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Abstract

We describe the general shift orbifold of a Narain CFT and use this to investigate decom-
pactification limits in the heterotic Narain moduli space. We also comment on higher
rank theories and describe some applications to the CFT based on the Leech lattice and
its shift orbifolds.
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1 Introduction

The main purpose of this note is to clarify the consistency conditions in a large class of orbifold
conformal field theories (CFTs). A familiar way to identify necessary conditions is by demand-
ing that the partition function of the orbifold theory is modular invariant, but the arguments
for modular invariance can be subtle, nor is it clear that they are sufficient: for instance, a
putative partition function can have negative or non-integer coefficients in its expansion while
being modular-invariant. A recent discussion of such issues can be found in [1].

We will consider a particularly simple class of orbifolds, where the parent theory is just
the Narain heterotic CFT [2]. In such a theory the Hilbert space decomposes into sectors
H = ⊕pHp labeled by lattice points p ∈ Γ , an even self-dual lattice of signature d, d +16, and
we take a “shift orbifold,” by which we mean that we gauge the action of a finite symmetry
group G, and this action is block-diagonal with respect to the decomposition.

Typically we use orbifold CFTs to construct new theories with new spectra of operators and
new global symmetries. General shift orbifolds of Narain CFT do not really provide us with
new theories: if the orbifold is consistent, then it yields another Narain CFT, which we could
also obtain by moving in the moduli space Md,d+16 of the parent theory. Nevertheless, we think
the results obtained here are instructive for several reasons. First, we hope that a complete
solution in this case can be extended to more general asymmetric orbifolds of Narain CFTs [3]
to recover and clarify the known consistency conditions; the perspective could potentially be
useful in the more ambitious goal of classifying such orbifolds. Second, we expect that the
lessons learned can also be applied to more general parent theories where the orbifold action
involves a shift in a toroidal sector which is combined with another action in a different sector,
which might be realized by a non-linear sigma model with a curved target space or a Gepner
model.1 Finally, even in the class of pure shift orbifolds there are intriguing questions with
answers that illustrate some of the beautiful interplay between orbifold CFTs and lattices.

An example of such a question is just this: suppose we take a shift orbifold by a group G
of a Narain CFT with some specific choice of moduli ρ ∈Md,d+16. We know that the resulting
theory corresponds to a CFT with moduli ρG ∈ Md,d+16. What is ρG in terms of ρ and G?
The question becomes particularly sharp when d = 0, so that we are really discussing shift
orbifolds of ten-dimensional heterotic string theories. In this case there are two inequivalent
lattices, Λ16 and Λ8+Λ8, and starting with one of them, say Λ16, we would like to know which
shift orbifolds lead to the other lattice. We will see that there is a simple criterion to distinguish
such group actions, but it requires us to consider decompactification limits of shift orbifolds of
the 9-dimensional heterotic string of the sort studied in [4]. As a by-product of formulating
our criterion we also complete the discussion begun in [4] to show that the small radius limit
of the 9-dimensional heterotic string is a decompactification if and only if the the Wilson line
is rational.

We emphasize that we are discussing a classic subject, and although it is one that is not as
well-known as it should be, we suspect that many (perhaps all ?) of our results are known to
orbifold practitioners. For instance, various aspects of shift orbifolds were already discussed in
the context of ten-dimensional non-supersymmetric string theories [5,6].2 A classic review [8]
contains a useful discussion (see especially their appendix A.4). A lucid presentation of general
shifts can be found in [9], as well as the PhD thesis [10].

While specific shifts have been used in countless orbifold constructions since then, we
hope that our general discussion is at least illuminating even if not novel. In what follows, we
will show that the “general shifting method” of [10] does describe the general shift orbifold

1Understanding such quotients in the context of heterotic flux compactification was the original motivation for
our work.

2This was generalized to other dimensions in a systematic fashion in [7].
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construction, and we will then answer the question posed above by giving a criterion for es-
tablishing which shift orbifold of a ten-dimensional supersymmetric heterotic string yields an
inequivalent theory. In the last section we will see that our criterion also provides a perspective
on higher rank lattices—in particular the Leech lattice and its relation to the other 23 Niemeier
lattices.

2 Conventions and notation for Narain CFT

We begin by setting up conventions for the heterotic Narain compactification to d dimensions.3

2.1 Lattice set up

Consider Rd,d+16 equipped with the Minkowski metric η given as above:

η=





0 1d 0
1d 0 0
0 0 116



 . (1)

We denote the corresponding inner product by ·, so that v1 · v2 = vt
1ηv2 for any two vectors

v1,2 ∈ Rd,d+16. Next we choose a fiducial embedding of the lattice in the Lorentzian vector
space

Γ = Λd,d +Λ8 +Λ8 ≃ Λd,d +Λ16 ⊂ Rd,d+16 , (2)

so that the lattice inner product is given by ·. We denote the generators of Λd,d by e I and e∗I ,
with I = 1, . . . , d. These are null vectors satisfying e I · e∗J = δJ

I .
The Λ8 and Λ16 are even self-dual Euclidean lattices of rank 8 and 16 respectively. For each

Λ8 ⊂ R8 we choose the generators to be simple roots αi with inner product αi ·α j normalized
so that roots have length squared 2, and we denote the two mutually orthogonal sets of roots
by αi and α′i . We will sometimes abuse the notation and combine the simple roots into a single
set α1, . . . ,α16, with the first 8 corresponding to the first Λ8 factor, and the last 8 to the second
Λ8 factor. If, instead, we wish to use the Λ16 presentation, then we take the α1, . . . ,α16 to be
a basis for

Λ16 = SpanZ{β1, β2, . . . , β16, w+} , (3)

where the β i are the simple roots of D16 = spin(32), while w+ = (
1
2 , . . . , 1

2) is the highest
weight of the positive chirality spinor representation.

Every lattice point p ∈ Γ is uniquely written as

p = wIe I + nIe
∗I + L , (4)

where
L=
∑

i ℓ
iαi , (5)

and w, n, ℓi are integer coefficients. It will also be convenient for us to fix a Cartan–Killing
basis for R16 with orthonormal basis vectors vα, α= 1, . . . , 16, with respect to which

L=
∑

α ℓ
αvα . (6)

For any p ∈ Γ
p · p = 2nIw

I + L · L ∈ 2Z . (7)

3This is a well-known story. A classic review is [11]. A recent overview can be found in introductory sections
of [12], and our lattice conventions and notation mostly follow [13].
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Specializing to d = 1, we denote the heterotic moduli by a pair (r, A), where A ∈ R16 is
the set of Wilson line parameters. A choice of (r, A) determines a point ρ in the Grassmannian
Gr(1,17) through the orthogonal basis for R1,17 consisting of orthogonal vectors eπ, π, and π◦α,
α= 1, . . . , 16

eπ= e −
�

r2 + 1
2A · A
�

e∗ − A ,

π= eπ+ 2r2e∗ ,

π◦α = vα + (vα · A)e∗ ,
(8)

normalized to
eπ · eπ= −2r2 , π ·π= 2r2 , π◦α ·π

◦
β = δαβ . (9)

2.2 Vertex operators

The heterotic worldsheet theory consists of the Narain CFT with d + 16 left-moving chiral
bosons X I

L
(z), X a

L
(z), and d right-moving chiral bosons X I

R
(z). For a geometric description we

think of X I
L

and X I
R

as the holomorphic and antiholomorphic components of the compact bosons
describing the torus, while the X a

L
can be thought of as representing the heterotic worldsheet

(Weyl) fermions.4

At a generic point in the moduli space the Narain CFT has a u(1)⊕d+16
L
⊕u(1)⊕d

R
Kac-Moody

symmetry, and the primary operators with respect to this symmetry are the vertex operators
Vp labeled by lattice points in Γ . These have weights hL(p), hR(p) that depend on the moduli.
The operator’s spin is determined by p alone:

s(p) = hL(p)− hR(p) =
p · p

2
= nIw

I + 1
2 L · L , (10)

while the right-moving weight depends on p and the moduli, and for d = 1 is given by

hR(p) =
1

4r2
(eπ · p)2 =

1
4r2

�

n−
�

r2 + 1
2A · A
�

w− A · L
�2

. (11)

2.3 Symmetries of the Narain CFT

We will be interested in the action of a group G on the vertex operators Vp of the following
form: for any element g ∈ G the action is

g ◦Vp = U(g, p)Vϕg (p) , (12)

where ϕg(p) is a lattice automorphism, and U(g, p) is a phase. Consistency with group mul-
tiplication requires the phases and lattice isomorphisms to obey

U(g2,ϕg1
(p))U(g1, p) = U(g2 g1, p) , ϕg2

(ϕg1
(p)) = ϕg2 g1

(p) . (13)

This action should also be compatible with the OPE, which places further constraints on the
phases U(g, p): when ϕg = id for all g ∈ G U is a map U : G→ Hom(Γ , U(1)); more generally,
the constraint on the U(g, p) involves a choice of cocycle, but we will not need those details
in what follows.

The action of g on the Narain CFT is not in general a symmetry because it acts on
the moduli. Writing the parameter dependence of the right-moving weight explicitly on
ρ ∈ Gr(d, d + 16), for every g ∈ G there is a map µg : Gr(d, d + 16) → Gr(d, d + 16) de-
fined by demanding that for all p ∈ Γ

hR(µg(ρ); p) = ϕ∗g(hR(ρ; p)) = hR(ρ;ϕg(p)) . (14)

An action by g is a symmetry of the Narain CFT with moduli ρ if and only if µg(ρ) = ρ.

4The full heterotic string contains, in addition, the right-moving fermionψI
R(z)—these are the superpartners of

X I
R, as well as the Minkowski degrees of freedom for R1,9−d and the bc–βγ ghost system. These degrees of freedom

(and the accompanying right-moving GSO projection) will not play a role in our discussion.
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3 General shift orbifolds

We now restrict our attention to G a finite symmetry group of the Narain CFT whose ac-
tion leaves invariant all of the Cartan Kac-Moody currents (and their superpartners), with
ϕg(p) = p for all g ∈ G and all p ∈ Γ , so that the action on the vertex operators is a pure
phase:

g ◦Vp = U(g, p)Vp . (15)

From the preceding section, we see that the phase U belongs to Hom(Γ ,U(1)). Because Γ is a
self-dual lattice, any such homomorphism takes the form5

U(g, p) = e2πisg ·p , sg ∈ Rd,d+16 . (16)

We will focus on the case where G acts effectively, i.e. U(g, p) = 1 for all p ∈ Γ if and only if
g = id. In this situation G must be abelian, and we choose its generators so that

G = Zk1
×Zk2

× · · ·ZkN
, (17)

where the ka are N positive integers, with k1 > 1 and ka dividing ka+1. We then write the
group elements in an additive notation ℓ= [ℓ1,ℓ2, . . . ,ℓN ], where ℓa ∈ Z/kaZ, and the action
of G is determined by N shift vectors sa ∈ Γ ⊗ZQ:

U(ℓ, p) = exp{2πi
∑

a ℓasa · p} . (18)

Since Γ is self-dual, and the group action requires that kasa · p ∈ Z for all a, it follows that the
action is determined by N lattice elements σa = kasa ∈ Γ .

A convenient basis

Moreover, since G acts effectively, we can choose the generators so that the σa are primitive
and independent lattice elements that can be completed to a basis for Γ :

Γ = SpanZ{σ1,σ2, . . . ,σN ,ξN+1,ξN+2, . . . ,ξ2d+16} . (19)

Self-duality of Γ implies that there are dual elements σ∗a and ξ∗i , such that

Γ = SpanZ{σ
∗1,σ∗2, . . . ,σ∗N ,ξ∗N+1,ξ∗N+2, . . . ,ξ∗2d+16} , (20)

and
σa ·σ∗b = δb

a , σa · ξ∗i = 0 , ξi ·σ
∗a = 0 , ξi · ξ

∗ j = δ j
i . (21)

In particular, we have the decomposition

Γ = SpanZ{σ
∗1,σ∗2, . . . ,σ∗N}+ Γ⊥ , Γ⊥ = SpanZ{ξ

∗N+1,ξ∗N+2, . . . ,ξ∗2d+16} . (22)

3.1 Orbifold consistency conditions

Having described the most general symmetry we wish to consider, we now turn to gauging G,
which is accomplished by introducing twisted sectors and taking a projection onto G–invariant
states. In the heroic days the most concrete check of the consistency of such a procedure was
obtained by calculating the partition function of the orbifolded theory and checking its modular

5To see this, choose a basis {e i} of Γ with dual basis {e∗i}. Any homomorphism U ∈ Hom(Γ ,U(1)) is fixed by its
values U(e i) = e2πixi with x i ∈ R, and may be written as U(p) = e2πis·p with s =

∑

i x i e∗i .
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invariance. In certain simple situations one could use modular orbits to construct a modular–
invariant partition function and then interpret it as a sum over twisted sectors.6 The more
modern categorical perspective gives a more satisfying in-principle answer: we can think of
the gauging as an introduction of a background field for the discrete group G, and there is a
certain class ω ∈ H3(G,U(1)), which must vanish if the sum over all gauge configurations is
to be well-defined.7

We can follow a less technical approach because there is a particularly simple way to di-
rectly construct the unprojected twisted Hilbert spaces for each ℓ ∈ G based on spectral flow.
Although it is not as general, this construction has the advantage over the approach based
on modular orbits of the partition function: the Hilbert space interpretation of the twisted
sector operators is built–in from the start, and there is no need to check positivity conditions
on expansion coefficients in a putative partition function. Moreover, since we will verify that
the resulting vertex operators are labeled by an even self-dual lattice, we can be sure that the
operators are mutually local and have an associative OPE that closes.

At any point in the moduli space the CFT has a Kac-Moody symmetry (U(1)d+16)L×(U(1)d)R,
which acts on the vertex operators Vp labeled by p ∈ Γ . For any ℓ ∈ G we can find a linear
combination of the currents, with left- and right-moving components Jℓ

L
and Jℓ

R
such that the

charge of Vp with respect to this current is precisely
∑

a ℓasa · p. We can use these currents to
construct a twist field Σℓ, such that for every vertex operator Vp in the original Hilbert space
H0, we have

Vp(e
2πiz, e−2πiz)Σℓ(0) = U(g, p)Vp(z, z)Σℓ(0) . (23)

This is exactly the monodromy for the vertex operators in the twisted sector twisted by ℓ,
and we can therefore describe the twisted Hilbert space Hℓ: it is isomorphic to H0, and the
corresponding vertex operators are V

ep , where ep = p +
∑

a ℓasa, and p ∈ Γ . The spin and
weight of each V

ep are determined by (10) and (11) with the replacement p → ep, so that we
know the full twisted sector spectrum. We set

Γ ℓ =
�

p +
∑

a ℓasa | p ∈ Γ
	

. (24)

With the unprojected twisted sectors in hand, it remains to choose a projection to invariant
states, which we write in terms of a set of orbifold charges

Qℓa : Γ ℓ→Q , (25)

and we keep all operators with ep ∈ Γ ℓ satisfying Qℓa(ep) ∈ Z for all a. We constrain these
charges by the following consistency conditions.

1. The projection in the untwisted sector should be unmodified:

Q0
a(p) = sa · p =

σa · p
ka

. (26)

2. While Γ ℓ is not an additive group, if ep1 ∈ Γ ℓ1 and ep2 ∈ Γ ℓ2 , then ep1 + ep2 ∈ Γ ℓ1+ℓ2 . We
demand that the OPE of the projected vertex operators is consistent with this additive
structure, which implies

Qℓa(ep) =
σa · p

ka
−
∑

b

ℓbζba , (27)

for some rational parameters ζba—these are called the “vacuum parameters” in [9,10].
Notice that these are only meaningful modulo integers: a shift of ζ by an integral matrix
leaves the orbifold projection unmodified.

6A lucid early review of this can be found in [14]; a modern perspective is given in [1].
7A useful discussion and additional references can be found in [15], which also gives a generalization of the

construction to higher dimensions.
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3. We demand that each unprojected twisted sector Hilbert space is a representation of the
gauge group G, which requires the ζba to satisfy

ζbaka ∈ Z , (28)

for all a, b.

4. Finally, we require that every operator in the projected Hilbert space has integral spin.
This is the only condition that is directly related to modular invariance of the orbifold
partition function. A short calculation shows that this will hold if and only if the shift
vectors sa and the vacuum parameters satisfy, for all a and b with a < b

2ζaa + sa · sa ∈ 2Z , ζab + ζba + sa · sb ∈ Z . (29)

These in turn imply the following conditions on the shift vectors for all a and b with
a < b:

σa.σa ∈ 2kaZ , σa.σb ∈ kaZ . (30)

It is not hard to show [10] that if (30) hold, then there is always a choice of the ζ such that (28)
and (29) are obeyed. For example, we can set

ζaa = −
sa.sa

2
,

ζab = −
kaYabsa.sb

gcd(ka, kb)
, a ̸= b ,

(31)

where the integers Yab, with a ̸= b satisfy

kaYab + kbYba = gcd(ka, kb) . (32)

One can take this a step further and show that the most general solution differs from this one
by ζ→ ζ+ eζ, where eζab obeys

eζab + eζba = 0 , eζbaka ∈ Z . (33)

This shift can be interpreted as a choice of discrete torsion.
To demonstrate that this procedure leads to a consistent orbifold, we show that the invari-

ant lattice, which describes the projected operators, is even self-dual. We set

Γinv = ∪ℓΓ ℓinv , Γ ℓinv = {ep ∈ Γ
ℓ | Qℓa(ep) ∈ Z for all a} . (34)

Because the additive properties of the sets Γ ℓ are preserved by the orbifold projection, Γinv
forms a lattice, of the same rank and signature as Γ . Using the distinguished basis described
above, we see that

Γinv = SpanZ{t1, . . . , tN}+ Γ 0
inv , (35)

where
Γ 0

inv = SpanZ{k1σ
∗1, k2σ

∗2, . . . , kNσ
∗N}+ Γ⊥ , (36)

and
ta = sa +
∑

b ζabkbσ
∗b . (37)

Since ta · ta ∈ 2Z, Γinv is an even integral lattice, and therefore also Γinv ⊆ (Γinv)∗. To show the
opposite inclusion, suppose v ∈ (Γinv)∗. This holds if and only if

v =
∑

b Sbsb +
∑

i X iξi , (38)
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where the integers Sb = σ∗b · v and X i = ξ∗i · v obey

ta · v =
∑

b Sb (sa · sb + ζab) +
∑

i X isa · ξi = Ta ∈ Z . (39)

Using this last relation, we can rewrite

v =
∑

b Sb tb +
∑

i X i
�

ξi −
∑

a(ξi ·σa)σ∗a
�

+
∑

a

�

Ta −
∑

b Sb(sa · sb + ζab + ζba)
�

kaσ
∗a .

(40)

This shows v ∈ Γinv since each sum belongs separately to Γinv .

3.2 Relation to the “shifting method”

The “shifting method” is a procedure, introduced long ago—see especially [10] and [8], that
produces an integral lattice Γinv = Γ ({s1, . . . , sN},ζ) given an integral lattice Γ and a choice
of shift vectors and vacuum parameters just as in (35). When the shift vectors and vacuum
parameters obey (28) and a weakened version of (29)

ζab + ζba + sa · sb ∈ Z , for all a and b , (41)

Γinv is self-dual. This, and many additional results are obtained in [10]. Our discussion in the
previous subsection gives a physical rationale for this construction when further restricted to
even lattices: in this case the shifting method indeed produces the lattice associated to the
general shift orbifold.

As we described above, once the shift vectors obey (30), there is always a choice of vacuum
parameters—or, equivalently, an extension of the orbifold action to the twisted sectors—that
leads to a consistent orbifold, and any two choices of ζ differ by a discrete torsion phase. A
beautiful result of [10] shows that for any consistent shift orbifold Γinv = Γ ({s1, . . . , sN},ζ) and
a set of lattice vectors x a ∈ Γ , there is another consistent orbifold with Γ ′inv = Γ ({s

′
1, . . . , s′N},ζ

′),
where

s′a = sa + x a , ζ′ba = ζba − x b.(x a + sa) , (42)

and Γinv = Γ ′inv. Note this is not merely a lattice isomorphism but in fact a pointwise equality
of the elements as embedded in Rd,d+16. Thus, any two shift orbifolds related by (42) lead
to the same orbifold CFT. In fact, it is always possible to choose the x a lattice vectors so that
ζ′ = 0 mod Z [10]. To do so, we set

x a =
∑

c ζackcσ
∗c . (43)

The condition (28) shows that these are lattice vectors, and

ζ′ba = −x b.x a ∈ Z . (44)

The new shift vectors now satisfy the simpler consistency condition

s′a · s
′
b ∈ Z . (45)

3.3 The quantum symmetry

An orbifold theory is always equipped with a quantum symmetry, which is not present in the
parent theory, and which, when gauged, leads back to the parent theory. This is familiar when
the gauge group G is abelian—see, for example, [14], but it can also be extended to more
general G by using categorical methods [15, 16]. The quantum symmetry for a shift orbifold
with sa · sb ∈ Z and ζab = 0 is another shift action, generated by the shift vectors esa = eσa/ka,

8
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with eσa = kaσ
∗a ∈ Γinv. It is easy to see that this generates an action by the Pontryagin-dual

group eG ≃ G via
U(eℓ, ep) = exp
�

2πi
∑

a
eℓaes

a · ep
	

, (46)

where eℓ ∈ eG. This action projects out the twisted sector states in Γ ℓinv for ℓ ̸= 0 and introduces
back the sectors generated by σ∗a projected out by the original orbifold.

3.4 Dualities among shift vectors

Consider a primitive lattice element σ ∈ Γ whose norm takes the form

σ ·σ = 2kk̂ , (47)

with two positive integers k and k̂. There are two possible cyclic orbifolds of the CFT using this
σ allowed by the consistency conditions (30): a Zk shift orbifold with s = σ/k, and a Zk̂ shift
orbifold with ŝ = σ/k̂. Remarkably, the two orbifold CFTs are equivalent. The isomorphism ϕ
between the corresponding lattices is a reflection through the hyperplane orthogonal to σ8

ϕ(p) = p −
σ · p
kk̂
σ . (48)

Indeed, this reflection preserves the sublattice Γ⊥ orthogonal to σ, and acts on the remaining
lattice vectors as

ϕ (kσ∗) = −
σ

k̂
+
σ ·σ

2k̂
σ∗ , ϕ

�

1
k
σ −

σ ·σ
2k
σ∗
�

= −k̂σ∗ . (49)

When the lattice Γ is Euclidean, the above statement implies that every Zk shift orbifold with
shift vector s admits a dual presentation as a Zk̂ shift orbifold, where k̂ = k s · s/2. The associ-
ated shift vector is

ŝ =
2 s
s · s

. (50)

In particular, if the original shift vector satisfies s · s = 2/k, then ŝ belongs to Γ and the orbifold
CFT is isomorphic to the original one.

4 Heterotic shift orbifolds

Having described the most general shift orbifold of a Narain CFT, we now specialize to ten
dimensions and return to the question raised in the introduction: which shift orbifolds in-
terchange the two lattices Λ16 and Λ8 + Λ8? A partial answer is provided at the end of the
previous section: a Zk orbifold with a shift vector s obeying s · s = 2/k does not exchange the
lattices. In the rest of this section we will provide an algorithm for the more general situation.

The existence of orbifolds that map one heterotic string to the other has been known since
the seminal work of [18]. A classic example is the Z2 orbifold of the Λ8+Λ8 theory with shift
vector9

s = (07, 1,−1,07) . (51)

The projected untwisted Hilbert space consists of states with p ∈ (D8 + D8)∪ (D8 + D8 +w+),
where D8 = spin(16) and w+ = (

1
2 , . . . , 1

2). The two D8 + D8 factors are completed to D16 by
the addition of twisted states, and thus orbifolding leads us to the Λ16 theory. The existence of

8We thank G. Chenevier for this observation, which is found in proposition 3.1.14 of [17].
9To lighten notation, we denote lattice vectors by their components in the orthonormal basis {vα} of R16 intro-

duced in subsection 2.1.
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such a shift orbifold should not be too surprising: it is a direct implication of a result from [9],
which establishes that any two self-dual lattices of the same dimension and signature can be
related by a rational shift.

More generally, starting with one of the two ten-dimensional heterotic theories and orb-
ifolding, the quotient theory will, by construction, be associated to an Euclidean even self-dual
lattice of rank 16, and this invariant lattice must then be isomorphic to either Λ8+Λ8 or Λ16. A
direct approach to identify which possibility is realized would be to algorithmically search for
a lattice isomorphism between the invariant lattice and Λ8+Λ8 or Λ16. There are well-known
algorithms for solving this so-called lattice isomorphism problem [19], and given the rank of
the lattices and their symmetries, these methods converge reasonably quickly. However, this
answer is not entirely satisfactory, as it does not provide an explanation for why a given set of
shift vectors sa = σa/ka would lead to an interchange of the two heterotic strings or not. Such
an explanation is particularly desirable when the order of the orbifold group is large, and it
becomes harder to directly identify the breaking patterns and the recombination with twisted
states, as we did in the Z2 example above. For instance, the reader might be surprised that a
Z3 shift orbifold of the Spin(32)/Z2 theory with

σ = (2, 18, 07) ∈ Λ16 , (52)

gives the (E8×E8)⋊Z2 theory. Similarly, a Z3 shift orbifold of the (E8×E8)⋊Z2 string with

σ = (1
2 ,−1

2
6
, 5

2 ,−2, 07) ∈ Λ8 +Λ8 , (53)

sends it to the Spin(32)/Z2 string. While the shift vectors (52) and (53) might seem exotic,
the reader can convince themselves that in both cases, the Kac–Moody currents preserved in
the untwisted sector generate a u(9)+spin(14) algebra, which is just right to fit as a subalgebra
of e8+ e8 and of spin(32).

As we will see, there exists a fairly direct method to determine whether a given Zk shift
orbifold interchanges the two heterotic strings or not.10 To tackle this question, it will turn out
fruitful, as an intermediate step, to consider the nine-dimensional heterotic string. Why this
should be the case is already hinted by the expression for the Z2 shift vector (51): it coincides
with the Wilson line considered in [20] in order to continuously interpolate between the two
heterotic strings inside the moduli space M1,17. We will make use of this insight to determine,
in general, which shift orbifolds go from one lattice to the other. Along the way, we will prove
an equivalence between decompactification limits of the nine-dimensional heterotic string and
rationality of Wilson lines.

4.1 A nine-dimensional perspective

Consider a cyclic Zk shift orbifold of the ten-dimensional heterotic string, as described in sec-
tion 3. We denote by Λ the lattice of the Narain theory—either Λ8 + Λ8 or Λ16 depending
on which string we are considering. The shift vector is s = σ/k, where σ ∈ Λ is a lattice
element. We can embed Λ in a Lorentzian self-dual lattice Γ = Λ1,1 + Λ associated to the
nine-dimensional heterotic theory. As recalled in subsection 2.1, the corresponding CFT is
parametrized by two moduli: a radius r and a Wilson line parameter A ∈ ΛR ≃ R16, which
enter in the expressions of left- and right-moving weights. Let us take the Wilson line to be
equal to the shift vector:

A=
σ

k
. (54)

10The generalization to the abelian case G = Zk1
× · · ·ZkN

is straightforward: by the results reviewed in the
previous section, such an orbifold can be performed iteratively, one cyclic factor Zka

at a time.
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We wish to investigate the current algebra arising in (some) decompactification limits of this
theory. The left-moving currents arise from vertex operators Vp with s(p) = 1 and hR(p)→ 0
in the decompactification limit.

We first consider the large radius limit r → ∞. The right-moving weight (11) of an
operator with p = we + ne∗ + L can only vanish in the limit if w = 0, in which case the spin
simplifies to s(p) = 1

2 L·L. In particular, for every root L of the lattice Λ there is a corresponding
spin-1 vertex operator with p = L and

hR(p) =
(s · L)2

4r2
−−−→
r→∞

0 . (55)

Thus, the algebra corresponding to Λ emerges in the limit, and we recover the ten-dimensional
parent theory. Light states with non-zero momentum number n give an additional tower
SpanZ{e∗} of Kaluza–Klein modes, decoupled from the gauge sector.

We now examine the r → 0 limit. As addressed in [4], taking r → 0 does not always
provide a decompactification limit of the heterotic moduli space: it can also lead to periodic
or chaotic behavior, depending on the value of the parameter A. In our case, coming back
to (11), we see that any p satisfying n = s·s

2 w+ s · L will give an asymptotically holomorphic
light state of spin s(p) = 1

2(L+ws) · (L+ws). Elements of the invariant lattice Λinv = ∪k−1
ℓ=0Λ

ℓ
inv

provide us with such states. Indeed, to any eL= L+ℓs ∈ Λℓinv we can associate the lattice vector
p = ℓe+(s ·L+ ℓs·s2 )e

∗+L ∈ Γ .11 In the r → 0 limit, the corresponding vertex operator becomes
holomorphic, as its right-moving weight is simply

hR(p) =
r2ℓ2

4
−−→
r→0

0 . (56)

Hence, to every root of the lattice Λinv we can assign an emergent holomorphic current in the
limit r → 0. In addition, there is a tower of light Kaluza–Klein modes coming from the null
lattice points p ∈ SpanZ{−ke+ σ·σ2k e∗+σ},12 that are decoupled from the gauge sector. We can
reasonably expect that this corresponds to a decompactification limit—in other words, there
should exist some duality frame of the Narain CFT with moduli (r ′, A′) = µg(r, A), in which
the r → 0 limit described above appears as a straightforward r ′→∞ large volume limit. We
will now show this is the case.

4.2 The heterotic moduli space

To study the r → 0 limit of the 9-dimensional heterotic theory parametrized by the Wilson
line (54), we can usefully apply the general lessons from [4]. For this purpose we first need a
description of the moduli space M1,17 of the Narain CFT. This space is given as the quotient

M1,17 = Gr(1,17)/O(Γ ) , (57)

where the T-duality group O(Γ ) is identified with the isometry group of the lattice Γ .13 Three
subgroups of O(Γ ) will be relevant for our analysis.

1. Weyl symmetries are parametrized by an isometry R ∈ O(Λ) of the Euclidean lattice Λ
and act by

ϕg(p) = we + ne∗ + R(L) , µg(r, A) = (r, R−1(A)) . (58)
11Using the description (35) of Λinv, we can write eL = L0 + ℓt, where L0 ∈ Λ0

inv and t = s + kζσ∗. We then see
that s · L+ ℓs · s/2= s · L0 + ℓ(ζ+ s · s/2) is an integer, due to the orbifold consistency conditions (29).

12Note that σ ·σ ∈ 2kZ from the consistency conditions (30).
13In addition to the lattice action ϕg : Γ → Γ , the duality g ∈ O(Γ ) must also be specified by a choice of phase

U(g, p), as we recalled in subsection 2.3. For the generators of O(Γ ) listed below, a consistent choice of such
cocyles can be found in [13]. Since they play a spectator role in our study, we do not include them here.
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2. Wilson line shifts are parametrized by a lattice vector q ∈ Λ and act by

ϕg(p) = we + (n+ q · L− 1
2q · qw)e∗ + L− qw , µg(r, A) = (r, A− q) . (59)

3. The factorized duality transformation is the involution defined as14

ϕg(p) = −ne −we∗ + L , µg(r, A) =

�

r

r2 + 1
2A · A

,
A

r2 + 1
2A · A

�

. (60)

We also introduce a basis for the lattices Λ16 and Λ8 +Λ8, following the conventions of [12].
For Λ16 we pick simple roots of the spin(32) sublattice as

β i = (0
i−1, 1,−1, 015−i) , for i = 1, . . . , 15 ,

β16 = (0
14, 12) .

(61)

The lowest root is β0 = (−12, 014). For the lattice Λ8 +Λ8, our choice of simple roots αi is as
follows:

αi = (0
i−1, 1,−1,015−i) , α′i = (0

15−i , 1,−1, 0i−1) , for i = 1, . . . , 6 ,

α7 = (−12, 014) , α′7 = (0
14, 12) ,

α8 = (
1
2

8
, 08) , α′8 = (0

8,−1
2

8
) .

(62)

The lowest roots of the two Λ8 factors are α0 = (06, 1,−1, 08) and α′0 = (0
8, 1,−1, 06).

We are now ready to describe the parameter space M1,17, following [4]. Consider the
Spin(32)/Z2 frame and decompose the Narain lattice as Γ = Λ1,1 + Λ16. We construct the
space M1,17 by picking, inside Gr(1,17), a fundamental region for the action of the T-duality
group O(Γ ). This is achieved in several steps. First, using a Wilson line shift by some lattice
element q ∈ spin(32) ⊂ Λ16, we can bring the parameter A to the maximal torus of Spin(32).
Then we apply a Weyl symmetry that takes A to a fundamental alcove of Spin(32)—this is
a fundamental domain for the action of the Weyl group on the maximal torus. Making the
standard choice for this alcove, we can impose the conditions β i · A ≥ 0 and −β0 · A ≤ 1 on
the Weyl-transformed Wilson line parameter. The Wilson line shift by w+ can be combined
with the Weyl transformation R(a1, . . . , a16) = (−a16, . . . ,−a1) to obtain a transformation that
preserves the fundamental alcove of Spin(32). Making use of this duality, we can impose on
A the additional condition w+ · A≤ 2. All together, the above requirements provide us with a
description of the Spin(32)/Z2 moduli space as

MSpin(32)/Z2
=
�

A∈ R16
�

� β1,...,16 · A≥ 0 , −β0 · A≤ 1 , w+ · A≤ 2
	

. (63)

Taking into account the factorized duality, under which the quadratic combination r2 + 1
2A · A

gets inverted, we arrive at the Narain moduli space in the Spin(32)/Z2 description:

M1,17 =
�

(r, A) | r ≥ 0 , A∈MSpin(32)/Z2
, r2 + 1

2A · A≥ 1
	

. (64)

This representation of M1,17 was first obtained, using generalized Dynkin diagram technology,
in [21], where it was named the Spin(32)/Z2 chimney.

The heterotic moduli space can also be described in a (E8×E8) ⋊ Z2 frame, where the
Narain lattice is Γ = Γ1,1 +Λ8 +Λ8. In parallel with the previous discussion, we first bring A
in the maximal torus of E8×E8 using a Wilson line shift by some q ∈ Λ8+Λ8, and then to the

14We use a slightly different terminology than in [13], by combining the factorized duality of [13] with a circle
reflection. This removes an unnecessary minus sign in the transformation law of A.
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fundamental alcove, in which A has positive inner product with all the simple roots, and inner
product with the highest root of each E8 factor bounded by 1. The Z2 outer automorphism of
E8×E8 acts non-trivially on A, and we can use it to impose one last constraint, which we take
to be −α0 · A≥ −α′0 · A. All together, we obtain the (E8×E8)⋊Z2 moduli space

M(E8×E8)⋊Z2
=
�

A∈ R16
�

� α1,...,16 · A≥ 0 , −α′0 · A≤ −α0 · A≤ 1
	

. (65)

The Narain moduli space is expressed in the (E8×E8)⋊Z2 frame by substituting M(E8×E8)⋊Z2

for MSpin(32)/Z2
in (64).

Several comments are in order regarding the above description of M1,17. First, inside the
Narain moduli space the Wilson line parameter A has its norm bounded by A · A ≤ 2. To
see this, consider the Spin(32)/Z2 frame. Since MSpin(32)/Z2

is a convex polytope, any point
A of maximal norm must be an extreme point, i.e. one that cannot be written as a convex
combination of two distinct points. There are 17 possible candidates—the vertices of the
polytope. A short computation shows that only one vertex reaches the maximal norm. We
denote this distinguished point as mS. Its coordinates are given by

mS = (
1
2

8
, 08) . (66)

The analysis is similar for the (E8×E8) ⋊ Z2 moduli space, and there we also find a unique
point of maximal norm, namely

mE = (0
7, 1,−1, 07) . (67)

Second, we can map between (E8×E8) ⋊ Z2 and Spin(32)/Z2 frames via the Ginsparg
map [20], which we denote by gE→S.

15 The equivalence of the two formulations can be traced
to the uniqueness (up to isometries) of even-self dual lattices of a given indefinite signature.
For the embeddings of Λ8 +Λ8 and Λ16 in R16 chosen above, the duality map is specified by
the lattice isomorphism ϕE→S : Λ1,1 +Λ8 +Λ8→ Λ1,1 +Λ16, where

ϕE→S(e) = 2(e − e∗ −mS) +mE ,

ϕE→S(e
∗) = −2(e − e∗ −mS) ,

ϕE→S(L) = L+ 2(mE · L)(e − e∗ −mS) + (mS · L)e∗ .
(68)

The inverse isomorphism ϕS→E is obtained by exchanging the subscripts E and S in (68). Let
us emphasize that the Ginsparg map is not a lattice automorphism—in other words, the trans-
formation gE→S does not belong to the T-duality group O(Γ ). However, we can still use the
Narain machinery introduced in section 2 to compute its action on the parameters. Denoting
by rE, AE and rS, AS the moduli in, respectively, the (E8×E8)⋊Z2 and Spin(32)/Z2 frames, we
have (rE, AE) = µgE→S

(rS, AS), or more explicitly

rE =
rS

2
�

r2
S
+ 1

2(AS −mS) · (AS −mS)
� , AE =

AS −mS

2
�

r2
S
+ 1

2(AS −mS) · (AS −mS)
� +mE . (69)

Here again, the inverse map is obtained by exchanging the E and S labels.

4.3 Decompactification limits and T-dualities

We now have the tools to resolve our initial puzzle of determining which ten-dimensional
shift orbifolds switch between the two lattices Λ8 +Λ8 and Λ16. As we have seen, answering
this question is formally equivalent to identifying the r → 0 limit of the nine-dimensional
heterotic theory in the presence of a non-trivial Wilson line of the form (54). To tackle this
latter problem, we can follow the hands-on method presented in [4].

15This is the HE↔ HO map in [12], from which we borrow some of our conventions.
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Starting from a given point (r, A) in M1,17, we let the radius r decrease until we reach the
boundary r2 + 1

2A · A= 1 of the Narain moduli space. To stay inside M1,17, we must perform
a T-duality—a factorized duality, followed by a lattice shift by some q and a Weyl symmetry
R that brings the new Wilson line parameter back inside the fundamental alcove of the gauge
moduli space. In this T-dual frame, the new moduli

r ′ =
r

r2 + 1
2A · A

, A′ =
R(A)

r2 + 1
2A · A

+ R(q) , (70)

depend on the initial radius r. In the r → 0 limit, the dual radius goes to zero, while the dual
Wilson line ends up at the value

R( 2
A·AA+ q) . (71)

Our choice of R and q is such that (71) is inside the fundamental alcove. At this point, there
are three possibilities, depending on the value of A.

1. If A is such that 2
A·AA is a lattice vector, then q = − 2

A·AA and (71) vanishes. We perform
an additional factorized duality. The new Wilson line parameter A′′ goes to zero when
r → 0, while r ′′ runs off to infinity. Hence, we obtain a dual picture of the initial theory
in which r → 0 appears as a decompactification limit.

2. The second possibility is when A · A = 2. As we saw in the previous subsection, this is
only possible at one point of the moduli space, namely mE for the M(E8×E8)⋊Z2

moduli
space and mS for MSpin(32)/Z2

. Let us generically denote this point, and the corresponding
fundamental alcove, by

m ∈M . (72)

When A is equal to m, then q = 0 and (71) equals m. We can use the Ginsparg map (68)
to get to a dual frame, with moduli r ′′ and A′′ obtained from (69). When r → 0, the
radius r ′′ goes to infinity: this is a decompactification limit, albeit of the other heterotic
string.

3. Outside the two special cases above, (71) is a non-trivial vector in M. We are faced
again with our initial question, since we now want to understand the limit r ′ → 0 in
the presence of the Wilson line (71). Hence, we can repeat the previous procedure: we
apply a factorized duality, followed by a Wilson line shift and a Weyl reflection in order
to keep our parameters inside the Narain moduli space.

An iterative method

Applying the above procedure to the Wilson line parameter (54) will identify the r → 0 de-
compactification limit with one of the two ten-dimensional heterotic strings. In fact, we can
forget about the nine-dimensional description and rephrase this method at the level of the
lattice Λ. We start with a given shift vector s = σ/k associated with a cyclic shift orbifold of
order k. Since translations of s by lattice vectors do not affect the phase by which the orbifold
acts on vertex operators, we can take s to be in the maximal torus of the gauge group. More-
over, instead of s, we could pick any Weyl rotated shift vector R(s)—this amounts to working
in a T-dual frame. Hence, without loss of generality, we can restrict to a shift vector inside the
fundamental alcove:

s =
σ

k
∈M . (73)

We now define a sequence {si}i∈N of vectors si ∈M as follows. We start with s0 = s. At each
step, if si is non-zero, then we take si+1 to be a representative in the moduli space M of the
vector

2si

si · si
. (74)
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If si = 0, we instead define si+1 = 0. We claim that this sequence converges to a fixed point
after a finite number of steps. In fact, for i ≥ k we either have si = 0 or si = m. In the first
case, the orbifold theory is described by the same lattice Λ as the parent theory. In the second
case, the shift orbifold leads to an interchange of the two lattices Λ8 +Λ8 and Λ16.

To prove this statement, we first observe that at each step we can write si in the form

si =
σi

ki
, (75)

where ki is a positive integer and σi is a lattice element satisfying the condition σi ·σi ∈ 2kiZ.
This is simply shown by induction. The initial case follows from the orbifold consistency con-
ditions (30). Then at each step, we define16

ki+1 =
σi ·σi

2ki
. (76)

By the induction hypothesis, ki+1 is a positive integer. We can use it to write the norm of si as
si ·si = 2ki+1/ki. By construction, si belongs to the moduli space M, and consequently its norm
is bounded by si · si ≤ 2. Therefore, we must have

ki+1 ≤ ki , (77)

and the equality ki+1 = ki holds if and only if si = m. Since si+1 represents the vector 2
si·si

si

in the fundamental domain, we can write it as si+1 = Ri(
2

si·si
si + q i), for some Weyl symmetry

Ri ∈ O(Λ) and a given lattice vector q i ∈ Λ. This allows us to recast si+1 as

si+1 =
σi+1

ki+1
, σi+1 = Ri(σi + ki+1q i) . (78)

Using (76), we readily compute σi+1 ·σi+1 = 2ki+1(ki+σi ·q i+
1
2q i ·q iki+1). This shows that

σi+1 ·σi+1 ∈ 2ki+1Z , (79)

achieving the proof of the statement (75). The convergence of the sequence {si} follows:
if at the i-th step the vector si = σi/ki is not equal to 0 or m, then at the next step
we have si+1 = σi+1/ki+1 with ki+1 a positive integer strictly smaller than ki. If the se-
quence did not converge, we would obtain an infinite sequence of positive integers with
k > k1 > · · · > ki > ki+1 > . . . , which is of course impossible. Hence, we see that after a
finite number of steps (smaller than k), si equals 0 or m. The Weyl symmetries Ri and lattice
elements q i allow us to reconstruct, in nine dimensions, a sequence of dualities leading to a
frame in which r → 0 appears as a decompactification limit.

An aside: Rational Wilson lines and decompactification

Using the above construction we can characterize for which values of A the r → 0 limit is a
decompactification limit. This will happen if and only if the Wilson line parameter A is ratio-
nal—i.e. if it has rational coefficients when expanded in a basis of simple roots (or equivalently,
of coweights).

When the sequence of T-dualities introduced at the beginning of this subsection converges,
A is related to 0 or m by a finite number of lattice vectors shifts and Weyl transformations. As
a consequence, such an A must be rational. Conversely, consider an arbitrary rational Wilson
line

A=
16
∑

i=1

mi

ni
αi , (80)

16When σi = 0, we instead take ki+1 = 1. Since si+1 = 0 the equality (75) is trivial in this case.
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where mi and ni are coprime integers for all i = 1, . . . , 16. We define k = lcm(n1, . . . , n16)
as the least common multiple of the integers in the denominators. In terms of k, the Wilson
line parameter takes the form A= σ/k for some lattice vector σ. Let us apply the algorithm
introduced above to A. We obtain a sequence of Wilson line parameters {Ai}i∈N, related to the
initial one by a chain of T-dualities parametrized by q i and Ri.

In order to prove the convergence of such a sequence, we relied on the condition
σ ·σ ∈ 2kZ—it allowed us to define k1 at the first step by the equation σ ·σ = 2kk1. For a
generic choice of rational Wilson line (80), this condition is not satisfied. Nevertheless, this
is easily remedied by defining k1 to be the numerator of σ·σ2k ∈ Q when expressed as an ir-
reducible fraction. Doing so, s1 can be recast in the form (75), and the corresponding lattice
element σ1 satisfies the condition σ1 · σ1 ∈ 2k1Z. The rest of the proof carries over, and
the sequence of Wilson line converges to either 0 or m. This completes the analysis of r → 0
limits of [4]: we see that in the presence of a rational Wilson line, the r → 0 limit of the
nine-dimensional heterotic theory is always a decompactification limit.

Let us note that the moduli space M1,17 of the Narain CFT is a locally symmetric space:
its simply-connected cover Gr(1,17) is the quotient of the Lie group O(1, 17) by its maxi-
mally compact subgroup O(1)×O(17). As explained in [22,23], the boundary of such spaces
can be characterized in terms of rational parabolic subgroups of the underlying group—here,
O(1,17). The analysis of [22,23] applies more generally to heterotic compactifications on T d

and the associated Narain CFTs, whose moduli space is Md,d+16. It would be interesting to
explore the relation between shift orbifolds and decompactification limits in this lower dimen-
sional setting, and to characterize in detail rational parabolic subgroups of O(d, d + 16) and
their T-duality orbits.

4.4 Cyclic shift orbifolds of low order

We can illustrate the preceding discussion by a simple example: a Z5 shift orbifold of the
Spin(32)/Z2 theory with

s0 = (
2
5

7
, 1

5
2
, 07) . (81)

It is not hard to check that this shift vector obeys the orbifold consistency conditions (30),
and that it belongs to the fundamental domain MSpin(32)/Z2

. At the first step, we compute
2

s0·s0
s0 =

1
3(2

7, 12, 07) = 1
3(−17,−2, 1,07) − q1, where q1 = (−18, 08) ∈ Λ16. After a shift by

q1 and a Weyl symmetry R1 ∈ O(Λ16) (a combination of even sign changes and coordinate
permutations), we arrive at

s1 = (
2
3 , 1

3
8
, 07) . (82)

Notice this is exactly the Z3 example we had considered in (52). We continue iterating this
process and compute 2

s1·s1
s1 =

1
2(2,18, 07) = 1

2(0, 17,−1,07)− q2 with q2 = (−1, 07,−1,07).
We perform a lattice shift by q2, then act with a Weyl transformation R2 (we can for example
take R2 to be the Weyl reflection associated to the root q2). We obtain

s2 = (
1
2

8
, 08) . (83)

Since we land on the fixed point s2 = mS, we conclude that the orbifold theory has to be the
(E8×E8)⋊Z2 heterotic string.

For small values of k,we can make a more systematic study of cyclic Zk shift orbifolds. The
preceding discussion shows that cyclic shift orbifolds are classified by the set of points17

MSpin(32)/Z2
∩
Λ16

k
, (84)

17More precisely, they are classified by the subset of points satisfying the consistency condition s · s ∈ 2
kZ.
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for the Spin(32)/Z2 theory, and by

M(E8×E8)⋊Z2
∩
Λ8 +Λ8

k
, (85)

for the (E8×E8) ⋊ Z2 theory. For low values of k we can scan through (84) and (85) and
apply the algorithm of subsection 4.3 to each shift vector. In this way we obtain, for a given
order k, a classification of inequivalent Zk shift orbifolds—we say that two orbifold theories
are equivalent if they are related by an automorphism of the parent theory.

We give in tables 1 and 2 below the list of inequivalent cyclic shift orbifold of order k ≤ 5.
The shift vectors marked in color lead to an exchange of Λ8 + Λ8 and Λ16. We also provide,
for each orbifold, the sublattice (Λ0

inv)roots spanned by the invariant untwisted roots. Note
that, apart from the Z2 case, this sublattice is not of full rank. From the nine-dimensional
perspective, the corresponding Wilson line leads to a gauge group with abelian factors.

Table 1: Cyclic Zk shift orbifolds of the Spin(32)/Z2 theory; highlighted orbifolds
exchange the lattice.

k = 2
σ (Λ0

inv)roots

(2, 015) spin(32)
(18, 08) 2 spin(16)
(14, 012) spin(8) + spin(24)

1
2(1

16) su(16)

k = 3
σ (Λ0

inv)roots

(2,18, 07) su(9) + spin(14)
(2,12, 013) su(3) + spin(26)

1
2(3,114,−1) su(15)
(112, 04) su(12) + spin(8)
(16, 010) su(6) + spin(20)

k = 4
σ (Λ0

inv)roots
1
2(7,114,−1) su(16)
(3,114,−1) su(16)
(3,17, 08) su(8) + spin(16)

1
2(5,37, 17,−1) 2 su(8)
1
2(5,33, 111,−1) su(4) + su(12)
(25, 14, 07) su(4) + spin(10) + spin(14)
(24, 18, 04) su(8) + 2 spin(8)
(23, 14, 09) 2 su(4) + spin(18)
(22, 18, 06) 2 su(2) + su(8) + spin(12)
(2,112, 03) su(4) + su(12)
(2,14, 011) su(4) + spin(22)
1
2(3

6, 110) su(6) + su(10)
1
2(3

2, 114) su(2) + su(14)
(115,−1) su(16)
(18, 08) su(8) + spin(16)
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Table 1 (continued)

σ (Λ0
inv)roots

k = 5
σ (Λ0

inv)roots

(4,114, 0) su(16)
1
2(7, 37, 18) 2 su(8)
(3,24, 15, 06) 2 su(5) + spin(12)
(3,23, 19, 03) 2 su(4) + su(9)
(3,22, 113) su(3) + su(13)
(3,22, 13, 010) 2 su(3) + spin(20)
(3,111, 04) su(11) + spin(8)
(3,1, 014) spin(28)

1
2(5

4, 3, 110,−1) su(11) + spin(8)
1
2(5

2, 37, 16,−1) 2su(2) + 2 su(7)
1
2(5,35, 19,−1) su(6) + su(10)
(27, 12, 07) su(2) + su(7) + spin(14)
(26, 16, 04) 2 su(6) + spin(8)
(25, 110, 0) su(5) + su(10)
(25, 011) su(5) + spin(22)
(24, 14, 08) 2 su(4) + spin(16)
(23, 18, 05) su(3) + su(8) + spin(10)
(22, 112, 02) 3 su(2) + su(12)
(22, 12, 012) 2 su(2) + spin(24)
(2,16, 09) su(6) + spin(18)

1
2(3

13, 12,−1) su(3) + su(13)
1
2(3

8, 18) 2 su(8)
1
2(3

3, 112,−1) su(3) + su(13)
(110, 06) su(10) + spin(12)

Table 2: Cyclic Zk shift orbifolds of the (E8×E8)⋊Z2 theory; highlighted orbifolds
exchange the lattice.

k = 2
σ (Λ0

inv)roots

(07, 2, 08) spin(16) + e8
(07, 2,−2,07) 2 spin(16)

(06,−1, 1,−1, 1,06) 2 su(2) + 2 e7

k = 3
σ (Λ0

inv)roots
1
2(1,−16, 5,−4,07) su(9) + spin(14)
(07, 2,−1,1, 06) spin(14) + e7
(05,−12, 2, 08) su(3) + e6+ e8

(05,−12, 2,−2, 12, 05) 2 su(3) + 2 e6

k = 4
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Table 2 (continued)

σ (Λ0
inv)roots

σ (Λ0
inv)roots

1
2(1,−16, 5, 08) su(8) + e8

1
2(1,−16, 5,−5, 16,−1) 2 su(8)

1
2(0

7, 8,−5,16,−1) su(8) + spin(16)
(07, 2,−2,07) 2 spin(14)

(06,−1, 3,−2, 12, 05) 2 su(2) + spin(12) + e6
1
2(0

6,−2,6,−7,17) 2 su(2) + su(8) + spin(12)
1
2(0

6,−4, 4,−5, 16,−1) su(2) + su(8) + e7
(05,−12, 2,−1,1, 06) su(2) + e6+ e7
(04,−13, 3,−2, 07) su(4) + spin(10) + spin(14)
(04,−13, 3,−3, 13, 04) 2 su(4) + 2 spin(10)

1
2(−17, 7,−2, 2,06) su(2) + su(8) + e7

k = 5
σ (Λ0

inv)roots
1
2(1,−16, 9,−5, 16,−1) 2 su(8)
1
2(1,−16, 5,−2,2, 06) su(8) + e7

1
2(1,−15,−3,7,−7,17) 2 su(2) + 2 su(7)
(07, 4,−2,07) 2 spin(14)

1
2(0

7, 8,−7, 17) su(2) + su(7) + spin(14)
(06,−1, 3,08) spin(12) + e8

(06,−1, 3,−3, 1,06) 2 spin(12)
(06,−2, 2,−1, 1,06) 2 e7
(05,−12, 4,−3, 13, 04) 2 su(3) + 2 spin(10)
(05,−12, 2,−2, 07) su(2) + spin(14) + e6

(05,−1,−2,3,−2,12, 05) 2 su(2) + 2 e6
(04,−13, 3,−2,2, 06) su(3) + spin(10) + e7

1
2(0

4,−23, 6,−5, 16,−1) su(3) + su(8) + spin(10)
(03,−14, 4, 08) 2 su(5) + e8

(03,−14, 4,−3,1, 06) 2 su(5) + spin(12)
(03,−14, 4,−4, 14, 03) 4 su(5)

1
2(−17, 7,−4, 22, 05) 2 su(2) + su(7) + e6

5 Shift orbifolds of Niemeier CFTs

In this final section we generalize some of our previous constructions to higher rank lattices
and show that they lead to a systematic understanding of shift orbifolds of the Leech CFT.

One of the most interesting results of [10] is that any two even self-dual lattices of the same
rank and signature can always be connected by the shifting method. Euclidean even self-dual
lattices exist in any dimension divisible by 8. The latticeΛ8 is the unique example in dimension
8. The statement of [10] becomes non-trivial in dimension 16, where there are two possibili-
ties: Λ8 +Λ8 and Λ16. We confirmed in section 4 the existence of shift orbifolds between the
corresponding Narain theories. The next simplest examples can be found in dimension 24.

Euclidean even self-dual lattices of rank 24 have been classified in [24] and are known
as Niemeier lattices. The list comprises twenty-four distinct lattices, including the famous
example discovered by Leech in [25]. To every Niemeier lattice Λwe can associate a conformal
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field theory: the free theory of twenty-four holomorphic chiral bosons compactified on Λ.
These theories appear in the Schellekens classification of meromorphic c = 24 CFTs [26].

Shift orbifolds of Niemeier CFTs, or closely related constructions disguised under various
names, have been used to great effect in the physics literature. Several constructions of the
Leech lattice—including the “holy constructions” of [27]—find a simple interpretation in the
orbifold context, as we will describe below. CFT generalizations of such constructions have
been used in the study of vertex operator algebras, and involve the so-called “generalized deep
holes” of the Leech vertex operator algebra [28–30]. A recent application to constructions of
isolated CFTs and heterotic islands is given in [31], and this reference also includes an overview
of some additional appearances of the Leech lattice in physics.

Our aim will be to generalize methods from the previous section to the c = 24 Niemeier
theories. In particular, we will obtain a pragmatic answer to the following question: when
performing a cyclic shift orbifold of the Leech CFT, which Niemeier theory does one obtain?
To frame the question, we first review some well-known results from the theory of even self-
dual lattices, emphasizing the connections to shift orbifolds along the way.

5.1 Niemeier lattices

There are twenty-four even self-dual lattices with positive definite signature and rank 24. Any
such lattice Λ is fully characterized by its root system

{L ∈ Λ | L · L= 2} . (86)

The Leech lattice ΛL is the unique Niemeier lattice without roots. In the other twenty-three
cases the roots of Λ span a sublattice

g= g1+g2+ · · ·+ gM , (87)

where each factor denotes the root lattice associated to a simply laced Dynkin diagram. This
sublattice has full rank rkg1+ · · · + rkgM = 24, and all of its components share the same
Coxeter number h. The lattice Λ can be reconstructed by gluing to g appropriate elements
of the discriminant group g∗ /g.18 We denote the corresponding Niemeier lattice by Λg. The
gluing construction does not add any new root to the lattice, so the total number of roots of
Λg is equal to 24 h. The twenty-four Niemeier lattices are the nodes in figure 1 below.

For each Niemeier lattice with roots Λg, the Weyl vector ρ, defined as half the sum of all
positive roots, is an element of the lattice Λg [33] with norm

ρ ·ρ = 2h(h+ 1) . (88)

The inner product of ρ with any root of Λg is equal to the height of the root, and any positive
root α satisfies

ρ ·α ∈ {1,2, . . . , h− 1} . (89)

The Borcherds construction

Starting from any of the twenty-three Niemeier lattices with roots Λg, the Weyl vector can
be used to construct the Leech lattice as a cyclic shift orbifold of Λg of order h—the Coxeter
number of Λg. The twenty-three resulting descriptions of the Leech lattice are known as its
“holy constructions” [27, 33], and each can be understood as a Zh shift orbifold with shift

18We will not need the detailed form of these glue vectors. Their expression can be found in the classic refer-
ence [32].
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vector s = ρ
h , which, as a result of (88), satisfies the orbifold consistency condition s · s ∈ 2

hZ.
Setting ζ= −1/h, the invariant lattice takes the form

(Λg)inv =
�

L+ ℓ
hρ
�

� L ∈ Λg , ℓ= 0, 1, . . . ,h− 1 , L ·ρ ∈ hZ− ℓ
	

. (90)

The roots of the Niemeier lattice do not survive the projection to Zh-invariant states, due to
the property (89), and the twisted sectors do not contain any root; since (Λg)inv is an even-self
dual lattice of rank 24 without roots, it must be isomorphic to the Leech lattice.

Further relations between Niemeier lattices

As we already mentioned, any two Niemeier lattices can be connected by a shift orbifold [10].
This statement is closely related to the theory of Kneser neighbors [34]. We say that two even
self-dual lattices Λ1 and Λ2 are k-neighbors (with k a prime number) if their intersection

Λ1 ∩Λ2 , (91)

is a full rank sublattice of index k in Λ1 (and therefore in Λ2). When Λ1 and Λ2 are related by a
Zk shift orbifold, with Λ2 = (Λ1)inv, it is easy to check that their intersection Λ1∩Λ2 = (Λ1)0inv
has index k in both of them. Conversely, when Λ1 and Λ2 are k-neighbors, we can pick any
non-trivial element s inside Λ2/(Λ1 ∩ Λ2), and a cyclic orbifold of the Λ1 theory with shift
vector s leads to Λ2.

The study of Kneser neighboring has been foundational for investigations of even self-dual
lattices. Kneser showed in [34] that any two even self-dual lattices of the same rank can be
related by a Z2 × · · · × Z2 shift orbifold (provided we allow enough cyclic factors). The 2-
neighborhood graph of Niemeier lattices, plotted figure in 1, assigns a node to each Niemeier
lattice, with a line drawn between two nodes if the corresponding lattices can be related by a
Z2 shift orbifold. This graph was originally computed in [32]. For higher values of k, neighbors
of Niemeier lattices have been extensively studied by Chenevier and Lannes [17, 35], among
the results obtained there, the authors obtain a necessary condition for a Niemeier lattice Λ to
have the Leech lattice as a k-neighbor: Λ can be connected to the Leech lattice by a Zk shift
orbifold only if

k ≥ h , (92)

where h is the Coxeter number of Λ. Note that the shift orbifolds associated to the Borcherds
construction saturate the inequality. In the following section, we will obtain an alternative
proof of this bound by studying shift orbifolds of the Leech theory.

5.2 Orbifolds of the Leech CFT

We now turn our attention to the Leech CFT and its shift orbifolds. We saw in the previous
section that the Leech theory can be obtained as a cyclic orbifold of any of the other Niemeier
CFTs, using the Weyl vector of the Niemeier lattice. Following the discussion in section 3.3, the
corresponding quantum symmetries provide us with twenty-three shift orbifolds of the Leech
CFT, leading to distinct c = 24 Niemeier theories.

Our aim will be to characterize, given a Zk shift symmetry of the Leech CFT, which of
the twenty-four Niemeier CFTs describes the orbifold theory. For this purpose it is useful to
introduce additional lattice machinery. Given a Euclidean lattice Λ, its Voronoi cell VΛ is the
convex polytope in ΛR defined as

VΛ = { v ∈ ΛR | v · v ≤ (v − L) · (v − L) , for all L ∈ Λ} . (93)

The Voronoi cell contains all the points which are closer to the origin than to any other lat-
tice point, and it provides a fundamental region for the lattice Λ that is preserved by lattice
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ΛL

Λ24 su(2)

Λ12 su(3)

Λ8 su(4)

Λ6 su(5)

Λ4 su(6)+spin(8)
Λ6 spin(8)Λ4 su(7)

Λ2 su(8)+2 spin(10)

Λ3 su(9)

Λ2 su(10)+spin(12)

Λ4 spin(12)

Λ4 e6

Λsu(12)+spin(14)+e6

Λ2 su(13)

Λ3 spin(16)

Λsu(16)+spin(18)

Λsu(18)+e7 Λspin(20)+2 e7
Λ2 spin(24)

Λsu(25)

Λspin(32)+e8

Λ3 e8

Λspin(48)

Figure 1: The 2-neighborhood graph of Niemeier lattices.

automorphisms: R(VΛ) = VΛ for any R ∈ O(Λ). A point whose distance from the lattice is a
local maximum is a vertex of VΛ (or its translate by a lattice element), and is called a hole. The
points which are the furthest away from the lattice are called deep holes, and their distance
from the lattice is the covering radius rΛ:19

rΛ = sup
�p

v · v
�

� v ∈ VΛ
	

. (94)

The lattice points located at distance rΛ of a deep hole are the vertices of this deep hole.
We already encountered two examples of Voronoi cells in our description of the heterotic

moduli space in section 4.2:

VΛ8+Λ8
=
⋃

R∈O(Λ8+Λ8)

R
�

M(E8×E8)⋊Z2

�

, VΛ16
=
⋃

R∈O(Λ16)

R
�

MSpin(32)/Z2

�

. (95)

The deep holes of Λ8+Λ8 which share a vertex at the origin are the Weyl images of mE, while
the deep holes of Λ16 near the origin are the Weyl images of mS. The covering radius of both
lattices is equal to rΛ8+Λ8

= rΛ16
=
p

2. The above description of the Voronoi cell of a lattice as a
the union of all images of a simplex M under the Weyl group is common to all root lattices, and
the region M is called a fundamental simplex. We refer the reader to [36, 37] for additional
details.

The deep holes of the Leech lattice ΛL exhibit a rich structure uncovered in [38]. The
covering radius of ΛL is rΛL

=
p

2, and hence any deep hole m near the origin satisfies

m ·m= 2 . (96)

For a given deep hole m, its vertices (i.e. the lattice points ν ∈ ΛL satisfying (ν−m)·(ν−m) = 2)
satisfy remarkable properties. The distance between two distinct vertices ν and ν′ can only

19This is the smallest radius such that spheres centered at lattice points cover the whole vector space.
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take the following values:
(ν′ − ν) · (ν′ − ν) ∈ {4,6, 8} . (97)

To any deep hole m, we can assign a hole diagram as follows. We label the vertices of m as νi ,
where the index i runs over the total number of vertices. We associate a node of the diagram
to each vertex. The number of lines between two nodes is given by

Ni j =
1
2(νi − ν j) · (νi − ν j)− 2 . (98)

The hole diagram of any deep hole is an extended Coxeter–Dynkin diagram, and there are
twenty-three possibilities for the corresponding root system, in exact correspondence with
the twenty-three root systems of Niemeier lattices [38].20 Any two holes with the same hole
diagram can be related by automorphisms of the Leech lattice, and hence under O(ΛL) there
are exactly twenty-three orbits of deep holes close to the origin. Finally, for any a deep hole m

with diagram having Coxeter number h the vector hm is a primitive element in ΛL.21

Leech deep holes and shift orbifolds

Consider a shift orbifold of the Leech theory, where we take s to be a deep hole of type g, i.e.
whose hole diagram is the extended Coxeter–Dynkin diagram of g and has Coxeter number h.
Without loss of generality we assume that s is in the Voronoi cell, and hence that s · s = 2. The
vertices of the deep hole are located at a distance (νi − s) · (νi − s) = 2 from s and therefore
satisfy

s · νi =
1
2νi · νi . (99)

Since h s ∈ ΛL, we can perform a Zh shift orbifold of the Leech CFT using s, leading to

(ΛL)inv = {L ∈ ΛL | L · s ∈ Z}+ SpanZ{s} . (100)

The invariant lattice contains the roots αi = −νi + s that span a root system isomorphic to g,
and since the invariant lattice is even self-dual, it must be isomorphic to the Niemeier lattice

(ΛL)inv ≃ Λg . (101)

Hence, any shift orbifold of the Leech theory with s a deep hole leads to one of the twenty-
three other Niemeier CFTs Λg, with g given by the hole diagram of s. This shift symmetry is in
fact the quantum symmetry of the Borcherds construction reviewed above, where the Leech
theory is recovered as a specific shift orbifold of the Λg theory.

A characterization of Leech shift orbifolds

We can now obtain a complete picture of shift orbifolds of the Leech CFT. Consider a cyclic Zk
orbifold with shift vector s. Which of the Niemeier CFTs describes the orbifold theory?

The answer is obtained using an algorithmic method, similar to the one described in sec-
tion 4. We can take s to be in the Voronoi cell, since for any vector L of the Leech lattice, s and
s+ L describe the same orbifold. In particular, the shift vector satisfies

s · s ≤ 2 . (102)

20The extended Coxeter-Dynkin diagram associated to g is obtained by replacing each simple factor in g by the
corresponding extended diagram.

21To see this, consider the root lattice spanned by the vectors αi = m− νi . It is isomorphic to g, and for each
simple component (with nodes labelled by a collection of integers I) there is a linear relation

∑

i∈I κiαi = 0, where
the Kac marks {κi}i∈I sum to h. Consequently, the deep hole satisfies hm=

∑

i∈I κiνi .
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We fix an embedding of the Leech lattice in the Lorentzian lattice

Γ = Λ1,1 +ΛL , (103)

such that any p ∈ Γ is uniquely written as p = we+ne∗+L, where w, n are integers and L ∈ ΛL.
The Leech lattice can be obtained by considering the sublattice e⊥ ⊂ Γ of points p orthogonal
to e (those with n= 0), and modding out this sublattice by e (which allows to also set w= 0).
Hence, we trivially have the isomorphism

ΛL ≃ e⊥/e . (104)

Similarly, we can describe the invariant lattice (ΛL)inv as a sublattice of Γ . To each lattice point
of the orbifold theory eL = L+ ℓs, with ℓ ∈ {0,1, . . . , k − 1}, we associate the element p

eL ∈ Γ
defined as

p
eL = ℓe + (s · L+

1
2ℓs · s)e

∗ + L , (105)

which has norm p
eL · peL = eL · eL. Such a point is orthogonal to the primitive null vector

f = k
�

e − s·s
2 e∗ − s
�

. (106)

Moreover, any vector p ∈ Γ orthogonal to f can be uniquely written as p = p
eL+ ew f , for some

integer ew and some eL ∈ (ΛL)inv. Hence, the invariant lattice is isomorphic to

(ΛL)inv ≃ f ⊥/ f . (107)

We can proceed as in section 4. Since the shift vector s is in the Voronoi cell and is subject
to the orbifold consistency condition s · s ∈ 2

kZ, its norm can be written as

s · s
2
=

k′

k
, (108)

for some k′ ≤ k, with k′ = k if and only if s is a deep hole. The Lorentzian lattice Γ has
automorphisms that are the analogues of the heterotic Wilson line shifts (59) and factorized
duality (60), and for each vector of the Leech lattice q we define an automorphism ϕq ∈ O(Γ )
via

ϕq (we + ne∗ + L) = −ne − (w− q · L− 1
2q · qn)e∗ + L+ qn . (109)

This duality maps the null vector f to f ′ = ϕq ( f ), which we rewrite as

f ′ = k′
�

e − s′·s′
2 e∗ − s′
�

, with s′ =
k
k′

s+ q . (110)

We can choose q such that s′ is in the Voronoi cell of the Leech lattice. By construction, the
invariant lattice (ΛL)inv is isomorphic to f ′⊥/ f ′. Hence we obtain an equivalent description of
the orbifold theory, as a Zk′ orbifold with shift vector s′. This is exactly the dual shift orbifold
described in section 3.4.

Repeating this procedure, we obtain a sequence of null vectors f , f ′, f ′′, . . . , and accord-
ingly a sequence of shift vectors s, s′, s′′, . . . , that lead to isomorphic orbifold theories. After a
finite number of steps, the shift vectors converge to a point that is either the origin, or one of
the deep holes of the Leech lattice, of type g. In the first case, the orbifold theory is the Leech
CFT. In the other cases, the invariant lattice is isomorphic to the Niemeier lattice Λg. We note
in passing that, since the integers k ≥ k′ ≥ k′′ ≥ ... decrease at each step and reach a final
value h (the Coxeter number of the invariant lattice), we recover the Chenevier–Lannes bound
k ≥ h.
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Consequently, we can unambiguously characterize all possible shift orbifolds of the Leech
CFT, by applying the above algorithm to the corresponding shift vectors. The convergence of
this algorithm, just like in the heterotic setting, relies on the fact that the Voronoi cell of the
Leech lattice fits in a sphere of radius

p
2. This is not the case for the other Niemeier lattices,

and it is unclear how to extend our results to those remaining c = 24 theories. Compared to
the rank 16 case, the underlying difficulties can be traced back to the automorphism group of
the Lorentzian lattice Γ1,25, described in [39], which is considerably more intricate than the
T-duality group O(Γ1,17).
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