SciPost Phys. 20, 038 (2026)

BitHEP — The limits of low-precision ML in HEP
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Abstract

The increasing complexity of modern neural network architectures demands fast and
memory-efficient implementations to mitigate computational bottlenecks. In this work,
we evaluate the recently proposed BITNET architecture in HEP applications, assessing its
performance in classification, regression, and generative modeling tasks. Specifically,
we investigate its suitability for quark-gluon discrimination, SMEFT parameter estima-
tion, and detector simulation, comparing its efficiency and accuracy to state-of-the-art
methods. Our results show that while BITNET consistently performs competitively in clas-
sification tasks, its performance in regression and generation varies with the size and
type of the network, highlighting key limitations and potential areas for improvement.
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1 Introduction

The upcoming high-luminosity phase of the LHC (HL-LHC) will push the boundaries of preci-
sion measurements and new physics searches, necessitating unprecedented advances in com-
putational methods. The ability to efficiently generate and analyze vast amounts of collision
data is essential for maximizing the scientific potential of the HL-LHC. To this end, modern
machine learning (ML) techniques have become indispensable tools in high-energy physics,
enabling more precise and efficient modeling of complex physical processes [1,2].

Machine Learning has already demonstrated its utility in various HEP domains, accelerat-
ing various aspects of a sophisticated simulation and analysis chain. In particular, for event
generation, deep learning models are widely used for tasks such as scattering amplitude evalu-
ations [3-10], phase-space sampling [ 11-22], parton shower generation [23-30], and detector
simulations [31-58]. Similarly, for inference and analysis, ML-based approaches have been ex-
tensively used for numerous applications, including for instance quark-gluon tagging [ 59-84],
and parameter estimation [85-124].

However, many of these approaches face significant scalability challenges when deployed
in realistic experimental environments. For example, real-time triggering, event reconstruc-
tion, and particle tracking applications require ultra-fast inference on resource-constrained
hardware such as field-programmable gate arrays (FPGAs) [125-142], where the complexity
of deep neural networks poses a significant bottleneck. Other tasks, like detector simulation
or recently-proposed foundation models [143-151] require larger and larger networks, which
in turn need more disk space to be stored and energy to run.

A promising avenue for addressing these scalability challenges is model quantization [ 152—
161], where neural networks are compressed to lower-bit representations while retaining com-
petitive accuracy. In natural language processing (NLP) and large language models (LLMs),
recent research has explored weight matrices with only a few discrete states, significantly re-
ducing memory and computational requirements [ 162-164]. Similar techniques were investi-
gated in HEP a few years ago, mainly for classification tasks [165,166]. However, the potential
of such approaches for more general HEP tasks, such as generative modeling [167], remains
largely unexplored. Given these astonishing performances at reduced resource consumption in
these initial studies, we expect more development towards broadly-available hardware, dedi-
cated for low-precision computations in the near future, further motivating our study [168].

In this work, we evaluate the recently proposed BITNET architecture [162,163] for key HEP
applications, focusing on three fundamental tasks: (i) quark-gluon tagging with a Particle Dual
Attention Transformer (P-DAT) [76], (ii) estimating EFT parameters through regression with
SMEFTNet [117], and (iii) generative modeling for detector simulation using CALOINN [55]
and CALODREAM [56]. Our goal is to assess whether quantization-aware training (QAT) of
BITNET-based models can achieve accuracy comparable to conventional high-precision net-
works while reducing computational overhead.

This paper is structured as follows: In Sec. 2, we introduce the BITNET architecture and
outline our experimental setup. Afterwards, in Secs. 3 — 5, we present our results across the
three application domains. Finally, we discuss the implications of our results for future ML-
based solutions in HEP and conclude in Sec. 6.
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2 The BITNET architecture

We employ BITNET, originally designed for LLMs [162, 163], to various HEP applications. In
particular, our approach leverages BitLinear layers to efficiently manage memory usage and
computational demands. BITNET employs either binary or ternary weights with low precision
and quantized inputs during forward pass while maintaining high precision for optimizer states
and gradients throughout training. This balance ensures both scalability and stability, making
it well-suited for the intensive computational requirements of HEP After training, the network
weights can be saved at low precision and only a single floating-point value per layer (f3, to
be introduced below) needs to be stored in addition. In contrast to post-training quantization,
this quantization-aware training (QAT) approach has the model in low precision already during
the training process, which typically leads to better accuracy.

2.1 BitLinear layer

As illustrated in Fig. 1, both layers begin by mapping the trainable weights 6 onto a quantized
representation 6,. The choice of quantization depends on the acceptable trade-off between
precision and efficiency. The standard approach [162] uses binary weights, 6, € {+1,—1},
while an extended version [163] allows for ternary weights, 6, € {+1,0,—1}, improving fea-
ture filtering. Both weight quantizations are parametrized as

binary (1-bit): 6, =sign(6 —(0)),

0 1
ternary (1.58-bit): 6, = max (—1,min(1,round(ﬁ))) , with B =(|6]). )
Here, (-) indicates the mean. Beyond weight quantization, both layers apply absmax quanti-
zation to the input, ensuring b-bit precision. This method scales the input within [—Q},Q} ]
(Qp = 2°71) by normalizing them against the absolute maximum input value:

xQy

X4 = max (—Qb, min (Qb, round (
Y

))) s with v = max(|x]). (2)
Afterwards, we perform the matrix multiplication between the quantized weights and the in-
put. The output is then rescaled and dequantized using {f3, y} to restore its original precision,
allowing the BitLinear layer to be parametrized as

y= quq X g—: . 3)
The key part of Eq. (3) is the matrix multiplication of 6,x,. Instead of expensive floating point
multiplications, followed by a sum, the quantization of the weights just results in a sign for
Xgq, 80 x4 collapses to a sum without floating point multiplication.

In all our experiments, we only employ ternary (1.58-bit) quantized weights and use an
8-bit input quantization, i.e. b = 8 and Q; = 128. Hence, for the sake of readability, we will
always refer to BitLinear or BITNET in the following without explicitly mentioning 1.58-bit
anymore.

2.2 Implementation and code availability

The code and data for this paper can be found on GitHub,' providing readers with the resources
needed to reproduce our results or adapt the BitLinear layer for their own implementations.

1See https://github.com/ramonpeter/hep-bitnet.
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Figure 1: Ilustration of the BitLinear layer.

Currently, our implementation of BitLinear follows a pseudo-quantized approach. While
weights are constrained to binary or ternary values, matrix multiplications are performed in
full precision (32 or 64 bits). This is because current GPU hardware does not yet support ef-
ficient computations at such low precisions, but only to 4-bit integers in some cases [169].
However, specific computation kernels for CPUs are currently in development [170, 171].
A proper study on timing and resource consumption of BITNET is therefore not part of the
present work and remains an avenue for future research. Our pseudo-quantized approach is,
however, sufficient for this work, as we focus on evaluating performance metrics rather than
computational efficiency.

2.3 Computational resource requirements

The relative timing of different numerical operations, e.g. floating-point operations (FLOPs)
or integer operations (IntOPs), is highly hardware dependent. Since we want to factorize out
this component from our analysis, we report on the number of required operations instead.
This will serve as a proxy for the resource complexity. The number of operations of a regular
linear layer, including a bias term but excluding an activation function, is

Nops = Nprops = b X Ngye X 215, 4

where b is the batch size and n;, ,,; denotes the size of the input/output. In the BitLinear and
BitLinear158 layer, the number of operations is

Nrrops = b x (3ngy + 1y +1)
Nops < Nrrops + Nineops + Nsignops » with Nipops = b X ngye X (njs — 1), (5)

NSignOPs =D X Ny X Ny -

The “less than” factor arises because zero weights in the ternary quantization do not contribute
to the sum, so the number of IntOPs is smaller than the sum over all elements. The three FLOPs
come from the scaling with f, y, and the bias term. The term independent of the output size
comes from the initial quantization of the input vector, which is performed once for all outputs.

The timing comparisons among FLOB SignOPB and IntOP are hardware dependent, with
dedicated hardware obviously much faster than the general-purpose hardware usually avail-
able. In general, the SignOP is basically free, as it is a copy/bitflip/skip operation for weights

4
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Figure 2: Relative runtime of a regular linear layer and the BitLinear layer as a
function of the layer input size for two different assumptions on the relative speed
of FLOPs and IntOPs and for three different output sizes: 20 (dotted), 100 (dash-
dotted), and 500 (solid).

{1,—1,0} on any hardware. The IntOP depends on the kind of FLOP one compares against
and the kind of integer used. Here, we have integer additions, which are even cheaper than
integer multiplications. An estimated difference between this IntOP and a FLOP is of the order
of a factor 10-30.

Figure 2 shows the ratio of the two scalings for the conservative assumption 1 FLOP = 10
IntOPs and 1 FLOP = 30 IntOPs, for different input and output sizes. In all cases, we assume
vanishing costs for SignOPs and the maximal number of IntOPs (i.e. no zero weights that
reduce the size of the sum).

Based on these considerations, it is clear that two networks with the same number of
trainable parameters and the same fraction of quantization can still achieve very different
speed-ups depending on the number of layers and their widths within the network.

3 Classification: Quark-gluon tagging

In this section, we employ BITNET for a quark-gluon discrimination task, utilizing the Particle
Dual Attention Transformer (P-DAT) [76]. This architecture is specifically designed to capture
both local particle-level information and global jet-level correlations.

To evaluate the performance of the default P-DAT and its quantized counterpart, P-DAT-Bit,
we utilize the Quark-Gluon benchmark dataset [172], which consists of:

Signal : qq - Z(_) VT}) + Quds > (6)
Background : qq — Z(— vv)+g.

Jet clustering is performed using the anti-k; algorithm with a radius parameter of R = 0.4
using FASTJET [173]. We select only jets with transverse momentum p; € [500, 550] GeV
and rapidity |y| < 1.7 for further analysis. The dataset contains not only the four-momenta
of each particle but also particle identification labels, including electron, muon, photon, as
well as individual categories for the different charged and neutral hadrons, i.e. the full PID
parameterization is used.
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Table 1: Performance comparison for P-DAT, P-DAT-Bit, and some existing classifi-
cation algorithms on the quark-gluon discrimination dataset. The uncertainties on
rejection rates are calculated by taking the standard deviation of 5 independent train-
ing runs. The error bars for the accuracy and the AUC are not displayed as they are
negligible.

Accuracy AUC Re_] 50% Re_] 30%
ParticleNet [174] 0.840 0.9116 39.8(2) 98.6(13)
PCT [175] 0841 09140 43.2(7) 118.0(22)
LorentzNet [176] 0.844 0.9156 42.4(4) 110.2(13)
ParT [177] 0.849 0.9203 47.9(5) 129.5(9)
P-DAT [76] 0.839 0.9092 39.2(6) 95.1(13)
P-DAT-Bit 0.834 0.9040 35.0(3) 83.3(12)

The dataset is divided into 1.6M training events, 200k validation events, and 200k test
events. Our study focuses on the leading 100 constituents per jet, leveraging their four-
momentum components and particle identification labels as input features for training. For
jets containing fewer than 100 particles, we apply zero-padding to maintain uniform input
dimensionality.

3.1 Particle dual attention transformer

P-DAT takes the particle information within the jet as input and consists of three main com-
ponents: (i) the feature extractor, (i) the particle attention module, and (iii) the channel
attention module. In this work, we introduce a quantized variant, P-DAT-Bit, where we apply
different quantization strategies to various parts of the model.

Specifically, we employ QAT for the particle and channel attention modules while keeping
other components, including the feature extractor, 1D CNN, and final multi-layer perceptron
(MLP) classifier, in full precision. This choice is motivated by computational efficiency and
robustness considerations. The attention modules contain the majority (63%) of parameters
and are the most computationally demanding, thus offering the greatest benefit from quan-
tization. Furthermore, transformer-based attention mechanisms have been shown to exhibit
notable robustness to quantization, making them an ideal starting point for a proof-of-concept
study. Therefore, we implement QAT by replacing all linear layers with BitLinear layers in the
two particle attention and two channel attention modules, affecting approximately 63% of the
total weight parameters. The attention modules incorporate physics-motivated bias terms in
the scaled dot-product attention, which remain in full precision to preserve critical informa-
tion. The final output undergoes a 1D CNN transformation and global average pooling before
being fed into an MLP classifier. Further architectural details can be found in Ref. [76]. The
new model is trained from scratch, with all hyperparameters identical to the non-quantized
version.

3.2 Performance comparison

As depicted in Tab. 1, while P-DAT itself offers robust performance with an accuracy of 0.839
and an AUC of 0.9092, the adaptation of this model into P-DAT-Bit reveals both the strengths
and the trade-offs of utilizing BitLinear layers within the attention blocks. The integration of
BitLinear layers in P-DAT-Bit results in a slight decrease in accuracy and AUC compared to the
non-quantized variant. Despite this modest drop, the performance metrics remain highly com-
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Figure 3: Calibration curves of P-DAT and P-DAT-Bit models for quark/gluon discrim-
ination. The errorband has been obtained from evaluating 5 independent runs.

petitive, indicating that the reduced precision computation does not drastically compromise
the model’s discriminative capability. Specifically, the background rejection rates at 50% sig-
nal efficiency (Rejsqq,) and 30% signal efficiency (Rejzgo,) are 35.0 and 83.3, respectively. This
variation between P-DAT and P-DAT-Bit highlights the balancing act between computational
efficiency and performance accuracy. It emphasizes that while BitLinear layers streamline
model operations,particularly advantageous in resource-constrained environments, there is a
nuanced impact on the model’s ability to manage complex discriminative tasks.

Finally, in Fig. 3, we present the calibration curves of P-DAT and P-DAT-Bit models for
quark/gluon discrimination. The red line represents the calibration curve for the original P-
DAT model, while the blue line represents the P-DAT-Bit model. Each model was evaluated
over five runs to compute the average calibration curve and the associated standard deviation.
Both models demonstrate good calibration performance, with their curves closely following
the diagonal line, indicating that the predicted probabilities are well-calibrated with the actual
positive class probabilities. Notably, the error bands for both models are very small, suggesting
that the predictions of both models are consistent across multiple runs. Besides, the blue
band of the P-DAT-Bit model is slightly broader compared to the red band of the P-DAT model,
which can be attributed to its use of lower bit precision for weights and inputs in 60% of its
parameters. Despite this, the P-DAT-Bit model is well calibrated and closely following the ideal
diagonal line, indicating that its predicted probabilities are generally accurate.

To quantify the computational cost of the P-DAT-Bit, we compute the number of FLOPs,
IntOPs, and SignOPs of its two building blocks, the Particle Attention Block and the Channel
Attention Block in Tab. 2.

4 Regression: SMEFT parameter estimation

In this section, we evaluate the performance of BITNET for a regression task and focus on the
SMEFTNet [117] architecture. We denote its quantized version as SMEFTNet-Bit, where either
all or some linear layers are replaced with its BitLinear counterpart. To perform a meaningful
comparison, we employ the same simulated WZ event samples used in Ref. [117], focusing on
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Table 2: Computational cost for a single pass of the full-precision and BITNET im-
plementations of the Particle Attention and Channel Attention Blocks in the P-DAT
architecture. Percentages are in relation to the number of FLOPs of P-DAT. Assump-
tions: 1 FLOP = 10 IntOPs, SignOP = 0 FLOPs.

Block Operations P-DAT P-DAT-Bit

Particle FLOPs 7795200 2995590

Attention SignOPs - 2457600

Block IntOPs - 2419200
Total FLOPs 7795200 3237510 (41%)

Channel FLOPs 5896192 1896517

Attention SignOPs - 2048000

Block IntOPs - 1209600
Total FLOPs 5896192 2017477 (34%)

a semi-leptonic decay chain
pp — W(— qq) Z(— £0). 7

The goal is to predict the decay plane angle d)f;:cay of the parton-level quarks from the particle-
level jet information, as this observable is sensitive to linear SMEFT-SM interference effects.
This decay plane angle depends on the exact momenta of the up-type and down-type quarks,
and interchanging these momenta at the parton level results in a difference of . However, the
particle-level decay products do not contain this information and are thus invariant under this
permutation. Hence, in order to capture this ambiguity in the training of the network fg(x)
with trainable parameters 0, we use the modified loss function [117]

= {5 (0 5
where the sin encodes the symmetry of shifting with 7. The input x consists of the lab-frame
momenta of each particle in a given event j parametrized as

x ={p11,91, ARy, -, PN, PN, ARy} €)

where N; denotes the number of particles in this event.

4.1 SMEFTNet architecture

SMEFTNet is an IRC-safe and rotation-equivariant graph neural network. It is designed to
provide an optimal observable for small deviations from the SM and enhance SMEFT sensi-
tivity, specifically focusing on the linear SM-SMEFT interference within SMEFT. To preserve
sensitivity to the linear term, it is crucial to consider the orientation of the decay planes of the
W or Z boson, as this orientation helps resolve the helicity configuration of the amplitude that
is altered in the SMEFT [178]. To study the hadronic final states of W or Z boson, SMEFTNet
is constructed to be equivariant to azimuthal rotations of the constituents of the boosted jet
around the jet axis, maintaining SO(2) symmetry regardless of the chosen reference frame. It
processes inputs as variable-length lists of particle constituents of a fat jet, originating from
the hadronic decay of a boosted massive particle. For details on the architecture, we refer to
Ref. [117]. Although the decay-plane angle regression is a relatively lightweight task, investi-
gating quantization in this controlled setting is still meaningful. In realistic SMEFT inference

8
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tasks, surrogate models have to be evaluated repeatedly when profiling over many nuisance
parameters to estimate systematic uncertainties, or when integrating over latent observables,
where lighter and faster models become highly advantageous, and even moderate speedups
can lead to substantial reductions in end-to-end inference time. Thus, assessing whether low-
precision variants of lightweight models retain accuracy is a necessary first step before applying
such techniques in more computationally intensive inference workflows.

In our study, we consider three quantized variants of the SMEFTNet model and apply the
three variants to predict the decay plane angle from the jet’s constituents and compare their
performance with the results presented in Ref [117]. In the first variant, all linear layers are
replaced with BitLinear layers, which we refer to as SMEFTNet-Bit100. In the second variant,
only the linear layers within the MLP block are quantized, corresponding to approximately 70%
of the total weight parameters; this configuration is labeled SMEFTNet-Bit70. In the third
variant, only the linear layers in the Message Passing Neural Network block are quantized,
accounting for about 30% of the weights; this is denoted SMEFTNet-Bit30.

4.2 Performance comparison

To visualize the comparative analysis of SMEFTNet and SMEFTNet-Bit100, Fig. 4 presents the
scatter plots of the true and the predicted ¢gecay in the remaining 20% WZ dataset, respec-
tively. The results reveal that while the SMEFTNet-Bit100 model marginally underperforms
relative to the original SMEFTNet, the differences are minimal, showcasing the effectiveness of
the low-bit model in capturing the essential structure of the data despite its limited weight and
input precision. Notably, the scatter plot of SMEFTNet exhibits two faint vertical red bands at

Table 3: Comparison of the Wasserstein distance and separation power between the
residual distributions of each of the three quantized SMEFTNet variants, an indepen-
dently re-trained full-precision SMEFTNet, and that of the original SMEFTNet.

Model Comparison =~ Wasserstein Distance Separation Power

SMEFTNet 0.0021 0.0001
SMEFTNet-Bit100 0.4546 1.4860
SMEFTNet-Bit70 0.2528 0.6138
SMEFTNet-Bit30 0.1040 0.1503

& <

5t B

& —m/41 iS

_7-,:/2 4
i i i SMEFTNet i i SMEF:FNet-BithO
— —/2 0 /2 T —n —1/2 0 /2 T
True <i)decay True ¢decay

Figure 4: Two-dimensional scatter plots of the true and predicted angle ¢ gecay in the
test dataset. Left: SMEFTNet with regular linear layers. Right: SMEFTNet-Bit100
with BitLinear layers.
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Figure 5: Histograms of residuals, defined as the differences between truths and
predictions for ¢gec,y regression task. The histogram in blue represents SMEFTNet
without BitLinear layers, whereas the histogram in red corresponds to SMEFTNet
with BitLinear layers. From left to right: 100%, 70%, and 30% of the weights are
quantized.

true ¢gecqy values of £7/2, which become more pronounced and broader in the SMEFTNet-
Bit100 scatter plot. This phenomenon is attributed to both models’ tendency to stabilize at
local minima due to the inherent challenges posed by multi-objective optimization. In the
critical region of true ¢gecay ~ £7/2, two physically indistinguishable parton-level configu-
rations — arising from the permutation of up-type and down-type quarks — correspond to
decay plane angles that differ by 7. Since the particle-level information does not resolve this
ambiguity, the regression model is trained with both values as plausible targets. As a result,
it is forced to compromise between conflicting objectives, potentially leading to suboptimal
predictions for either configuration individually. The broader bands in the SMEFTNet-Bit100
results are explained by its limited precision due to weight and input quantization. This re-
stricted precision leads to significant fluctuations in the predicted ¢gecay values, resulting in
the observed wider bands in the visual representations.

Finally, Fig. 5 presents three histograms of residuals, which represent the differences be-
tween truths and predictions for ¢; gecay- In each histogram, the red bars correspond to the
original SMEFTNet, while the blue bars represent different configurations of the SMEFTNet-
Bit model. In the left histogram, the blue bars correspond to SMEFTNet-Bit100. In the middle
histogram, the blue bars represent the SMEFTNet-Bit70. In the right histogram, the blue bars
represent the SMEFTNet-Bit30. In all cases, the SMEFTNet model exhibits a sharp peak at
zero, indicating a precise alignment of predictions with true values. When fully quantized
(100%), the SMEFTNet-Bit100 distribution broadens prominently, reflecting larger variations
in prediction accuracy. Reducing the fraction of quantized layers to 70% yields intermediate
performance: the residuals of SMEFTNet-Bit70 remain somewhat more dispersed than SMEFT-
Net but are considerably narrower than the fully quantized version. At 30% quantization, the
residuals of SMEFTNet-Bit30 closely resemble those of the original SMEFTNet, showing only a
modest increase in width. Consequently it is evident that as more linear layers are replaced by
BITNET layers, the performance of the model deteriorates. Moreover, a notable feature in all
plots is the periodic structure of the residuals, which arises because the model faces a periodic
ambiguity in which angles separated by m map to the same predicted value, creating these
peaks around +7r and 0 in the residual distribution. Furthermore, the fraction at +7 is higher
for SMEFTNet-Bit100, reflecting its broader vertical band in its 2D scatter plots. This broaden-
ing stems from the limited precision of BitLinear layers, which amplifies prediction fluctuations
near critical values of £7t. Notably, as the proportion of quantized layers increases, the fraction
at =% also becomes higher, indicating that stronger quantization further destabilizes the pre-
dictions near critical values of 7. By contrast, SMEFTNet shows narrower bands, indicating
more accurate predictions and a lower fraction at £7. Lastly, across all three configurations,

10
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Table 4: Computational cost for a single pass of the Full-Precision and BITNET imple-
mentations of the Message Passing and MLP blocks in the SMEFTNet architecture.
Percentages are in relation to the number of FLOPs of the SMEFTNet. Assumptions:
1 FLOP = 10 IntOPs, SignOP = 0 FLOPs.

Block Operations SMEFTNet SMEFTNet-Bit100
Message FLOPs 1080 188
Passing SignOPs - 520
e | IntOPs : 479
Total FLOPs 1080 288 (27%)
FLOPs 3776 411
MLP SignOPs - 1824
Block IntOPs - 1759
Total FLOPs 3776 769 (20%)

both models overlap around zero residuals, highlighting their overall reliability. However,
the progressive widening of SMEFTNet-Bit’s distributions with increasing quantization under-
scores the trade-off between model compression and predictive precision. This demonstrates
that partial, rather than complete, quantization can give a better balance for resource-limited
applications.

Table 3 complements Fig. 5 with two quantitative metrics. The Wasserstein distance cap-
tures the average angular shift between residual distributions, whereas the separation power
reflects their overall shape divergence. The additional “SMEFTNet” entry corresponds to a sec-
ond model trained with the same architecture and hyper-parameters as the reference model
but initialized with a different random seed. Its near-zero Wasserstein distance (0.002) and
separation power (1 x 10™%) serve as a self-consistency check, confirming that both metrics
are sensitive only to distributional shifts and robust to statistical fluctuations. By contrast, the
three quantized variants show progressively larger values as the proportion of BitLinear layers
increases, quantitatively substantiating the broadening already visible in Fig. 5.

To estimate the resource consumption of the SMEFTNet-Bit100, we compute the number
of FLOPs, IntOPs, and SignOPs of its two building blocks, the Message Passing Block and the
MLP Block in Tab. 4. Since the Message Passing Block is applied once per edge while the MLP
Block is applied once per event, we report their per-pass costs separately.

5 Generative: Detector simulation

Next, we consider a generative task. These are very important in HEE as the process of sam-
pling random events from a given (complicated) conditional probability density is precisely
what happens in numerical simulations of particle collisions (See [1] for an overview on ML
applications to the entire simulation chain.). One notable challenge is detector simulations,
which involve modeling showers of energetic particles in the calorimeters, a task character-
ized by its high numerical complexity and dimensionality. In the past years, this field has
seen many new ideas and approaches [179], which led to the conception of the CaloChal-
lenge [180] to compare existing models on equal footing and spur even more development
of state-of-the-art methods. The CaloChallenge was a data challenge in the HEP community,
with four different datasets, increasing in their dimensionality. The goal of the challenge was
to train generative networks on the datasets and to generate artificial samples as fast and pre-
cise as possible [181]. The dataset dimensionalities range from a few hundred in the easiest
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Figure 6: Illustration of different levels of quantization for the flow. Red lines repre-
sent regular linear layers, while blue lines indicate BitLinear layers. The three setups,
from top to bottom, are: regular, NNCentral, and BlockCentral.

case to a few tens of thousands in the most complicated case. These are single particle show-
ers, simulated with GEANT4 [182-184] and available at [185-188]. For more details on the
datasets we refer to [180].

When evaluating generative models, one can pick from various metrics [180, 189, 190].
Here, we use classifiers to evaluate the generative performance. The classifiers are trained
on the task of distinguishing generated samples from the GEANT4 reference. If a powerful,
well-trained classifier cannot distinguish between the two samples, we conclude that the sam-
ples were drawn from the same underlying distribution, i.e. the generative model learned the
underlying distribution well [39]. Summarized in a single quantity, we use the area under the
receiver operating characteristic (AUC). A lower AUC indicates a better generative model.

As an example for generative networks, we consider two well-performing submissions of
the CaloChallenge [180]: CALOINN [55] based on a normalizing flow and CALODREAM [56]
based on conditional flow matching. Normalizing flows were the first generative model that
passed the “classifier test” [39,190] in calorimeter shower simulations and have seen various
applications to this task [39, 41, 46,48, 55,57,180,191-193]. Conditional flow matching is
the most recent generative model that was explored in this context and shows impressive
performance in many applications [56,194,195].

5.1 Normalizing flow — CALOINN

CALOINN [55] is a normalizing-flow-based generative model, learning a bijective transforma-
tion between a simple base distribution, usually a Gaussian, and a more complicated distribu-
tion, the target distribution. In detail, CALOINN is based on coupling layer-based normalizing
flow [196,197] (which are sometimes also called INN, invertible neural networks [ 198], even
though they all are invertible). These types of flows are equally fast to evaluate in both di-
rections (as density estimator and generative model), making training and generation more
efficient than in an autoregressive setup [39,41,46]. The bijective transformation that is used
in the coupling blocks is based on splines [199-201].

The calorimeter showers are normalized to unit energy in each calorimeter layer, and the
corresponding layer energies are then appended to this array and encoded via ratios to the
incident energy. This setup allows CALOINN to learn the distribution of calorimeter showers in
a single step instead of a more time-consuming two-step procedure [39,41,46]. The downside
of this approach is the scaling with the dimensionality of the dataset. The spline-based trans-
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formation requires a large number of output parameters for the individual NNs in the coupling
layers, which in turn increases the number of trainable parameters of the NN. For dataset 2,
CALOINN already has 270M parameters, making an application to the six times bigger dataset
3 of the CaloChallenge impossible.

All hyperparameters are as in the original publication [55], with the flow consisting of 12
(14) coupling blocks and the individual NNs having 256 hidden nodes, and 4 (3) hidden layers
for dataset 1 (2). For dataset 1, CALOINN uses rational quadratic splines [200], for dataset 2
it uses cubic splines [201].2 For quantization, we consider 5 different setups, or quantization
strategies, which we can summarize as follows:

Default: The setup used in the original publication [55], without quantization. It serves as a
baseline as well as a confirmation that we use the same hyperparameters as Ref. [55].

Exchange Permutation: A setup where we change the permutations between the bijector
blocks. Instead of using random permutations throughout, we exchange the sets that
are transformed and that go into the NN after the first and before the last bijector. This
strategy ensures that every dimension is transformed exactly once by both the first and
last two bijectors. There is no quantization in this setup. It serves as a baseline for the
BlockCentral setup, as it shares the same permutation scheme.

NNCentral: Only the central layers in each NN are quantized. Since in spline-based flows the
final layer typically has the most parameters, this configuration has minimal effects.

BlockCentral: Quantization is applied to all layers of NNs in the central bijectors, i.e. neither
the first two nor the last two in the chain. Paired with the same permutation strategy as
in Exchange Permutation, this ensures each dimension is first transformed by a regular
bijector, then by quantized ones, and finally again by a regular bijector.

All: All linear layers in all bijectors are quantized.

Fig. 6 shows an illustration of the regular, NNCentral and BlockCentral. Their fractions of
quantized weights are given in Tab. 5. To evaluate the performance of the quantized CALOINN,
we use the exactly same classifier architecture and training strategy as in [180], making the
results directly comparable. The main results are shown in Tab. 5.

The AUCs we see in the regular setup are consistent with the ones reported in [ 180], where
ds1 photon was scored 0.626(4) / 0.638(3), ds1 pion was scored 0.784(2) / 0.732(2), and
ds2 was scored 0.743(2) / 0.865(3) for low / high-level observables, respectively. These AUCs
differ from the ones presented in [55] as the classifier architecture in the original publication
was different than the one used here and in [ 180]. The modified permutations usually improve
the AUCs slightly, but mostly they agree with the regular setup within one standard deviation.

We observe that quantizing the NN weights with the BITNET degrades performance, with
a clear correlation between the fraction of quantization and the AUC. Across all datasets, the
NNCentral setup gives AUCs almost as good as the Regular setup, but in this case only a very low
fraction of weights is actually quantized. The All setup degrades the generative performance
a lot, with the gap being larger in the high-dimensional dataset 2. The BlockCentral setup
results in an overall good performance. This is an interplay of not having quantized all of the
parameters and the choice to only quantize the central coupling layers instead of the outer
ones. This latter choice allows for the bulk of the bijection being carried out by a quantized
flow, while the final details will be adjusted in the outer coupling blocks with a regular flow
setup.

2This choice was motivated in [55] through an improved stability. Indeed, we also observe a few cases of
NaNs being sampled: about 40 cases in the NNCentral setup, 1 case in the BlockCentral, and 4000 cases in the All
scenario.
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To estimate the resource consumption of the quantized CaloINN, we compute the number
of FLOPs, IntOPs, and SignOPs of the three different types of coupling layers that make up our
quantization strategies in Tab 6. While these number take into account the batchnormaliza-

tions in the NN, they do not include the FLOPs that are used in the spline evaluation.

Table 5: Performance of default and BITNET CALOINN using the classifier metric of
the CaloChallenge [180]. Uncertainties show the standard deviation over 10 random
initializations and trainings of the classifier on the same CALOINN sample.

Dataset Setup Quantization Low-Level AUC High-Level AUC
%b Default - 0.633(3) 0.656(3)
= | Exchange Perm. - 0.640(4) 0.651(3)

dsl-y 2 | NNCentral 8.4% 0.640(3) 0.650(2)
N BlockCentral 66.6% 0.680(3) 0.669(3)
< All 99.9% 0.759(2) 0.828(2)
%b Default - 0.793(3) 0.742(3)
= | Exchange Perm. - 0.784(2) 0.736(3)

+

dsl-m 2 | NNCentral 5.9% 0.801(2) 0.751(3)
S BlockCentral 66.6% 0.852(1) 0.807(2)
= All 99.9% 0.882(2) 0.907(2)
%b Default - 0.738(4) 0.859(2)
= | Exchange Perm. - 0.728(6) 0.857(3)

ds2 5| NNCentral 0.3% 0.780(3) 0.876(4)
S BlockCentral 71.4% 0.950(2) 0.979(1)
= All 99.9% 0.993(1) 0.998(0)

Table 6: Computational cost for a single pass through one of the Coupling Blocks (CB)
of the CaloINN. Percentages are in relation to the number of FLOPs of the regular CB.
Assumptions: 1 FLOP = 10 IntOPs, SignOP = 0 FLOPs.

Dataset Operations Default NNCentral All
FLOPs 3121664 2861570 20982
ds1— SignOPs - 131072 1560064
" | mtops . 130560 1553902

Total FLOPs 3121664 2874626 (92%) 176372 (6%)
FLOPs 4411392 4151298 28373
dslomt SignOPs - 131072 2204928
IntOPs - 130560 2196330

Total FLOPs 4411392 4164354 (94%) 248006 (6%)
FLOPs 38545408 38415361 220607
ds2 SignOPs - 65536 19272704
IntOPs - 65280 19200428

Total FLOPs 38545408 38421889 (99.7%) 2140650 (5.6%)
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5.2 Conditional flow matching - CALODREAM

CALODREAM [56] is a generative architecture combining Conditional Flow Matching (CFM)
with transformer elements.

In detail, CALODREAM consists of two networks, both trained with conditional flow match-
ing: (i) an autoregressive transformer, called the energy network, to learn the 45 layer ener-
gies, and (ii) a vision transformer, called the shape network, learning the normalized showers.
The self-attention mechanism in the transformer layers is highly beneficial for modeling the
sparsity of calorimeter showers and the correlations across detector locations. Crucially, the
introduction of patching, which groups nearby voxels into coarser units, reduces the impact of
the quadratic scaling and enables the model to scale efficiently to larger calorimeter geome-
tries such as DS3. At the same time, conditional flow matching ensures efficient training of
the underlying continuous normalizing flow model.

The main difference of CALODREAM to CALOINN when considering the quantization lies in
the distribution of NNs in the generative process: instead of many “smaller” NNs in CALOINN,
CALODREAM has one large NN for each of the two steps, so we expect the impact of quanti-
zation on performance to be smaller.

The preprocessing of the calorimeter shower data is done as in the CALOINN setup. Show-
ers are normalized per calorimeter layer, and the corresponding layer energies are encoded
as ratios to constrain them to the range [0,1]. The energy network now learns the latter
independently from the normalized showers, which are learned by the shape network.

Since the two networks factorize, we can discuss quantization strategies separately and
combine them ad libitum in generation.

Quantization of the energy network

In the energy network, an autoregressive transformer defines the embeddings of the energy
values that are then passed to a MLP performing the CFM. We keep the original hyperparame-
ter choices for these networks, so the former is based on 4 attention heads with an embedding
dimension of 64, see [56]. The feed-forward CFM network consists of 8 hidden layers with 256
nodes each. It takes the concatenated 64-dimensional time embedding, the 64-dimensional
autoregressive embedding of previous calorimeter layer energies as well as the 1-dimensional
current calorimeter layer energy as input and predicts the velocity field of the current calorime-
ter layer as output. We consider two quantization setups for the energy network:

Regular: The non-quantized version, as used in the original publication [56].

Quantized: Quantizes the central 6 of the 8 hidden layers of the CFM network, leaving the
transformer-based embedding networks untouched. This results in 66.09% of the train-
able parameters of the energy network being quantized. However, since the energy
network is much smaller than the shape network, this translates to only 5.54% of the
total CALODREAM model being quantized.

Quantization of the shape network

In the shape network, all 6480 voxels of the calorimeter are split into 135 patches of 48 voxels
each, and all operations are performed on these patches in parallel. Diffusion time t, ratios of
layer energies, incident energy, and voxel patches are transformed using three different em-
bedding networks: (i) for time, (ii) for conditionals, and (iii) for position. These embeddings
are passed to a chain of 6 Vision Transformer (ViT) blocks, each consisting of a self-attention
layer, a projection, and a subsequent MLP step. The output is then passed through a final MLP
layer and reassembled from patches into complete calorimeter showers.
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Table 7: Performance of regular and BITNET CALODREAM using the classifier metric
of the CaloChallenge [180]. Uncertainties show the standard deviation over 10 ran-
dom initializations and trainings of the classifier on the same CALODREAM sample.

Energy net Shape net Quantization low-level AUC high-level AUC

regular regular - 0.531(3) 0.523(3)
quantized g 5.5% 0.532(3) 0.525(3)
regular . 58.5% 0.611(2) 0.543(3)
quantized 1° €MPedding o oo, 0.610(5) 0.545(2)
regular full 60.7% 0.735(4) 0.942(2)
quantized 66.2% 0.738(4) 0.944(3)

Given the modular nature of the shape network, several quantization strategies are possi-
ble. Here, we report three:

Regular: The non-quantized version, identical to the setup in the original publication [56].

No embedding: Quantizes the core elements of the ViT blocks, i.e. QKV matrices, projections,
and MLPs, while keeping the embedding networks and the final MLP layer unquantized.
This configuration results in 63.8% of the shape network being quantized.

Full: Extends the no embedding setup by also quantizing the linear layers in the position,
time, and conditional embedding networks. This increases the fraction of quantized
parameters in the shape network to 66.22%.

Performance comparison

Also for the evaluation of CALODREAM, we use the same classifier architecture and training
strategy as in the CaloChallenge [180], making the results directly comparable. The main
results are shown in Tab. 7.

Our retraining of CALODREAM in the regular setup reproduces the scores of the CaloChal-
lenge [180] with 0.531(3) / 0.521(2) for low/high-level AUC.

The first thing we observe in Tab. 7 is that swapping the regular for the quantized energy
network has no effect on the resulting AUC scores, so 66% of trainable parameters in six out
of eight hidden layers inside the CFM can safely be quantized without loss of sample quality.

In the shape network, however, the performance strongly depends on which parts are
quantized. A substantial part of the ViT blocks can be quantized with almost no loss in shower
quality, but as soon as the embedding layers are quantized, the performance drops a lot. Note
that the no embedding CALODREAM, which is quantized to about 60% still has the best high-
level, and second best low-level AUCs of the CaloChallenge submissions [180].

We also observe the spread between high- and low-level AUC to be larger. Especially in the
fully quantized case, the high-level features were already very sensitive. The low-level AUC
score was not as bad, but that is likely a remnant of the classifier architecture choice, see the
discussion in [180].

In tables 8 and 9 we give an estimate of the computational resources required for different
components of CALODREAM. The numbers are based on a single run through the networks,
so they only show a fraction of the FLOPs required to generate a full shower. In addition, we
also do not include the transformer decoder and encoder networks of the energy network, as
they are not quantized in our studies.
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Table 8: Computational cost for a single pass through the energy network. Percent-
ages are in relation to the number of FLOPs of the regular network. Assumptions: 1
FLOP = 10 IntOPs, SignOP = 0 FLOPs.

Block Operations Regular Quantized
FLOPs 3297292 163858
Energy SignOPs - 1572864
Network IntOPs - 1569792

Total FLOPs 3297292 320837 (10%)

Table 9: Computational cost for a single pass through the shape network. Percentages
are in relation to the number of FLOPs of the regular network. Assumptions: 1 FLOP
= 10 IntOPs, SignOP = 0 FLOPs.

Block | Operations Regular No embedding Full

FLOPs 1257600 1257600 8515

Embedding | SignOPs - - 628800

Layers IntOPs - - 626400

Total FLOPs 1257600 1257600 (100%) 71155 (6%)

Diffusion FLOPs 50771546 17691890 17691890

Transformer SignOPs - 16588800 16588800

Blocks IntOPs - 16562880 16562880
Total FLOPs 50771546 19348178 (38%) 19348178 (38%)

6 Conclusions and outlook

In this paper, we investigated the applicability of the BITNET architecture to various tasks in
high-energy physics. We demonstrated that QAT can offer a promising path forward for large-
scale neural network applications in HER By applying these techniques to classification, re-
gression, and generative tasks, we observed that performance remains competitive, especially
for classification tasks such as quark-gluon tagging. However, the impact of quantization on
regression and generative modeling is more nuanced and requires careful consideration of
network size and architecture. The results highlight that:

* Larger networks can be quantized more easily. Our experiments with different gener-
ative architectures used in detector simulation, specifically the normalizing flow-based
CALOINN and the flow matching-based CALODREAM, indicate that larger models often
exhibit smoother quantization behavior. For instance, with around 66% of its parame-
ters quantized, CALOINN experiences a noticeable drop in sample quality, whereas CALO-
DREAM, which also quantizes roughly 63.8% of its shape network, exhibits only minor
performance degradation. These observations underscore how larger networks provide
greater representational capacity, making them more resilient to the information loss in-
troduced by low-bit representations. Consequently, these results highlight the potential
of quantized, large-scale generative models in tackling the complex, high-dimensional
tasks typical of modern particle physics experiments.

* Performance depends on the layer chosen for quantization. In our generative studies
for detector simulation, CALOINN benefits from selectively quantizing all layers within
the central bijectors (BlockCentral), thereby maintaining decent sample quality even at
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about 66% quantized weights, while fully quantizing all layers (99.9%) severely de-
grades performance. Likewise, in CALODREAM, quantizing the elements within the
shape network’s ViT blocks (QKV matrices, projections, and MLPs) results in minimal
performance loss; however, once the embedding layers are quantized, performance
drops considerably. These findings underscore how carefully selecting which sections
of the network to quantize — central layers versus outer layers, embedding networks
versus projection layers — can preserve model fidelity and better adapt to each architec-
ture’s demands, especially for high-dimensional tasks in particle physics. Further studies
in automatic, heterogeneous quantization [202,203] are needed to fully extract the best
performance of the networks.

* Fully quantized models show the largest performance degradation. Our SMEFT-
Net experiments demonstrate that the fully quantized variant performs worst among all
tested configurations. Specifically, SMEFTNet-Bit100 exhibits a larger degradation in
accuracy than the configurations where only a subset of layers is quantized (SMEFTNet-
Bit30 or SMEFTNet-Bit70). These results highlight the trade-off between model com-
pression and accuracy, emphasizing the need for selective quantization to balance effi-
ciency and precision.

* Certain layers are robust to quantization. Self-attention layers in transformer-based
models, such as P-DAT or the shape network ViT in CALODREAM, exhibit surprisingly
minimal performance degradation thanks to their ability to encode attention patterns
effectively with discrete weights. This finding points to the potential of applying low-bit
quantization in attention-driven architectures, enabling significant memory and compu-
tational savings.

* Low-bit quantization aligns with future hardware and energy constraints. As the
HL-LHC generates increasingly large datasets which require more sophisticated analyses
and simulations, achieving high performance while keeping the energy demands reason-
able will be crucial. The low-bit QAT explored here aligns well with emerging hardware
trends, where dedicated architectures for quantized operations are expected to play a
central role.

The relevance of such quantization techniques is expected to grow as networks become larger
and more prevalent throughout HEP workflows. Future research directions include explor-
ing alternative weight quantization configurations, integrating these methods seamlessly into
existing large-scale ML models, and adapting BITNET for high-energy physics applications
through fully quantized implementations with low-precision operations, enabling a quanti-
tative evaluation of energy, memory, and latency reductions. Moreover, extending the scope
to tasks requiring real-time or near-real-time performance will further validate the robustness
of quantized models under realistic experimental conditions. A typical example is the LHC trig-
ger system, which demands extremely fast classification on resource-limited hardware such as
FPGAs. While quantization techniques have been successfully applied in this context for many
years, our study highlights the potential of QAT to push these approaches further, beyond the
trigger. By incorporating QAT, it may become feasible to implement larger and more expressive
models on FPGAs or other hardware, potentially leading to more energy-efficient, scalable, yet
accurate ML applications in HEP
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