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Abstract

Quantum Chromodynamics (QCD) governs the strong interactions of hadrons, but ex-
tracting its physical spectrum remains a significant challenge due to its non-perturbative
nature. In this Letter, we introduce a novel data-driven approach that systematically en-
forces the fundamental principles of analyticity, crossing symmetry, and unitarity while
fitting experimental data. Our Bootstrap Fit method combines S-matrix Bootstrap tech-
niques with non-convex numerical optimization, allowing for the construction of a scat-
tering amplitude that adheres to first-principles constraints. We apply this framework
to pion-pion scattering, demonstrating that it accurately reproduces low-energy predic-
tions from Chiral Perturbation Theory (¥ PT) while also providing a non-perturbative
determination of the total cross-section that is consistent with experiment. A key fea-
ture of our approach is its ability to dynamically generate physical states, yielding a
spectrum of resonances consistent with QCD. Most notably, we predict the existence of
a genuine doubly charged tetraquark resonance around 2 GeV, which could be observed
in B-meson decays at LHCb. These results establish a robust new pathway for extracting
hadronic properties directly from scattering data while enforcing fundamental physical
constraints.
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1 Introduction

Scattering amplitudes are fundamental objects in quantum field theory. They contain informa-
tion about the interaction among elementary particles and connect theoretical predictions with
experimental observations. In strongly coupled theories such as Quantum Chromodynamics
(QCD), the analytic structure of scattering amplitudes reveals crucial insights into hadronic
states and resonances. However, extracting precise physical information from scattering data
remains a formidable challenge due to the inherently strongly coupled nature of QCD at low
energies.

The non-perturbative S-matrix Bootstrap [1,2] provides a powerful, first-principles frame-
work for studying hadronic amplitudes in a model-independent way, enforcing key physical
constraints such as analyticity, crossing symmetry, and unitarity. It has been widely used to
explore the spaces of scattering amplitudes, but it has not yet been applied to directly fit ex-
perimental data. In this work, we take a step in this direction by introducing the Bootstrap Fit,
a method that integrates Bootstrap methods with non-convex optimization to extract hadronic
properties while maintaining theoretical consistency.

Unlike traditional approaches such as Roy equations [3,4], which generally rely on fixed t
dispersion relations and can only be used in a limited low-energy domain, our method offers
a fully non-perturbative way to extract scattering amplitudes at all energies. By enforcing
analyticity, crossing symmetry, and unitarity while fitting experimental data, the Bootstrap
Fit provides a new pathway for modeling strong interactions without relying on perturbation
theory and exploring its properties across all energies.
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Figure 1: The vertical extent of each box represents the uncertainty in the mass
determination, while the horizontal width corresponds to I'/2 with T being the par-
ticle’s decay width (uncertainties in the width are not shown). Mass and width are
expressed in the same units. The gray boxes indicate the experimental spectrum,
whereas the red boxes correspond to our Bootstrap estimate. Particles marked with
an asterisk are still subject to numerical systematics, as discussed in Section 5.

As a proof of concept, we perform this fit on pion-pion (717t) scattering, one of the most fun-
damental processes in QCD. Pions, as pseudo-Goldstone bosons of chiral symmetry breaking,
provide an ideal testing ground for non-perturbative techniques. Using this novel approach,
we achieve the following key results:

(i) Accurate low-energy predictions, consistent with Chiral Perturbation Theory (y PT).

(ii) Non-perturbative extraction of the total cross-section, in agreement with experimental
data.

(iii) Self-consistent generation of QCD resonances, including the well-known states that cou-
ple to pions.

(iv) A concrete, experimentally testable prediction: a genuine doubly charged tetraquark
resonance around 2 GeV, potentially observable in B-meson decays at LHCb.

Our method offers a systematic, data-driven strategy for modeling QCD amplitudes while
rigorously enforcing fundamental constraints. These results pave the way for future applica-
tions of Bootstrap methods in other hadronic scattering processes.

Our starting point is to consider the scattering amplitude of gapped pions. For simplicity,
we choose the units by setting m, = 1, neglecting isospin-breaking effects. In this setup, pions
belong to the vector representation of O(3), and the 2 — 2 scattering amplitude n¢n? — 7¢r¢
takes the form:

T (s, t,u) = A(s]t, )86 + A(tls, u)556¢ + A(uls, £)595¢ (1)

where s, t,u are the Mandelstam variables and s+t+u=4. By crossing symmetry, we also have
A(s|t,u) = A(s|u, t).

Pions are the lightest states of the QCD spectrum. A two-particle 7 state has G-parity
G = +1, and parity P = (—1)’, where J is the spin of the particle. Only resonances with
the same quantum numbers can be produced in a scattering experiment. In figure 1, the
experimentally observed spectrum below 1.4 GeV is represented with gray boxes, adding only
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Figure 2: High-energy behavior of the S, partial wave phase shift. The blue curve
represents our best fit, while the light blue region includes amplitudes with subop-
timal y? values (see Section 4). The phase shift exhibits a distinctive jump around
s & 200, indicating the presence of a resonance. In the inset, we extract the mass
parameter as m = +/s*, where where s* is the location of the zero in the complex
s-plane of S(()Z)(s).All quantities are expressed in units of m, = 1.

the p3 above this energy.! From the amplitude 7;0151 (s, t,u) constructed following the Bootstrap
Fit procedure, we predict the spectrum and the low-energy parameters. In figure 1, we present
in red the Bootstrap estimate of the spectrum. Both the mass and the width of the resonances
match the experimental measurements, except for those denoted by an asterisk still affected
by numerical systematics. The last column has the exotic quantum numbers 2*(0**). There
is no such state in the PDG [5]. With its [ = 2 quantum number, this state is a genuine
Tetraquark [6,7], predicted at ~ 2 GeV with a width of 600 MeV. As a prelude to our results, in
figure 2 we show the predicted phase shift in the S, wave. At first glance, it would be difficult
to anticipate from the experimental data that the phase shift would reverse direction at higher
energies. This behavior is a genuine prediction of our Bootstrap procedure which incorporates
full crossing and unitarity of the scattering amplitude. Before discussing in detail the physics
of this amplitude we shall describe the steps of our strategy.

The rest of this paper is structured as follows. In Section 2, we discuss the S-matrix Boot-
strap ansatz, where we solve a semi-definite optimization problem to construct a candidate
amplitude AZ**%(s|t,u) depending on a small set of free parameters ©. Section 3 describes
our Particle Swarm Optimization (PSO) algorithm, which minimizes the y? function for the
parameters © by comparing it with experimental and lattice data. In Section 4, we present the
results of our Bootstrap Fit. We then test our amplitude in Section 5 against Chiral Perturba-
tion Theory (¥ PT) and other experimental data, finding strong agreement. Finally, in Section
6, we discuss potential improvements and future research directions.

2 Building the fit model

A key element of our methods is the numerical non-perturbative S-matrix bootstrap. This
method was introduced in [1,2] as a way to study the space of amplitude, deriving bounds on

ITo express the spectrum in dimensionless units we use m, = 137.3 MeV] the average between charged and
neutral pions.
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low-energy observables. It has since been applied in various physical systems [8-25]. Specifi-
cally, its application to the scattering amplitudes of pions was revived in [26] and extended to
the massless case in [27]. In [28], the authors refined the allowed region found in [26] using
additional positivity constraints at low energy. By performing hypothesis testing using relative
entropy, they selected the region of low energy parameters that matches QCD low energy data
and yPT. In [29], they extracted the spectrum finding hints of emerging Regge trajectories.
In [30,31], the authors used several low energy constraints below the two-particle threshold,
and form factors constraints computed in perturbative QCD at energy above 2 GeV, to select
a region in parameter space that nicely agrees with experimental phase shifts and low energy
data. Simultaneously, the Bootstrap of large-N 7t amplitudes was kicked off in [32] and [33],
and generalized by including photons and matching with the chiral anomaly in [34]. Finally,
including a minimal amount of spectrum assumptions, a Bootstrap candidate for the large-N
QCD amplitude was found in [35].

In the following, we layout the S-matrix Bootstrap construction of the non-perturbative
7 scattering amplitude used in this Letter.

2.1 The analytic bootstrap ansatz

We parametrize the pion amplitude with the p-ansatz [2,26] constructed to be analytic and
crossing symmetric.? For our problem, it is convenient to introduce an extended version of the
p-ansatz, the multi-foliation ansatz. We call foliation, a sum of the form

Fslew= > al%pa(sY (o) +pa @™+ D B(0s (1) 0o (W) +pe () po(t)™),

0<n+m<N n+m<N
1<n<m

(2)
where p,(s) = \/_—m is a conformal map from the cut plane to the unit disk with center

p,(8—0)=0. F é\’ (s|t,u) is manifestly symmetric in t, u which automatically enforces crossing
symmetry. The multi-foliation ansatz is then obtained by summing over different centers o € .

A s e,u) = Fio(slt,u). (3)

oEY

The intuition behind this operation is simple. A single foliation ]-'g approximates best the
amplitude in the region |s| ~ o. For single-scale problems, tuning o to the desired scale is
enough to achieve fast convergence [18,22].3

The pion amplitude is a multi-scale function: it features chiral physics at the scale s ~ 1,
several sharp resonances of different spin ats o< Aéc p between s ~ 30 and s ~ 100, and inelas-
tic effects kicking in at the KK threshold s ~ 50.* Therefore, we choose ¥ = {20/3, 30,50, 86}.
We detail the numerical implementation in Appendix A.

2.2 The unitarity constraints

The ansatz (3) is not manifestly unitary for arbitrary values of the free parameters agf’n{ and

/351‘;)1 We impose unitarity as a numerical constraint on those coefficients. This is conveniently
performed by projecting the amplitude on a set of partial waves diagonalizing the amplitude in

2Here we assume maximal analyticity. See [21,36,37] for a complementary Bootstrap approach that uses only
the rigorous analyticity domain proven by Martin [38].

3By fast convergence we mean that there is a o which minimizes the difference between the true amplitude
and the foliation | A — 77| at fixed N.

“It is also possible to consider foliations with different branch points. This might help to encapsulate the KK
threshold, and obtain a better fit of the data (see also section 4).
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angular momentum and flavor. First, we decompose the amplitude into the isospin channels

TOs, t,u) = 3A(s|t,u) + A(t|s,u) + Auls, t), 4)
TO(s, t,u) = A(tls,u) — Auls, t), (5)
T@(s, t,u) = A(tls,u) + Auls, t), (6)

and then project into partial waves

1

t?)(s) - ﬁ f_1 d cos OP,(cos 0)TW(s, 0), 7

where cos6 = 1+ 2t/(s —4). Finally, unitarity for partial waves becomes the probability
conservation condition |S§I)| <1 for anys > 4, any £, and I, with SLEI) =1+ %tﬁ”.
Experimental data show a pronounced inelasticity around s ~ 50 at the KK threshold
where the process mm — KK goes on-shell, especially in the S, channizl). The probability
I

conservation must be then replaced by the stronger condition ISEI)I <n, .

condition as an SDP inequality of the form®

We impose this

ReS(s), ne(s) —ImS(s), (8)

I Re
U = (nz(5)+ mS(s),  ReS(s), )_ 0
As for the functions ngn(s), we use the mean value of the phenomenological parametriza-

tion for the “big-dip” scenario discussed in [42].° These functions should be regarded as an
additional phenomenological input.”

2.3 Soft theorems and spectrum assumptions

In [26], it was shown that the low energy parameters of the pion amplitude, such as scatter-
ing lengths, are well inside the allowed region determined by the general S-matrix Bootstrap
constraints. To restrict the allowed region, it is necessary to impose additional conditions on
the amplitude. To this end, we consider two types of constraints: soft theorems, and spectrum
assumptions.

Soft theorems are the consequence of spontaneously broken chiral symmetry. If pions
were massless, the amplitude would vanish .4 — 0 when any of the momenta of the particles
become soft. As the pions are massive, this behavior is corrected by quantum effects and is no
longer exact [44]. Nevertheless, the existence of low energy zeroes in the partial waves is a
prediction of y PT [45]. For this reason, we impose that t(()o)(zo) =0, and t(()z)(zz) = 0 for some
0 < 29,2, < 4. We refer to these constraints as chiral zeroes conditions.

The physical spectrum is encoded into the position of pole singularities in the second sheet
of the 2 — 2 scattering amplitude. Using the elastic unitarity condition, it is possible to relate
those resonance poles to zeros of the S-matrix (not the amplitude!) in the first sheet.

To make an assumption on the spectrum, we impose conditions of the form le’)(sR) =0,
which we call resonance zeros, where sy is the complex mass squared of the particle and (£, 1)
its quantum numbers.

>The effect of inelastic constraints in the S-matrix Bootstrap has been discussed in [39]. The Bootstrap of
full multi-particle processes has been only recently developed for branon scattering amplitudes in two space-time
dimensions [40]. Inelasticities were also obtained as an output of a Bootstrap procedure in [41].

SFor simplicity, we do not take into account the error on this parametrization.

7It would be interesting to consider the general mixed system of pions and kaons, and obtain the inelasticity as
a result of the procedure. See [10,12,43] for S-matrix Bootstrap works on mixed-amplitudes.

8At tree-level in yPT: z, = 1/2, and 2, = 2.


https://scipost.org
https://scipost.org/SciPostPhys.20.2.034

e SciPost Phys. 20, 034 (2026)

Kink for the best fit

O =02
4y 022, Allowed region for
7= 0.367,z, = 2.04 ai¥ =022,
—~0.038 Zp = 0.365, z, = 2.055

Obj(0)=al“> cosd + aéz) sin @ H

—-0.042

N~@ ,
W
—0.046 ‘ ‘
~\0ﬁ/6.o4 0.05

(0)
0

D

Figure 3: Examples of kinks in the space of scattering lengths a; ", agl). In blue, we
show the kink and corresponding allowed region obtained in [26]. This kink and
its allowed region depend on three parameters: {a(()o),zo,zz}. In green, we show the
position of the kink for the best-fit parameters obtained in this manuscript. The red
point and error bars represent the experimental measurement; see also Table 2. We
observe that while the kink obtained in [26] is inconsistent with the experimental
data, the best-fit kink found here is consistent with it. On the left, we represent the

target functional for 6 = 257/18.

In this work, we assume the existence of four resonances: one for the p(770) in the P
wave, the two fy’s in the S;,” and one f, in the S, wave. We only assume a minimal spectrum.
All other resonances are not put in by hand but emerge dynamically from the fit, appearing as
zeros of the S-matrix in the partial waves.

Finally, we stress that we remain agnostic about the numerical values of both chiral and
resonance zeros. Their positions are predictions of the fit.

2.4 The target functional

The final step in constructing our fit model is selecting the Bootstrap target functional. While
there are, in principle, infinitely many possible choices, not all are equivalent. For our pur-
poses, we found it convenient to adopt the approach developed in [26]. To illustrate why;,
consider the most general ansatz (3). Assigning specific values to the S, scattering length'®

aéo) 51)’ agz)} scat-

and the chiral zeros 2, and z,, we find that the allowed region for the {a
tering lengths exhibits a kink, as shown in figure 3. Changing the values of the {a(()o),zo,zz}
parameters, it is possible to move this kink closer to the experimentally measured scattering
lengths (the red point in figure 3). When this occurs, the extremal amplitude at the kink closely
resembles the pion amplitude.

In this case, the scattering lengths and subleading threshold coefficients align well with ex-
perimental data, and the corresponding amplitude contains both the o, and the p resonances.
However, although the o position agrees with the data, the p width is larger than observed
experimentally.!! This suggests that by adding the spectral assumption, it may be possible to
develop a robust fit ansatz for the pion amplitude.

“We call the resonances f;, fosfy's- - to differentiate them. We will use similar notation in other channels. In

the S, channel, we do not include the o in this list.

0Scattering lengths are defined from the threshold expansion of the partial amplitudes
Re tE”(s) = 2k”(a2” + k2 bE,I) +...), where k? = s/4 —1 is the center of mass momentum.

'We tried to fine-tune the triplet {a(()o), %9, %} to match the experimental values of o and p, but without success.
We conjecture that by fine-tuning additional low energy constants it would be possible to generate the p in the
correct position dynamically.
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The Bootstrap problem formulated to construct the fit model for the pion amplitude can
be summarized as follows.

Fit Ansatz
; _ (0) 2 2 2 _2
Given 6—{9,% ,zo,zz,mp,mfo,mfo,,mfz}.

Maximize Obj(0),

in Aansatz(s’t’u)
constt. by t(#)=2al”, tP(z)=0, tP(z,)=0, ©
D)2y (0). 2 \_
h (mp)—O, So (mfo)—O,
0 2 y_ 0 2\
SO (mfo/)_oa Sz (mfz)_o’
s> 4, U >0, for (€N, 1=0,1,2.
The objective we maximize is given by the linear combination
Obj(8) = agl) cos O + a(()z) sin@, (10)

which depends on the angle 8. This objective is a normal functional and is effective at selecting
“kinks” [11]. To understand this, note that this objective maximizes the amplitude in the
{ago),agl)} space at a point where the tangent vector is orthogonal to (agl) cos G,agz) sin0).
At a kink, where multiple tangents exist, many normal functionals naturally converge to the
kink point. For © < 6 < 37/2, this functional span the boundary of the allowed blue region
in figure 3. In the left inset, we show a typical choice of angle 6 that will select the kink in the
{a(()o),agl)} space.'?

The quantities collectively denoted by © are the parameters of the fit and the input for
the optimization problem (9). In this problem, four parameters Q,a(()o),zo,zz are real, while
the mass square are complex. Their real and imaginary parts correspond respectively to the
physical mass and width of the resonance. In total, the size of the parameter set in |©| = 12.
We solve this problem using the standard SDPB solver [46,47]. The corresponding extremal
amplitude depends on the choice of ©. Next, we will explain how to optimize on ©.

3 Gradient free optimization and particle swarm

For any choice of ©, the optimal solution of the Bootstrap problem (9) yields a model for the
scattering amplitude A%**%(s|t,u). To choose ©, we construct the 22(©) using the Bootstrap
amplitude and the experimental data, and we minimize it. The dependence of the model
AL (s|t,u) is non-linear in ©, hence we expect the 22(©) to be a non-convex function.

In this Letter, we explore an algorithm especially suited to this class of problems, the Par-
ticle Swarm Optimization algorithm (PSO) [48].!% The PSO is a standard algorithm designed
for solving non-convex problems, with a wide range of applications—see [49] for an introduc-
tion. The PSO is also gradient-free and does not require the computation of derivatives of the
Bootstrap solution in ©.'%

12We could consider a different objective Obj'(8, ¢) = a(()o) cos ¢ sin 6 +a(()2) sin ¢ sin +a§1) cos 6, and replace the
a(()o) parameter in (9) with a new angle ¢. This would lead to an equivalent formulation of the Bootstrap ansatz
(9). From this view, it is evident we are moving along the two-dimensional boundary of the three-dimensional
parameter space of the scattering lengths. This can be generalized by adding an arbitrary number of low energy
observables, which amounts to scanning over a larger space of amplitudes.

13We are grateful to Balt van Rees for pointing out this method.

14As explained in [50], it is possible to efficiently compute the gradient of a Bootstrap problem solved with the

interior point method as the one implemented in SDPB.
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£ 20 36 52 68 84 100

Figure 4: The four channels used to fit the pion amplitude. The points respectively
in orange and green are experimental and lattice data. The thick blue curve is the
best fit, the light blue cloud is given by all the curves with sub-optimal y2. Notation:
Sy stands for the (I,£) = (0,0) channel, P for the (1, 1), S, for the (2,0), and D, for
the (0, 2).

We start with n,, particles at random positions Ggi) to which we assign random velocities
v(()l). At step n, we update their positions following the rule

O]

Vn+1

®
en+1

= wvr(li) +cry (@S) —Xr(li)) +cory (@T(Ii) - Yn) )

®
n+1°

=W +y an

n
The velocity of the i-th particle at step n+1 is thus a linear combination of its previous velocity,
the distance to its position with the lowest y2, denoted by Xr(li) and the distance with the
overall best position among all particles Y,,. At each step, we first compute the XZ(GS)) for
each particle, then evaluate the various parameters to perform the step.

Three parameters control the algorithm performance: the inertia w, the cognitive coef-
ficient c;, and the cooperation coefficient c,.!> The convergence property of the algorithm
depends on the choice of these three coefficients.'® The details of our implementation of the
PSO algorithm, which contains an additional adaptive velocity prescription as in [51], can be
found in Appendix B.

4 Bootstrap fit results

We construct the y2(©)

5'_3XP_ 5Ansatz ; 2
@)= > ( - (s)), (12)

exp
iedata set A 5i

using experimental and lattice phase shifts & pr, where the index i stands collectively for the
quantum numbers (I,£) = {(0,0),(1,1),(2,0),(0,2)}, and the energy s; of the measurement.

5The r, , are random numbers uniformly distributed between [0, 1], and are drawn at each step.
1611 other versions of the algorithm, those parameters can be promoted to be dynamical.

9
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Table 1: Our estimate of the fit parameter compared and corresponding values
quoted in the literature. Experimental values of the resonances are given by the
PDG average [5].

© Bootstrap Fit Literature
al? 0.217 +0.002 0.2196 + 0.0034 [58]
% 0.368 + 0.008
% 2.040 + 0.004
m,, (5.546 £ 0.005) (5.555 +0.015)
+i(0.538+0.002) +1(0.528 £ 0.013)
mg, | (7.18+0.04)+i(0.26£0.02) | (7.25%0.11)+i(0.21£0.07)
my (9.8 +0.2)+i(1.7+0.1) (9.8+0.7)+i(1.3£0.9)
mg, | (9.26£0.03)+i(0.69£0.04) | (9.2620.08)+i(0.73£0.08)
0/n 1.328 £ 0.026

Our ansatz for the phase shift is obtained by projecting A3*** in partial waves and using the
definition Sg = |Sg|exp(2idg).

The input data used in (12) are from [52-56], except for the S, wave. The data in the
Sy channel above s ~ 20 extracted from the old experiments are often incompatible and
suffer from unknown systematic errors. Following [57], we used only a selection of data
points.!” Close to the threshold, the experimental situation was cleared by the CERN experi-
ment NA48/2 [58]. We also include lattice data from the RBC and UKQCD collaborations in
the Sy and S, channels extrapolated at the physical pion mass [59].18

The result of the Bootstrap fit is shown in figure 4. The orange data points are experimen-
tal, the green are taken from the lattice. The dark blue curve is the best fit with minimum
2%(©) ~ 40. We do not assign a statistical meaning to the value of the y2, but take it as a
likelihood measure. The largest contribution to the y2 comes from the P wave, with y2 ~ 30,
where the experimental error is almost negligible. We plan to investigate this channel with
more care in the future, replacing the phase shift data with the determination from the pion
form factors [60, 61], and with lattice extrapolations [62]. The second largest contribution
of order ten is due to the S, wave. Here we observe a systematic error in reproducing the
phase above the KK threshold s ~ 50 (the y2 below this energy is of order one). We believe
this is due to the lack of an explicit threshold in our ansatz at that scale, as corroborated by
the slower convergence of the Bootstrap problem, see also Appendix A. Both S, and D, waves
have y2 of order one.

We run the PSO algorithm for Nj,, = 60 steps, using n, = 10 particles. We explore 600
points in the © parameter space and at each point, we construct the full analytic amplitude
solving the Bootstrap problem (9). To estimate errors we consider a subset of amplitudes,
and compute the weighted average using the value of the y2. We observe that 50% of our
set have ¥2 < 100, and 15% have y? < 50. We compare the errors estimated using these
two cutoffs and find that those obtained with the looser one are a factor of two larger. The
light-blue curves in figure 4 are drawn from amplitudes with y2(©) < 50. In the remainder of
this paper, we will follow the same color scheme.

17We are grateful to Jose Ramon Pelaez for highlighting this point.

8For the lattice data points, the errors on the phase shift and the energy are strongly correlated. We do not
include this effect in this work. In this case, we use the isospin symmetric value of the pion mass m, = 135 MeV
to express energies in dimensionless units.

10
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Figure 5: Partial wave amplitudes té” in the real strip 0 < s < 4. The black line is
the Bootstrap prediction, dashed lines are different approximations from yPT [63].

In the inset in figure 4, we zoom in on the NA48/2 and lattice data close to the threshold.
The point at the kaon mass s &~ 12 is from lattice [59]. This point is crucial to help stabilize
the amplitude between the threshold and the cluster of points around s ~ 40.

In Table 1, we list our estimate for the fit parameters and the corresponding errors. The
error in this table is conservative and estimated using all the points with y2(@) < 100 corre-
sponding to half of the whole dataset of amplitudes produced.

Beyond the statistical error, there are three more sources of systematics. The first con-
cerns the convergence of the Bootstrap model .AY*(s|t,u) in equation (3) that depends on
Nyqrs the number of free variables agl"’rgl, and [5,5‘2 We used two ansatzes respectively with
Nyrs = 397 and N, = 547. All the results we quote in this paper are taken from the latter.*’
The difference between the fit parameters estimated from the two ansatzes is comparable with
the statistical error unless stated otherwise. The second source comes from the PSO search
algorithm, which does not guarantee finding the global minimum. We checked the stability of
our fit by performing different searches varying the search parameters that produced almost
the same result. The last source of systematics comes from the choice of the Bootstrap func-
tional. In this case, we have tested an alternative Bootstrap formulation obtaining the same
fit.

5 Predictions

The advantage of our strategy is that the result of the fit is a full analytic amplitude. Next, we
study its properties away from the region directly constrained by the fit.

5.1 Amplitude below threshold

The yPT expansion is a reliable approximation of the pion amplitude at low energy. In figure
5, we plot the partial waves téo), tgz), and tgl) of our best fit (the solid black line) in the sub-
threshold region 0 < s < 4, and we compare it with perturbation theory [63]. The tree level,
denoted with the dashed green line is given by

©_2s—1 [ ST @_ 2=s

- , _ , , 13
o 32mf2 1 96mf2 0 16mf2 (13)

where f, is the pion decay constant. The higher loop expressions are more involved and are
also plotted in figure 5. The two chiral zeros z,, and z, are also visible in the figure. We
emphasize that the only input in this region is the existence of the two chiral zeros, not their
position.

19To demonstrate the numerical robustness of our physical predictions, we performed more runs using different
foliation parameters. The detailed parameters and results are summarized in C.
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Table 2: Except for the values of a(()z) taken from [58], all other threshold parameters
are taken from [64].

Bootstrap Fit Literature
a? | (—0.432+£0.001) x 107! | (—0.444£0.012) x 107"
a | (0.380+0.002) x 107! (0.379 £0.05) x 107!
b 0.265 % 0.030 0.276 % 0.006
b | (—0.797+0.002) x 10" | (—0.803+0.012) x 10~
b | (0.61£0.02) x 1072 (0.57£0.01) x 1072
al? (0.53+0.11) x 1072 (0.175 £ 0.003) x 1072
a$? (0.51£0.18) x 1073 (0.170 £ 0.013) x 1073
al! (1.5+0.4) x 1074 (0.56 £ 0.02) x 1074
s/m?
(2) P T L Il L Il L Il L Il L Il L Il L d
1.05¢ | Sz (S) | L 60 80 100 120 140
-0.02F
~0.04t
2 L
L L L n Il L Il L 1 L im” _0.067
20 40 6W0 ~0.08f
> —0.12} o
0.95F ol 07(s
Phenomenological 0.14r ™2 (s)
Parametrization

Figure 6: Top panel: Elasticity of the D, wave as a function of s/ mi. The black
line represents the parametrization from [57]. Bottom panel: Phase shift of the D,
wave compared with the available experimental data. The green and orange points
correspond to the two possible phase determinations reported in [56].

Next, we extract the threshold parameters from our amplitude and compare them with
the values of [64] in Table 2. We find a very nice agreement for the leading and sub-leading
threshold coefficients for all waves below £ = 2. The scattering lengths we extract are different
for higher spins but of the same order. It would be interesting to investigate the reason for this
discrepancy.

5.2 The D, partial wave

In figure 6, we plot the elasticity |S£2)| and the 622) phase shift prediction. The color scheme
follows the one defined in figure 4. The data for the phase shift are taken from [56], orange and
green correspond to two possible determinations. We compare the elasticity profile with the
phenomenological parametrization from [57]. It is interesting to notice a dip in the unitarity
around s ~ 90. The dip is insensitive to Bootstrap systematics. We think that the emergent
particle production in this channel is a consequence of the inelasticity profile injected in the
D, wave. This effect is compatible with our expectation that including mixed amplitudes with
kaons and pions might lead to a correct prediction for the inelasticity.
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Figure 7: Determinations of real Re m, and imaginary part Imm, of the mass of the
o. The black ellipse highlighted in the inset is our Bootstrap determination.

Table 3: Experimental values of the resonances are taken from [5].

Prediction PDG average

m, | (2.99+0.02)+i(2.09+0.02) | (4.3+1.5)+i(3.3+2.6)

my | (9.5%0.6)+i(0.55%+0.05) | (10.7%0.3)+i(1.45 £ 0.05)
m,, | (16.7£0.6)+i(0.7£0.2) | (12.3+0.1)+i(0.68 % 0.05)
my | (14.6+0.3)+i(2.4£0.1) ?

5.3 Spectrum

Beyond the spectrum assumed and fitted using the experimental data, we also observe several
zeros dynamically generated in our construction.

We begin by discussing the f;(500) resonance, commonly referred to as the o. We summa-
rize the phenomenological determinations of its position in figure 7. The pink ellipses denote
all the estimates of its complex mass reported in the PDG since 2001 [5]. The blue ellipse is
the PDG average. Our estimate is represented by the black ellipse highlighted in the inset.

To estimate the position of the o we look for a zero at low energy in the S(()O) S-matrix
using the Newton method. We repeat the operations for all amplitudes with y2(©) < 50, and
perform a weighted average to predict the mass and determine the error. The red dots in the
inset are the individual determinations from this sample. Our final estimate is reported in
Table 3. In figure 8, we also show the density plot for |S(()O)| in the upper-half complex s plane.
The left-most zero is the o. In the same plot, we observe two additional resonances that we
identify as the f;(980), and f,(1370).

Our o determination is shifted away from the center of the PDG average. This is correlated
with the lattice point at s = m12< ~ 12 which was not used in previous studies, and impacts the
growth of the phase in the S, wave.

We also find an additional state in the P-wave. The density plot for the |S§1)| in the upper
half s plane is shown in figure 9 for the best-fit amplitude. The two black dots are zeros of
Sg(l). The left-most zero is identified as the p(770) resonance. Its position is fixed by the fitting
procedure. The second black dot on the right is dynamically generated and has a mass 5%
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Figure 8: |S(()0)| in the upper half complex s plane plotted for the best-fit amplitude.
We highlight with black dots the three scalar resonances found in this channel.
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Figure 9: |S§1)| density profile in the upper half complex s plane. We highlight with
black dots the two p resonances in our amplitude.

lower than the experimental determination of the p(1450). However, its width is half of the
experimentally measured value. This resonance still suffers from systematics: we do not have
the inelasticity profile at this energy, and N, of the Bootstrap problem is not large enough
to accurately describe this region. We suspect that dealing with this systematics might lead to
the correct width in our procedure.

For higher spins, our amplitude dynamically generates a spin £ = 3 resonance, this is the
first sign of Reggeization. This is typical in the amplitudes constructed using the S-matrix
Bootstrap where the high energy behavior instead of being erratic is physical, although it con-
verges slowly, see also section 5.5. The mass of the p; obtained is 20% above the experimental
value, and its width is larger. This resonance, however, is still affected by the convergence of
the Bootstrap ansatz, and improving the numerics might lead to a better agreement.2°

5.4 The tetraquark

As already indicated in the introduction, examining the S, wave reveals an unexpected result.
Continuing the phase shift 5(()2) to high energy, as shown in figure 2, we observe a broad reso-
nance with isospin I = 2. This indicates the presence of a genuine Tetraquark state [6,7]. In
the physical world, where electric charge is reintroduced, such particles would carry a charge
of two. Its mass and width in physical units are respectively 2 GeV and 600 MeV. It would be
intriguing to examine the invariant mass distributions of 7*7* in B-meson decays that provide
sufficient energy to reach the 2 GeV scale. Examples include the decay Bt — n~ntn* [65],
which can be studied at LHCb, as well as similar decays where the ™ is replaced by either D™
orK™.

20The other possibility is that to obtain the precise Regge trajectory we might need additional fine-tuning, which
can be realized by enlarging the set of fit parameters or generalizing the Bootstrap problem we use to construct
the amplitude.
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Figure 10: Real and imaginary parts of the amplitude in the S(()Z) channel. The error
bars indicate the systematic uncertainties in the line shape of this function arising
from the unknown inelasticity above 1.4 GeV. This error is comparable to the statis-
tical error of our fit reported in figure 2.

We determine the mass and width of the Tetraquark by locating the zero in the complex
s plane in the S, wave. This determination is free from Bootstrap-related systematics, as the
amplitude in this channel is well-converged. However, we have not accounted for inelastic
effects in this region, which could slightly alter the resonance’s position.

In figure 10, we plot the real and imaginary parts of the partial wave amplitude tgz) as a
function of 4/s measured in GeV. From an amplitude perspective, this represents the experimen-
tal signal expected in the presence of a Tetraquark.?! The black dashed line separates the re-
gion where we fit the data and incorporates the inelasticity profile from the high-energy region,

which is unconstrained. The gray curve represents the elasticity profile ngz)(s) taken from [42].
Above 4/s = 1.4 GeV, we set ngz)(s) = 1 in our procedure. For illustrative purposes, we show the
amplitude profile using the S, wave parametrization S(()z)(s) = |S(()2)(S)| exp(2i5éz)(s)), where
5(()2) is the phase obtained from our best fit, and |S(()2)(s)| is a generic function bounded by

n(()z)(s) < |S(()2)(s)| < 1, for s > 1.4 GeV. The lower bound corresponds to the extrapolation
of [42] to higher energies, as shown by the gray area in figure 10. The blue and red bands
depict how uncertainty in the elasticity function influences the shape of the amplitude.

It would be interesting to understand the mechanism behind the emergence of the
Tetraquark, using, for instance, the Roy equations [3]. Notably, there is a two-dimensional
example that qualitatively mirrors this scenario: the two-dimensional theory of the QCD flux
tube. In this context, the QCD p is analogous to the axion, while the o corresponds to the
dilaton. The analogy is striking, as this model features a sharp axion and a broad dilaton [22].
Furthermore, in [66], it was observed that crossing symmetry necessitates a broad resonance
in the symmetric channel. A similar mechanism might underlie the presence of the Tetraquark
identified in our amplitude.??

5.5 High energy

Finally, we examine the Regge behavior of our amplitude and compare it with experimental
data.

21We thank Alessandro Pilloni for providing insights into the input required for the experimental data analysis.

ZFollowing the completion of this work, Luiz Vale Silva drew our attention to the data presented in [67]. Inter-
estingly, the change in the phase behavior predicted by the Bootstrap and shown in Figure 2 is consistent with the
findings reported in [67]. The mechanism underlying this behavior has been studied in [68,69]. We are grateful
to Luiz Vale Silva for bringing these references to our attention.
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Figure 11: Total cross sections for ntn~ — ntn~ and n~n~ — n 7w~ . The gray
shaded area is the region where we fit the data. The blue curve is the best fit for
Nyars = 547, in light blue the best fit for Ny, = 397. Above 2 GeV there is still room
to improve numerics, but there is already a very good agreement between Bootstrap
and the experimental data [55,70-76].

One of the most intriguing recent insights into S-matrix Bootstrap amplitudes is their
emergent high-energy behavior. Although the Bootstrap ansatz in (3) approaches a constant
at infinity, there exists an intermediate regime where the numerical amplitudes align with
Regge theory. Specifically, at large s and fixed t, the amplitudes exhibit the expected behavior
A~ 540 [24,77-79].

In figure 11, we compare the experimental total cross sections for n*n~ and n~ 7~ with
those extracted from our best-fit amplitude, shown in blue?

Im[A(s|t,u) + A(tl]s,u)] o ()= Im[A(tls,u) + A(uls, t)]
vs(s—4) =0 r Vs(s—4) =0

The solid blue curve represents our fit with the highest N,,,; = 547, while the light blue curve
corresponds to the best fit with N, = 397.

In o ,+,- we observe distinct peak structures corresponding to various resonances in the
spectrum, with the first and most prominent being the p peak. In contrast, o, .- is not ex-
pected to exhibit resonance-related peaks, except for the Tetraquark. At asymptotically high
energies, we expect a constant or slightly growing behavior consistent with the pomeron ex-
change (see for instance [80]). As N, increases, we expect the Bootstrap amplitude will
better approximate this behavior, which is not explicitly enforced in our ansatz (3).

Orin-(8) = - (19

6 Discussion and outlook

This Letter introduces a novel constrained approach for fitting experimental data. The key ad-
vantage of our method lies in its control over theoretical approximations. The amplitude model
employed is a genuinely analytic, crossing-symmetric function that satisfies non-perturbative
unitarity. The algorithm combines semi-definite programming and non-convex optimization
techniques: for the Bootstrap component, we use SDPB [46,47], while for the particle swarm
optimization (PSO), we implemented a straightforward Mathematica notebook.

2In isospin components 0+, o< 2(27 @ +37W +7@) and o, o< T?.
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Figure 12: Summary of the bootstrap fit procedure.

The constructed mm — mr amplitude exhibits several remarkable features. It reproduces
the experimental data, accurately predicts the G-parity plus spectrum below 1.4 GeV, aligns
with yPT at low energies, and qualitatively matches the expected behavior in the high-energy
regime. Additionally, the model predicts a resonance heavier than the p in the P wave, with a
mass comparable to the real-world p(1450), as well as a spin-three resonance approximately
20% heavier than the experimental value. The D, phase shift and inelasticity also show good
agreement with experimental data and phenomenological models. In figure 12 we present an
overview of the bootstrap fit procedure, summarizing the key input data and the corresponding
output results.

Interestingly, our analysis predicts a tetraquark state with a mass of approximately 2 GeV
in the I = 2 channel. This is a fully non-perturbative prediction that, to our knowledge, has not
been proposed in previous models. Given that our constructed amplitude accurately describes
multiple key features of 7 scattering, this state presents an ideal candidate for experimental
verification, particularly in B-meson decays at LHCb.

Extensions and numerical refinements

Several enhancements could further improve the pion amplitude model.

1. Incorporating Lattice QCD Data more consistently including the correlation matrix for
the lattice data in the S, wave from [59]. This would help refine the determination of the
fo(500) mass parameters, particularly in resolving the small tension of our determination
with previous Roy equation analyses [81].

2. Using the P wave phase shift 6 51) extracted from form factors [60,61] and from lattice
QCD extrapolations at the physical pion mass [62] might improve our determination of
the p resonance pole parameters.

3. Improving the description of the inelasticity profile by including additional scattering
processes, such as KK scattering and mixed meson channels, would increase the self-
consistency of the fit.
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4. Refining the Numerical Optimization. The current non-convex optimization procedure
can be improved using alternative numerical techniques, including hybrid gradient-
based methods [82] and machine learning-assisted approaches.

5. Generalizing the Functional Form. The objective functional in Eq. (10) was constructed
based on heuristic criteria. Exploring alternative formulations including higher-order
low-energy constants in the objective as done in previous S-matrix Bootstrap studies
[16,17,19,20,27,29,83] could provide a more systematic way to generate self-consistent
amplitudes.

6. Adding Form Factors [13,23,30,31,84]. Extending the system of QFT correlators includ-
ing form factors and spectral densities with different chiralities will allow us to extract
the values of QCD condensates and to fit vector and axial spectral densities. This will
give access to axial resonances, without the inclusion of mixed amplitudes.?*

Experimental implications and broader applications

The predicted doubly charged tetraquark resonance at 2 GeV provides an exciting opportunity
for direct experimental confirmation in B decays. Future studies could focus on dedicated
searches in high-energy experiments such as LHCb, BESIIL, and Belle II, where doubly-charged
hadronic final states could serve as potential signatures of this state. The Bootstrap prediction
of the amplitude signal in figure 10 might facilitate the detection of this state and help the
analysis of the experimental data.

Beyond QCD, the Bootstrap Fit methodology may have broader applications in strongly
coupled field theories. Extending this approach to other two-body scattering processes — such
as nucleon-nucleon interactions, Glueball-Glueball scattering [21], or even classical gravita-
tional amplitudes used in the extraction of waveforms — could provide new insights into the
universal structure of non-perturbative quantum field theories.

Conclusion

Our results demonstrate that integrating bootstrap constraints with direct experimental fits
provides a powerful, model-independent framework for extracting hadronic properties. Un-
like traditional dispersion relation methods, our approach fully incorporates analyticity, uni-
tarity, and crossing symmetry at all energy scales. This makes it particularly well suited for
investigating strongly interacting theories such as QCD, or strongly coupled UV completions
of the standard model.

Moving forward, an important challenge is to extend our approach toward rigorous bounds
on resonance positions in the complex s-plane, similar to the methodology employed in [86] for
the Ising Field Theory in 1+ 1 dimensions. Further, constructing amplitudes that dynamically
generate all resonances without explicit spectral assumptions remains an open problem worth
investigating.

Ultimately, our study highlights the potential of the S-matrix Bootstrap not only as a tool for
theoretical constraints but also as a practical means for extracting real-world physical observ-
ables in a controlled, non-perturbative manner. The continued refinement of this methodology
could lead to significant advancements in the study of strongly coupled quantum field theories
across multiple disciplines.

24Form factors computed using other methods, such as in [85], where Hamiltonian truncation was employed,
could also be used to constrain the amplitude.
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Figure 13: Real (blue), imaginary (red), and absolute value (green) of the
phase shifts for various channels. Thick lines are from our best numerics with
(N,M) = (14,12), light lines for (N,M) = (12,10). The elasticity profiles used
as a constraint are denoted in black. We do not draw it for the channels where we
impose the simple probability conservation |S§I)| <1
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A Details of the S-matrix bootstrap numerics

The ansatz used to produce the results of this letter has multi-foliation ¥ = {20/3, 30, 50, 86}.
As discussed in [22], to best approximate resonant structures it is convenient to set the centers
of the foliations around their expected positions. That explains our choice for the set ¥ which
is tuned on the expected position of the p(770) with mi ~ 30, the f,(980) with m)%o ~ 50, and
the f,(1260) with m}%z ~ 86.

Let us call N = Ny /3, and M = N,,, when o is any other foliation. To produce the plots
in the main text we used N = 14, and M = 12 for a total of N, = 547 variables. We have
also performed a second run with N =12, and M = 10 for a total of N, = 397 to check the
systematic due to the size of the ansatz.

To impose the unitarity constraints we project numerically our ansatz into partial waves.
We use a union of grids, one for each foliation. The grid is defined through the map

o—(8—0)cos¢

s(@)= 1+cos¢

) (A1)

where 0 < ¢ < 7 is the upper boundary of the unit disk. We finally discretize ¢ on the roots
of the Chebyschev polynomials

k
n—) ) (A.2)
N, oints T 1

p

m
¢k:§(1+cos

where k =1,..., Npyins- The maximum number of points used is Npqines = 300 for o = 20/3,
and Np,ines = 150 for all other foliations. We have performed numerical tests using grids with
different numbers of points finding no significant dependence on it.

We have projected our ansatz onto partial waves (7) up to spin £ = 12, and run our nu-
merics with both maximum spin L_,, = 10,12. The reason that we can keep L, so low is
due to the addition of improved positivity constraints [18]

Lmax
Im7(s, ) =167 Y (20 + 1)Py(1+2:5)m e (s) > 0, (A.3)
{=0

for0<t<4,s>4,and I =0,1,2. By imposing this condition we constrain the tail of spins
higher than L, that we do not explicitly bound with numerical unitarity.

In figure 13 we show the partial S-matrices Sy) obtained using two ansatzes respectively
with (N, M) = (14,2) (dark lines), (N,M) = (12,10) (light lines). We plot their real (blue),
imaginary (red), and absolute values (green). The black solid line is the inelasticity profile
due to mm — KK taken from [42] (for the S, channel we assume the big-dip scenario) that
we impose up to s &~ 100. Above that energy we keep the inequality |S§I)| <1

The unitarity constraints are sufficiently saturated in all these channels except for the re-
gion around s &~ 100 in the P wave around the position of the p’, and in the F wave around
s A~ 250 at the position of the p;. These dips in unitarity around resonances are a typical nu-
merical artifact of our finite N, truncation. It would be interesting to increase both N and M
to higher values and see if the positions of these particles better align with their experimental
determinations.
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B Particle swarm implementation

Here we describe our implementation of the PSO algorithm in detail.

To begin the algorithm, we first choose a search region in the fit parameter space where
we will look for the minimum of the y2(®©) function. Specifically, we select a region
Opin < © < 8,,,, centered around the phenomenological estimates of the fit parameters.

We set the number of particles to n, = 10. This number represents the size of the “swarm”.
The initial positions of the particles are generated randomly, with values drawn from a Gaus-
sian distribution centered at the region’s center, and a variance proportional to its size, denoted
by € = %(émax—émin). Similarly, the initial velocities of the particles are sampled from a Gaus-
sian distribution with zero mean and variance €.

We start the algorithm by updating the positions and velocities of the particles according
to equation (11). Additionally, if the particle i moves outside the boundaries of the box dur-
ing the update step along some direction j, we then place it back on the boundary setting
(@S}Ll) ;= (G)I(IlziX /min) ; with the opposite velocity.

Evaluating y2(©) for a given set of fit parameters is computationally expensive, as it in-
volves solving an S-matrix bootstrap problem. To efficiently estimate the minimum of the
22(©) function in fewer steps, we use a modified version of the standard PSO, called adaptive
PSO. We use velocity information to adjust the value of w, as described in [51].

The goal is to adjust the friction parameter w using a control function. The value of w
determines how effectively the swarm explores the parameter space. If w is too large (of
order one), the particles will explore erratically, risking failure to converge on the minimum.
If w is too small, the particles will freeze early, preventing a broad exploration.

In [51], the authors suggest to look at the total velocity of the entire swarm at each step n
defined as

p

1 4
V = V(l) , Bl
S 2. (B.1)

i=1
and compare it with a proposed ideal velocity profile
yideal _ [€] (1 +cos(LD . (B.2)
n 2 0.95N;e;

If v, = Vindeal, we set w, = max(w,_; — Aw,wqy,), Otherwise

w, = min(w,_; + Aw, Wy.y). In our case, wy.,x = 0.8, wy;, = 0.3, and Aw = 0.1. We
also set ¢; = ¢, = 1.5.

The expression of Vi4¢a contains the parameter N, which is the max number of iterations
of the search. The ideal velocity is a monotonic decreasing function that starts at |e| when
n = 0. As we approach the end of the run when n ~ Nj,, the ideal velocity is so small that
it forces the friction to decrease to its minimum value w;, hence freezing the search in a
neighbor of the global best found up to that point.

The risk with this approach is that choosing a small Nj,, could lead to getting stuck in a
local minimum. To mitigate this, we performed two searches with different values of Ny, = 30
and 60.

Figure 14 shows the projection of particle positions onto the (2, 2,) plane at various steps
n during a run with Nj,., = 60. Black dots represent the particles’ current positions @,(f) at step
n, blue dots indicate each particle’s best position Xr(f) up to that step, and the red dot marks
the global best position Y, found by the swarm. At n = 0, the black and blue dots coincide.
The gray region represents the search domain.
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Figure 14: History of the PSO search in the plane (z(,2,). At each step n, we plot
in black the positions of the particles and highlight the best individualistic positions
XT(I’) in blue, and the collective best position Y, in red. As n increases the particles

slowly concentrate around the optimal region
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Table 4: Number of terms and foliation parameters for various computations. In the
last row, each triplet {b, o, N} denotes the branch point position, foliation center, and
number of a and 8 parameters. The last column is the complex mass for the isospin
2 tetraquark meson.

Label (N,M) Foliation Lmax Nyor I =2 tetraquark mass
N10 3fo (10,8) {20/3, 30, 50} 12 211 12.6854 +1.96111
N12 4fo (12,10) {20/3, 30, 50, 86} 12 397  14.1138+2.28349i
N12 8fo (12,10) {20/3, 30, 50, 86, 116, 150, 180, 210} 12 757 14.9907 +2.391451
N14 4fo (14,12) {20/3, 30, 50, 86} 12 547  14.4221+2.49791i
N15 8fo (15,13) {20/3, 30, 50, 86, 116, 150, 180, 210} 18 1214  15.0575+2.4908i

N14 KK {(4,20/3,14), (4,30,12), (4,50,12), (4,86,12), (52.13,86,4)} 12 565  14.7698 + 2.42318i

C More computations for various foliation parameters

To test the numerical robustness of our physical predictions with respect to the choice
of basis, we performed other 6 runs with different foliation parameters. We fixed
meson masses to the best-fit parameters obtained from the particle swarm optimiza-
tion. Specifically the masses of p(770), f,(980), f,(1370), f,(1270) are set to
{5.54426 + 0.538798i,7.14996 + 0.2614331,9.50987 + 1.81665i,9.31046 + 0.645446i} re-
spectively. Table 4 lists the foliation parameters and number of terms in the ansatz. The re-
sulting phase shifts are shown in Figure 15. We also found the mass of the isospin-2 tetraquark
on the complex plane, which is reported in the last column of Table 4.

These results demonstrate that the spectrum and phase-shift predictions quoted in the
main text are robust with respect to various foliation parameters. We also observed slight
improvement of local behavior and convergence once we include the KK singularity.
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