
SciPost Phys. 20, 037 (2026)

Near-resonant nuclear spin detection
with megahertz mechanical resonators

Diego A. Visani1,2, Letizia Catalini1,2,3, Christian L. Degen1,2,
Alexander Eichler1,2⋆ and Javier del Pino4,5

1 Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
2 Quantum Center, ETH Zürich, 8093 Zürich, Switzerland

3 Center for Nanophotonics, AMOLF, 1098XG Amsterdam, The Netherlands
4 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

5 Departamento de Física Teórica de la Materia Condensada
and Condensed Matter Physics Center (IFIMAC),

Universidad Autónoma de Madrid, E28049 Madrid, Spain

⋆ eichlera@ethz.ch

Abstract

Mechanical resonators operating in the megahertz range have become a versatile plat-
form for fundamental and applied quantum research. Their exceptional properties, such
as low mass and high quality factor, make them also appealing for force sensing exper-
iments. In this work, we propose a method for detecting, and ultimately controlling,
nuclear spins by coupling them to megahertz resonators via a magnetic field gradient.
Dynamical backaction between the sensor and an ensemble of N nuclear spins produces a
shift in the sensor’s resonance frequency. The mean frequency shift due to the Boltzmann
polarization is challenging to measure in nanoscale sample volumes. Here, we show that
the fluctuating polarization of the spin ensemble results in a measurable increase of the
resonator’s frequency variance. On the basis of analytical as well as numerical results,
we predict that the variance measurement will allow single nuclear spin detection with
existing resonator devices.

Copyright D. A. Visani et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2025-08-20
2025-12-30
2026-02-10

Check for
updates

doi:10.21468/SciPostPhys.20.2.037

Contents

1 Introduction 2

2 Theoretical framework 3

3 Boltzmann polarization 5

4 Statistical polarization 7

5 Discussion 9

1

https://scipost.org
https://scipost.org/SciPostPhys.20.2.037
mailto:eichlera@ethz.ch
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.20.2.037&amp;domain=pdf&amp;date_stamp=2026-02-10
https://doi.org/10.21468/SciPostPhys.20.2.037


SciPost Phys. 20, 037 (2026)

A Analytical approach 11
A.1 Langevin spin-membrane equations of motion 11
A.2 Slow-flow equations of motion 12

A.2.1 Linear response theory: Deterministic dynamics 13
A.2.2 Linear response theory: Fluctuation dynamics 14
A.2.3 Time-dependent polarization: Beyond the adiabatic limit 15
A.2.4 Beyond linear response 17

B Relaxation 19

C Exact numerical simulations 19
C.1 Rotating frame 20
C.2 Magnetic tip simulations 23
C.3 Boltzmann vs statistical polarization 24

D Experimental sketch 24

References 25

1 Introduction

Magnetic resonance force microscopy (MRFM) is a method to achieve nanoscale magnetic res-
onance imaging (MRI) [1,2]. It relies on a mechanical sensor interacting via a magnetic field
gradient with an ensemble of nuclear spins. The interaction creates signatures in the resonator
oscillation that can be used to detect nuclear spins with high spatial resolution. Previous mile-
stones include the imaging of virus particles with 5− 10nm resolution [3], Fourier-transform
nanoscale MRI [4], nuclear spin detection with a one-dimensional resolution below 1 nm [5],
and magnetic resonance diffraction with subangstrom precision [6].

The MRFM community is continuously searching for improved force sensors to reach new
regimes of spin-mechanics interaction. In particular, over the last decade, new classes of me-
chanical resonators made from strained materials showed promise as force sensors [7]. To-
day, these resonators come in a large variety of designs, including trampolines [8, 9], mem-
branes [10–12], strings [13–16], polygons [17], hierarchical structures [18, 19], and spider
webs [20]. Some of these resonators are massive enough to be seen by the naked eye, but
their low dissipation nevertheless makes them excellent sensors, potentially on par with car-
bon nanotubes [21] and nanowires [4,22].

Compared to the cantilevers and nanowires traditionally used in MRFM, the new classes
of mechanical resonators typically exhibit higher resonance frequencies and different shapes.
As a consequence, protocols used in previous MRFM experiments are often not applicable any-
more. On the one hand, this calls for novel scanning force geometries [23] and transduction
protocols [24] that are tailored to the new sensors. On the other hand, new experimental
opportunities arise, as these mechanical resonators can strongly interact with a wide array of
quantum systems, such as nuclear spins, artificial atoms, and photonic resonators [25,26].

In this work, we propose a protocol for nuclear spin detection based on the near-resonant
interaction between a mechanical resonator and nuclear spins. We start from a general case
with a large ensemble of nuclear spins and develop a deterministic model of the near-resonant
interaction. We then extend this framework to small sample volumes, where statistical ef-
fects dominate, down to the limit of a single fluctuating nuclear spin. Opposed to earlier
ideas [27, 28], our method is most efficient when the resonator is slightly detuned from the
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Figure 1: (a) Schematic of the proposed experiment: A spin ensemble (sample) is
placed on a mechanical resonator moving within an inhomogeneous magnetic field
generated by a nanoscale magnet. The resonator is shown as a wavy gray line, cor-
responding to a single vibrational mode seen from the side. By driving the resonator,
the spins experience an oscillating magnetic field B(q̂) with a component Bx (inset).
The spins act back on the resonator, producing a force that can be detected as a
shift in the resonance frequency. An artist’s view illustrating a possible experimen-
tal apparatus is shown in Appendix D. (b) We model the system as a spin ensemble
(equilibrium polarization I∥ = I0) interacting with a harmonic oscillator. Both spin
ensemble and resonator are coupled to independent baths at temperature T , caus-
ing spin dephasing and decay with rates 1/T2 and 1/T1, respectively, and resonator
damping at a rate Γm. (c) Illustration of the typical spin regimes according to driven
mechanical amplitudes z0. Here zth denotes the thermal motional amplitude. The
regime addressed in this work is highlighted in red.

spin Larmor frequency. Our method suits the typical frequency range of strained silicon nitride
resonators (1−50 MHz) and offers a simplified experimental apparatus, as it circumvents the
need for spin inversion pulses and related hardware. We also show that for realistic experimen-
tal parameters, the method can attain single nuclear spin sensitivity, a major milestone on the
way towards spin-based quantum devices. Finally, our method will enable spin manipulation
via mechanical driving, in analogy to existing techniques in cavity optomechanics [25,29–31].

2 Theoretical framework

We first consider a nuclear spin ensemble placed on a mechanical resonator, see Fig. 1(a). The
ensemble comprises N spins that interact with a normal mode of the resonator. The composite
system can be described with the Zeeman-like Hamiltonian

H = −ħhγÎ ·B+Hm , (1)

where ħh is the reduced Planck constant, γ the nuclear spins’ gyromagnetic ratio, and B the
magnetic field at the spins’ location. The spin ensemble operator Î has the three components
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Îi =
∑N

k=1 σ̂i,k/2 with the spin-1
2 Pauli matrices σ̂i,k for spin k = {1, · · · , N}, and i ∈ [x , y, z].

We describe a single vibrational mode as a driven harmonic oscillator displacing along the z
axis governed by the Hamiltonian

Hm =
p̂2

2m
+

1
2

mω2
0q̂2 − F0q̂ cos(ωd t) , (2)

where q̂ is the z-position operator of the resonator, p̂ is the corresponding momentum operator,
m is the effective mass, ω0 is the angular resonance frequency, and ωd and F0 are the angular
frequency and strength of an applied force, respectively. If B is inhomogeneous, the spins
experience a position-dependent field B(q̂) as the mechanical resonator vibrates. To lowest
order, we approximate this field as B(q̂) ≈ B0 +Gq̂ with a constant component B0 = B(q̂ = 0)
and relevant field gradients Gi = ∂ Bi/∂ z. The coherent spin-resonator dynamics therefore
obey the Hamiltonian

H ≈ −ħhωL Îz −ħhγq̂G · Î+Hm , (3)

with the Larmor precession frequency ωL = γ|B0|.
Any real system, in equilibrium with a thermal bath, experiences mechanical damping

(rate Γm =ω0/Q, with Q the quality factor), spin decay (longitudinal relaxation time T1), and
spin decoherence (transverse relaxation time T2). In our context, 1/T1 arises from energy
exchange between the nuclear spins and their surrounding environment, such as phonons or
nearby electronic spins, while 1/T2 reflects dephasing due to spin–spin interactions and low-
frequency magnetic field fluctuations. We thus succinctly represent our system dynamics using
the Heisenberg picture’s dissipative equations of motion (EOM). Driving the resonator to an
oscillation amplitude z0 well above its zero-point fluctuation amplitude zzpf =

p

ħh/(2mω0),
the mechanical resonator behaves essentially classically. This allows us to assume the semi-
classical limit for spins Îi 7→ Ii . The spin components Ii evolve according to [Appendix A.1]

q̈ = −ω2
0q− Γmq̇+

F0

m
cos(ωd t) +

ħhγ
m

G · I+ ξ(t) , (4)

İx ,y = −
1
T2

Ix ,y ± (ωL + γqGz)I y,x ∓ γqGy,x Iz , (5)

İz =
1
T1
(ζ0(t)− Iz)− γq

�

Gx I y − Gy Ix

�

. (6)

Here, ξ(t) represents a Langevin thermomechanical force, which fulfills the fluctuation-
dissipation theorem, 〈ξ(t)ξ(t ′)〉 = (2ΓmkB T/m)δ(t − t ′). The term ζ0(t) = I0 + δI0(t) con-
tains a fixed and a fluctuating contribution: (i) the Boltzmann polarization I0, representing
the net equilibrium polarization of the spin ensemble. It arises due to the thermal popu-
lation imbalance between spin states in the presence of an external magnetic field. In the
limit kB T ≫ ħhωL, the Boltzmann polarization simplifies I0 ≈ NħhωL/(4kB T ) according to
the Curie law [32]. (ii) The fluctuating statistical part δI0(t) arises from thermal fluctua-
tions in the spin ensemble upon coupling to a bath which models the surrounding excitations
that randomize the collective spin dynamics. In our case, thermal effects dominate the spin
dynamics, with typical values of kB T roughly 103 times larger than both ħhω0 and ħhωL. Be-
cause the ensemble consists of N spins that can each point up or down, the net spin follows
a binomial distribution with zero mean and variance N/4. This corresponds to a standard
deviation σδI0

=
p

N/2, independent of temperature and magnetic field, in the same limit
kB T ≫ ħhωL [33, 34]. This expression holds for any N ; for small ensembles the distribution
remains discrete, while in the large-N limit it becomes Gaussian according to the central limit
theorem. To model the dynamics of these fluctuations, we assume that δI0(t) follows an
Ornstein-Uhlenbeck process, which describes a stationary, Gaussian, Markovian process with
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autocorrelation 〈δI0(t)δI0(t ′)〉= σ2
δI0

e−|t−t ′|/τ, decaying exponentially over the spin correla-
tion time τ ≤ T1 [35]. Note that for small ensembles (N ∼ O(1–10)), the fluctuation ampli-
tude σδI0

=
p

N/2 can exceed the mean polarization I0 by several orders of magnitude when
kB T ≫ ħhωL [33].

The assumption of Gaussian, Markovian fluctuations used to model the spin environment
is equivalent to describing it as an effective bosonic bath. In such a framework, the relaxation
and decoherence times T1 and T2 generally acquire a temperature dependence, for example
T−1

1 ∝ coth(ħhωL/2kB T ). A spin-bath description, more accurate for small ensembles where
the discreteness of the environment becomes relevant, could capture corrections to this be-
havior [36, 37]. Here, however, the temperature is fixed (T = 0.2K) and the dependence on
the magnetic field is neglected in the analysis for simplicity.

To treat Eqs. (4)-(6), we make a number of simplifications. In particular, we assume
that: (i) the spins’ force on the resonator, δF , is substantially weaker than the driving force,
i.e., |δF | ≪ F0; and that (ii) the spin-resonator coupling, measured by the Rabi frequency
ΩR = γGiz0, is significantly smaller than the spin’s decoherence rate, i.e., ΩR ≪ 1/T2, see
Fig. 1(c). We select z0 to be small and on the order of the thermal motion zth, thus fulfilling
(ii). The conditions (i) and (ii) imply that we remain in the weak coupling limit, where the
oscillation inside the field gradient G excites a precessing spin polarization orthogonal to B0
(i.e., Ix ,y ̸= 0), but does not lock the spins to the resonator frequency ω0. The backaction of
the spins can be treated as a perturbation of the driven resonator oscillation at frequency ωd.
Additionally, we assume that (iii) the resonator reacts much more slowly than the spin relax-
ation timescales, Γm ≪ 1/T2, 1/T1. Finally, we assume that (iv) spin fluctuations evolve on
timescales comparable to or slower than the resonator response, i.e., Γm≫ 1/τ. This ensures
that spin noise can be effectively sampled by the resonator.

Since individual spins relax on a timescale set by T1, the correlation time τ cannot exceed
T1, as any collective memory in the spin bath is lost beyond that point—an upper bound that
may seem at odds with (iii), which requires Γm≪ 1/T1; while both conditions cannot strictly
hold simultaneously, our numerical simulations show that the analytical treatment remains
valid for a wide range of spin-resonator couplings, longitudinal relaxation timescales and cor-
relation times, including cases where Γm ∼ 1/T1, ΩR ∼ 1/T1 and τ∼ T1. All conditions above
ensure that the response remains linear in both I0 and δI0, requiring them to be weak enough
for the resonator to stay in the linear regime. For numerical validation and more information,
see Appendix C.

3 Boltzmann polarization

In a first part, we ignore spin fluctuations (δI0 = 0). The spin components Ix ,y exert a linear
force onto the resonator, which we calculate via the Harmonic Balance method [38, 39], de-
tailed in Appendix A.2.1. The force involves a static component δF0 = ħhγI0Gz/m that shifts
the mechanical equilibrium position, and two oscillating components, one in phase and one
out of phase. This dynamical backaction loop causes a frequency shift δω (corresponding to a
phase shift in the driven response) and a linewidth change δΓm

δω= −g2

�

ω+

ω2
+ + T−2

2

+
ω−

ω2
− + T−2

2

�

I0 , (7)

δΓm = −g2

�

T−1
2

ω2
+ + T−2

2

−
T−1

2

ω2
− + T−2

2

�

I0 , (8)
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where ω± = ωL ±ωd and g2 = ħhγ2
�

G2
x + G2

y

�

/(4mωd). Equations (7) and (8) show that
the average spin polarization I0 affects the resonator response linearly. The in-plane spin
components Ix and I y produce a delayed force. In the numerical simulation below, we find
that this delayed force is strongest when the spins respond faster than the resonator, i.e.,
Γm≪ 1/T1 and typically also Γm≪ 1/T2. This is in agreement with condition (iii).

In Eq. (7) the largest frequency shift occurs at a detuning ωL ̸= ω0, set by 1/T2 and ωL.
This contrasts with resonant coupling forces (ωL = ω0) in an early MRFM proposal [27] and
with spin noise measurements in MRI [40,41]. Instead, the effect resembles dynamical back-
action in cavity optomechanics, where mechanical motion induces a periodic shift in an optical
cavity, resulting in a corresponding change in the cavity population [25,42]. Note that, unlike
spin systems fluctuating around a strongly polarized z state, which involve only two oscillating
quadratures [43,44], our system engages all three spin components in the back-action loop.

As an example, we consider a single nuclear spin (N = 1) without fluctuations (δI0 = 0)
in a magnetic field of B0 = 130mT, interacting with a bath at T = 0.2K and a state-of-the-art
string resonator [13]. The analytical results of Eqs. (7) for Boltzmann polarization are shown
in Fig. 2(a), along with a numerical simulation of Eqs. (4)-(6). The analytical and numerical
results show excellent agreement, with a peak frequency shift near 10 kHz detuning. However,
we note two issues: on the one hand, the condition δI0 = 0 is unrealistic for any measurement
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Figure 2: Mean (δω) and standard deviation (σδω) of the frequency shift of a string
resonator [13] due to a single proton spin calculated as a function of the detuning
between the Larmor frequency ωL and the mechanical frequency ω0. Analytical and
numerical results are shown for the two contributions of the spin polarization: Boltz-
mann (a) and statistical (b). Note the different y-axis scales. Blue lines correspond
to Eq. (7) in (a) and Eq. (9) in (b), while red dots are calculated with an explicit
Runge-Kutta method of order 8 [45]. Maximal frequency shifts and variances are
marked with red stars. In (b), a fit of the data is shown as a red dashed line, which
is identical to the analytical solution up to a factor η= 0.65. Common simulated pa-
rameters areωd =ω0 = 2π×5.5 MHz, Gx = Gy = 6MT/m, Gz = 1MT/m, m= 2 pg,
T1 = τ= 50 ms, T2 = 100µs, N = 1 and Qeff = 2 · 104 (see Appendix C for details).
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time larger than τ. On the other hand, we see that even within that short time, the frequency
shift that can be obtained for a single spin is only about 0.8 µHz, corresponding to a fractional
frequency ofδω/ω0 ≈ 10−13. Measuring such a small shift is clearly unfeasible. For both of the
above reasons, it appears advantageous to investigate the effects of a stochastic polarization
δI0, which should yield a much larger signal than I0 for single spins [33,46].

4 Statistical polarization

It is known that the statistical polarization dominates over Boltzmann polarization for
N < 2 · 106 spins, corresponding to a volume of ≈ (30 nm)3 for protons in water [3, 33],
see also Appendix C.3. However, from our derivation, it is unclear whether Eqs. (7) and (8)
apply to statistical polarization at all. Naively, we are tempted to just replace I0 with δI0,
making δω and δΓm explicitly time-dependent and stochastic. This would entail that the vari-
ance of the frequency shift reflects fluctuations in the spin bath spectral density. A detailed
derivation (see Appendix A.2.2) confirms this intuition: assuming Gaussian statistics and that
conditions (i), (ii), and (iii) behind Eqs.(7) still hold—namely, weak coupling, fast dephasing,
and narrow-band resonator response—we find via standard error propagation:

σδω = g2

�

ω+

1/T2
2 +ω

2
+
+

ω−

1/T2
2 +ω

2
−

�

σδI0
. (9)

The relevant observable in this scenario is no longer a static frequency shift but the standard
deviation of frequency fluctuations, σδω∝ σδI0

. The proportionality constant between σδω
and σδI0

in Eq. (9) is the same as that between δω and I0 in Eq. (7). Therefore, we find that
the variance of the frequency shift peaks at the same parameter values where the average shift
is largest. This is expected: both the mean shift and its fluctuations grow with the strength of
the spin-resonator interaction. When the statistical polarization fluctuations exceed the mean
value (σδI0

> I0), the variance of the frequency fluctuations in response to σδI0
can become

easier to detect than the static shift due to I0.
In Fig. 2(b), we show the analytical result corresponding to Eqs. (9), calculated for the

same resonator and a single proton spin. As before, we compare the analytical results to a
numerical simulation of the semiclassical, stochastic Eqs. (4)-(6), which we now carry out for
a fluctuating polarization. We simulate multiple stochastic trajectories of Eqs. (4)–(6) using
a long spin correlation time τ = 50 ms = T1, compute their standard deviation σsim

δω
, and re-

move transients from initialization. Crucially, we find that σsim
δω

in this case is ca. 3 orders of
magnitude larger than the frequency shift shown for the Boltzmann case in Fig. 2(a). Indeed,
the standard deviation expected for a single proton approaches 1 mHz, corresponding to a
fractional frequency of δω/ω0 ≈ 2×10−10, which should be measurable at cryogenic temper-
atures [47–49]. We conclude that measuring the statistical spin polarization is promising and
could enable single nuclear spin detection.

The full numerical simulation shows that the analytical prediction in Eq. (9) overestimates
σδω by the factor η ≡ σsim

δω
/σδω. For the example shown in Fig. 2(b), we find η = 0.65.

The discrepancy arises from two factors: on the one hand, if Γm is small relative to 1/τ, the
resonator cannot sample the fluctuating spin polarization sufficiently fast. This corresponds
to a violation of condition (iv). On the other hand, if Γm is large relative to 1/T1, we violate
condition (iii) and the analytical result is unrealistic. As τ ∼ T1, the two conditions cannot
be perfectly fulfilled at the same time and we expect to always obtain an overall reduction
compared to the analytical prediction.

To further investigate this reduction, we show η as a function of Γm and τ in Figs. 3(a)
and (b), respectively. We observe a monotonic reduction of η for fast spin baths (τ→ 0) and
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for high-Q resonators (slow response). Appendix A.2.3 presents a detailed model of spin-force
under statistical polarization and its impact on the resonator. For simplicity, we adopt here a
phenomenological approach, assuming a Lorentzian spin-force PSD set by a fixed spin corre-
lation time [24]. In this simplified model, we calculate the PSD of the fluctuating mechanical
frequency from the spectral overlap of the spin force PSD with the mechanical resonator re-
sponse function. i.e., the mechanical susceptibility:

Sδωδω(ω) =
1

4z2
0 m2ω2

0

Γ 2
m

Γ 2
m + (ω−ω0)2

�2π
τ

�

�2π
τ

�2
+ (ω−ωL)2

F2
spin , (10)

where Fspin is the force generated by the spins, assumed to be frequency-independent. Note
that the exact form of the force does not need to be known for the model to properly describe
the factor η. Using σ2

δω
=
∫∞
−∞

dω
2π Sδωδω(ω) and normalizing to τ → ∞ (i.e. the non

fluctuating polarization limit), we get:

η= α
Γmτ

2π+ Γmτ
, (11)

with α the only fit parameter of the model that accounts for all the prefactors in Eq. (10),
including the unknown form of Fspin. Note that α sets the maximum value of η for a given set
of Γm and τ.

10
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Γm = 2π/τ
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not physical

Γm = 2000 Hz, T1 = 50 ms

Figure 3: Dependence of simulated frequency shift variance on the resonator’s damp-
ing rate Γm (a) and on the spin bath correlation time τ (b), quantified by the factor
η extracted from fits to multiple numerical simulations. The dashed vertical line in
(a) indicates the point where resonator’s response time and spin correlation’s time
match. In addition, a purple line shows a single parameter fit of the model described
by Eq. (11). The fit gives α= 0.67. In (b), a dashed vertical line marks the theoreti-
cal upper limit τ= T1, beyond which the bath cannot stay correlated.
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The purple line on Fig. 3(a) shows the model with the single fit parameter α = 0.67. We
observe that larger values of Γm lead to higher η as they conform closer to condition (iv), that
is, the resonator is better able to sample the spin fluctuations in real time. Nevertheless, we
do not reach η = 1. We attribute this to the partial violation of condition (iii), which arises
because τ ≤ T1 by necessity. In Fig. 3(b), we demonstrate how η depends on τ. Indeed, we
find that for arbitrarily large τ, η converges towards 1. This regime is marked as “not physical”
as it corresponds to τ > T1. Note that condition (iv) is not fundamental, in the sense that a
resonator can sample frequency shifts much faster than its own ringdown time ≈ 1/Γm when
using a closed-loop measurement technique [50, 51]. For such a closed-loop technique, all
points in Fig. 3(a) would have the same value of 0.67.

To estimate the smallest measurable frequency shift, we compare its variance with the res-
onator’s frequency noise from thermal fluctuations. At resonance (ω=ω0), the power spectral
density of the resonator’s displacement reads Sqq(ω0) = 4kB TQ/(mω3

0). These displacement
fluctuations translate into frequency noise with spectral density [51]:

Sδωδω(ω0) =
2ω2

0Sqq(ω0)

4Q2z2
0

=
2kB T

mω0Qz2
0

, (12)

which yields an Allan variance σ2
Allan(tint) = Sδωδω(ω0)/(2tint) = kB T/(tintmω0Qz2

0), a stan-
dard measure of frequency stability over the integration time tint [51, 52]. To resolve the
variance produced by the spins, we require σ2

δω
> σ2

Allan(tint). In the example of Fig. 2(b),
single nuclear spin detection requires an integration time of tint = 12 min to resolve the spin’s
variance.

5 Discussion

Our results show that statistical polarization can enable spin detection via dynamical back-
action, providing far larger signals than the corresponding Boltzmann polarization for small
spin ensembles N < 106. Nevertheless, for realistic samples two additional sources of spin
decoherence need to be considered, resulting from spin-spin coupling and inhomogeneous
broadening.

Decoherence due to spin-spin coupling – In typical nuclear magnetic resonance (NMR) ex-
periments, interactions between neighboring nuclear spins can often be neglected when the
Rabi frequency ΩR exceeds the spin-spin coupling strength J . In that scenario, the range of
Larmor frequencies that are affected by the spin lock is dominated by the spectral “power
broadening” equal to ΩR. By contrast, in the experiment we describe, the condition ΩR ≥ J is
typically not fulfilled, and we are limited by ΩR≪ 1/T2, 1/T1, see condition (ii). As we cannot
ignore spin-spin interaction in the weak-driving regime, J is accounted for in the simulations
through the spin decoherence time T2 = 100µs [53].

Inhomogeneous broadening – Any realistic sample has a certain size and thus contains spins
at various positions within the magnetic field gradient, resulting in a range of Larmor frequen-
cies. For instance, a spin ensemble with a diameter D = 100nm in a gradient G = 2 MT m−1

experiences fields over a range ∆B = D × G = 0.2 T. The ensemble’s Larmor frequencies are
spread over a spectral range γ∆B ≈ 8 MHz leading to inhomogeneous spectral broadening
1/T ∗2 ≃ γ∆B. If T ∗2 is shorter than the timescale of the spin-spin interaction, T2 has to be
replaced by T ∗2 in Eqs. (7) and (8), causing a broader and shallower signal distribution.

In our sample, the driving fields are necessarily weak to satisfy condition (ii),
ΩR = γGiz0 ≪ 1/T2, 1/T1. As a consequence, only the spins within the narrow range
ωL = ω0 ± ΩR are directly excited, yielding an inhomogeneous broadening of 1/T ∗2 = ΩR.
By contrast, through spin-spin interactions, all the spins within ωL =ω0± 1/T2 are indirectly
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excited. As our method requires ΩR ≪ 1/T2, the broadening of the spin ensembles is limited
by 1/T2, not 1/T ∗2 . This means that we need not be concerned about the effects of inhomoge-
neous broadening, as the spatial regions we excite are very small. Unfortunately, this narrow
excited region also comes at a cost: it fundamentally limits the number of spins that can con-
tribute to the signal. For example, in our case, the width of the slice in the z-gradient direction
is approximately δz ≈ 0.25nm. While this small voxel size limits the available signal strength,
it naturally leads to a high spatial selectivity, and thereby to excellent spatial resolution.

Indeed, the most exciting aspect of our method is the limit of probing a single nuclear spin,
as demonstrated in Fig. 2. While the detection of a single electron spin with a silicon cantilever
required an averaging time of roughly 4.7×104 s in 2004 [54], our method offers the sensitivity
for detecting a single nuclear spin (with a roughly 103 times lower magnetic moment) in
12 min. This value is found assuming that the resonator’s frequency noise is dominated by
thermomechanical fluctuations. Technical frequency noise (e.g., from temperature drift or
laser absorption), can further increase the frequency noise and complicate spin detection.
However, recent breakthroughs have achieved a 1 mHz dissipation-limited bandwidth [47]
and improved frequency drift calibration [55]. These advances indicate that precise, stable,
and long-term frequency measurements at the thermomechanical limit are possible.

In summary, we have presented a method for detecting nuclear spins using dynamical
backaction in megahertz resonators. By focusing on statistical polarization, the approach en-
ables single-spin sensitivity with simple hardware and no need for spin control. Our detection
method uses a single drive (e.g. via electrical or optomechanical coupling) acting directly on
the resonator. Our approach reduces the experimental overhead significantly compared to typ-
ical MRFM experiments, which require a microstrip in close proximity of the resonator [56]
to generate periodic spin flipping through radio-frequency pulses [3]. The main experimen-
tal challenge of our protocol stems from the difficulty of generating very high magnetic field
gradients while maintaining a sufficiently low static magnetic field to keepωL ≈ω0. This near-
resonance condition is essential for maximizing backaction and sensitivity. In order to achieve
this condition, it is possible to take advantage of the shape anisotropy of nanoscale magnets
to apply a counteracting magnetic field tuning the near-resonance region in the high magnetic
gradients area (see Appendix C.2). Near-resonant spin-mechanics coupling also opens the
possibility of coherently manipulating nuclear spins through mechanical driving [57]. An in-
triguing possibility arises when swapping the roles of the resonator and the spin ensemble for
spin cooling through backaction [58], akin to cavity cooling in the reversed dissipation regime
in cavity optomechanics [59, 60]. Our simplified study paves the way for delving into the
intricacies of local spin dissipation and decoherence [61] and dipole-dipole interactions [62]
in particular experimental configurations. It also lays the groundwork for exploring further
opportunities of parametric driving [24] and multimode resonators [63–65]. With these ca-
pabilities, nanoscale MRI will become a versatile platform for nuclear spin quantum sensing
and control on the atomic scale.
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A Analytical approach

A.1 Langevin spin-membrane equations of motion

We offer further details on the analytical solution for the spin-mechanical model introduced in
the main text. The model features a driven mechanical resonator moving along z, influencing
an ensemble of N spins. The spins interact also with a spatially-dependent magnetic field. The
combined dynamics is described by the Hamiltonian

H =
p̂2

2m
+

1
2

mω2
0q̂2 − F0q̂ cos(ωd t)−ħhωL Îz −ħhγq̂

�

Gx Îx + Gy Î y + Gz Îz

�

, (A.1)

where ħh is the reduced Planck constant, ω0 (ωL) is the mechanical (Larmor) resonance fre-
quency, ωd is the driving frequency, Gi is the magnetic gradient along i ∈ [x , y, z], γ is the
gyromagnetic ratio of a nuclear spin, and F0 is the driving force. Here q̂ and p̂ stand for the
position and momentum operators for the resonator. The spins are described by the collective
spin operators Îi =

∑N
k=1 σ̂i,k/2, where σ̂i,k are the Pauli matrices describing a spin-1

2 .
We extract the dissipative equations of motion (EOM) using the Heisenberg picture. We

account for mechanical damping (Γm) as well as spin decay (T1) and decoherence (T2). Fur-
thermore, we consider thermomechanical noise, acting on the resonator, and polarization
noise, parametrized by operators ξ̂(t) and ζ̂0(t), respectively. The corresponding Heisenberg-
Langevin equations [66] read:

¨̂q = −ω2
0q̂− Γm˙̂q+

F0

m
cos(ωd t) +

ħhγ
m

�

Gx Îx + Gy Î y + Gz Îz

�

+ ξ̂(t) , (A.2)

˙̂Ix ,y = −
1
T2

Îx ,y ±ωL Î y,x ± γGz q̂ Î y,x ∓ γGy,x q̂ Îz , (A.3)

˙̂Iz =
1
T1

�

ζ̂0(t)− Îz

�

− γGx q̂ Î y + γGy q̂ Îx , (A.4)

where we identify the renormalized mechanical frequency as ω0 7→
q

ω2
0 + Γ 2

m/4.

Polarization noise is split into average and fluctuating contributions: ζ̂0(t) = I0 + δ Î0(t).
Here I0 stands for the Boltzmann (thermal) equilibrium polarization [32]

I0 = −N
�

(2I + 1) coth
�

(2I + 1)ħhωL/(2kB T )
�

− coth
�

ħhωL/(2kB T )
�

�À

2 , (A.5)

with N the number of spins in the considered ensemble and I = 1
2 the spin number.

The resonator motion is driven well above its zero-point fluctuation. We can therefore
apply a semiclassical approximation, which reduces the operators to real amplitudes, q̂ 7→ q
and Îi 7→ Ii , yielding the equations of motion in the main text, Eqs. (4)-(6):

q̈ = −ω2
0q− Γmq̇+

F0

m
cos(ωd t) +

ħhγ
m

G · I+ ξ(t) , (A.6)

İx ,y = −
1
T2

Ix ,y ± (ωL + γqGz)I y,x ∓ γqGy,x Iz , (A.7)

İz =
1
T1
(ζ0(t)− Iz)− γq

�

Gx I y − Gy Ix

�

, (A.8)

with G = (Gx , Gy , Gz), I = (Ix , I y , Iz), thermomechanical force ξ(t) acting on the resonator,
and fluctuating classical polarization ζ0(t) = I0+δI0(t). The classical fluctuations amplitudes
have Gaussian statistics with correlators

〈ξ(t)ξ(t ′)〉=
2ΓmkB T

m
δ(t − t ′) , (A.9)

〈δI0(t)δI0(t
′)〉= σ2

δI0
e−|t−t ′|/τ , (A.10)
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where T is the temperature of the mechanical bath, τ stands for the spin bath autocorrelation
time, and variance σ2

δI0
= N

4 [33,34].
We first examine the deterministic dynamics, governed by

¨̄q = −ω2
0q̄− Γm˙̄q+

F0

m
cos(ωd t) +

ħhγ
m

G · Ī , (A.11)

˙̄Ix ,y = −
1
T2

Īx ,y ± (ωL + γq̄Gz) Ī y,x ∓ γq̄Gy,x Īz , (A.12)

˙̄Iz =
1
T1

�

I0 − Īz

�

− γq̄
�

Gx Ī y − Gy Īx

�

, (A.13)

where □̄ denotes averages. These equations can also be found from averaging the Heisenberg
EOM Eq. (A.2), Eq. (A.3) and Eq. (A.4), under the mean-field approximation, where cross-
correlations are neglected, i.e., 〈q̂ Îi〉 = q̄ Īi . We then examine how fluctuations induced by
ζ0(t) affect the system’s dynamics.

A.2 Slow-flow equations of motion

We further analyze here the deterministic solution to the main text Eqs. (4)-(6). We assume
that the resonator dynamic is dominated by the external force. Thus, the coupling to the spins
act as a small correction. We can then write the mechanical motion as q(t) = q(0)(t) +δq(t),
where q(0)(t) = u(0)q cos(ωd t) + v(0)q sin(ωd t) with

u(0)q =
F0

m
�

�

ω2
0 −ω

2
d

�2
+ω2

dΓ
2
m

�

�

ω2
0 −ω

2
d

�

, (A.14)

v(0)q =
F0

m
�

�

ω2
0 −ω

2
d

�2
+ω2

dΓ
2
m

�ωdΓm . (A.15)

The contribution to the mechanical amplitude arising from the spins then obeys

δ̈q = −ω2
0δq− Γmδ̇q+

ħhγ
m

G · I . (A.16)

We express the solution for δq(t) in terms of an ansatz

δq(t) = δaq(t) +δuq(t) cos(ωd t) +δvq(t) sin(ωd t) , (A.17)

where δaq(t), δuq(t) and δvq(t) are real time-dependent amplitudes to be found. Employing
this form of the solution is particularly beneficial when examining perturbations associated
with the behavior of a driven harmonic oscillator. The dynamics of the spins in response to
the mechanical motion can be calculated employing a similar ansatz

Ii(t) = ai(t) + ui(t) cos(ωd t) + vi(t) sin(ωd t) , (A.18)

with amplitudes ai(t), ui(t), vi(t). Given Eq. (A.18), the spins exert a time-dependent force
on the resonator given by

δF(t) = ħhγG · I(t) = ħhγ
�

G · a(t) +G · u(t) cos(ωd t) +G · v(t) sin(ωd t)
�

, (A.19)

where we used vector notation for ax ,y,z(t), ux ,y,z(t), vx ,y,z(t).
At this stage, we have not yet introduced any constraints or approximations in the ansatz

amplitudes. However, the calculation of the corrections δaq,δuq,δvq is greatly facilitated by
assuming the weak impact of the spin-dependent force on the resonator. Namely, we assume
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〈〈|ħhγG·I|〉〉Td
≪ F0, where 〈〈...〉〉Td

denotes the average over a drive period Td = 2π/ωd. In this
setting, we can assume the amplitudes δaq(t),δuq(t),δvq(t) with respect to Td, accounting
for the transient evolution of the amplitude and phase of the resonator towards the steady
state [67].

In the steady state, resonator and spin precession amplitudes settle to constant values, i.e.
δȧq = δu̇q = δv̇q = 0 and ȧi = u̇i = v̇i = 0. In our ansatz q(t) thus acts as a harmonic
magnetic field with frequency ωd, acting on the spins. In particular, the spin prompts a spin
precession component at frequency ωd, according to Eq. (A.18). Note the ansatz does not
presuppose the synchronization or “locking” of the spin dynamics with the external field. We
seek if such a steady state can exist. To this end, we insert the ansatz for q(t) and Ii(t) in
the mean-field equations of motion and equate the harmonic amplitudes at both sides of the
equations with the same time dependence, a procedure dubbed the “harmonic balance” [38].
This approach also neglects super-harmonic generation (e.g. terms cos(2ωd t), sin(2ωd t)) that
arises from the mechanical motion driving the spins, which requires extending the harmonic
ansatz for q(t), Ii(t) to higher frequencies. Note that harmonic balance relies on the slowly-
flowing nature of the amplitudes ai , ui , vi [67].

A.2.1 Linear response theory: Deterministic dynamics

The introduction of the ansatz results in nonlinear couplings between the harmonic amplitudes
of the mechanical resonator and the spins. The system’s steady states are defined by the roots of
these coupled polynomials. While we could solve these equations numerically using advanced
algebraic methods, as detailed in reference [68] and implemented in the package [39], we
opt for deriving an analytical solution within a linearized framework. Here we find the me-
chanical dynamics of the resonator in the weakly fluctuating regime 〈〈|δq|〉〉Td

≪ 〈〈|q(0)|〉〉Td
.

The smallness of δq allows us to neglect the nonlinear coupling between the fluctuations
δuq(t),δvq(t) and the spin amplitudes ai(t), ui(t), vi(t). Under this linearization, the spin dy-
namics directly follows from the solutions of the first-order differential equations that do not
contain δaq(t),δuq(t),δvq(t), namely

ȧx ,y +
1
T2

ax ,y ∓ωLay,x = 0 , (A.20a)

u̇x ,y +
1
T2

ux ,y ∓ωLuy,x +ωdvx ,y − γu(0)q (Gz,x ay,z − Gy,zaz,x) = 0 , (A.20b)

v̇x ,y +
1
T2

vx ,y ∓ωLvy,x −ωdux ,y − γv(0)q (Gz,x ay,z − Gy,zaz,x) = 0 , (A.20c)

ȧz +
1
T1

az − I0
1
T1
= 0 , (A.20d)

u̇z +
1
T1

uz +ωdvz − γu(0)q (Gy ax − Gx ay) = 0 , (A.20e)

v̇z +
1
T1

vz −ωduz − γv(0)q (Gy ax − Gx ay) = 0 . (A.20f)

The resonator features a high quality factor (Γm ≪ 1/T2, 1/T1) which, together with the
weak spin-resonator coupling (γGiz0≪ 1/T2, 1/T1) lead to spins quickly reaching steady state
compared to the slower resonator timescale. This condition permits the application of approxi-
mation methods, like adiabatic elimination of the spins [69], in order to approximate the time
evolution of the resonator towards its steady state. Our focus is nevertheless on the global
steady state behavior, where all amplitudes in the problem are fixed. Solving Eqs. (A.20)
when ȧi = u̇i = v̇i = 0 to find the steady state amplitudes a|t→∞,u|t→∞,v|t→∞ leads to a
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steady state force

δF |t→∞ ≈ ħhγ
�

G · a|t→∞ +G · ut→∞ cos(ωd t) +G · vt→∞ sin(ωd t)
�

. (A.21)

Such force will not be in phase with the external resonator’s driving (its quadratures
will not be aligned with the drive), namely u(0)q , v(0)q . To facilitate the expressions, we
choose a phase/time origin for the driven resonator (i.e. we perform a gauge fixing), such

that v(0)q = 0 and u(0)q = F0/(m
r

�

ω2
0 −ω

2
d

�2
+ω2

dΓ
2
m). In this gauge, we can identify

δF |t→∞ ≈ δF0 −δΓmq̇−δΩ2q, where δF0 = ħhγI0Gz/m and

δΓm =
ħhγ2 I0

�

G2
x + G2

y

�

m

ωLT−1
2

�

T−2
2 +ω2

d

�2
+ 2
�

T−1
2 −ωd

� �

T−1
2 +ωd

�

ω2
L +ω

4
L

, (A.22)

δΩ2 = −
ħhγ2 I0

�

G2
x + G2

y

�

m

ωL

�

T−2
2 −ω

2
d +ω

2
L

�

�

T−2
2 +ω2

d

�2
+ 2
�

T−1
2 −ωd

� �

T−1
2 +ωd

�

ω2
L +ω

4
L

. (A.23)

We can now reconstruct the mechanical evolution in the steady state from the effective equa-
tion of motion. Under resonant driving ωd =ω0,

q̈+ (Γm +δΓm) q̇+ (ω0 +δω)
2 q|t→∞ = F0 cos(ωd t) +δF0 , (A.24)

with δω = 1
2
δΩ2

ωd
. We can rewrite δΓm and δω in a more convenient way leading to Eqs. (7)

and (8)

δ̄ω= −g2

�

ωL +ωd

T−2
2 + (ωL +ωd)

2 +
ωL −ωd

T−2
2 + (ωL −ωd)

2

�

I0 , (A.25)

¯δΓm = −g2

�

T−1
2

T−2
2 + (ωL +ωd)

2 −
T−1

2

T−2
2 + (ωL −ωd)

2

�

I0 , (A.26)

where g2 = ħhγ2
�

G2
x + G2

y

�

/(4mωd).

A.2.2 Linear response theory: Fluctuation dynamics

As the system relaxes, weak fluctuations have their strongest impact near the steady state.
We therefore adopt a perturbative approach where the system remains close to equilibrium.
This allows us to set the spin amplitudes at t → −∞ in Eq. (A.21) as linear functions of the
fluctuating field δI0(t). This linearization around equilibrium ensures that noise effects remain
analytically tractable: it makes Eq. (A.25) explicitly dependent on the fluctuating prefactor

g2δI0(t) =
ħhγ2
�

G2
x + G2

y

�

4mωd
δI0(t) . (A.27)

The standard deviation of the frequency shift, σδω, becomes proportional to that of δI0(t),
namely,

σδω =
ħhγ2σδI0

�

G2
x + G2

y

�

4mωd

�

ωL +ωd

T−2
2 + (ωL +ωd)

2 +
ωL −ωd

T−2
2 + (ωL −ωd)

2

�

. (A.28)

From Eq. (9), the relation |σδω/δ̄ω| = |σδI0
/I0| follows, consistent with standard uncer-

tainty propagation under Gaussian or symmetric noise. This approach assumes the noise is
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regular and uncorrelated, even if σδI0
is comparable to or larger than I0 (within the valid-

ity of the linearization in Eqs. (A.20)), and that its evolution is slow, with correlation time τ
much longer than the mechanical response time 2π/Γm, allowing the resonator to track the
spin force quasi-adiabatically. The key condition is a clear separation of timescales: when spin
fluctuations evolve slowly compared to the mechanical response (τ≫ 2π/Γm), the resonator
can adiabatically track the varying spin force. This justifies treating it as in quasi-steady state
at each instant and motivates the phenomenological model used in the main text to capture
how slow, yet sizable, fluctuations set σδω. Deviations from this limit are briefly noted below
and discussed in more detail in the main text.

A.2.3 Time-dependent polarization: Beyond the adiabatic limit

The adiabatic approximation, in which time derivatives are set to zero in Eqs. (A.20), is exact
when I0 is constant, as in Boltzmann polarization. In what follows, we make this statement
explicit by solving the full frequency-dependent problem and showing that, when fluctuations
are not considered I0(t) = I0, only the zero-frequency component of the spin response con-
tributes, exactly recovering the steady-state result. This formulation also provides a natural
framework to introduce a fluctuating, possibly stochastic polarization and to justify the sim-
plified model used in the main text, by clarifying which dynamical components survive on the
relevant slow timescales.

For it, we now consider the more general case where I0 varies in time. Rather than drop-
ping time derivatives, we take the Fourier transform of Eqs. (A.20) with I0 → I0(t), using
frequency ω conjugate to the slow time. This turns the equations into linear algebraic rela-
tions. The resulting spin amplitudes ãx ,y,z(ω), ũx ,y,z(ω), and ṽx ,y,z(ω) read

ãz(ω) =
i Ĩ0(ω)

i +ω/T1
, (A.29)

ũx(ω) = −
i Ĩ0(ω)γ

D(ω)

�

Gx ωL

�

−2iωωd v(0)q + u(0)q

�

ω2 +ω2
d −ω

2
L

�

�

(A.30)

+ Gyω
2
L

�

−iωu(0)q +ωd v(0)q

�

+ Gy

�

ω2 −ω2
d

�

�

iωu(0)q +ωd v(0)q

�

+
1
T2

�

2Gx ωL

�

iωu(0)q +ωd v(0)q

�

+ 2i Gyωωd v(0)q

+ Gy u(0)q

�

−3ω2 +ω2
d +ω

2
L

�

+
1
T2

�

− 3i Gyωu(0)q − Gyωd v(0)q − Gx ωL u(0)q +
Gy u(0)q

T2

�

��

,

ũy(ω) =
Ĩ0(ω)γ
D(ω)

�

Gx ω
2
L

�

ωu(0)q + iωd v(0)q

�

− Gx

�

ω2 −ω2
d

�

�

ωu(0)q − iωd v(0)q

�

(A.31)

+ GyωL

�

−2ωωd v(0)q − i u(0)q

�

ω2 +ω2
d −ω

2
L

�

�

+
1
T2

�

− 2Gx ωωd v(0)q − i Gx u(0)q

�

3ω2 −ω2
d −ω

2
L

�

+ 2GyωL

�

ωu(0)q − iωd v(0)q

�

+
1
T2

�

3Gx ωu(0)q − i Gx ωd v(0)q + i GyωL u(0)q +
i Gx u(0)q

T2

�

��

,
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ṽx(ω) =
Ĩ0(ω)γ
D(ω)

�

Gx ωL

�

2ωωd u(0)q − i v(0)q

�

ω2 +ω2
d −ω

2
L

�

�

(A.32)

+ Gyω
2
L

�

−ω v(0)q + iωd u(0)q

�

+ Gy

�

ω2 −ω2
d

�

�

ω v(0)q + iωd u(0)q

�

+
i

T2

�

2Gx ωL (−iω v(0)q +ωd u(0)q ) + 2i Gyωωd u(0)q

+ Gy v(0)q (3ω
2 −ω2

d −ω
2
L)

+
1
T2

�

Gx ωL v(0)q + 3i Gyω v(0)q − Gyωd u(0)q −
Gy v(0)q

T2

�

��

,

ṽy(ω) = −
i Ĩ0(ω)γ

D(ω)

�

Gx ω
2
L

�

iω v(0)q +ωd u(0)q

�

+ Gx

�

ω2 −ω2
d

�

�

−iω v(0)q +ωd u(0)q

�

(A.33)

+ GyωL (2iωωd u(0)q + v(0)q (ω
2 +ω2

d −ω
2
L))

−
1
T2

�

− 2i Gx ωωd u(0)q + Gx v(0)q

�

−3ω2 +ω2
d +ω

2
L

�

+ 2GyωL

�

−iω v(0)q +ωd u(0)q

�

+
1
T2

�

− 3i Gx ω v(0)q + Gx ωd u(0)q + GyωL v(0)q +
Gx v(0)q

T2

�

��

,

where u(0)q and v(0)q are the driven resonator quadratures from Eqs. (A.14) and D(ω) stands
for a denominator

D(ω) =
�

ω+
i

T1

��

ω−ωd −ωL +
i

T2

��

ω+ωd −ωL +
i

T2

�

×
�

ω−ωd +ωL +
i

T2

��

ω+ωd +ωL +
i

T2

�

.
(A.34)

Moreover, ãx(ω) = ãy(ω) = 0 = ũz(ω) = ṽz(ω) = 0. Equations (A.29)–(A.33) show that the
nonzero amplitudes are given by the product of the spin susceptibility, peaked at ωd ±ωL ,
with linewidths given by T−1

1 and T−1
2 , and Ĩ(ω).

The spin force, exerted on the resonator, can be expressed, as a time-dependent version
of Eq. (A.19), by inverse-transforming the frequency-domain expressions into the envelopes
ax ,y,z(t), ux ,y,z(t), and vx ,y,z(t). For constant (Boltzmann) polarization I0, the spectrum re-
duces to Ĩ0(ω) = 2πδ(ω), so only the spin susceptibility at ω = 0 contributes. This recov-
ers the steady-state result of Eq. (A.21), independent of T1. To build intuition for a time-
varying I0(t), consider a slowly varying deterministic signal expanded as a Fourier series
I0(t) =

1
2

∑

k Ike−iωk t + I∗keiωk t , which frequency representation is

Ĩ0(ω) =
1

4π

∑

k

�

Ikδ(ω−ωk) + I∗kδ(ω+ωk)
�

, (A.35)

where ωk ≪ ωd to ensure consistency with the slow-flow ansatz (A.18). This implies, for
example, ax ,y,z(t) = (1/2π)

∑

k e−iωk t ãx ,y,z(ωk) + c.c and similarly for ux ,y,z(t), and vx ,y,z(t).
The spin force then reads

δF(t)≈
ħhγ
4π

∑

k

G ·
�

ã(ωk) + ũ(ωk) cos(ωd t) + ṽ(ωk) sin(ωd t)
�

e−iωk t + c.c. , (A.36)

where ã(ω), ũ(ω), ṽ(ω) group the x , y, z components, and c.c. denotes the complex conjugate.
These amplitudes satisfy ã∗(−ω) = ã(ω), and similarly for ũ and ṽ. Note that, for ωk ̸= 0,
these amplitudes depend explicitly on T1.
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Equation (A.36) shows that δF(t) inherits the frequency content of Ĩ0(ω), filtered by the
spin susceptibility at each frequency ω = ωk [cf. Eqs. (A.29)–(A.33)]. The result is a slow
envelope at ωk≪ωd modulating the carrier at ωd .

The expression (A.36) can be succinctly written in integral form by defining the spectral
densities Ga(ω)≡

∑

k G · ã(ωk)δ(ω−ωk), Gw
±(ω) =
∑

k G · (ũ(ωk)∓ i ṽ(ωk))δ(ω−ωk) and,
namely

δF(t) ≈
ħhγ
4π

∫ ∞

−∞
dω
�

Ga(ω)e−iωt + Gw
+(ω)e

−i(ω+ωd )t + Gw
−(ω)e

−i(ω−ωd )t
�

+ c.c. . (A.37)

Since Ga(ω), Gw
±(ω) ∝ Ĩ0(ω), Eq. (A.37) reflects that the spin-force linewidth is set by the

linewidth of Ĩ0(ω), with susceptibility filtering out components |ω| ≳ 1/T1. If Γm ≫ ωk (the
overdamped limit), the resonator follows the force quasi-adiabatically, so its frequency shift
and damping sample the full susceptibility. Back to the Fourier domain,

δF(Ω) ≈
ħhγ
2

�

Ga(0)e−iωt + Gw
+(Ω+ωd) + Gw

−(Ω−ωd)
�

+ c.c. . (A.38)

Decomposing the force into its frequency components lets us directly anticipate how resonator-
induced fluctuations shape the system’s response. Promoting I0(t) to a stationary stochastic
process, makes Ga(ω) and Gw

±(ω) random variables that are linear in the Fourier amplitudes
Ĩ0(ω):

Ga(ω) = Ha(ω) Ĩ0(ω) , Gw
+(ω) = H+(ω) Ĩ0(ω) , Gw

−(ω) = H−(ω) Ĩ0(ω) , (A.39)

where Ha,±(ω) are the spin-susceptibility functions extracted from Eqs. (A.29)–(A.33). The
input polarization power spectral density (PSD), arising from a local spin bath, acting on the
relevant spins coupled to the resonator, is defined by




Ĩ0(ω), Ĩ∗0(ω
′)
�

= 2πδ(ω−ω′)SI0
(ω) , (A.40)

where
SI0,I0

(ω)∝
τ

1+ω2τ2
, (A.41)

for an Ornstein–Uhlenbeck process with correlation time τ.
From Eqs.(A.38)-(A.41) and assuming the sideband channels are uncorrelated, the force

PSD reads

SδF,δF (Ω)≈
�

ħhγ
2

�2
�

|Ha(Ω)|2SI0,I0
(Ω) +
∑

p=±
|Hp(Ω+ pωd)|2SI0,I0

(Ω+ pωd)

�

. (A.42)

Equation (A.42) shows that the force-noise bandwidth is set by 1/τ, while the spin suscepti-
bility shapes the weighting across frequencies and generates sidebands at ±ωd . In the quasi-
adiabatic limit (Γm much larger than the polarization bandwidth), the resonator tracks these
fluctuations, so both its frequency shift and damping sample the full spin susceptibility across
frequency. This motivates the simplified model employed in main text Sec. 4.

A.2.4 Beyond linear response

For certain parameter regimes, the nonlinearities in Eqs. (A.6)-(A.8) can lead to complex be-
havior in the stationary limit t →∞, including self-sustained motion, multi-stability, and limit
cycles [70,71]. In particular, the analogy with optomechanics is expected to break down when
the Rabi frequency is comparable to the spin dissipation: γGiz0 ∼ 1/T2, 1/T1. In that case, the
spins’ equilibration is not fast enough before they act back on the resonator, and spin-resonator
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Figure 4: Power spectral density (PSD) of the steady state of a simulated SiN mem-
brane resonator with zero frequency component removed [10] for different driv-
ing amplitudes z0, m = 5 × 10−12 kg, ω0/2π = 1.4 MHz, Gx = Gy = 2MT/m,
Gz = 1 MT/m, N = 106 spins, T2 = 100µs, T1 = 50 ms and resonant driving of
the resonator ωd =ω0.

timescales cannot be adiabatically separated. Effectively, the resonator motion then triggers
spin-induced nonlinear effects, such as a periodic time modulation of the Larmor frequency due
to the Gz gradient (see main text Eqs. (4)-(6)), with frequency ωd. The resonator’s response
would then pick up higher frequency components not described by Eq. (A.18). While under the
linearized theory, the steady state value is time independent and equal to Iz = I0, we observe
the generation of higher order harmonics in the spectrum of Iz [Fig. 4]. Note that in our sim-
ulations, we do not focus on the regime where higher excitation makes the spin-conservation
constraint (d(
∑

i I2
i )/d t = 0) relevant, which would lead to additional “many-wave mixing”.

A comprehensive examination of nonlinearities in our detection protocol is beyond the
scope of this manuscript; however, we offer a brief overview of the necessary approach below.
The impact of weak nonlinearities can be expressed by still expanding the solution for x(t)
with an ansatz of the form

x(t) = aq(t) + uq(t) cos(ωd t) + vq(t) sin(ωd t) , (A.43)

which includes both the displacement by the driving field and small fluctuations, while keeping
the same ansatz for the spins in Eq. (A.18). We will account now for the nonlinear corrections
to this resonant behavior. The equations of motion for the ansatz amplitudes without lineariza-
tion read

ω2
0aq + G̃x ax + G̃y ay + G̃zaz + Γmȧq = 0 , (A.44)

ω2
0uq −ω2

duq + Γmωdvq + 2ωd v̇q − F0 + G̃xux + G̃yuy + G̃zuz + Γmu̇q = 0 , (A.45)

ω2
0vq −ω2

dvq − 2ωdu̇q − ΓmωduqG̃x vx + G̃y vy + G̃z vz + Γm v̇q = 0 , (A.46)

for the membrane motion, and

1
T2

ax +ωLay + G̃zaqay − G̃y aqaz −
G̃y

2
(uquz − vqvz) +

G̃z

2
(uquy + vqvy) + ȧx = 0 , (A.47)

1
T2

ux +ωLuy +ωdvx + G̃zaquy + G̃zayuq − G̃y aquz − G̃y azuq + u̇x = 0 , (A.48)

1
T2

vx +ωLvy −ωdux + G̃zaqvy + G̃zay vq − G̃y az vq − G̃y aqvz + v̇x = 0 , (A.49)
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1
T2

ay −ωLax + G̃x aqaz − G̃zaqax +
G̃x

2
(uquz + vqvz)−

G̃z

2
(vqvx − uqux) + ȧy = 0 , (A.50)

1
T2

uy +ωdvy −ωLux + G̃x aquz + G̃x azuq − G̃zaqux − G̃zaxuq + u̇y = 0 , (A.51)

1
T2

vy −ωduy + G̃x az vq −ωLvx + G̃x aqvz − G̃zax vq − G̃zaqvx + v̇y = 0 , (A.52)

1
T1

az − I0
1
T1
+ G̃y aqax − G̃x aqay −

G̃x

2
(uquy − vqvy) +

G̃y

2
(uqux + vqvx) + ȧz = 0 , (A.53)

1
T1

uz +ωdvz + G̃y aqux + G̃y axuq − G̃x ayuq − G̃x aquy + u̇z = 0 , (A.54)

1
T1

vz −ωduz + G̃y aqvx + G̃y ax vq − G̃x aqvy − G̃x ay vq + v̇z = 0 , (A.55)

for the spin components. Note the shorthand G̃i = γGi .
The resonator’s susceptibility can then by found by (i) finding the steady states of

these equations, i.e. finding the roots of a system of coupled polynomials arising from
ȧi = u̇i = v̇i = ȧq = u̇q = v̇q = 0, and (ii) performing linear fluctuation analysis around
these solutions. These two steps can be facilitated by the use of the HarmonicBalance.jl pack-
age [39].

The frequency spectrum in Fig. 4 reveals that as the driving strength increases, the lowest
order nonlinear effect is the generation of a second harmonic at a frequency 2ωd. Similar
equations to Eqs. (A.44)-(A.55) can be similarly obtained for the amplitudes of an extended
ansatz that includes also the higher harmonic generated at 2ωd.

Considering fluctuation dynamics, significant non-Gaussian deviations, arising from non-
linear effects, become more relevant as noise strength increases, requiring higher-order cor-
rections to accurately describe frequency shift statistics. For sufficiently large noise, activation
between multiple stationary states may also occur, further modifying the system’s response.
The analysis of these effects falls outside of the scope of the current study.

B Relaxation

The spin lifetime T1 of nuclear spins resulting from energy relaxation can vary strongly in
typical nuclear magnetic resonance (NMR) experiments, ranging from microseconds to days.
Our experimental situation is untypical, as we will probe nanoscale samples at low tempera-
tures and low magnetic fields. We do not need a very specific value for T1, as our analytical
results hold as long as Γm ≪ 1/T1. To avoid speculation about the dependency of T1 on field
strength and temperatures below 70 K, we use the same value of T1 = 50 ms for all our simu-
lations. If needed for specific experimental situation, we envisage reducing T1 by introducing
paramagnetic agents, such as free radicals or metal ions [72].

C Exact numerical simulations

To verify our theoretical predictions, we wish to numerically simulate our mean-field EOM
given by Eqs. (A.6)-(A.8). Due to the large span of magnitude of our problem (entailed in
condition (i) the spins’ force on the resonator, δF , is substantially weaker than the driving
force, i.e., |δF | ≪ F0), we wish to rewrite the equations in a displaced frame where we sim-
ulate the fluctuations/deviations from the bare driven harmonic oscillator. We can use the
ansatz q(t) = q0(t)+δq(t), where q0(t) is the steady-state solution of a bare driven harmonic
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oscillator (without spins), given by:

q0 =
F0

m
q

(−ω2
d +ω

2
0)2 +ω

2
dΓ

2
m

cos (ωd t +φ) , (C.1)

φ = arctan

�

−
ωdΓm

−ω2
d +ω

2
0

�

. (C.2)

From here we can rewrite Eqs. (A.6)-(A.8) without the driving term:

δ̈q = −ω2
0δq− Γmδ̇q−

ħhγ
m

G · I+ ξ(t) , (C.3)

İx = −
1
T2

Ix −ωL I y + γ(q0 +δq)
�

Gy Iz − Gz I y

�

, (C.4)

İ y = −
1
T2

I y +ωL Ix + γ(q0 +δq) (Gz Ix − Gx Iz) , (C.5)

İz =
1
T1
(ζ0(t)− Iz) + γ(q0 +δq)

�

Gx I y − Gy Ix

�

. (C.6)

Eqs. (C.3)-(C.6) describe the system in the laboratory frame. We can now solve them nu-
merically using an explicit Runge-Kutta method of order 8, which is well-suited for handling
the large separation of timescales in the problem [45]. In our simulations, we use a reduced
(effective) quality factor Qeff to reduce the simulation time. As the model does not explicitly
depends on Γm, the influence of the resonator’s quality factor is limited, provided one keeps
in mind condition (iii) imposing Γm ≪ 1/T1, T2. Interestingly, we notice that for Γm ≳ 1/T1,
the numerical simulations still lie very close to the analytical model. As an example, Fig. 2(a)
is obtained with a simulated quality factor Qeff = 2 · 104 giving Γm = 2π × 275 Hz whereas
1/T1 = 20Hz. Note, however, that this does not apply to Γm ≪ 1/T2. We used Eqs. (C.3)-
(C.6) for the Boltzmann polarization case.

However, this approach is not numerically efficient for very long time scales as required
for the statistical polarization case where we want to simulate for multiple correlation times
(for example tfinal = 100τ). Indeed, to properly resolve the Larmor precession, the timestep
∆t is chosen to be 40 times smaller than the precession period, i.e. ∆t = 2π/(40ωL) ∼ 5ns.
For a simulation of length tfinal = 100τ = 5 s, this requires 1 billion points to extract the
mean and variance of one trajectory. This is obviously a massive limitation to explore the
effect of parameters on the final frequency shift. To speed up our simulation, we use a version
of Eqs.(A.6)-(A.8) where the spins are in a rotating frame at the Larmor frequency ωL and
where the mechanics is in a frame rotating at the driving frequency ωd. In these frames, the
spin precession as well as the mechanical motion is quasi static. The fastest frequency is now
given by 1/T2 = 10kHz, giving now a timestep ∆t = T2/40 = 2.5µs, reducing the amount
of points by almost 3 orders of magnitude. The downside of going to a rotating frame is that
we have to neglect the effect of the magnetic gradient in the z direction (Gz). However, we
realized that the effect of the aforementioned gradient is to produce a frequency jittering of the
Larmor frequency (due to the displacement of the resonator across it, modifying the Larmor
frequency of the spins). This effect is, nevertheless, completely negligible compared to the
frequency variance generated by the statistical polarization of the spins.

C.1 Rotating frame

We first present the rotating frame transformation for the mechanical resonator, we rewrite
δq as

δq =gδq1 cos(ωd t) +gδq2 sin(ωd t) , (C.7)
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with nowgδq1 andgδq2 the quasi-static in-phase and quadrature components of the mechanical
displacement. The resonator EOM can be written as:

g̈δq1 = −2ġδq2ωd − Γm(ġδq1 +gδq2ωd) + 2
γħh
m
(G · I) cos(ωd t) + eξ(t) , (C.8)

g̈δq2 = 2ġδq1ωd − Γm(ġδq2 −gδq1ωd) + 2
γħh
m
(G · I) sin(ωd t) + eξ(t) , (C.9)

with 〈Þξ(t)àξ(t ′)〉 = 2ΓmkB T
mω2

d
δ(t − t ′) [73]. Note that we use the rotating wave approximation

(RWA) to remove fast oscillating terms.
In order to remove the fast frequency terms cos(ωd t) and sin(ωd t), we additionally write

the spins in the frame rotating at their Larmor frequency:

eIx = Ix cos(ωL t)− I y sin(ωL t) , (C.10)

eI y = Ix sin(ωL t) + I y cos(ωL t) , (C.11)

eIz = Ix . (C.12)

As ωL and ωd are close, i.e. |ωL −ωd| ≪ ωd, we can now eliminate fast oscillating terms at
ωL +ωd by means of the RWA once again, we get for the spins EOM:

ėIx = −
eIx

T2
−
γ

2
eIz( eq0 +gδq2)
�

Gy sin((ωd −ωL)t) + Gx cos((ωd −ωL)t)
�

−
γ

2
eIz
gδq1

�

Gy cos((ωd −ωL)t)− Gx sin((ωd −ωL)t)
�

,
(C.13)

ėI y = −
eI y

T2
−
γ

2
eIz( eq0 +gδq2)
�

Gy cos((ωd −ωL)t)− Gx sin((ωd −ωL)t)
�

−
γ

2
eIz
gδq1

�

−Gy sin((ωd −ωL)t)− Gx cos((ωd −ωL)t)
�

,

(C.14)

ėIz =
ζ0(t)− I0

T1
−
γ

2
( eq0 +gδq2)
�

Gx

�

eI y sin((ωd −ωL)t)− eIx cos((ωd −ωL)t)
�

− Gy

�

eIx sin((ωd −ωL)t) + eI y cos((ωd −ωL)t)
�

�

−
γ

2
gδq1

�

Gx

�

eI y cos((ωd −ωL)t) + eIx sin((ωd −ωL)t)
�

− Gy

�

eIx cos((ωd −ωL)t)− eI y sin((ωd −ωL)t)
�

�

,

(C.15)

with eq0 = F0/(mωdΓm) the rotating frame coherent drive.
Inserting the rotating frame spins in the mechanical resonator EOM gives:

g̈δq1 = −2ġδq2ωd − Γm(ġδq1 +gδq2ωd)

+
γħh
m

�

Gx

�

eIx cos((ωd −ωL)t)− eI y sin((ωd −ωL)t)
�

+ Gy

�

eI y cos((ωd −ωL)t) + eIx sin((ωd −ωL)t)
�

�

+Þξ(t) ,

(C.16)

g̈δq2 = 2ġδq1ωd − Γm(ġδq2 −gδq1ωd)

+
γħh
m

�

Gx

�

eIx sin((ωd −ωL)t) + eI y cos((ωd −ωL)t)
�

+ Gy

�

eI y sin((ωd −ωL)t)− eIx cos((ωd −ωL)t)
�

�

+Þξ(t) .

(C.17)

We see that all fast oscillating terms have been removed. Note that the gradient in the z
direction (Gz) does not appear as we neglected its effect for the rotating frame (Gz = 0). We
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then use the same explicit Runge-Kutta method of order 8 to numerically evolve our EOM [45].
In order to extract the frequency shift from the simulated data, we calculate the instantaneous
resonator phase φm. In the rotating frame, it is given by:

φm = arctan

�

−
eq0 +gδq2

gδq1

�

. (C.18)

We can then convert this phase to an instantaneous frequency shift with the relation:

δω= −
ω0

2Qeff tan(φm)
, (C.19)

with Qeff the quality factor used for the simulation. Note that the frequency shift can also be
calculated using the relation:

δω=
ω0

2Qeff
∆φ , (C.20)

where∆φ = φm−φ
no spins
m . The latter phase φno spins

m is the instantaneous phase of a resonator
without the spin-mechanical interaction. In our numerical simulations, we additionally evolve
a resonator without spin-mechanical interaction (Gx = Gy = Gz = 0) and use both relations
to extract the frequency shift. A comparison of both methods is displayed on Fig. 6 showing
negligible difference in the frequency shift estimation methods.
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Figure 5: Single trajectory simulation for a single proton spin interacting with a
mechanical resonator with frequency ω0 = 2π × 5.5 MHz. The Larmor precession
frequency ωL of the spin is detuned by +10kHz with respect to the mechanical res-
onator frequency. Quasi-static in-phase (a) and quadrature (b) components as de-
fined by Eq. (C.7). The same components are shown for a resonator without spin-
mechanical interaction. (c) Frequency shift calculated with Eq. (C.19). Spin compo-
nents (d) eIx , (e) eI y and (f) eIz in normalized units. Parameters are identical as Fig. 2,
namely ωd = ω0 = 2π × 5.5MHz, Gx = Gy = 6MT/m, Gz = 1MT/m, m = 2pg,
T1 = τ= 50ms, T2 = 100µs, N = 1 and Qeff = 2 · 104.
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Figure 6: Phase and frequency shift of a single trajectory simulation for a single pro-
ton spin interacting with a mechanical resonator with frequencyω0 = 2π×5.5 MHz.
The Larmor precession frequency ωL of the spin is detuned by +10kHz with respect
to the mechanical resonator frequency. (a) Phase shift of the mechanical resonator
with and without spin-mechanical interaction. (b) Corresponding frequency shift
using Eq.(C.19) and Eq. (C.20). (c) Comparison of (C.19) and Eq. (C.20) showing
rapid convergence and negligible frequency difference. The displayed data is from
the simulation showed in Fig. 5.

We can now simulate multiple trajectories by parallelizing the time evolution of the EOM.
This way, we can explore different sets of parameters, mostly the detuning between the spin
Larmor frequency and the mechanical resonator’s frequency. A single trajectory is shown on
Fig 5, it corresponds to the point with a detuning of 10 kHz on Fig. 2. Note the fluctuating
frequency shift on Fig. 5(c) with a standard deviation of σδω ≈ 0.7 mHz. As the fluctuating
part is much bigger than the static part (i.e. the statistical polarization is much greater than the
Boltzmann polarization), it is very hard to extract a precise value of the frequency shift mean
without simulating extremely long times. We get the Boltzmann polarization by simulating
the same parameters but turning the spin fluctuations “off”.

C.2 Magnetic tip simulations

To extract a meaningful value for the magnetic field gradients Gi , we perform a numerical sim-
ulation of the magnetic field of a cobalt nanomagnet. The nanomagnet resembles a cylinder of
length L = 1µm and radius R= 50nm. We are directly inspired by the nanomagnet presented
in Ref. [74]. We assume that the nanomagnet is pre-magnetized to 1 T and we apply an exter-
nal magnetic field. The latter is used to tune the region where the Larmor frequency matches
the mechanical resonator’s frequency; we want it to be as close as possible to the nanomag-
net in order to harvest the highest magnetic field gradients. Hence, the external magnetic
field can be in the opposite direction of the nanomagnet z-magnetic field depending on the
device investigated, as the required magnetic field for frequency matching can be smaller than
the nanomagnet-generated magnetic field. The nanomagnet magnetization should remain
roughly constant due to the shape anisotropy, which turns our Co cylinder effectively into a
hard magnet [74].

Figure 7(a) shows the absolute value of the magnetic field in the vicinity of the nanomagnet
(black rectangle) for the case of a SiN string withω0/2π= 5.5MHz. In this case, we apply an
external magnetic field of 0.2 T in the opposite direction of the nanomagnet z-magnetic field.
The region where the Larmor frequency of the spins would be resonant with the resonator
mechanical frequency (ωL =ω0) is showed as a black line. We can then extract the magnetic
field gradients in the x and z directions of the spin reference frame. These gradients are
displayed on Fig. 7(b) and 7(c). In the optimal case, the sample would be in a region where
Gx is maximal and Gz minimal. In addition, the sample must be small enough so that it does
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Figure 7: Numerical simulation of a cobalt nanomagnet (black rectangle) pre-
magnetized at 1 T subjected to an external magnetic field of 0.2 T in the z-
direction (bottom to top). (a) Absolute value of the magnetic field. The black
line shows where the magnetic field is resonant with the mechanical resonator:
γB0 = ωL = ω0 = 2π× 5.5 MHz. The magnetic field gradients are calculated from
(a) and result in a Gz (b) and a Gx (c) component. Note that Gx and Gz are the
magnetic field gradients in the x and z directions of the spin reference frame (and
not the nanomagnet reference frame).

not overlap the right and left lobes otherwise the effect of the Gx gradient would cancel out
due to the sign inversion of the latter.

From this simulation, we extract the value of the gradients used in the main text, namely
Gx = Gy = 6MT/m (Gx = Gy by symmetry) and Gz = 1MT/m.

C.3 Boltzmann vs statistical polarization

To justify the interest in looking at the statistical polarization of the spins instead of the Boltz-
mann polarization, we can easily plot the different values for a range of temperature and
number of spins in the sample. The Boltzmann polarization is given by Eq. (A.5) whereas the
statistical polarization is given by σδI0

= 1
2

p
N [33]. The comparison is shown in Fig. 8 for the

string resonator presented in this work. The black dashed line shows the case of 106 spins. It
is clear that for samples containing fewer spins the statistical polarization would allow a much
stronger signal than the Boltzmann polarization in the same conditions.

D Experimental sketch

In Fig. 9 we propose an experimental geometry for the measurement method we describe. We
choose a patterned membrane as the mechanical oscillator platform, as used in various recent
experiments [23]. The hole pattern allows creating a phononic shield to enhance the quality
factor of the resonator [10]. The sample of interest, illustrated as a single spin for simplicity,
is placed on the membrane surface.

A green laser beam indicates optical driving and interferometric readout. An AFM tip (not
vibrating) serves as a scannable magnetic probe for imaging. The tip surface is magnetized
with a ferromagnetic coating, as symbolically indicated with a small bar magnet. The whole
apparatus is embedded in a tunable field B0 provided by a superconducting magnet.
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Figure 8: Boltzmann polarization compared to the statistical polarization for different
numbers of spins in the sample and different temperatures for the string resonator.
The black dashed line represents a sample of 106 spins.

Figure 9: Artist’s view of a spin system (red) placed on a mechanical oscillator (thin
patterned membrane) interacting with magnetic field gradient. See main text for
details.
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