑

i=1

ai = 0 , (71)

ZG(a1, . . . , aN−1) =
∏

i ̸= j

H(i(ai − a j))
N
∏

i=1

H(iai)
−2N , H(x) = G(1+ x)G(1− x) , (72)

G being the Barnes G functions. In the context of localization we usually refer to (72) as the
one-loop partition function. Moreover Zinst(a1, . . . , aN−1,τ) = 1 +O(e2πiτ) is the instanton
partition function in the ε1 = ε2 = 1 phase of the Ω background [28–31].6 When consid-
ering extremal correlators with a very large number of insertions, we can neglect such in-
stanton term.7 The loop expansion of (70) can thus be obtain by simply Taylor expanding
ZG(a1, . . . , aN−1) around ai = 0.

6There are some subtleties related to the so-called U(1) factor, but this will not be important here.
7Strictly speaking this is fully justified in the so-called double scaling limit, where we also take Im(τ) →∞.

In the pure large charge limit such approximation require a careful treatment, a detailed discussion will appear
in [37].
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2.3.1 The SU(3) case

Let us work out some details for the example of SU(3), N = 2 SQCD with N f = 6 flavours.
The explicit expression for ZG is

ZG(a1, a2) =
H(ia1 − ia2)H(2ia1 + ia2)H(ia1 + 2ia2)H(−ia1 + ia2)

(H(ia1)H(ia2)H(−ia1 − ia2))
6

×H(−2ia1 − ia2)H(−ia1 − 2ia2) .
(73)

The loop expansion of the ZS4 partition function (70) reads

ZS4 = −
p

3
32π3Imτ4 +

15
p

3ζ(3)
32π5Imτ6

−
425ζ(5)

64
�p

3π6
�

Imτ7
−

35
�

324ζ(3)2 − 511ζ(7)
�

512
�p

3π7
�

Imτ8

+O

�

�

1
Imτ

�9
�

+O(e2πiτ) +O(e2πiτ̄) .

(74)

To compute correlation functions on R4 we need to disentangle the mixing with operators of
the lower dimension [25]. Let us illustrate this in one example, more are given in [25, Sec. 3.3].
Let us compute 〈φ2

3φ
2
3〉R4 . The results of [25] is that

〈φ2
3φ

2
3〉

N=2
R4 = 〈(φ2

3)
′(φ2

3)′〉
N=2
S4 , (75)

where (φ2
3)
′ is obtained starting from φ2

3 and by doing GS on the sphere w.r.t. operators of
lower dimension,8 which in this case are φ2

2 ,φ2, 1. The scalar product in this GS procedure is
the two-point function of the theory on S4. More precisely:

(φ2
3)
′ =

det









〈1〉N=2
S4 〈φ2〉N=2

S4 〈φ2
2〉

N=2
S4 〈φ2

3〉
N=2
S4

〈φ2〉N=2
S4 〈φ2φ2〉N=2

S4 〈φ2φ
2
2〉

N=2
S4 〈φ2φ

2
3〉

N=2
S4

〈φ2
2〉

N=2
S4 〈φ2

2φ2〉N=2
S4 〈φ2

2φ
2
2〉

N=2
S4 〈φ2

2φ
2
3〉

N=2
S4

1 φ2 φ2
2 φ2

3









det





〈1〉N=2
S4 〈φ2〉N=2

S4 〈φ2
2〉

N=2
S4

〈φ2〉N=2
S4 〈φ2φ2〉N=2

S4 〈φ2φ
2
2〉

N=2
S4

〈φ2
2〉

N=2
S4 〈φ2

2φ2〉N=2
S4 〈φ2

2φ
2
2〉

N=2
S4





. (76)

This gives

〈φ2
3φ

2
3〉

N=2
R4 =

425

256π6Imτ6
−

57645ζ(3)
512π8Imτ8 +

1688875ζ(5)
1536π9Imτ9

+
5
�

14749776ζ(3)2 − 25878125ζ(7)
�

12288π10Imτ10 +
175(1285211ζ(9)− 1608930ζ(3)ζ(5))

2048π11Imτ11 (77)

+
5
�

7516566435ζ(7)ζ(3)− 1490674752ζ(3)3 + 4068688250ζ(5)2 − 6201901090ζ(11)
�

24576π12Imτ12

+O

�

�

1
Imτ

�13
�

.

The same procedure can be applied to all other two-point functions.
For our purposes, it is convenient to work in a new basis of the chiral ring. Specifically,

we define a new set of operators {Θm
n }m,n≥0 with dimension ∆= 3m+ 2n as follows. The Θm

n

8Recall that the dimensions of the operators involved must differs by 2, see (28).
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operator is constructed starting from φn
2φ

m
3 and then applying GS orthogonalization on R4

with respect to all operators φ j
3φ

k
2 such that 3 j + 2k = 3m+ 2n and j < m. That is

Θm
n = φ

n
2φ

m
3 +

∑

j,k

c j,kφ
j
3φ

k
2 , (78)

where the coefficients are determined by the GS procedure on R4 and the sum is subject to
the constraint 3 j + 2k = 3m+ 2n with j < m. For example we have

Θ0
n = φ

n
2 ,

Θ1
0 = φ3 ,

Θ1
1 = φ3φ2 ,

Θ2
0 =

det

�

〈φ3
2φ

3
2〉

N=2
R4 〈φ3

2φ
2
3〉

N=2
R4

φ3
2 φ2

3

�

〈φ3
2φ

3
2〉

N=2
R4

= φ2
3 −
〈φ3

2φ
2
3〉

N=2
R4

〈φ3
2φ

3
2〉

N=2
R4

φ3
2 ,

Θ2
1 =

det

�

〈φ4
2φ

4
2〉

N=2
R4 〈φ4

2φ
2
3φ2〉N=2

R4

φ4
2 φ2

3φ2

�

〈φ3
2φ

3
2〉

N=2
R4

= φ2
3φ2 −

〈φ4
2φ

2
3φ2〉N=2

R4

〈φ4
2φ

4
2〉

N=2
R4

φ4
2 ,

...

(79)

By construction these operators are orthogonal on R4, that is

〈Θm
n Θ

m′
n′ 〉

N=2
R4

= δnn′δmm′〈Θm
n Θ

m
n 〉

N=2
R4

. (80)

Hence we define
�

Gm
n

�N=2
= 〈Θm

n Θ
m
n 〉

N=2
R4 . (81)

In practice, to compute these correlation we go on S4 and do a GS procedure on S4 where we
orthogonalize w.r.t. operator of the same and lower dimensions. More precisely let us define
(Θm

n )
′ as the operator constructed starting fromφn

2φ
m
3 and then applying GS orthogonalization

on S4 with respect to all operatorsφ j
3φ

k
2 such that 3 j+2k ≤ 3m+2n and j < m. Then it follows

from [25] that
〈Θm

n Θ
m
n 〉

N=2
R4 = 〈(Θm

n )
′(Θm

n )′〉
N=2
S4 , (82)

which is the analogous of (39) for higher rank. To summarise, the key equation we will use is

�

Gm
n

�N=2
= 〈Θm

n Θ
m
n 〉

N=2
R4 = 〈(Θm

n )
′(Θm

n )′〉
N=2
S4 . (83)

Let us work out some examples. For the first few operators we have

(Θ0
0)
′ = 1= Θ0

0 ,

(Θ0
1)
′ = φ2 − 〈φ2〉N=2

S4 1= Θ0
1 − 〈φ2〉N=2

S4 Θ0
0 ,

(Θ1
0)
′ = φ3 = Θ

1
0 .

(84)

The first non-trivial example is (Θ2
0)
′. In our construction this operator is obtained by applying
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GS on S4 and w.r.t. the family v =
�

1,φ2,φ2
2 ,φ3

2 ,φ2
3

	

:9

(Θ2
0)
′ =













〈1〉S4 〈φ2〉S4 〈φ2
2〉S4 〈φ3

2〉S4 〈φ2
3〉S4

〈φ2〉S4 〈φ2φ2〉S4 〈φ2φ
2
2〉S4 〈φ2φ

3
2〉S4 〈φ2φ

2
3〉S4

〈φ2
2〉S4 〈φ2

2φ2〉S4 〈φ2
2φ

2
2〉S4 〈φ2

2φ
3
2〉S4 〈φ2

2φ
2
3〉S4

〈φ3
2〉S4 〈φ3

2φ2〉S4 〈φ3
2φ

2
2〉S4 〈φ3

2φ
3
2〉S4 〈φ3

2φ
2
3〉S4

1 φ2 φ2
2 φ3

2 φ2
3





















〈1〉S4 〈φ2〉S4 〈φ2
2〉S4 〈φ3

2〉S4

〈φ2〉S4 〈φ2φ2〉S4 〈φ2φ
2
2〉S4 〈φ2φ

3
2〉S4

〈φ2
2〉S4 〈φ2

2φ2〉S4 〈φ2
2φ

2
2〉S4 〈φ2

2φ
3
2〉S4

〈φ3
2〉S4 〈φ3

2φ2〉S4 〈φ3
2φ

2
2〉S4 〈φ3

2φ
3
2〉S4









= φ2
3 +

4
∑

j=1

(−1) j+1c jφ
j−1
2 ,

(85)

where

c1 = −
875ζ(5)
8π6Imτ6

+
6125ζ(7)
2π7Imτ7 +

18375(72ζ(3)ζ(5)− 451ζ(9))
128π8Imτ8

−
1225

�

12075ζ(5)2 + 27720ζ(3)ζ(7)− 98857ζ(11)
�

96π9Imτ9 + . . . ,

c2 = −
1575ζ(5)
8π5Imτ5 +

42875ζ(7)
8π6Imτ6

+
86625(6ζ(3)ζ(5)− 41ζ(9))

32π7Imτ7

−
3675

�

34100ζ(5)2 + 77280ζ(3)ζ(7)− 296571ζ(11)
�

512π8Imτ8 + . . . ,

c3 = −
1575ζ(5)
16π4Imτ4 +

5145ζ(7)
2π5Imτ5 +

525(414ζ(3)ζ(5)− 3157ζ(9))
32π6Imτ6

−
105

�

31550ζ(5)2 + 70560ζ(3)ζ(7)− 296571ζ(11)
�

32π7Imτ7 + . . . ,

c4 =
1
24
−

175ζ(5)
12π3Imτ3 +

8575ζ(7)
24π4Imτ4 +

35(360ζ(3)ζ(5)− 3157ζ(9))
16π5Imτ5

−
35
�

199600ζ(5)2 + 441000ζ(3)ζ(7)− 2075997ζ(11)
�

576π6Imτ6
+ . . .

(86)

Note that the c j ’s are τ−dependent, therefore derivatives with respect to τ of ZS4 with (Θm
n )
′

insertions do not correspond to insertions ofφ2. As a result (46) is not valid in N = 2 theories.
As we will discuss in some detail in the next section, the τ-dependence only appears from 3
loops order on S4 and at 6 loops on R4. By using (83) and (85), we find

�

G2
0

�N=2
=

105

64π6Imτ6
−

14175ζ(3)
128π8Imτ8 +

139125ζ(5)
128π9Imτ9 +

1575
�

477ζ(3)2 − 854ζ(7)
�

128π10Imτ10

−
1575(21975ζ(3)ζ(5)− 18067ζ(9))

256π11Imτ11

+
175

�

−3446712ζ(3)3 + 17781624ζ(7)ζ(3) + 9583250ζ(5)2 − 15220359ζ(11)
�

2048π12Imτ12

+O

�

�

1
Imτ

�13
�

. (87)

9All the vevs in (85) are taken in the N = 2 theory. We omit the superscript to light the notation.
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3 A close-up on mixing in SU(3) N = 2 SQCD

We now investigate in detail the differences between mixing patterns in N = 2 and N = 4
with SU(3) gauge group. As discussed in the previous section, in N = 4 there is a class of
operators Om

0 of dimension ∆
�

Om
0

�

= 3m with the following properties:

1. Om
0 can be obtained performing a Gram Schmidt procedure only with operators of the

same dimensions,

2. Om
0 is τ−independent and orthogonal to all operators with ∆<∆

�

Om
0

�

on the sphere.

For these operators we simply have

〈Om
0 Om

0 〉R4 = 〈Om
0 Om

0 〉S4 , (88)

and from τ independence it follows that families {Om
n }n≥0 = {φn

2O
m
0 }n≥0 will only mix be-

tween themselves on the sphere. In the N = 2 case we don’t have a class of operators with
these properties. In fact expanding (73) at 3 loops in terms of N = 4 operators we find

ZG(a1, a2) = 1− 3ζ(3)O0
2 −

20
3
ζ(5)

�

O2
0 −

17
24

O0
3

�

+ . . . (89)

The 2 loop term is proportional to O0
2 and doesn’t create any mixing problem since it just

amounts to take derivatives with respect to τ. However the appearance of O2
0 at 3 loops spoils

(46), and qualitatively changes the mixing pattern of N = 2 operators on the sphere. For
example from (63)

〈O2
0O

0
2〉

N=2
S4 ≃ −

20
3
ζ(5)〈O2

0O
2
2〉

N=4
S4 . (90)

Similarly O2
0 mixes on the sphere with O0

0,O0
1, and a non trivial orthogonalization with oper-

ators with smaller dimensions is necessary to find a well defined flat space correlator.

3.1 Mixing at six loops

Although the mixing pattern on the sphere changes at 3 loops, it will only produce 6 loops
effects onR4. To see how this happens, it is convenient to write the Gram-Schmidt determinant
that gives the flat space correlator in the N = 4 basis of operators Om

n . Since the two point
function 〈Om

n O
m′
n′ 〉

N=2
S4 is different from zero only from three loop order on, if m ̸= m′ we have

�

Gm
n

�N=2
=

det























�

〈O0
ℓ
O0
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n
O (3L) . . .

O (3L)
�

〈O2
ℓ
O2
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n
. . .

...

O (3L) . . .
�

〈Om
ℓ
Om
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n























det























�

〈O0
ℓ
O0
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n
O (3L) . . .

O (3L)
�

〈O2
ℓ
O2
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n
. . .

...

O (3L) . . .
�

〈Om
ℓ
Om
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n−1























. (91)

This immediately gives

�

Gm
n

�N=2
=

det
�

〈Om
ℓ
Om
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n

det
�

〈Om
ℓ
Om
ℓ′
〉N=2
S4

�

ℓ,ℓ′=0,...,n−1

�

1+O
�

Imτ−6
��

. (92)
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Consider now the n = 0 case. Let eΘm
0 be the operator obtained by performing a GS proce-

dure on the sphere only with operators of the same dimensions, that is (assuming m even for
simplicity)

eΘm
0 =

det





�

〈φ3m−3n
2 φ2n

3 φ
3m−3n′
2 φ2n′

3 〉
N=2
S4

�

n=0,...,m,
n′=0,...,m−1

�

φ3m−3n
2 φ2n

3

�

n=0,...,m





det
�

〈φ3m−3n
2 φ2n

3 φ
3m−3n′
2 φ2n′

3 〉
N=2
S4

�

n=0,...,m−1,
n′=0,...,m−1

. (93)

Expanding eΘm
0 in the basis Om

n one finds

eΘm
0 =O(m)0 +

m
2
∑

ℓ=1

O
�

1
Imτ3

�

O(m−2ℓ)
n+3ℓ , (94)

that gives

〈eΘm
0
eΘm

0 〉
N=2
S4 = 〈Om

0 O
m
0 〉

N=2
S4

�

1+O
�

Imτ−6
��

. (95)

Therefore we can compute
�

Gm
0

�N=2
by performing a GS procedure that only involves opera-

tors of the same dimension in N = 2, that is

�

Gm
n

�N=2
=

det
�

〈φ3m−3n
2 φ2n

3 φ
3m−3n′
2 φ2n′

3 〉
N=2
S4

�

n=0,...,m,
n′=0,...,m

det
�

〈φ3m−3n
2 φ2n

3 φ
3m−3n′
2 φ2n′

3 〉
N=2
S4

�

n=0,...,m−1,
n′=0,...,m−1

�

1+O
�

Imτ−6
��

. (96)

Defining
eΘm

n = φ
n
2
eΘm

0 , (97)

by taking derivatives with respect to τ of (95) we find that in general

〈eΘm
a
eΘℓb〉

N=2
S4 = δmℓ〈Om

a O
m
b 〉

N=2
S4

�

1+O
�

Imτ−6
��

. (98)

Therefore the difference between N = 2 and N = 4 mixing will only produce six loops effect
on flat space correlators. The

�

Gm
0

�N=2
correlators can be computed by performing a GS

procedure only with operators of the same dimensions on the sphere, and mixing between Θm
n

families with different m’s will only affect flat space correlators from 6 loops on. In particular
we have

�

Gm
n

�N=2
= Z−1

S4

deti, j=0,...,n ∂
i
τ∂

j
τ̄

�

ZS4

�

Gm
0

�N=2�

deti, j=0,...,n−1 ∂ i
τ∂

j
τ̄

�

ZS4

�

Gm
0

�N=2�
�

1+O
�

Imτ−6
��

, (99)

in complete analogy with the N = 4 case (68).

3.2 Mixing at large charge

The N = 2 operators Θm
n are characterized be the quantum numbers m, n that parametrize

their scaling dimension and R charge as

R= 2∆= 2(3m+ 2n) . (100)

We now study the N = 2 correlator Gm
n and the fate of the Θm

n mixing pattern in the double
scaling large charge limit

R→∞ , Imτ→∞ ,
R

Imτ
fixed. (101)
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Since the R charge is controlled by the two independent parameters m, n, we will consider
three different cases:

m→∞ , Imτ→∞ , λ=
m

2πImτ
, n fixed, (102)

m, n→∞ , Imτ→∞ , λ=
m

2πImτ
, κ=

n
2πImτ

fixed, (103)

n→∞ , Imτ→∞ , κ=
n

2πImτ
, m fixed. (104)

We can check order by order in the loop expansion that all these limits exist, that is10

�

Gm
n

�N=2

�

Gm
n

�N=4
= f (λ,κ) +

g(λ,κ)
m

+
h(λ,κ)

n
+O

�

1
m2

�

+O
�

1
n2

�

. (105)

Note in convention: if two quantities differ by subleading correction in the double scaling
limits above, that is

A(m, n, Imτ) = B(m, n, Imτ) +
∑

i≥1

gi(λ,κ)
mi

+
hi(λ,κ)

ni
, (106)

we simply note
A(m, n, Imτ)≃ B(m, n, Imτ) . (107)

The aim of the following analysis will be to compare correlators of the genuineN = 2 operators
Θm

n with the ones of eΘm
n defined in (93) and (97). Recall that eΘm

n enjoy the same mixing pattern
as their N = 4 analogue, therefore in every regime in which

Gm
n ≃ 〈eΘm

n
eΘm

n 〉
N=2
S4 , (108)

the N = 2 mixing pattern mimics the N = 4 one.
Let us start from the first case (102). The n dependence is subleading in m, but we will fix

n = 0 for simplicity. In the previous section we have shown that up to six loops
�

Gm
0

�N=2
can

be computed by a GS procedure that only involves operators of the same scaling dimensions
on the sphere, as it happens for

�

Gm
0

�N=4
. We now argue that in the limit (102) equation

(108) holds true. The first nontrivial term to check is the six loop term that comes from
multiplying together three loop terms in the determinant (91). It will be proportional to ζ(5)2

since three loop terms are always proportional to ζ(5). The strategy to compute these terms is
the following: we compute the full correlatots

�

Gm
0

�N=2
for a sufficiently large number of cases

and we find the interpolating sequence using the FindSequenceFunction Mathematica
command. Restricting to terms that only contain ζ(5) factors we find at six loops

�

Gm
0

�N=2

�

Gm
0

�N=4

�

�

�

�

ζ(5)
= 1+

5
6

18m3 + 90m2 + 148m− 5
Imτ3π3

ζ(5)

+
24
144

648m6 + 8424m5 + 45000m4 + 120240m3 + 332659
2 m2 + 221817

2 m− 5120

Imτ6π6
ζ(5)2

+O
�

1
Imτ7

�

, (109)

10Note that in the full scaling limit (103) h can be reabsorbed into g.
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which in the double scaling limit (102) gives at 6 loops
�

Gm
0

�N=2

�

Gm
0

�N=4

�

�

�

�

ζ(5)
=
�

1+ 120ζ(5)λ3 + 7200ζ(5)2λ6
�

+
1
m

�

600ζ(5)λ3 + 93600ζ(5)2λ6
�

+O
�

1
m2

�

.

(110)

Let us now perform GS only on operator of the same dimension, and compute the two point

function 〈eΘm
0
eΘm

0 〉 of the operators defined in (93) We find

〈eΘm
0
eΘm

0 〉
�

Gm
0

�N=4

�

�

�

�

ζ(5)
= 1+

5
6

18m3 + 90m2 + 148m− 5
Imτ3π3

ζ(5)

+
24

144

648m6 + 135027
16 m5 + 180567

4 m4 + 1932255
16 m3 + 1335685

8 m2 + 222281
2 m− 5120

Imτ6π6
ζ(5)2

+O
�

1
Imτ7

�

, (111)

that in the double scaling limit (102) gives

〈eΘm
0
eΘm

0 〉
�

Gm
0

�N=4

�

�

�

�

ζ(5)
=
�

1+ 120ζ(5)λ3 + 7200ζ(5)2λ6
�

+
1
m

�

600ζ(5)λ3 +
375075

4
ζ(5)2λ6

�

+O
�

1
m2

�

.

(112)

The difference between (110) and (112) starts at six loops and is subleading in m in the double
scaling limit. Even though we don’t have an all loop argument to support this claim, we are
led to conjecture that the N = 2 operators Θm

0 follow the same mixing pattern of the N = 4

O(m)0 at leading order in m and all orders in λ in the double scaling limit (102). At leading
order in m we have

log

�

Gm
0

�N=2

�

Gm
0

�N=4

�

�

�

�

ζ(5)
≃ 120ζ(5)λ3 +O(m−1) . (113)

The dependence on ζ(5) exponentiates, meaning that ζ(5) only appears linearly in the log-
arithm. The same will happen for all ζ−numbers. The same behavior has been observed in
SU(2) correlator in the double scaling limit [17,20–22].

Let us discuss what happens if we turn on n as in (103). We now argue that at leading
order in m, n and at all orders in λ and κ the N = 2 operators Θm

n enjoy the same mixing
patterns as their N = 4 counterpart and (108) is satisfied.

For concreteness let us specify to the case m = 2ℓ, n = 3ℓ, which gives λ = 2
3κ. Following

the same strategy as before we find

〈eΘ2ℓ
3ℓ
eΘ2ℓ

3ℓ〉
�

G2ℓ
3ℓ

�N=4

�

�

�

�

ζ(5)
= 1+

5
6

2448ℓ3 + 2304ℓ2 + 736ℓ− 5
Imτ3π3

ζ(5)

+
25
576

1
Imτ6π6

ζ(5)2
1

36ℓ3 + 133ℓ2 + 191ℓ+ 84
(114)

×
�

1725898752ℓ9 + 11544952842ℓ8 + 32396774337ℓ7

+ 49752465327ℓ6 + 45784538253ℓ5 + 26031617883ℓ4

+ 9103663738ℓ3 + 1866708868ℓ2 + 183208400ℓ− 1720320
�

,
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1 3 5
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Figure 1: Red dots are coefficients of ζ(5)2 in log
〈eΘ2ℓ

3ℓ
eΘ2ℓ

3ℓ 〉
(G2ℓ

3ℓ)
N=2 for various values of ℓ.

The dashed line is a numerical fit that confirms the 1/ℓ behavior as ℓ gets larger. As
ℓ→∞ equation (108) gets satisfied.

which in the double scaling limit simplifies to

〈eΘ2ℓ
3ℓ
eΘ2ℓ

3ℓ〉
�

G2ℓ
3ℓ

�N=4

�

�

�

�

ζ(5)
=
�

1+ 2040ζ(5)λ3 + 2080800ζ(5)2λ6
�

+
1
ℓ

�

1920ζ(5)λ3 +
716258925

128
ζ(5)2λ6

�

.

(115)

Although we did not find a closed form expression for
�

G2ℓ
3ℓ

�N=2
as a function of ℓ, in figure 1

we provide numerical evidence that (108) is satisfied in this case as well. Moreover

log
〈eΘ2ℓ

3ℓ
eΘ2ℓ

3ℓ〉
�

G2ℓ
3ℓ

�N=4

�

�

�

�

ζ(5)
= 2040ζ(5)λ3 +O(ℓ−1) , (116)

that is the dependence on ζ(5) exponentiates here as well.
We finally consider the last case (104) with m= 0. Proceeding as before we find

�

G0
n

�N=2

�

G0
n

�N=4

�

�

�

�

ζ(5)
= 1+

425
36π3Imτ3

�

11n+ 6n2 + n3
�

ζ(5)

+
125ζ(5)2

2592π6Imτ6

�

464154n+ 668553n2 + 448038n3

+149665n4 + 23970n6 + 1450n6
�

,

(117)

that in the double scaling limit gives
�

G0
n

�N=2

�

G0
n

�N=4

�

�

�

�

ζ(5)
=
�

1+
850
9
ζ(5)κ3 +

362500
81

ζ(5)2λ6
�

+
1
n

�

1700
3
ζ(5)λ3 +

1997500
27

ζ(5)2λ6
�

.

(118)
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This has to be compared with

〈eΘ0
n
eΘ0

n〉
�

G0
n

�N=4

�

�

�

�

ζ(5)
= 1+

425
36π3Imτ3

�

11n+ 6n2 + n3
�

ζ(5)

+
29ζ(5)2

10368π6Imτ6

�

9271248n+ 13386304n2 + 8959230n3

+ 2990665n4 + 479622n3 + 29131n6
�

,

(119)

which in the double scaling limit gives

〈eΘ0
n
eΘ0

n〉
�

G0
n

�N=4

�

�

�

�

ζ(5)
=
�

1+
850
9
ζ(5)κ3 +

728275
162

ζ(5)2λ6
�

+
1
n

�

1700
3
ζ(5)κ3 +

1998425
27

ζ(5)2κ6
�

.

(120)

Equation (120) is in agreement with [20, 23, 38]. Note however that it does not agree with
(118) at leading order in the double scaling limit (104). Mixing of maximal trace operators
φn

2 with operators that contain an order O(n0) number of φ′3s is not subleading in the double
scaling limit (104). This means that the matrix model proposed in [23] computes (120) but it
does not compute the correct flat space correlators in (118). In addition, note that when the
number of φ3 inserted gets of order O(n) mixing between families eΘm

n with different m′s gets
again subleading in the double scaling limit.

4 Matrix models for extremal correlators: N = 4 SYM

It was observed in [17] that extremal correlators in SU(2) N = 4 SYM can be expressed as
a Wishart matrix model where the size of the matrices is related to the number of operator
insertions. The key tool used in this analysis is the Andréief–Gram–Hein identity which can be
summarized as follows. Let

µn =

∫

U
xnw(x)dx , Dn = det

�

µi+ j

�n−1
i, j=0 . (121)

Then Dn has the following matrix model representation

Dn =
1
n!

∫

Un

dn x
∏

1≤i, j≤n

�

x i − x j

�2
n
∏

i=1

w(x i) . (122)

Our claim is that, if we consider SU(N) N = 4 SYM, it is still possible to represent extremal
correlators (49) using matrix models. However, if N > 2 it becomes necessary to employ
multiple matrix models with possible multi-cut phases starting at N = 4. For instance in
the SU(3) case we find a description which involve a Wishart and a Jacobi matrix model, as
detailed below.

In a Wishart matrix model we integrate over Hermitian, non-negative n× n matrices W .
After some manipulations, this integral can be reduced to a multidimensional integral over the
eigenvalues yi ∈ R+ of W . In this section, the relevant Wishart model is given by

Z (m)(n) =
1
n!

∫

Rn
+

dn y
∏

i< j

(yi − y j)
2

n
∏

i=1

e−2πImτyi y3m+3
i . (123)

21

https://scipost.org
https://scipost.org/SciPostPhys.20.2.033


SciPost Phys. 20, 033 (2026)

For more details and references, see Appendix A.
On the other hand, in a Jacobi matrix model, we integrate over n× n Hermitian matrices

J , which are non-negative and bounded above by the identity matrix. This matrix integral can
be reduced to a multidimensional integral over the eigenvalues x i ∈ [0, 1] of J . In this section,
the relevant Jacobi model is given by

Z (σm)
J (n) =

1
n!

∫

[0,1]n
dn x

∏

1≤i< j≤n

�

x i − x j

�2
n
∏

i=1

√

√ 1
x i
− 1xσm

i , (124)

where σm = m mod 2. For more details and references on Jacobi model, see Appendix A.
Let us first consider the correlators (49) for n= 0, that is

�

Gm
0

�N=4
=
¬

Om
0 O

m
0

¶

R4
. (125)

As explained around (67) we can write

�

Gm
0

�N=4
=

det M (⌊m/2⌋+1)
m

det M (⌊m/2⌋)m

, (126)

where M (α)m is defined in (54). Hence, by using (121) and (122), we immediately get

�

Gm
0

�N=4
=

�p
3

ZS4

6−m−1

(2πIm(τ))4+3m Γ (4+ 3m)

�

Z (σm)
J (⌊m2 ⌋+ 1)

Z (σm)
J (⌊m2 ⌋)

, (127)

where we used 2⌊m2 ⌋+σm = m and Z (σm)
J (n) is the Jacobi matrix model in (124). This matrix

model is exactly solvable, see (A.21), and it gives

�

Gm
0

�N=4
=

1

(2πIm(τ))3m

3−m−18−m

2
Γ (4+ 3m) . (128)

Let us now consider the generic correlator with m, n ̸= 0, that is

〈Om
n′O

m
n 〉

N=4
R4 , Om

n = φ
n
2O

m
0 . (129)

Since adding φ2 still preserve orthogonality between the Om
0 , see (46), we can obtain the

correlatos (129) simply by performing one more time the GS on the indices n, n′. We get

〈Om
n O

m′
n′ 〉

N=4
R4 = δn,n′δm,m′

det K(n+1)
m

det K(n)m

, (130)

where K(n)m is the n× n matrix whose elements are

Ki, j =
(−2π)−i− j

ZS4
∂

i+ j
Imτ

�

ZS4(τ, 0)
det M (⌊m/2⌋+1)

m

det M (⌊m/2⌋)m

�

, i, j = 0, . . . , n− 1 , (131)

see (47) and also (68). Since the τ−dependence is tree level exact we have

Ki, j =
p

36−σm−2⌊m2 ⌋−1

Z4
S

Z (σm)
J (1+ ⌊m2 ⌋)

Z (σm)
J (⌊m2 ⌋)

�∫ ∞

0

exp (−2πImτy) y i+ j y3m+3 d y

�

. (132)

Hence by using the identities (121) and (122) we obtain a second matrix model, that is

det K(n) =

 p
36−σm−2⌊m2 ⌋−1

ZS4

Z (σm)
J (1+ ⌊m2 ⌋)

Z (σm)
J (⌊m2 ⌋)

!n

Z (m)(n) , (133)
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where Z (m)(n) is the Wishart-Laguerre matrix model given in (123). In summary we obtain

�

Gm
n

�N=4
= 〈Om

n O
m
n 〉

N=4
R4 =

6−m−1p3
ZS4

Z (σm)
J (1+

�m
2

�

)

Z (σm)
J (

�m
2

�

)

Z (m)(n+ 1)
Z (m)(n)

, (134)

where the τ,τ dependence enters via Z (m)(n), see (123).
By further using (A.4), (A.6) and (A.21), we obtain the more explicit expression

�

Gm
n

�N=4
= 〈Om

n O
m
n 〉

N=4
R4 =

n!Γ (3m+ n+ 4)
3m+126m+2n+1π3m+2nImτ3m+2n , (135)

as well as
〈Om

n O
m
n 〉

N=4
R4

〈Om
0 O

m
0 〉

N=4
R4

=
�

1
2πImτ

�2n

Γ (1+ n) (3m+ 4)n , (136)

in agreement with (50). If we take m, n large such that n
m = β is fixed, we get

log
�

Gm
n

�N=4
= 3(β + 2)m log(m)

−m
�

(2β + 3) (log (2πImτ) + 1) + log(24)− β log(β)− (β + 3) log(β + 3)
�

+
15 log(m)

2
+ 4 log(β) + log

�π

3

�

+
74β + 3

12β2m+ 36βm
+O(m−2) . (137)

It would be interesting to interpret this expansion from the point of view of a large charge EFT,
but we leave that for future work.

Let us conclude this section by noting that, parallel to the rank 1 case, the expression for
the correlators in terms of matrix models (134) holds also at finite n, m. Moreover, the two
matrix models involved in the correlators (134) “factorize” (even tough the dependence on
m enters in both of them). This will not hold true for N = 2 SQCD or for the integrated
correlators in N = 4 SYM, as we discuss below.

5 Matrix models for extremal correlators: N = 2 SQCD

We are interested in computing extremal correlators of N = 2, N f = 2N , SU(N) SQCD in the
regime where we have a large number of insertions, i.e. a large R-charge.

We first recall that in the rank 1 example, the correlators (40) of N = 2 SQCD are, in the
large R regime, equivalent to expectation values of ZG within the N = 4 SYM matrix model,
see [17]. This prompts the question of whether this structure also extends to higher ranks. In
this section, we show that indeed, this persists at higher ranks, at least at leading order in the
’t Hooft expansion.11 In the rest of the section we will focus on the example of SU(3) SQCD
with N f = 6 flavors but we expect an analogous behaviour for SU(N) as well.

5.1 The Gm
0 correlators

Let us start by studying at the correlators (81) when n= 0, that is
�

Gm
0

�N=2
= 〈Θm

0 Θ
m
0 〉

N=2
R4 , (138)

in the following double scaling limit

m, Imτ→∞ , s.t. λ=
m

2πImτ
, fixed. (139)

11It may holds beyond this, but in this paper we focus only on such regime.
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As illustrated in section 3, the mixing structure in this limit simplify as mixing with operators
of lower dimension is subleading. In practice this means that, in the scaling limit (139) we
have

�

Gm
0

�N=2 ≃
detM(⌊m/2⌋+1)

m

detM(⌊m/2⌋)m

, (140)

where M(k)m is the k× k matrix whose elements are

Mi, j =

*

�

φ2
3

φ3
2

�i

φ
σm
3 φ2

3⌊m/2⌋
�

φ2
3

φ3
2

� j

φ
σm
3 φ2

3⌊m/2⌋

+N=2

S4

, i, j = 0, . . . , k− 1 . (141)

This is analogous to (54) except that the vev is now taken in N = 2 SQCD. We now show that
(140) is in fact a ratio of matrix models expectation value.

Let us define

fm(x , Im(τ)) =

∫

R+

dy y3+3me−2πImτyZG(x , y) , (142)

with
ZG(x , y) = ZG(a1(x , y), a2(x , y)) , (143)

where we are using the change of variable (51) and ZG(a1, a2) is given in (73). By using the
Andréief-Gram-Hein identity (122), it is easy to see that

detM(k)m =
Z (σm)

J (k)
p

3
k

6k2+kσm (ZS4)k
〈fm(x , Imτ)〉(k)J , (144)

where the expectation value is w.r.t. the Jacobi model (124), namely

〈fm(x , Imτ)〉(k)J =
1
k!

∫

[0,1]n dk x i
∏

i< j(x i − x j)2(x i − 1)1/2 x
1
2+σm
i fm(x , Imτ)

Z (σm)
J (k)

. (145)

This already show that (140) is indeed a ratio of expectation values in the N = 4 Jacobi model.
However, let us massage this expression a but more. It easy to see12 that in the ’t Hooft limit
(160) we have

fm(x , Imτ) =

∫

R+
dye−2πImτy y3m+3ZG(x , y)≃

p
2πe−3m(3λ)3m+4

p
3m

ZG(x , 3λ) . (146)

Note that the second equality in (146) also holds if we replace ZG(x , y) by another function
which admit a Laurent expansion around y = 0.

By combining (144) and (146) we arrive at the following simple formula

�

Gm
0

�N=2

�

Gm
0

�N=4
≃
〈ZG(x , 3λ)〉(⌊

m
2 ⌋+1)

J

〈ZG(x , 3λ)〉(⌊
m
2 ⌋)

J

, (147)

where the expectation value of ZG(x , y) is taken in the N = 4 Jacobi matrix model (124),

parallel to (145) and,
�

Gm
0

�N=4
is given in (127). From now on it will be convenient to use

∆Gm
0 =

�

Gm
0

�N=2

�

Gm
0

�N=4
. (148)

12Either by doing a saddle point or by using the Laurent expansion of the Barnes G-funtions.
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One advantage of writing correlators as matrix models is that one can easily extract the
large m expansion. This is done as follows. First we note that ZG(x , 3λ) is subleading w.r.t. the
eigenvalue repulsion term in the Jacobi matrix model (124). Therefore

log 〈ZG(x , 3λ)〉(k)J = k

∫ 1

0

dxσJ(x) log (ZG(x , 3λ)) +O(k0) , (149)

where σJ(x) is the Jacobi density

σJ(x) =
1

π
p

x(1− x)
, x ∈ [0, 1] , (150)

see also Appendix A. Hence we simply have

log∆Gm
0 ≃

∫ 1

0

dxσJ(x) log (ZG(x , 3λ)) , (151)

where ≃ has the same meaning as in (107). If we further expand (151) at weak coupling λ
we find the following all order expansion

log∆Gm
0 ≃

∞
∑

k=1

9(−1)k2k+2
�

3k − 1
�

λk+1ζ(2k+ 1)Γ
�

k+ 3
2

�

p
π(k+ 1)2k!

. (152)

We note that (152) naturally split in two series:

∞
∑

k=1

9(−1)k2k+23kλk+1ζ(2k+ 1)Γ
�

k+ 3
2

�

p
π(k+ 1)2k!

,

∞
∑

k=1

9(−1)k2k+2λk+1ζ(2k+ 1)Γ
�

k+ 3
2

�

p
π(k+ 1)2k!

.

(153)

The radii of convergence of the first and second series are λ(1)c = 1/6 and λ(1)c = 1/2, respec-
tively. It would be interesting to understand what this means physically but we leave this for
further investigation.

The strong coupling expansion of (151) can also be computed in a straightforward way.
Parallel to [17] we first write (152) as an integral over Bessel J function:

log∆Gm
0 ≃

∫ ∞

0

6et

t(et − 1)2
�

6J0(t
p

2λ)− 2J0(t
p

6λ)− 4
�

dt . (154)

By expanding at large λ, this leads to the following strong coupling expansion:

log∆Gm
0 ≃ −2− 9λ log 3−

1
2

log12+ 24 log A+ logλ− Cnp(
p

6λ) + 3Cnp(
p

2λ) , (155)

with

Cnp(
p

λ) =
∑

n≥1

6
n2π2

�

K0(2nπ
p

λ) + 2nπ
p

λK1(2nπ
p

λ)
�

= e−2π
p
λ

 

6
4p
λ

π
+

33 4
q

1
λ

8π2
−

93
� 1
λ

�3/4

256π3
+O

�

�

1
λ

�5/4
�

!

,

(156)
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where A is the Glaisher constant and Ki are the modified Bessel functions of second kind. In
particular Cnp ∼O(e−2π

p
λ) is purely non-perturbative at strong coupling and we have

log∆Gm
0 ≃ −2− 9λ log 3−

1
2

log12+ 24 logA+ logλ

+ e−2
p

2π
p
λ

�

18 4p2
4p
λ

π
+O

�

λ−1/4
�

�

− e−2
p

6π
p
λ

�

6 4p6
4p
λ

π
+O(λ−1/4)

�

.
(157)

This regime is structurally very similar to the rank 1 case studied in [17]where the perturbative
expansion at strong coupling truncated after few terms and the non-perurbative effects are
expressed as a sum of Bessel K functions. The instantons actions are integer multiple of the
following two leading actions13

A1 = 4π

√

√1
2

, A2 = 4π

√

√3
2

. (158)

Note that Ai = 2π
q

1/λ(i)c , where λ(i)c are the radii of convergence of the two sums in the
weak coupling expansion (156). Physically, we expect such non-perturbative effects to be
interpreted as the worldline of BPS particles, parallel to the rank 1 case [17,39,40]. In partic-
ular, it seems that in this specific sector of the SU(3) theory, the EFT capturing the large charge
expansion may not be too much different from the one proposed in the rank 1 case [15].

We conclude the section by noting that turning on a finite n would only produce subleading
effects in the ’t Hooft limit, since ∂τ ∼ m−1∂λ.

5.2 The Gm
n correlators at β =

n
m fixed

Let us now consider the full correlators (81) where we allow both m, n to be large, that is

�

Gm
n

�N=2
= 〈Θm

n Θ
m
n 〉

N=2
R4 , (159)

in the regime

m, n, Imτ→∞ , s.t. κ=
n

2πImτ
, λ=

m
2πImτ

, fixed. (160)

It is convenient to introduce
β =

n
m

. (161)

As illustrated in section 3, the mixing structure in this limit simplify. In practice this means
that, in the scaling limit (160) we have

�

Gm
n

�N=2 ≃
detK(n+1)

m

detK(n)m

, (162)

where K(n)m is the n× n matrix whose elements are

Ki, j =
(−2π)−i− j

ZS4
∂

i+ j
Imτ

�

ZS4

detM(⌊m/2⌋+1)
m

detM(⌊m/2⌋)m

�

, i, j = 0, . . . , n− 1 , (163)

13A naïve saddle point analysis seem to indicate that in this regime we the vev on the complex scalar is such that
a1 ∼ a2 and these two instanton effects should be in correspondence with the mass of W bosons and the hypers.

26

https://scipost.org
https://scipost.org/SciPostPhys.20.2.033


SciPost Phys. 20, 033 (2026)

and M(k)m is the k × k matrix whose elements are given in (141). Let us stress that, in view of
the discussion in subsection 3.1 we also have

�

Gm
n

�N=2
�

�

�

5 loops
=

detK(n+1)
m

detK(n)m

�

�

�

5 loops
, (164)

which holds for finite values of m and n as well.
In the rest of the section we will show how to compute (162) explicitly using matrix models.

Using the results of subsection 5.1 we can write

log

�

ZS4
detM

(⌊m2 ⌋+1)
m

detM
(⌊m2 ⌋)
m

�

≃ log

 

ZS4

�

Gm
0

�N=4 〈ZG(x , 3λ)〉(⌊
m
2 ⌋+1)

J

〈ZG(x , 3λ)〉(⌊
m
2 ⌋)

J

!

≃ log
�

ZS4

�

Gm
0

�N=4�
+

∫ 1

0

dxσJ(x) log (ZG(x , 3λ)) .

(165)

It is useful to use the trick in the second equality of (146) again and write (165) as
�

ZS4
detM

(⌊m2 ⌋+1)
m

detM
(⌊m2 ⌋)
m

�

≃
�

ZS4

�

Gm
0

�N=4�
e
∫ 1

0 dxσJ(x) log(ZG(x ,3λ))

≃

p
3mZS4

�

Gm
0

�N=4

p
2πe−3m(3λ)3m+4

∫

R+

dye−2πImτy y3m+3e
∫ 1

0 dxσJ(x) log(ZG(x ,y))

≃
p

3
6m+1

Z (σm)
J (⌊m2 ⌋+ 1)

Z (σm)
J (⌊m2 ⌋)

∫

R+

dye−2πImτy y3m+3e
∫ 1

0 dxσJ(x) log(ZG(x ,y)) .

(166)

This leads to

Ki, j ≃
p

3
ZS46m+1

Z (σm)
J (⌊m2 ⌋+ 1)

Z (σm)
J (⌊m2 ⌋)

∫

R+

dye−2πImτy y3m+3+i+ je
∫ 1

0 dxσJ(x) log(ZG(x ,y)) . (167)

Hence

detK(n)m ≃

 p
3

ZS46m+1

Z (σm)
J (⌊m2 ⌋+ 1)

Z (σm)
J (⌊m2 ⌋)

!n

×
1
n!

∫

R+

dn ye−2πImτy
∏

i< j

(yi − y j)
2

n
∏

i=1

y3m+3
i e

∫ 1/6
0 dxσJ(x) log(ZG(x ,yi)) (168)

≃

 p
3

ZS46m+1

Z (σm)
J (⌊m2 ⌋+ 1)

Z (σm)
J (⌊m2 ⌋)

!n

Z (m)(n)en
∫ b

a dzρMP(z)
∫ 1

0 dxσJ(x) log(ZG(x ,κz))(1+O(n0)) ,

whereσJ(x) is given in (150), Z (m)(n) is the Wishart-Laguerre matrix model (123) and ρMP(z)
is the Marčenko-Pastur distribution

ρMP(z) =
1

2πz

Æ

(b− z)(z − a) , z ∈ [a, b] ,

a = 2+ 3β−1 − 2
Æ

1+ 3β−1 ,

b = 2+ 3β−1 + 2
Æ

1+ 3β−1 ,

(169)

where β = n
m , see also Appendix A. Hence we obtain

log∆Gm
βm ≃

d
dn

�

n

∫ b

a
dyρMP(y)

∫ 1

0

dxσJ(x) log (ZG(x ,λy))

�

, (170)
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where we use

∆Gm
n =
〈Θm

n Θ
m
n 〉

N=2
R4

〈Om
n Om

n 〉
N=4
R4

. (171)

By making the n-dependence in β and κ explicit, it is easy to see that we can write (170) in a
more explicit form, namely

log∆Gm
βm ≃

�

1+ κ∂κ + β∂β
�

�

∫ b

a
dyρMP(y)

∫ 1

0

dxσJ(x) log (ZG(x ,κy))

�

, (172)

where the dependence on β is inside a, b and ρMP, see (169).
The expression (172) is exact in the ’t Hooft couplings κ= n

2πImτ , λ= m
2πImτ . If we expand

it at weak coupling, i.e. λ, κ small with β = n
m fixed, we find the following all order expansion

log∆Gm
βm =

∑

k≥1

9(−1)k
p
π

22+k(3k − 1)
(1+ k)(k+ 1)!

Γ

�

3
2
+ k

�

ζ(2k+ 1)2F1

�

−1− k, 2+ k, 1,−
β

3

�

λk+1 .

(173)
The series (173) naturally split into two components

∑

k≥1

9(−1)k
p
π

22+k3k

(1+ k)(k+ 1)!
Γ

�

3
2
+ k

�

ζ(2k+ 1)2F1

�

−1− k, 2+ k, 1,−
β

3

�

λk+1 ,

∑

k≥1

9(−1)k
p
π

22+k

(1+ k)(k+ 1)!
Γ

�

3
2
+ k

�

ζ(2k+ 1)2F1

�

−1− k, 2+ k, 1,−
β

3

�

λk+1 .

(174)

These series, non-surprisingly, have a finite radius of convergence which depends on β , that is

λ(1)c (β) =
1

18

�

2β − 2
Æ

β(β + 3) + 3
�

, λ(2)c (β) = 3λ(1)c (β) , (175)

where we used

lim
n→∞

2F1

�

−n, n+ 1; 1;−β3
�

2F1

�

−n− 1, n+ 2;1;−β3
� =

1
3

�

2β − 2
Æ

β(β + 3) + 3
�

. (176)

Note that λ(1)c (β) =
β
18 a, where a is the endpoint of the cut in the Marčenko-Pastur distribution

(169).
To obtain the strong λ coupling expansion it is useful to recast the sum in (173) into its

Mellin-Barnes representation, that is

log∆Gm
βm ≃

9
2πi

∫

iR+ε
ds

2s+2 (3s − 1)ζ(2s+ 1)Γ (−s)Γ
�

s+ 3
2

�

2F1

�

−s− 1, s+ 2;1;−β3
�

(λ)s+1

p
π(s+ 1)2

,

(177)
where ε is a small positive number. If we close the contour in (177) on the rhs we recover the
small λ (173), while if we close the contour on the lhs we make contanct with the perturbative
expansion at large λ. Such perturbative expansion however truncates after a few terms and
we get14

log∆Gm
βm ≃ −3 (2β + 3)λ log(3) + log

�

β

3
+ 1

�

+ 24 log(A)

+ log(λ)− 2−
log(12)

2
+O

�

e−A1(β)λ1/2
�

,
(178)

14Note that we could have done exactly the same procedure by keeping κ instead of λ and the same conclusions
hold as long as we keep β fixed.
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A1

Figure 2: The four independent instantons actions in (179), (181), (182) as a func-
tion of β . Other actions will be an integer multiple of these four.

where A1(β) is the leading instanton action. For a generic value of β , we find numerically in
Appendix B, that the leading instanton action gives

A1(β)
p

λ=
2
p

6π
q

2β + 2
p

β(β + 3) + 3

p

λ . (179)

In particular in the limit β →∞ we have

A1(β)
p

λ=
p

6π
p
κ

β
+O

�

�

1
β

�2
�

. (180)

Therefore this instanton action vanishes in the limit β →∞. Consequently, we anticipate a
reorganization of (178) and the emergence of a new perturbative series in this limit. As we
discuss in subsection 5.3, this is indeed the case.

In addition, due to the splitting structure in (174), it follows that there is also another
instanton action which is

A2(β)
p

λ=
2
p

18π
q

2β + 2
p

β(β + 3) + 3

p

λ . (181)

It is natural to conjecture that there are also two other independent instanton actions which
are subleading w.r.t (179). These are

Bi(β)λ
1/2 = 2π

Ç

λ/λ
(i)
c (β) , i = 1, 2 , (182)

where λ(i)c (β) is the radius of convergence of the weak coupling expansion (175). These two
actions naturally interpolate between the two independent actions at β = 0, namely (158),
and the two independent actions at β → ∞, namely (193). We plot the four actions on
Figure 2. We notice that there is an interesting crossing between A2(β) and B2(β) happening
at β =

p
3− 3

2 . A more detailed discussion on these non-perturbative effects and their physical
meaning will appear elsewhere.

As a final remark, let us note that taking the β = n
m → 0 limit is also equivalent to setting

n= 0 from the very beginning

log∆Gm
βm

�

�

�

β=0
≃ log∆Gm

0 . (183)

29

https://scipost.org
https://scipost.org/SciPostPhys.20.2.033


SciPost Phys. 20, 033 (2026)

5.3 The Gm
n correlators at β =

n
m →∞

Let us now consider (172) in the limit β →∞, i.e. κ≫ λ. We have

lim
β→∞

log∆Gm
βm ≃

∑

k≥1

(−1)k23k+431−k
�

3k − 1
�

κk+1ζ(2k+ 1)Γ
�

k+ 3
2

�2

π(k+ 1)3Γ (k+ 1)2
. (184)

As before, it is natural to split this sum into

∑

k≥1

(−1)k23k+431−kκk+1ζ(2k+ 1)Γ
�

k+ 3
2

�2

π(k+ 1)3Γ (k+ 1)2
,

∑

k≥1

(−1)k23k+431−k3kκk+1ζ(2k+ 1)Γ
�

k+ 3
2

�2

π(k+ 1)3Γ (k+ 1)2
,

(185)

which have radius of convergence κ(1)c = 1/8 and κ(2)c = 3/8 respectively.
Note that β → ∞ means n ≫ m ≫ 1. This is different from taking m to be small in

the correlators Gm
n . Indeed our matrix model derivation of (172) necessarily requires m to be

large, while n can also be either fixed or large.
From the weak coupling expansion (184), one can easily see that

lim
β→∞

log∆Gm
βm ≃ −12

∫ ∞

0

ex

x(ex − 1)2

 

2+ J0(x
p

2κ)2 − 3J0

�

x

√

√2κ
3

�2!

. (186)

However, extracting the strong coupling expansion from (186) is not straightforward. We find
more convenient to use the Mellin-Barnes transformation of (184) which reads

lim
β→∞

log∆Gm
βm ≃

1
i

∫

iR+ε

23s+331−s (3s − 1)κs+1ζ(2s+ 1)Γ (−s)Γ
�

s+ 3
2

�2

π2(s+ 1)3Γ (s+ 1)
ds . (187)

If we close the contour in (187) on the r.h.s. we recover the weak coupling expansion (184)
while to get the strong coupling expansion we have to close it on the l.h.s. In the latter case
we have non vanishing residue at

s = 0,−1 , s = −
2n+ 1

2
, n≥ 1 , (188)

leading to

lim
β→∞

log∆Gm
βm ≃24 log(A) + log

�

κ

6
p

3

�

− 6κ log(3)− 2+ Fp(κ) +O(e−A1κ
1/2
) , (189)

where A1 > 0 is the leading instanton action which we will determine below (see (193)) and

Fp(κ) =
∑

n≥0

3 2−3n− 1
2

�

3n+ 3
2 − 1

�

(n+ 1)π−2n− 9
2κ−n− 1

2ζ(2n+ 3)Γ
�

n+ 1
2

�3

Γ (n+ 1)
. (190)

We see that in this regime there is an important difference w.r.t. the behaviour in (178) and
(155): the perturbative expansion at strong coupling does not truncate. Indeed the poles at
s = 0,1 are analogous of what we have in (178) and (155), while the poles at s = 2n+1

2 produces
a new, infinite series of perturbative corrections in 1/κ. Moreover the series expansion in the
second line of (189) is factorially divergent. A similar phenomenon was also observed in the
study of integrated correlators [26], we will comment more on this in section 6.
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Let us study the resurgence properties of the series in (190) and see how does it compare
to the exact answer (186). The first important observation is that Fp(κ) is not Borel summable
along the real axis since there is a singularity in the Borel plane located at

�

4π

√

√2
3

�2

, (191)

see Appendix C. However we can easily perform median Borel summation and we can easily
check numerically with very high precision that median summation of Fp(κ)matches precisely
the exact answer in (186)

1
p
κ

sF (
p
κ) = −12

∫ ∞

0

ex

x(ex − 1)2

 

2+ J0(x
p

2κ)2 − 3J0

�

x

√

√2κ
3

�2!

− 24 log(A) + 6κ log(3)− log(κ) + 2+
log(3)

2
+ log(6) ,

(192)

where A is the Glaisher constant and sF (
p
κ) denotes the median Borel summation of Fp, see

(C.4). We show the details in appendix Appendix C.
Therefore, in this limit, the resurgence analysis of the strong coupling expansion capture

the all the relevant non-perturbative effects. As a consequence, in this limit, we can extract
analytically the full non-perturbative structure from the large order behaviour of the coeffi-
cients in the Fp(κ). The analysis is shown in Appendix C. We find that the instantons actions
are integer multiple of the following two independent actions

A1
p
κ= 4π

Æ

2/3
p
κ , A2

p
κ= 4π

p
2
p
κ . (193)

Also in this case the two instantons actions are 2π
r

1
κ
(i)
c

where κ(i)c are the radii of convergence

of the two weak coupling series (185).

6 Integrated correlators in N = 4 SYM

One interesting generalization of extremal correlators in N = 4 are the so called integrated
correlators of half-BPS operators, see for instance [14,41] and reference therein. In this section
we apply our matrix model techniques to study such correlators in the SU(3) gauge theory. Let
us start by reviewing the standard notation. We follow [26,42] and denote half-BPS operators
in terms of the six real scalars of the theory ΦI , I = 1, · · · , 6.15 We have two independent single
trace operators

Φ2(x , y) = yI1
yI2

Tr
�

ΦI1(x)ΦI2(x)
�

,

Φ3(x , y) = yI1
yI2

yI3
Tr
�

ΦI1(x)ΦI2(x)ΦI3(x)
�

,
(194)

where yI are SO(6) null polarization vectors obeying y2 = yI y I = 0. Note that it is only for a
particular choice of the polarization vectors y that these operator are the φ2 and φ3 operators
in (16), see for instance [43]. Multi-traces operators can be obtain from product of the form

Φ
n2
2 Φ

n3
3 (x , y) = Φn2

2 (x , y)Φn3
3 (x , y) , (195)

where
∆
�

Φ
n2
2 Φ

n3
3

�

= 2n2 + 3n3 . (196)

15We would like to warn the reader that in this section, we are using the notation of the N = 4 algebra, whereas
in the previous sections, we used the notation of the N = 2 algebra.
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Since these are half-BPS conformal primaries, their two-point functions are three level exact.
Let us take

∆= 2n+ 3n3 = 2m+ 3m3 . (197)

We have




Φn
2Φ

n3
3 (x1, y1)Φ

m
2 Φ

m3
3 (x2, y2)

�N=4
R4 =

�

(y1 − y2)2

(x1 − x2)2

�∆
∆2

(4πImτ)∆
R∆n,m , (198)

where R∆n,m are some numbers that generically depends on the rank of the gauge group, see
e.g. [42, eq.(2.4)] and reference therein. In the SU(3) example we have

R2
1,1 = 4 , R3

0,0 =
40
9

, R4
2,2 = 40 , R5

1,1 =
224

5
, · · · (199)

Since the y dependence in the two-point function factorizes, we simply have




Φn
2Φ

n3
3 (x1, y1)Φ

m
2 Φ

m3
3 (x2, y2)

�N=4
R4 =

�

(y1 − y2)2

(x1 − x2)2

�∆
¬

φn
2φ

n3
3 φ

m
2 φ

m3
3

¶N=4

R4
, (200)

where φ2,3 are the operators in (16). The relation (200) is specific to two-point functions and
does not hold in general. Integrated correlators, in particular, are generally not extremal and,
therefore, cannot be reduced to two-point functions of the φk ’s.

For our purposes, it is convenient to work in a new basis of 1/2-BPS operators which we
denote by {Ψm

n }m,n≥0 and it is defined as follows. The Ψm
n operator is constructed starting from

Φn
2Φ

m
3 and then applying GS orthogonalization on R4 with respect to all operators Φ j

3Φ
k
2 such

that 3 j + 2k = 3m+ 2n and j < m. That is

Ψm
n (x , y) = Φn

2Φ
m
3 (x , y) +

∑

j,k

c j,kΦ
j
3Φ

k
2(x , y) , (201)

where the coefficients are determined by the GS procedure on R4 and the sum is subject to
the constraint 3 j+2k = 3m+2n with j < m. Let us stress that the scalar product used in this
GS procedure is the two point function in the N = 4 theory on R4. For example

Ψ2
0 = Φ

2
3(x , y)−




Φ2
3Φ

3
2

�N=4
R4




Φ3
2Φ

3
2

�N=4
R4

Φ3
2(x , y) = Φ2

3(x , y)−
1

24
Φ3

2(x , y) . (202)

In this new basis two point correlations take the form (we take m even for concreteness and
to lighten the notation)

〈Ψm
n Ψ

m
n 〉R4 =

detℓ,k=0,..., m
2

�

〈Φ2m+2n−3k−3ℓ
2 Φ2k+2ℓ

3 〉N=4
R4

�

detℓ,k=0,..., m
2 −1

�

〈Φ2m+2n−3k−3ℓ
2 Φ2k+2ℓ

3 〉N=4
R4

�

=
detℓ,k=0,..., m

2

�

〈φ2m+2n−3k−3ℓ
2 φ2k+2ℓ

3 〉N=4
R4

�

detℓ,k=0,..., m
2 −1

�

〈φ2m+2n−3k−3ℓ
2 φ2k+2ℓ

3 〉N=4
R4

� .

(203)

The operators Ψm
n correspond to the Om

n operators discussed in the previous sections. There-
fore from (134) and (135) we obtain

〈Ψm
n Ψ

m
n 〉R4 =

n!Γ (3m+ n+ 4)
3m+126m+2n+1π3m+2nImτ3m+2n . (204)
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We are interested in 4 point functions of the form16

〈Ψ0
1(x1, y1)Ψ

0
1(x2, y2)Ψ

m
n (x3, y3)Ψ

m
n (x4, y4)〉R4 =

y2
12

x2
12

y3m+2n
12

x3m+2n
12

�

Gfree
m,n + IHm,n(u, v,τ)

�

, (205)

where x i j = x i − x j , and u, v are the cross ratios

u=
x2

12 x2
34

x2
13 x2

24

, v =
x2

14 x2
23

x2
13 x2

24

. (206)

Gfree
m,n is the free theory correlator and I is fixed by superconformal Ward identity, see [42,

eq. (2.10)] and reference therein. All the nontrivial τ dependence is contained in the dynam-
ical term Hm,n(u, v,τ). Our main focus will be the integrated correlator

Gm,n = −
2
π

∫ ∞

0

dr

∫ π

0

dθ
r3 sin2 θ

u2
Hm,n(1+ r2 − 2r cosθ , r2,τ) . (207)

It was first shown in [14] that Gm,n can be computed from localization on S4. The starting
point is the N = 2∗ SU(3) sphere partition function, that is

ZS4 =

∫

R2

da1da2

∏

1≤i< j≤3

�

ai − a j

�2
ZG(a1, a2,µ)|Zinst(µ, a1, a2,τ)|2e−2πImτTr a2− 2π3/2

61/2 Imτ3 Tr a3

,

(208)
where µ is the mass of the adjoint hypermultiplet in the N = 2∗ theory and we are implicitly
using

a3 = −a1 − a2 , Tra2 =
3
∑

i=1

a2
i . (209)

The function ZG(a1, a2,µ) for the N = 2∗ SU(3) theory is given by

ZG(a1, a2,µ) =
1

H(µ)3
(H(a2 − a1)H(a3 − a2)H(a3 − a1))

2

∏

±H(a2 − a1 ±µ)H(a3 − a2 ±µ)H(a3 − a1 ±µ)

�

�

�

�

a3=−a1−a2

, (210)

where H(x) = G(1 + x)G(1 − x), G being the Barnes G-function. We noted by
Zinst(µ, a1, a2,τ) = 1 + O(e2πiτ) the instanton partition function of the N = 2∗ theory in
the ε1 = ε2 = 1 phase of the Ω background [28–31]. One important property of ZG and Zinst
is that they are even functions of µ, and they satisfy

∂µZG(a1, a2,µ)|µ=0 = ∂µZinst(µ)|µ=0 = 0 . (211)

In terms of the operators
�

Om
n

�′
defined in (48) the prescription to compute Gm,n simply reads17

4Gm,n
�

Gm
n

�N=4
=
∂ 2
µ

∫

R2 d2a
∏

1≤i< j≤3

�

ai − a j

�2
ZG(a1, a2,µ)e−2πImτTr a2 �Om

n

�′ �Om
n

�′

∫

R2 d2a
∏

1≤i< j≤3

�

ai − a j

�2
e−2πImτTr a2

�

Om
n

�′ �Om
n

�′

�

�

�

�

µ=0
, (212)

where we are using (209) and
�

Gm
n

�N=4
is given in (135).

16These correlators become extremal only when the polarizations vectors y are aligned, see [14].
17As before we set Zinst = 1, see footnote 7.
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6.1 Matrix models for integrated correlators

The matrix model description of extremal correlators [17] can be straightforwardly general-
ized to integrated correlators as well. This generalization has been applied to the so-called
“maximal-trace” family of operators in [24] using the approach of [23]. The resulting expres-
sion for this family of operators allows for the computation of the large n expression of Gm,n
at m fixed, but it is not suitable to control the m→∞ limit. See also [26, 44–46] for other
recent studies of the large n limit. In this section we show how our matrix model for extremal
correlators can be adapted to compute integrated correlators as well. Despite restricting our
analysis to the SU(3) case, this allows us to scale independently m, n→∞.

We closely follow the derivation of [24], and adapt the final result to our matrix model.
The operators

�

Om
n

�′
can be thought as orthogonal polynomials with respect to the measure

dξ=
∏

1≤i< j≤3

�

ai − a j

�2 �
�

a3=−a2−a1
e−2πImτTr a2

da1da2 , (213)

that is
∫

R2

dξ
�

Om
n

�′ �Ok
ℓ

�′
=
�

Gm
n

�N=4
δmkδnℓ . (214)

Consider the deformed measure

dξ̃(µ) =
∏

1≤i< j≤3

�

ai − a j

�2 �
�

a3=−a2−a1
e−2πImτTr a2

ZG(a1, a2,µ)da1da2 . (215)

The operators
�

Om
n

�′
are no longer orthogonal w.r.t. (215). Hence let us define a new set of

operator eOm
n = φ

n
2
eOm

0 , where

eOm
0 =

det





�

〈φ3m−3n
2 φ2n

3 φ
3m−3n′
2 φ2n′

3 〉
N=2∗

S4

�

n=0,...,m,
n′=0,...,m−1

�

φ3m−3n
2 φ2n

3

�

n=0,...,m





det
�

〈φ3m−3n
2 φ2n

3 φ
3m−3n′
2 φ2n′

3 〉
N=2∗
S4

�

n=0,...,m−1,
n′=0,...,m−1

, (216)

with

〈φa
2φ

b
3φ

c
2φ

d
3 〉

N=2∗

S4 =
1

ZS4

∫

R2

φa
2φ

b
3φ

c
2φ

d
3 dξ̃(µ) . (217)

This means that eOm
0 are obtained starting with φm

3 and by doing GS orthogonalization wrt
operators of the same dimension. It is important that in this procedure the scalar product we
use in GS is the two point function of N = 2∗ on S4. Since eOm

n are by construction orthogonal
to operators of the same dimension, it follows that

∫

R2

dξ̃(µ) eOm−2ℓ
3ℓ

eOm−2k
3k ∝ δkℓ . (218)

This is in complete analogy with (93), the only difference being that the scalar product is taken
with respect to the mass deformed measure (215). Now

�

∂ 2
µ

∫

R2

dξ̃(µ) eOm
0
eOm

0

�

�

�

�

µ=0
=

∫

R2

�

∂ 2
µ dξ̃(µ)|µ=0

�

�

Om
0

� �

Om
0

�

+ 2

∫

R2

dξ
�

∂µ eOm
0 |µ=0

�2
+ 2

∫

R2

dξOm
0 ∂

2
µ
eOm

0 |µ=0 .

(219)

34

https://scipost.org
https://scipost.org/SciPostPhys.20.2.033


SciPost Phys. 20, 033 (2026)

The second term is zero thanks to (211). Regarding the last term note that we have

eOm
0 = φ

m
3 +

m
2
∑

k≥1

ck(µ) eOm−2k
3k =⇒ ∂ 2

µ
eOm

0 |µ=0 =

m
2
∑

k≥1

∂ 2
µ ck(µ)|µ=0φ

3k
2 Om−2k

0 . (220)

Therefore the last term will vanish thanks to (214), and we simply have

∂ 2
µ

∫

R2

dξ̃(µ) eOm
0
eOm

0 |µ=0 =

∫

R2

�

∂ 2
µ dξ̃(µ)|µ=0

�

Om
0 O

m
0 . (221)

We further introduce the operators
�

eOm
n

�′
as

�

eOm
n

�′
=

det

 
�

〈 eOm
k
eOm
ℓ
〉N=2∗

S4

�

k=0,...,n,
ℓ=0,...,n−1

�

eOm
ℓ

�

ℓ=0,...,m

!

det
�

〈 eOm
k
eOm
ℓ
〉N=2∗
S4

�

k=0,...,n−1,
ℓ=0,...,n−1

. (222)

This is the analogous of (48) but in N = 2∗. We also have
�

eOm
0

�′
= eOm

0 . By repeating the
same argument as above we find

∂ 2
µ

∫

R2

dξ̃(µ)
�

eOm
n

�′ �
eOm

n

�′
|µ=0 =

∫

R2

�

∂ 2
µ dξ̃(µ)|µ=0

�

�

Om
n

�′ �Om
n

�′
. (223)

Finally

Gm,n =

�

Gm
n

�N=4

4

∫

R2

�

∂ 2
µ dξ̃(µ)|µ=0

�

�

Om
n

�′ �Om
n

�′

∫

R2 dξ
�

Om
n

�′ �Om
n

�′

=

�

Gm
n

�N=4

4

∂ 2
µ

∫

R2 dξ̃(µ)
�

eOm
n

�′ �
eOm

n

�′
|µ=0

∫

R2 dξ
�

Om
n

�′ �Om
n

�′ .

(224)

The crucial observation now is that
�

eOm
n

�′
are precisely the operators whose two point func-

tions are computed by the N = 2 matrix models discussed in section 5. Setting

M(α)
i, j =

*

�

φ2
3

φ3
2

�i

φ
σm
3 φ2

3⌊m/2⌋
�

φ2
3

φ3
2

� j

φ
σm
3 φ2

3⌊m/2⌋

+N=2∗

S4

, i, j = 0, . . . ,α− 1 , (225)

where now the vev is taken with respect to the N = 2∗ theory, in analogy with (68). We have

∫

R2

dξ̃(µ)
�

eOm
n

�′ �
eOm

n

�′
= Z−1

S4

deti, j=0,...,n(−∂2πImτ)i+ j
�

ZS4
detM(⌊m/2⌋+1)

m

detM(⌊m/2⌋)
m

�

deti, j=0,...,n−1(−∂2πImτ)i+ j
�

ZS4
detM(⌊m/2⌋+1)

m

detM(⌊m/2⌋)
m

�

=
detK(n+1)

m

detK(n)m

,

(226)

where K(α)m is the α×α matrix whose elements are

Ki, j =
(−∂2πImτ)i+ j

ZS4

�

ZS4

detM(⌊m/2⌋+1)
m

detM(⌊m/2⌋)
m

�

. (227)
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In particular, parallel to subsection 5.1, we find the following matrix model representation for
detM

detM(k)
m =

Z (σm)
J (k)

p
3

k

6k2+kσm (ZS4)k
〈Fm(x , Imτ,µ)〉(k)J , (228)

where the expectation value is w.r.t. the Jacobi model (124) and

Fm(x , Imτ,µ) =

∫ ∞

0

d y e−2πImτy y3m+3ZG(µ, x , y) , (229)

with
ZG(µ, x , y) = ZG(µ, a1(x , y), a2(x , y)) , (230)

and we are implicitly using the change of variable (51). The integrated correlator is now given
as

∆Gm,n = 4
Gm,n

�

Gm
n

�N=4
=

 

∂ 2
µ detK(n)m

detK(n)m

−
∂ 2
µ detK(n−1)

m

detK(n−1)
m

!

�

�

�

�

µ=0
. (231)

6.2 Double scaling limits

We now study the integrated correlators in the double scaling limits

n→∞ , Imτ→∞ , κ=
n

2πImτ
, m fixed, (232)

m→∞ , Imτ→∞ , λ=
m

2πImτ
, n fixed, (233)

m, n→∞ , Imτ→∞ , λ=
m

2πImτ
, κ=

n
2πImτ

fixed. (234)

Note that for integrated correlators we can use our matrix model representation to study the
limit (232) as well since, contrarily to the N = 2 story, here the representation (231) holds
for any n, m, Imτ.

6.2.1 m fixed and n→∞

Let us start by taking m= 0, which is the example studied in [24,26] and [44].18 In this case
we have

∂ 2
µ detK(n)0 = ∂ 2

µ det

∫ ∞

0

d y e−2πImτy y3

∫ 1

0

d x (x − 1)
1
2 x

1
2ZG(µ, x , y) (235)

=
∂ 2
µ

(n+ 1)!

∫

Rk
+

dk y
∏

i< j

(yi − y j)
2 y3

j e−
n
κ yi

�

∫ 1

0

d x (1− x)
1
2 x

1
2ZG(µ, x , y)

�

.

This is again a Wishart matrix model as we saw before. Hence G0,n can be simply written as
ratio of matrix models of type (235) in complete agreement with [24]. We now study the large
charge double scaling limit of the matrix models, that is

m= 0 , n→∞ , Imτ→∞ , κ=
n

2πImτ
fixed. (236)

18In [44] also cases with m ̸= 0, but always of O(1), are taken into account.
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Parallel to what we discussed in section 5, we can evaluate (235) in the large n limit as

∂ 2
µ detK(n)0

detK(n)0

�

�

�

µ=0
≃ ∂ 2

µ

1
n!

exp

�

∫ 4

0

d y ρ(0)MP(y)

∫ 1

0

d x (1− x)
1
2 x

1
2ZG(µ, x ,κy)

�

�

�

�

µ=0

≃
1
n!

∫ 4

0

d y ρ(0)MP(y)

∫ 1

0

d x (1− x)
1
2 x

1
2 ∂ 2
µZG(µ, x ,κy)

�

�

�

µ=0
,

(237)

where ρ(0)MP(y) is the Marčenko-Pastur distribution with endpoints a = 0, b = 4, see (A.5),
(A.9). This gives

G′0,n = (1+ κ∂κ)

∫ 4

0

d y ρ(0)MP(y)

∫ 1

0

d x (1− x)
1
2 x

1
2 ∂ 2
µZG(µ, x ,κy)

�

�

�

µ=0
. (238)

Expanding (238) at weak coupling we find the following all order expression

∆G0,n ≃
∑

k≥1

48
(−1)k+123kΓ

�3
2 + k

�2

πΓ (1+ k)2
6+ k+ k2

(1+ k)(2+ k)(3+ k)
ζ(2k+ 1)κk , (239)

in complete agreement with [24,26].
Let us consider other examples where m is fixed but m ̸= 0. Let us start with m = 2. Now

the detM2
2 is the determinant of a 2× 2 matrix and we get

ZS4

detM(2)
2

detM(1)
2

≃
1728
π







∫
π
3

0

dθ
288

sin4 3θ

sin2 3θ
2

ZG(µ, x(θ ), 3κ)−

�

∫
π
3

0
dθ
12 sin2 3θZG(µ, x(θ ), 3κ)

�2

∫
π
3

0 2dθ sin2 3θ
2 ZG(µ, x(θ ), 3κ)






,

(240)
where we used the trick (146) and performed the change of variables

x =
cos 3θ + 1

2
. (241)

Setting for simplicity q(3κ,µ)≡ ZS4
detM(2)

2

detM(1)
2

we find

∆G2,n ≃ (1+κ∂κ)
∫ 4

0

d y ρ(0)MP(y)∂
2
µ q(yκ,µ)|µ=0

=
∑

k≥1

48
(−1)k+123kΓ

�3
2 + k

�2

πΓ (1+ k)2
p2(k)ζ(2k+ 1)κk ,

(242)

with

p2(k) =
362880+ 341136k+ 380844k2 + 80116k3 + 41809k4 + 2104k5 + 706k6 + 4k7 + k8

(1+ k)9
.

(243)
Empirically we find for generic m

∆Gm,n ≃
∑

k≥1

48
(−1)k+123kΓ

�3
2 + k

�2

πΓ (1+ k)2
pm(k)ζ(2k+ 1)κk ,

pm(k) =
1

(k+ 1)3m+3

3m+2
∑

j=1

v(m)j k j ,

(244)
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where pm(k) satisfies

pm(k) = (2k+ 1)−1 , k = 1, . . . , 3m+ 2 , (245)

pm(k) =
1
k
+O

�

k−2
�

. (246)

In particular (246) gives pm(n)/pm(n + 1) → 1 as n →∞, therefore all the weak coupling
series (244) will have the same radius of convergence for any fixed value of m, that is

κ∗ =
1
8

. (247)

Following the argument explained in section 7.1 of [47], we expect non-perturbative correc-
tions at strong coupling with instanton action 2π

p

1/κ∗.
Note that the conditions (245) and (246) are enough to determine all the v(m)j ’s. From

(246) we immediately find v(m)3m+2 = 1, and (245) gives the set of constraints

1
2n+ 1

(n+ 1)3m+3 − v(m)0 − n3m+2 =
3m+1
∑

j=1

v(m)j n j , n= 1, . . . 3m+ 1 ,

v(m)0 = (1)3m+3 ,

(248)

which can be solved efficiently for any give m. For completeness, one finds

v(m)3m+1 =
1
2
(2+ 3m) , v(m)3m =

1
8
(2+ 3m)(24+ 77m+ 78m2 + 27m3) , . . . (249)

Proceeding as before we can extract the large κ behavior of (244) using the Mellin-Barnes
transform. We find

∆Gm,n ≃ Km + 6 log
κ

2
+
∑

k≥1

Γ
�

k+ 1
2

�3
π−2k− 5

2 2−
1
2−3k

Γ (k+ 1)
ζ(2k+ 1)

qm(k)

κk+ 1
2

+O
�

e−2π
p

8κ
�

,

qm(k) = 48k2

∑⌊ 2+3m
2 ⌋

j=0 w jk
2 j

(−22+3m)(2k− 1)
�3

2 − k
�

2+3m

, qm(k) =

¨

24k+O
�

(k−1)0
�

, m even,

−423+O
�

(k−1)0
�

, m odd,

Km = 12+
2

m+ 1
+ 12γE . (250)

For the first few m’s we find

⌊ 2+3m
2 ⌋
∑

j=0

w jn
2 j

�

�

�

�

m=0
= 23+ 4n2 ,

⌊ 2+3m
2 ⌋
∑

j=0

w jn
2 j

�

�

�

�

m=1
= −12

�

1627+ 1160n2 + 48n4
�

,

⌊ 2+3m
2 ⌋
∑

j=0

w jn
2 j

�

�

�

�

m=2
= 71697105+ 82281776n2 + 10030944n4 + 178944n6 + 256n8 .

(251)

Let

a(m)n =
Γ
�

n+ 1
2

�3
π−2n− 5

2 2−
1
2−3n

Γ (n+ 1)
ζ(2n+ 1)

qm(n)

κn+ 1
2

, (252)
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be the coefficients in the doubly factorially divergent series in (250). Then we can write it as

a(m)n =
4
π

∑

ℓ≥1

�

ℓ4
p

2π
�−2n−1

Γ (2n+ 1)

 

−24+
∑

k≥1

c(m)k (4
p

2π)k
∏k

i=1(2n+ 1− i)

!

. (253)

We can adapt the analysis in Appendix C to the coefficients (253). The series is not Borel
summable on the real axis,19 and its discontinuity is given by

disc(m)(κ) = ie−4π
p

2κ

�

24+
∑

n≥1

c(m)n

κn/2

�

+ i
∑

ℓ≥2

e−4πℓ
p

2κ

�

24+
∑

n≥1

c(m)n

ℓnκn/2

�

. (254)

Since the sums over n on the r.h.s. are divergent, to make sense of them we need to replace
them by their median Borel summation as in Appendix C. Note that we have only one instanton
action

4π
p

2= 2π

√

√ 1
κ∗

, (255)

as opposed to the case of N = 2 SQCD where we always find two independent sectors. How-
ever notice that the action (255) matches one of the two we find in the SQCD example (193).
Furthermore, the instanton action is completely m−independent. The c(m)n coefficients can be
easily derived and the list is available upon request. For m= 0 they agree with [26, eq. (3.39)].

6.2.2 n fixed and m→∞

We focus on n = 0 for concreteness, but the same analysis holds for any other fixed value of
n. In fact since ∂τ ∼ m−1∂λ, the effect of considering n ̸= 0 is subleading in the double scaling
limit

m→∞ , Imτ→∞ , λ=
m

2πImτ
fixed. (256)

In this case we simply have

∆Gm,0 =

 

∂ 2
µ detM⌊m/2⌋+1

m

detM⌊m/2⌋+1
m

−
∂ 2
µ detM⌊m/2⌋m

detM⌊m/2⌋m

!

�

�

�

�

µ=0
. (257)

Hence we recover a representation only in terms of a Jacobi matrix model, see (228). Following
the analysis in section 5.1, ∆Gm,0 can be evaluated as

∆Gm,0 ≃
∫ 1

0

σJ(x)∂
2
µZG(µ, x , 3λ)|µ=0 , (258)

whereσJ(x) is the Jacobi density (150). Expanding the integral we find the following all order
expression

∆Gm,0 ≃
∑

k≥1

(−1)n+122−n31+nΓ (2n+ 2)

Γ (n+ 1)2
ζ(2n+ 1)λn , (259)

that has radius of convergence

λ∗ =
1
6

. (260)

This looks exactly the same as the SU(2) expression derived in [24, eq.(5.130)], see also
[26, 44]. This may seems strange as here we are considering the SU(3) theory and we are

19We nevertheless expect its median summation to agree with the Mellin-Barnes representation as it happens
for m= 0, see [26].
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taking the large m limit. However, it could the that in this particular sector of the SU(3)
theory, the large charge expansion is captured by an EFT which is similar the one describing
rank 1 theories discussed for instance in [15,24,48].

Equation (259) gives

∆Gm,0 ≃ 12

∫ ∞

0

d x
x

sinh2 x

�

1− J0(2x
p

6λ)
�

, (261)

which evaluated at strong coupling reads

∆Gm,0 ≃ 12+ 12γE + 6 log
3λ
2
+ 24

∑

n≥1

�

4πn
Æ

3/2λK1(4nπ
Æ

3/2λ)− K0(4nπ
Æ

3/2λ)
�

. (262)

Again we only have a single instanton action

4π

√

√3λ
2
= 2π

√

√ 1
λ∗

, (263)

as opposed to extremal correlator in N = 2 SQCD. The action (263) matches one of the two
we have in SQCD in the limit n fixed m→∞ in (158).

6.2.3 m, n→∞ with m/n fixed

We now consider the double scaling limit

m, n→∞ , Imτ→∞ , λ=
m

2πImτ
, κ=

n
2πImτ

fixed. (264)

Following the footprint laid out in section 5.2 we get to

∆Gm,βm ≃
�

1+ κ∂κ + β∂β
�

�

∫ b

a
dyρMP(y)

∫ 1

0

dxσJ(x) log (ZG(x ,κy))

�

, (265)

where a and b are as in equation (169) and as before β = κ/λ= n/m. Evaluating the integral
we find

∆Gm,βm ≃
∑

k≥1

(−1)k+122−k31+kΓ (2+ 2k)ζ(2k+ 1)
Γ (k+ 1)2 2F1

�

−k, 1+ k, 1,−
β

3

�

λk . (266)

The β = 0 result immediately reproduces equation (259). The radius of convergence of (A.17)
is given by

λ∗(β) =
1
6

lim
n→∞

2F1

�

−n, n+ 1, 1,−β3
�

2F1

�

−n− 1, n+ 2, 1,−β3
� =

1
6

3+ 2β − 2
p

β(3+ β)
3

. (267)

Note that we have λ∗(0) = 1/6 in agreement with (260), and as β →∞

βλ∗(β) =
1
8
= κ∗ , (268)

in agreement with (247). To obtain the strong λ expansion we recast the sum into its Mellin-
Barnes representation as in (177) and close the contour on the l.h.s. We find

∆Gm,βm ≃ 12 (1+ γE) + 6 log
3
2
+ 6 log

�

1+
β

3

�

+ 6 logλ+O
�

e−A(β)
p
λ
�

, (269)
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where γE is the Euler gamma and A(β) is the leading instanton action. Following the numerical
approach described in Appendix B, we find the leading instanton action to be

A(β) =
6π

q

β +
p

β(β + 3) + 3
2

. (270)

For fixed β , the perturbative series in (269) truncates, and it matches with the perturbative
part of (261). For β →∞ we have

A(β)
p

λ=
3
p

2π
p
κ

β
+O

�

1
β2

�

, (271)

and therefore the leading instanton action vanish in this limit causing the emergence of a new
perturbative series as we discuss in the next section.

It is also natural to conjecture that there is another independent instanton action given by

B(β) = 2π
Æ

1/λ∗(β) , (272)

where λ∗(β) is the radius of convergence of the weak coupling expansion (267). This action
naturally interpolates between the action at β → 0 in (263), and the action at β → ∞ in
(277).

6.2.4 The β →∞ limit

We now consider the β →∞ limit of (266), and compare it with the expansions in subsub-
section 6.2.1. More precisely we will consider the following two limits

1 We first take m, n → ∞ s.t. λ,κ are fixed as in subsubsection 6.2.3. Then we take
n
m = β →∞.

2 We first take n→∞ s.t. κ, m are fixed as in subsubsection 6.2.1. Then we take m→∞.

Let us first investigate these two limits in the weak ’t Hooft coupling region, that is
|κ|< k∗ = 1/8 From (266) we get

lim
1
∆Gm,n ≃

∑

k≥1

48
(−1)k+1Γ

�3
2 + k

�2

πΓ (1+ k)2
1

2k+ 1
ζ(2k+ 1)(8κ)k . (273)

On the other hand, from (244), in the limit m→∞, we find

lim
2
∆Gm,n ≃

∑

k≥1

48
(−1)k+1Γ

�3
2 + k

�2

πΓ (1+ k)2

�

lim
m→∞

pm(k)
�

ζ(2k+ 1)(8κ)k . (274)

Both in (273) and (274) we used that the series converge uniformly20 in the region
|κ|< k∗ = 1/8 and therefore we can switch limits and sum. We have

lim
1
∆Gm,n ≃ lim

2
∆Gm,n , |κ|< κ∗ . (275)

20It is enough to note that coefficients of the series in (244) are all smaller than 48ζ(3)(8|κ|)k in absolute value.
Since

∑

k 48ζ(3)(8|κ|)k converges for |κ|< 1/8, uniform convergence follows from the Weierstrass M-Test.
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Let us now investigate these limits in the strong κ coupling region. Since the large κ expansion
is divergent we can not easily switch sum and limit, and we can only approach this regime using
the limit 1 . From (273) by performing Mellin-Barnes we get

lim
1
∆Gm,n ≃ 6

�

2+ 2γE + log
κ

2

�

+
3
p

2
π
p
κ
+ 2

∑

k≥1

Γ
�

k+ 1
2

�3
π−2k− 5

2

Γ (k+ 1)
ζ(2k+ 1)

12k

(8κ)k+
1
2

. (276)

The structure in (276) is similar to the one at finite m in (250), except for the term 3
p

2
π
p
κ

, which
interestingly does not appear at any finite m.

The resurgent analysis of (276) is completely analogous to the ones in (250). The leading
instantion action is

4π
p

2 , (277)

which agrees with (255). For the discontinuity we find

disc(∞)(κ) = ie−4π
p

2κ

�

24+
∑

n≥1

c(∞)n

κn/2

�

+ i
∑

ℓ≥2

e−4πℓ
p

2κ

�

24+
∑

n≥1

c(∞)n

ℓnκn/2

�

, (278)

where the c(∞)n can be easily derived and the list is available upon request. Notice that, the
sums over n on the r.h.s. are divergent. Hence to make sense of the r.h.s. we think of each sum
over n as its median Borel summation along the positive real axis.

7 Outlook

In this paper we studied extremal and integrated correlators in four dimensional SU(3) SCFT
in the regime where we have a large number of insertions, i.e. large R-charge. We found that a
new description emerge involving a set of two coupled matrix models: a Wishart model and a
Jacobi model. The size of the matrices in these models corresponds to the maximal number of
insertions for each of the two single trace operators: φ2 and Φ2(x , y) insertions are controlled
by the Wishart model, while φ3 and Φ3(x , y) insertions are controlled by the Jacobi model.
This description gives us a new analytic handle into these regimes and the corresponding non-
perturbative effects. However, several open directions remain to be investigated. Let us list
some of them.

• In this work we focus on SU(3) gauge theories, however it should be possible to find
a systematic generalization to all SU(N) gauge groups. One simply needs to find the
good change of variables which generalizes (51). It is natural to expect that the φ2
and Φ2(x , y) insertions will always be controlled by a Wishart model, while the other
insertions should be controlled by some Jacobi-like21 models with possible multi-cuts
phases starting at N = 4.

• Using our matrix models, we derive the behaviour of extremal and integrated correla-
tors in the regime where we have a large number of insertions, including some non-
perturbative effects. It would be very interesting to interpret our results from the point
of view of an EFT and use what we learn in this simplified model to go beyond the
realm of supersymmetric gauge theories. For example in the context of the O(N)model,
see [49–55] for some recent developments in this context.

21Meaning that the eigenvalues only take value in a compact set.
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• In this paper, we provided analytic predictions for some non-perturbative effects in the
double scaling limits where Imτ scale with the number of insertions. In some cases (see
subsection 5.1, subsection 5.3, subsubsection 6.2.1, subsubsection 6.2.2), we have a full
prediction for these effects. However, this is not the case in general. For instance, in the
large m, n regime at fixed β , we know the instanton actions but we do not know the full
non-perturbative structure. Additionally, if we work at fixed Imτ, we also expect non-
perturbative effects that are exponentially suppressed as

p
nImτ and

p
mImτ. It would

be interesting to extract the precise form of all these effects from the matrix models
perspective and provide a detailed physical framework for them.

• For N = 2 SQCD, we have successfully derived a matrix model description for extremal
correlators in the regime where the number of φ3 insertions is large. This description
remains valid regardless of whether the number of φ2 insertions is large or small. How-
ever, our technique requires a large number of φ3 insertions. Despite this, we expect
that a matrix model description will still emerge even when the number of φ3 insertions
is small, in particular given that the scaling limit (104) is well-defined. This is a peculiar-
ity of the mixing structure in N = 2 SQCD which it would be important to understand
better. More generally, it would be interesting to understand at which extent the N = 2
mixing structure gets modified at subleading orders in the ’t Hooft expansion.

• For integrated correlators in N = 4 SYM, our matrix models are expected to encode
all subleading effects in 1/n and 1/m. This both in the double-scaling limit, where we
scale Imτ, and in the “pure” large charge limit, where Imτ remains fixed. Analyzing the
latter, deriving an all-order expression for these subleading effects and finding an EFT
interpretion would be very interesting.

• A beautiful feature of integrated correlators is their connection to modularity [41, 42,
56–58]. Exploring how this relationship manifests in matrix models and investigating
the potential links to the holomorphic anomaly approach in [59] would be particularly
insightful.

• Extremal correlators in rank 1 theories exhibit the integrable structure of a semi-infinite
Toda chain [25,27,35,36]. It would be interesting to explore whether our matrix model
representation could help identify a more general integrable structure, if any, underlying
higher rank correlators.22

We hope to report on some of these questions in the near future.
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A Matrix models

Here we can collect some details about the matrix models which are relevant for our analysis.

A.1 Wishart-Laguerre model

Let W be an hermitian non-negative n×n matrix. Schematically, a Wishart matrix model with
potential V is a matrix integral of the form

Z =
1

Vol(U(n))

∫

dWeV (W ) . (A.1)

Here we are interested in a particular example of such matrix model where the potential is

V (W ) = −nTrW − (3m+ 3)Tr log W . (A.2)

After gauge-fixing, we can express the matrix integral as an ordinary multidimensional integral
over the eigenvalues zi of W . More specifically we have the following n dimensional integral

Z (m)MP (n) =
1
n!

∫

Rn
+

dnz
∏

i< j

(zi − z j)
2

n
∏

i=1

e−nzi z3m+3
i . (A.3)

This model is exactly solvable and is commonly known as the Wishart-Laguerre model, see for
instance [60–63] for more details and references. We have

Z (m)MP (n) =
1
n!

�

1
n

�n(n+3m+3) n−1
∏

j=0

Γ ( j + 2)Γ ( j + 3m+ 4) . (A.4)

For the propose of this paper, it is also useful to define

Z (m)(n) =
1
n!

∫

Rn
+

dn y
∏

i< j

(yi − y j)
2

n
∏

i=1

e−2πImτyi y3m+3
i , (A.5)

which is simply related to (A.4) by a change of variables and we have

Z (m)(n) =
�

2πImτ
n

�−n(n+3m+3)
Z (m)MP (n) . (A.6)

In the limit
n, m→∞ ,

n
m
= β fixed, (A.7)

the density of eigenvalues for (A.3) follows a Marčenko-Pastur distribution [64]

ρMP(z) =
1

2πz

Æ

(b− z)(z − a) , z ∈ [a, b] , (A.8)

where
a = 2+ 3β−1 − 2

Æ

1+ 3β−1 , b = 2+ 3β−1 + 2
Æ

1+ 3β−1 . (A.9)

We also define expectation values in the model (A.3) as

〈 f (z, ·)〉(n,m)
MP =

1
n!

∫

R+
dnz

∏

i< j(zi − z j)2
∏n

i=1 e−nzi z3m+3
i f (zi , ·)

Z (m)MP (k)

=
1
n!

∫

R+
dn y

∏

i< j(yi − y j)2
∏n

i=1 e−2πImτyi y3m+3
i f (2πImτ

n yi , ·)

Z (m)(n)
.

(A.10)
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If log f (zi , ·) is subleading in the large n limit (A.7), we have

〈 f (z, ·)〉(n,m)
MP = exp

�

n

∫ b

a
ρMP(y) log( f (y, ·)) +O(1)

�

. (A.11)

We note the momenta in the Wishart-Laguerre model (A.3) as

τ
(n,m)
k =

1
n!

∫

R+
dnz

∏

i< j(zi − z j)2
∏n

i=1 e−nzi z3m+3
i

∑n
i=1 zk

i

Z (m)MP (k)
. (A.12)

These can also be computed exactly and we have (see e.g. [65] and reference therein)

τ
(n,m)
k = 2k

n−1
∑

ℓ=0

Γ (ℓ+ 1)
Γ (ℓ+ 1+ 3m+ 3)

Q(k+ 3m+ 3,ℓ, 3m+ 3) , (A.13)

where

Q(r,ℓ,α) =
ℓ
∑

i, j=0

ci(ℓ,α)c j(ℓ,α)Γ (1+ r + i + j) , ck(ℓ,α) =
Γ (ℓ+α+ 1)(−ℓ)k
ℓ!k!Γ (α+ k+ 1)

. (A.14)

We have

τ
(n,m)
0 = n , τ

(n,m)
1 = 2n(n+ 3m− 3) , τ

(n,m)
2 = 4n(3m+ n+ 3)(3m+ 2n+ 3) , . . . (A.15)

The analysis of the momenta is useful to compute the loop expansion of the correlators in
N = 2 SQCD. As an example let us look at the two loops expression of the N = 2 correlators
(81). This can be view as a momentum in the N = 4 matrix model. So we just need to
compute the moment (A.13) in the Wishart-Laugerre ensamble. The result for the two loop
correction reads

〈Θm
n Θ

m
n 〉

N=2
R4

�

�

�

2loops
= 〈Om

n O
m
n 〉

N=4
R4

�

1−
3ζ(3)
(2πImτ)2

�

τ
n+1,m
2 −τn,m

2

�

+
15ζ(3)
π2Imτ2

�

. (A.16)

By making everything explicit we get

〈Θm
n Θ

m
n 〉

N=2
R4

�

�

�

2loops
=

36σm n!Γ (3m+ n+ 4)
3m+122m+1(2πImτ)3m+2n

(A.17)

×
�

1−
3ζ(3)
(4πImτ)2

�

(24n(n+ 4) + 80) + 36m(2n+ 3) + 36m2
�

+
60ζ(3)

4π2Imτ2

�

,

where the last term comes from expanding the normalization factor Z−1
S4 .

A.2 Jacobi model

In a Jacobi matrix model we integrate over n×n Hermitian matrices J , which are non-negative
and bounded above by the identity. More specifically we have

∫

dJ(det J)c−1(det(1− J))d−1e−V (J) , (A.18)

where in general c = n2 − n + 1 and b = n1 − n + 1, ni ∈ N and V (J) is a potential.23 We
refer to [60, 65–68] for more details and references on these models. For our propose it is
convenient to take n1 = n2 = n and take a potential of the form

−Vs(J) =
1
2

log Tr ((1− J)) +
�

−
1
2
+ s
�

logTr (J) , s ≥ 0 . (A.19)

23The ni are reminiscent of the fact that Jacobi matrices are written using two Wishart matrices of size ni × n,
i = 1, 2.
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After gauge-fixing, the matrix integral becomes an ordinary multidimensional integral over
the eigenvalues x i ∈ [0,1] of J , that is

Z (s)J (n) =

∫

[0,1]n
dn x i

∏

i< j

(x i − x j)
2

n
∏

i=1

(1− x i)
1/2 x

− 1
2+s

i , s ∈ R . (A.20)

This model is exactly solvable (via the Selberg integral formula)

Z (s)J (n) =
1
n!

n−1
∏

j=0

Γ
�

j + 3
2

�

Γ ( j + 2)Γ
�

j + s+ 1
2

�

Γ ( j + n+ 1+ s)
. (A.21)

At large n, for fixed s, the eigenvalues distribution is completely determined by the vander-
monde interaction as the potential

e−Vs(x i) = (x i − 1)1/2 x
− 1

2+s
i , (A.22)

is subleading in the large n limit. The corresponding eigenvalue density is

σJ(x) =
1

π
p

x(1− x)
, x ∈ [0, 1] . (A.23)

We define expectation values in the model (A.20) as

〈 f (z, ·)〉(n)J =
1
n!

∫

[0,1]n dn x i
∏

i< j(x i − x j)2(x i − 1)1/2 x
1
2+s
i f (zi , ·)

Z (s)J (k)
. (A.24)

If log f (zi , ·) is subleading in the large n limit, we have

〈 f (z, ·)〉(n)J = exp

�

n

∫ 1

0

σJ(y) log( f (y, ·)) +O(1)
�

. (A.25)

B Non-perturbative effects: Numerical study

In this section, we perform a numerical study of the leading exponentially small effects ap-
pearing in (178). Let us define

Gnp(β ,λ) =
9

2πi

∫

iR+ε
ds

2s+2 (3s − 1)ζ(2s+ 1)Γ (−s)Γ
�

s+ 3
2

�

2F1

�

−s− 1, s+ 2;1;−β3
�

(λ)s+1

p
π(s+ 1)2

−
�

−3 (2β + 3)λ log(3) + log
�

β

3
+ 1

�

+ 24 log(A) + log(λ)− 2− log(2)−
log(3)

2

�

,

(B.1)
where the first term is the Mellin-Barnes representation of log∆Gm

βm, see (177), while the
second line is the perturbative part as λ →∞, see (178). Following our discussion around
(178), we expect

Gnp(β ,λ) =O
�

e−A1(β)
p
λ
�

. (B.2)

We want to test (B.2) and extract the value of A1(β). For that it is convenient to define

F(β ,λ) = 2
p

λ (log Gnp(β ,λ+ 1)− log Gnp(β ,λ)) . (B.3)
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Figure 3: The Richardson transforms RN (1,λ) defined in (B.5), for N = 2, 4,7, 10.
The red line is −2π

p
6/3. We see a clear convergence pattern.

20 80

1

2

Figure 4: The red dots represent the action A1(β) computed numerically by applying
the method of Richardson transforms. The blue line is the action (B.7).

In this way we have
F(β ,λ) = −A1(β) +O

�

λ−1
�

. (B.4)

We also define the N th Ricardson transform of F(β ,λ) as

RN (β ,λ) =
N
∑

k=0

(−1)k+N (k+λ)N F(β , k+λ)
k!(N − k)!

= −A+O
�

λ−1−N
�

. (B.5)

The propose of RN is simply to accelerate the convergence. A graphical results for β = 1 is
shown in Figure 3. We find numerically that

A1(1) = 5.13020 . . .=
2π
3

p

6 . (B.6)
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1000 2000 3000

0

1

-1

Figure 5: Singularities of the Borel transform (C.2) in the ξ-plane. These are ob-
tained by using the Pade approximation of the function (C.2).

We repeat this procedure for several values of β , see Figure 4 and we find

A1(β) =
2
p

6π
q

2β + 2
p

β(β + 3) + 3
. (B.7)

C Resurgence at β →∞

C.1 Borel summation

We are interested in studying the resurgence structure of (190), that is

Fp(κ) =
∑

n≥0

κ−n− 1
2 an ,

an =
3 2−3n− 1

2

�

3n+ 3
2 − 1

�

(n+ 1)π−2n− 9
2ζ(2n+ 3)Γ

�

n+ 1
2

�3

Γ (n+ 1)
.

(C.1)

Since an ∼ (2n)!, we define its Borel transform as

BF (ξ) =
∑

n≥1

an

(2n+ 1)!
ξn . (C.2)

The new series (C.2) is now convergent but has a finite radius of convergence due to the
presence of singularities. In our example these are located along the real axis at

ξ=

�√

√2
3

4π

�2

, (C.3)

see Fig. 5. In particular this means that (C.2) is not Borel summable on the real line. However
we can define median Borel summation as

sF (z) =
1
4z

�∫

Reiε

e−
p
ξ/
p

zBF (ξ)dξ+

∫

Re−iε

e−
p
ξ/
p

zBF (ξ)

�

dξ , z ∈ R+ . (C.4)
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We performed the median summation (C.4) numerically by using the Padé-Borel method. We
find that24

1
p
κ

sF (1/κ) = −12

∫ ∞

0

ex

x(ex − 1)2

 

2+ J0(x
p

2κ)2 − 3J0

�

x

√

√2κ
3

�2!

− 24 log(A) + 6κ log(3)− log(κ) + 2+
log(3)

2
+ log(6) ,

(C.5)

where A is the Glaisher constant.

C.2 Non-perturbative effects from large order behaviour

We follow [71], see also [72,73] for a review and list of references. The large order behaviour
of the coefficients ak can be easily read off from (C.1) and we have

ak ∼
1
π

∑

ℓ≥1

(ℓA1)
−2k−1 Γ (2k+ 1)ℓ−2

�

c0 +
∑

n≥1

cn(A1)n
∏n

i=1(2k+ 1− i)

�

+
1
π

∑

ℓ≥1

(ℓA2)
−2k−1 Γ (2k+ 1)ℓ−2

�

d0 +
∑

n≥1

dn(A2)n
∏n

i=1(2k+ 1− i)

�

,

(C.6)

where

A1 =

√

√2
3

4π , A2 = 4π
p

2 , (C.7)

are the instantons actions and cn, dn are determined by the following equations

72(k+ 1)Γ
�

k+ 1
2

�2

π2Γ (k+ 1)2
=
∑

n≥0

�q

2
34π

�n
cnΓ (2k− n+ 1)

Γ (2k+ 1)
,

−
24(k+ 1)Γ

�

k+ 1
2

�2

π2Γ (k+ 1)2
=
∑

n≥0

�p
24π

�n
dnΓ (2k− n+ 1)

Γ (2k+ 1)
.

(C.8)

This implies that dn = −
cn

31+n/2 and for the first few cn terms we have

c0 =
72
π2

, c1 =
27
q

3
2

π3
, c2 = −

189
32π4

, c3 =
513

q

3
2

256π5
, c4 = −

26973
16384π6

, · · · (C.9)

These coefficients are also factorially divergent: cn ∼ n!. From (C.6) we can also read off the
discontinuity of the Borel summation as we cross the real line. To see this we first write

ak =
1

2πi

∮

Fp(z−1)
p

zzk+1
dz . (C.10)

Let us assume analyticity of sF (1/
p

z) in the z plane except on the real axis starting at the
point where we have the poles of the Borel transform. We also assume dacay at infinity. Then
we have

ak =
1
πi

∫ ∞

0

disc(1/z)
zk+1

, (C.11)

24This can probably be derived analytically following [69,70] and reference therein.
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where disc(κ) is the discontinuity of the Borel summation across the cut on the real axis. From
(C.11) and (C.6) it follows that

disc(κ) =
i
2

e−A1
p
κ
∑

n≥0

cn

κn/2
+

i
2

e−A2
p
κ
∑

n≥0

dn

κn/2

+
i
2

∑

ℓ≥2

e−A1ℓ
p
κ
∑

n≥0

cn

ℓ2+nκn/2
+

i
2

∑

ℓ≥2

e−A2ℓ
p
κ
∑

n≥0

dn

ℓ2+nκn/2
,

(C.12)

where, to make sense of the divergent sums over n on the right-hand side, we interpret each
sum over n using its median Borel summation along the positive real axis.

D Summary of conventions for the operators

Here, we provide a list of the various operators appearing in this paper. The distinctions
between these operators are based on:

• The scalar product used in the Gram-Schmidt (GS) orthogonalization procedure.

• Whether we orthogonalize with respect to operators of the same dimension only, or if
we also include operators of lower dimensions.

The list of operators we used in the text is the following.

1. Elementary Coulomb branch operators in a rank 2, four dimensional N = 2 theory are
denoted by

φm
k =

�

Trϕk
�m

, k = 2, 3 , m≥ 0 , (D.1)

where ϕ is the complex scalar in the N = 2 vector multiplet. To compute the correlation
functions of (φk)m in the N = 2 theory on R4, we need to go to S4 and compute the
correlation functions of a different class of operators denoted by

�

φm
k

�′
, k = 2,3 , m≥ 0 . (D.2)

These are defined starting from φm
k and by doing GS orthogonalization on the sphere,

where we orthogonalize w.r.t. operators of lower dimension. The scalar product used in
this GS procedure is the two-point function of N = 2 SQCD on the S4. An example is
given in (76). Then we have

〈φm
n φ

m
n 〉

N=2
R4 = 〈

�

φm
n

�′ �
φm

n

�′〉N=2
S4 . (D.3)

2. When working with N = 4 SU(3) SYM is convenient to use another basis of operators,
denoted Om

n , where
Om

n = φ
n
2O

m
0 , m, n≥ 0 . (D.4)

The Om
0 operators are constructed starting fromφm

3 by performing GS orthogonalization
on the sphere, where we ortogonalize w.r.t. operators of the same dimension. In this
construction the scalar product used in the GS procedure is the two point function in the
N = 4 theory on the sphere. See (60), some examples are given in (61). To compute
the correlation functions of Om

n on R4, we need to go on S4 and compute the correlation
functions of a different class of operators, denoted by

�

Om
n

�′
, m, n≥ 0 , (D.5)
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with the convention that
�

Om
0

�′
= Om

0 . The
�

Om
n

�′
operators are constructed starting

from Om
n and by doing GS on the sphere, where we orthogonalize w.r.t. operators of the

lower dimension but which have the same index m. Also in this case the scalar product
used in the GS procedure is the two point function in the N = 4 theory on the sphere.
See (48). Then we have

〈Om
n Om

n 〉
N=4
R4 = 〈

�

Om
n

�′ �Om
n

�′〉N=4
S4 . (D.6)

Note that we can compute correlation functions of Om
n in N = 2 SQCD as well. However

in this case (D.6) does not hold. We also note

�

Gm
n

�N=4
= 〈Om

n Om
n 〉

N=4
R4 . (D.7)

3. When working with N = 2 SU(3) SQCD is convenient to use another basis of operators
denoted by

Θm
n , m, n≥ 0 . (D.8)

The operator (D.8) is constructed starting from φn
2φ

m
3 and doing GS orthogonalization

on R4 w.r.t. all operators of the form φ i
2φ

j
3 such that 2i + 3 j = 2n+ 3m with j < m. In

this construction the scalar product used in the GS procedure is the two point function
in N = 2 SQCD on R4. Some examples are given in (79). To compute the correlation
functions of Θm

n on R4, we need to go on S4 and compute the correlation functions of a
different class of operators, denoted by

�

Θn
m

�′
, m, n≥ 0 . (D.9)

These are constructed starting from φn
2φ

m
3 and then applying GS orthogonalization on

S4 w.r.t. all operators of the form φ i
2φ

j
3 such that 2i + 3 j ≤ 2n+ 3m with j < m. In this

case the scalar product used in the GS procedure is the two point function of N = 2
SQCD on S4. Then we have

〈Θm
n Θ

m
n 〉

N=2
R4 = 〈

�

Θm
n

�′ �
Θm

n

�′〉N=2
S4 . (D.10)

We also note
�

Gm
n

�N=2
= 〈Θm

n Θ
m
n 〉

N=4
R4 . (D.11)

4. To make contact with the matrix models in N = 2 SU(3) SQCD it is useful to introduce
the operators

eΘm
n , m, n≥ 0 . (D.12)

This operator is defined starting from φn
2φ

m
3 and then applying GS orthogonalization on

S4 with respect to all operators of the form φ i
2φ

j
3 such that 2i+3 j = 2n+3m with j < m.

In this case the scalar product used in the GS procedure is the two point function in the
N = 2 theory on S4. These operators are similar to

�

Θm
n

�′
, but now we only perform

GS orthogonalization with operators of the same dimension, whereas in
�

Θm
n

�′
we also

include operators of lower dimensions in the orthogonalization process. An important
point is that in the ’t Hooft limits (102), (103), (104) we have

〈eΘm
n
eΘm

n 〉
N=2
S4 ≃ 〈

�

Θm
n

�′ �
Θm

n

�′〉N=2
S4 , (D.13)

as discussed in section 3.
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5. When considering integrated correlators in N = 4 SYM we also need to introduce the
operators

eOm
n , m, n≥ 0 . (D.14)

The operator eOm
n is defined starting fromφn

2φ
m
3 and then applying GS orthogonalization

on S4 with respect to all operators of the form φ i
2φ

j
3 such that 2i + 3 j = 2n+ 3m with

j < m. In this case the scalar product used in the GS procedure is the two point function
in the N = 2∗ theory on S4. These are analogous to the operators eΘm

n but the scalar
product now is taken w.r.t. the N = 2∗. To compute the correlation functions of eOm

n in
N = 4 on R4, we need to go on S4 and compute the correlation functions of a different
class of operators, denoted by

�

eOm
n

�′
, (D.15)

with the convention that
�

eOm
0

�′
= Om

0 . The
�

eOm
n

�′
operators are constructed starting

from eOm
n and by doing GS on the sphere, where we orthogonalize w.r.t. operators of the

lower dimension but which have the same index m. Also in this case the scalar product
used in the GS procedure is the two point function in the N = 2∗ theory on the sphere,
see (222).
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