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Abstract

We revisit the holographic construction of (approximately) local bulk operators inside an
eternal AdS black hole in terms of operators in the boundary CFTs. If the bulk operator
carries charge, the construction must involve a qualitatively new object: a Wilson line
that stretches between the two boundaries of the eternal black hole. This operator -
more precisely, its zero mode - cannot be expressed in terms of the boundary currents
and only exists in entangled states dual to two-sided geometries, which suggests that it
is a state-dependent operator. We determine the action of the Wilson line on the relevant
subspaces of the total Hilbert space, and show that it behaves as a local operator from
the point of view of either CFT. For the case of three bulk dimensions, we give explicit
expressions for the charged bulk field and the Wilson line. Furthermore, we show that
when acting on the thermofield double state, the Wilson line may be extracted from a
limit of certain standard CFT operator expressions. We also comment on the relationship
between the Wilson line and previously discussed mirror operators in the eternal black
hole.
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1 Introduction and summary

One of the most remarkable aspects of the AdS/CFT correspondence is that it gives us a def-
inition of quantum gravity in anti-de Sitter space-time [1]. However, while the holographic
dictionary for extracting CFT quantities as boundary limits of bulk ones is relatively straight-
forward, it is far more challenging to reconstruct the physics of the AdS interior from the CFT.
In certain cases - such as vacuum AdS - there is a perturbative procedure [2–11] to deter-
mine bulk operators from highly nonlocal boundary ones, which may be possible to resum
non-perturbatively to well-defined CFT operators. However, if the bulk region lies behind the
horizon of an AdS black hole, [12–14] have argued that the CFT description of interior bulk
operators is state-dependent, which means that the CFT operator that represents the bulk field
can depend sensitively on unmeasured details of the quantum microstate of the black hole.

State-dependent operators are invoked when there does not exist a fixed CFT operator that
has the properties inferred from bulk perturbation theory (e.g., behaving as a local operator,
obeying a particular algebra) in all the states in which such a behaviour is expected [14].
A “state-dependent” CFT operator associated to a particular black hole microstate state |Ψ〉
is then only required to act “nicely” in a small subspace - denoted HΨ - of the total CFT
Hilbert space, which consists of |Ψ〉 and not-too-large excitations theoreof; by construction,
HΨ corresponds precisely to the part of the CFT Hilbert space that can be probed by an observer
in the bulk.

While state-dependence is a very interesting proposal for a concrete implementation of
black hole complementarity, it takes as an input the bulk perturbative description, including
smoothness of the horizon. This led [15] to consider the issue of state-dependence in the
eternal black hole, dual to to the thermofield double state of two CFTs [25], which is believed
to have a smooth horizon. By considering a set of time-shifted states that correspond to the
same background geometry, [15] were able to exhibit state-dependence also in this case.

In this work, we revisit the holographic dictionary in the eternal black hole background,
with the aim of better understanding the mechanism responsible for state dependence. Rather
than studying gravitational interactions in the bulk, we concentrate on the simpler case of
charged scalars coupled to bulk electromagnetism. By carefully taking into account issues
related to gauge invariance and boundary conditions, we uncover a new element of the holo-
graphic dictionary: a boundary-to-boundary Wilson line, and discuss its relation to state-
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Figure 1: Naïve representation of a charged scalar in regions I, II of the eternal black hole in
terms of smeared CFT operators on the two boundaries.

dependence. This object has been previously considered in [16] as a quantitative probe of
the ER=EPR conjecture [17]. In the following, we give a brief account of how the Wilson line
operator appears, and of its expected properties.

We set out to understand the representation of a charged (scalar) bulk operator1 φ(y)
placed inside an eternal black hole in terms of CFT operators on the two boundaries. The
dual operator to this bulk field in the left/right CFT is denoted as OL/R and carries charge q
under the left/right conserved U(1) charges, QL/R. Since all points in the eternal black hole
are in causal contact with at least one of the two boundaries, it would seem that all light bulk
fields can be obtained by smearing the local CFT operators OL/R on the two sides, as pictured
in figure 1; there, φ(y) represents the charged bulk scalar, KL/R(y|xL/R) are bulk-to-boundary
propagators from the bulk point y to the boundary point xL/R, and the integrals run over the
respective boundaries.

However, it is easy to see that these naïve expressions violate charge conservation as we
move the bulk field from region I to region II of the black hole, since the expression φ I for
the bulk field in region I has zero commutator with the charge QL in the left CFT, whereas the
expression φ I I for the bulk field in the interior has a non-zero commutator (see also [14]).
The problem is easy to identify: we need to consider a gauge-invariant bulk operator2, as the
CFT only captures gauge-invariant data in the bulk. The gauge-invariant bulk operator that
we will study throughout this paper is a charged scalar field φ(y), connected via a Wilson line
to a point bxR the right boundary3

φ̂(y) = φ(y) P exp(iq

∫

Γ

A), (1)

where Γ is a bulk path that starts at y and ends at bxR. This is shown in figure 2. Note that,
due to the framing, this operator is not exactly local in the bulk.

The commutation relations of φ̂ with the boundary charges QL/R are entirely determined
by the boundary endpoint of the Wilson line; in our setup, φ̂(y) has QL = 0 and QR = q,
irrespective of where the bulk point y is located. From the bulk point of view, the charges
work out correctly because the gauge field appearing in (1) contributes at leading order to

1Our notation is as follows: y M are bulk coordinates, with M = 1, . . . , D = d + 1, xµ = (t, x i) are boundary
coordinates and z denotes the radial direction. Coordinates on the left/right boundaries are denoted by xµL,R.

2One may argue that φ(y) does correspond to a gauge-invariant bulk operator if we work in radial gauge, since
then φ(y) = φ̂(y) for a Wilson line that stretches along the radial direction. However, as we will explain, radial
gauge is disallowed in the eternal black hole background, which is why we consider φ̂ (see also [18]).

3Other framings are also possible (including smeared ones as e.g. the one corresponding to the charged operator
in Coulomb gauge), but we will not consider them here.
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Figure 2: The charged scalar connected to the right boundary via a Wilson line is a gauge-
invariant bulk operator, carrying charges QL = 0 and QR = q.

the Dirac bracket commutator of the charges4 with φ̂. It thus becomes intuitively clear that in
order for the boundary representation of the field in region II to have the correct charge, we
should multiply the contribution of the left operators in figure 1-right to φ̂ by a boundary-to-
boundary Wilson line

WLR(bxL|bxR) =P exp

�

iq

∫

bxR

bxL

A

�

. (2)

This object has charge −q on the left and +q on the right, and thus OL WLR has the correct
charges. The boundary representation of the bulk operator will schematically take the form

φ̂(y) =

∫

dd xR KR(y |xR)O
( j)
R (xR) +WLR(bxL|bxR)

∫

dd xLKL(y|xL)O
( j)
L (xL). (3)

In the above expression, O ( j)L/R denote the charged operators on the left/right boundaries,
dressed by arbitrary powers of the respective current. Such expressions were shown in [7]
to appear in the boundary representation of a charged bulk field and, as we review in section
2, all powers of j contribute at the same order to the commutator of φ̂ with the boundary
currents. The particular dressing by the currents in O ( j)R,L depends on the shape of the bulk
Wilson line and on its endpoints bxL,R. The point bxL is an arbitrarily chosen common point for
all the Wilson lines that frame the left operators OL(xL) to the point bxR on the right boundary;
such a common point can always be chosen by appropriately adjusting the current dressing of
O ( j)L .

Thus, in presence of two boundaries, the expression for a charged operator inside the
black hole must contain a contribution from a new gauge-invariant operator: a boundary-to-
boundary Wilson line WLR, in addition to the well-known boundary operator contributions,
dressed and smeared. Its existence can be easily shown via a careful analysis of the equations
of motion on a manifold with two boundaries, when contributions from the gauge field are
included.

We would now like to find the representation of this new object in terms of operators in
the boundary CFTs. Despite being a purely gauge field configuration, the Wilson line cannot
be constructed just from the boundary currents, because the latter do not carry electric charge.
To better understand what happens, suppose for simplicity that all the CFT currents have been
turned off, so we have an everywhere flat gauge field, A = dλ. In a two-sided geometry, the
boundary-to-boundary Wilson line is given by

〈WLR〉= eiq
∫ R

L A = eiq(λR−λL), (4)
4It is not hard to see that all operators linear in φ but containing arbitrary powers of the gauge field contribute

at the same order in the (small) coupling constant to the commutator with the boundary currents.
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where λL,R are the values of the gauge parameter on the two boundaries5. While the indi-
vidual values of λL,R are not meaningful because they can be changed by a constant overall
gauge transformation, their difference is gauge invariant and corresponds to a new mode of
the gauge field that only exists in two-sided geometries. Following the usual AdS/CFT logic,
this new gauge-invariant mode should be associated with some CFT operator. This operator,
which we denote by6 ϕ, does have non-trivial commutators with the boundary charges, as
can be deduced from the transformation properties of λR − λL under boundary global gauge
transformations

[QL ,ϕ] = −i , [QR,ϕ] = i. (5)

More generally, ϕ is defined as

ϕ(bxL , bxR) =

∫

Γ

A , (6)

where the curve Γ stretches between a point bxL on the left boundary and a point bxR on the
right boundary. Since the gauge group is compact, we have ϕ ∼ ϕ + 2π, and thus this op-
erator does not make sense in the full Hilbert space; however, its action is well defined in a
small neighbourhood of the state of interest. The full Wilson line is WLR = eiqϕ, regulated by
appropriate counterterms.

The operator ϕ will be very useful in our discussion, as it is much simpler to study than
the exponentiated Wilson line. First, its derivatives are linear in the CFT currents, which
means that all but its zero mode (discussed above) can be reconstructed from them. Second,
for an appropriate choice of the curve Γ , as in the example of section 3.3, ϕ(bxL , bxR) behaves
as a local operator from the point of view of either boundary, by which we mean that its
commutator with local operators in the left/right CFT vanishes outside the lightcone associated
with bxL/R. Finally, for D = 3 and at low energies, ϕ behaves as a non-chiral free boson whose
left/right-moving pieces come from the left/right boundary, with a shared zero mode. This is
the same as the behaviour of pure three-dimensional Chern-Simons theory on a manifold with
two boundaries [22]. All these properties of ϕ are inferred from bulk perturbation theory in
a two-sided black hole geometry.

Next, we would like to argue that there is no fixed CFT operator acting as ϕ (or its expo-
nentiated version) on the product Hilbert space of the two CFTs. This would imply that the
Wilson line is a state-dependent operator, allowing us to make a connection with the state-
ments of [15]. This seems to be intuitively clear from the fact that ϕ (and in particular, its
zero mode) is only defined in entangled states dual to connected two-sided geometries. Since
the set of such entangled states is a non-linear subspace of the total Hilbert space, the Wilson
line cannot be represented by a linear operator. We can in fact prove state-dependence, along
the lines of [15], by studying the action of the Wilson line on arbitrary time-shifted states.

In order to make this argument, however, we first need to determine the action of the
Wilson line on the small Hilbert space built around the state of interest - in our case, the
thermofield double state. We present two methods to do so.

The first method is to simply find the action of the Wilson line on every element of HΨtfd
,

which abstractly defines it as an operator; this is in the same spirit as the usual definition
of mirror operators [13]. The action of the Wilson line on HΨtfd

can be entirely determined
from its commutators (around HΨtfd

) with the low-lying CFT operators and its action on the
thermofield double state. The former can be inferred from bulk perturbation theory, whereas
the latter can be obtained from a path integral argument.

The second method is inspired from the fact that the total Hilbert space of the system is
the tensor product of the left and the right CFT Hilbert spaces. Thus, an operator of definite

5In D > 3, these values have to be constants due to the boundary conditions on the gauge field. In D = 3, they
must be constants in order to have a zero expectation value for the currents. See sections 2, 3.

6Strictly speaking, this will be just the zero mode of ϕ. The full definition of ϕ is (6).
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charges QL = −q, QR = +q should be decomposable as a sum of products of a charged operator
from the left, and a charged operator from the right. Around the thermofield double state,
there is a pictorial way to realize this decomposition of the Wilson line by representing it as
the fusion, at the bifurcation surface of the eternal black hole, of a negatively charged operator
framed to the left boundary with a positively charged operator framed to the right. As the two
bulk insertion points approach each other, a divergence develops, and the Wilson line can be
extracted from the coefficient of this divergence. Note that in general entangled states (e.g.,
dual to geometries without a bifurcation surface) no such divergence is expected for operators
inserted near the intersection of the future and past horizons on each side, showing that this
construction is extremely sensitive to the state of the system.

The plan of this paper is as follows. In sections 2, 3 we work out the expression for the
gauge-invariant bulk field φ̂ in terms of CFT operators in several concrete examples and show
the appearance of the Wilson line. We use bulk perturbation theory to infer some properties
of the dual operator. In section 4, we discuss the CFT representation of the Wilson line when
acting on the thermofield double state, first - by computing its action on the thermofield double
state, and then - by constructing it via OPE fusion at the bifurcation point. We also discuss the
relation between the Wilson line and the results of [15].

As this work was nearing completion, [19] appeared, which has some overlapping state-
ments.

2 Charged scalar coupled to D = 3 Chern-Simons

In this section, we consider the simplest possible example - that of a U(1) Chern-Simons gauge
field in three dimensions coupled to charged scalar field φ. The action is

S =

∫

d3 x
p

g
�

k
8π
εµνρAµ∂νAρ − Dµφ Dµφ? −m2|φ|2

�

, (7)

where Dµ = ∂µ − iqAµ.
We are interested in the boundary representation of the gauge-invariant bulk scalar φ̂ de-

fined in (1). We first show (in section 2.1) that the bulk equations of motion, upon perturba-
tively including the contributions from the bulk gauge field, lead to an expression of precisely
the form (3) for φ̂. This expression contains a contribution from the boundary-to-boundary
Wilson line. In section 2.2 we discuss the holographic interpretation of the Wilson line. Finally,
in 2.3, after carefully discussing the choice of gauge, we work out the Dirac brackets of the
Wilson line with the bulk gauge field and scalar operators. Upon quantization, these will yield
the commutators of our newly-found operator with the usual low-lying CFT operators around
states dual to smooth two-sided geometries.

2.1 Analysis of the wave equation

To obtain the representation of the gauge-invariant bulk scalar φ̂ in terms of CFT operators,
one needs to perturbatively solve the equations of motion for φ and the gauge field. The
equations of motion derived from (7) read

(�−m2)φ = iq(φ∇µAµ + 2Aµ∂µφ) + q2A2φ , Fµν = −
4π
k
εµνλJλ , (8)

where the conserved current is given by

Jµ = iq(φ?Dµφ −φ (Dµφ)?) . (9)
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Note that the right-hand-sides (RHS) of the above equations are quadratic or higher in the
basic fields. At zeroth order, we can just neglect the RHS and the solution is

φ(0)(y) =

∫

d2 x ′K(φ)(y|x ′)O (x ′) , A(0)µ (y) =
2
k

∫

d2 x ′K(A)(y|x ′) jµ(x ′) , (10)

where K(φ,A)(y|x) are appropriate bulk-to-boundary propagators for the scalar and the gauge
field, respectively7. The higher order contributions are obtained by including the interaction
terms on the RHS of (8); for example, the term linear in q leads to a correction [10]

φ(1)(y) = iq

∫

d3 y ′
Æ

g(y ′)G(φ)(y|y ′)[φ(0)(y ′)∇µAµ(0)(y
′) + 2Aµ(0)(y

′)∂µφ
(0)(y ′)] , (11)

where G(φ)(y|y ′) is the bulk-to-bulk Green’s function for φ. Plugging in the expressions (10)
for the zeroth order fields, we find (11) corresponds to a set of multitrace boundary operators
of the schematic form [8]

1
k

: ∂ µ1...µp�m jν∂µ1...µp
�n∂νO : (12)

The full expression for φ̂ is obtained by summing the perturbative (in q and 1/k) contributions
from the bulk scalar and the Wilson line piece.

It is common, when discussing the construction of bulk operators from the CFT perspective,
to discard all multitrace operators coming from the interaction terms in the Lagrangian, on the
basis that when k is large, their contribution to correlation functions is negligible. However, it
is not hard to see that this is no longer true if one considers the OPE of the bulk field with the
CFT current. Indeed, from the OPEs

j(z) j(0)∼
k

2z2
, j(z)O (0)∼

q
z
O (0) (13)

it is clear that the OPE of j with φ(1) scales in the same way as that of j with φ(0). The lesson
we draw from this analysis is that, if we want to have a boundary representation of the bulk
scalar that correctly takes into account the charge of the operator, we cannot just discard the
interaction terms on the RHS of (8).

However, it is not hard to see that the interaction terms on the RHS of the gauge field equa-
tion in (8) are strictly subleading in the large k limit, and thus can be consistently discarded.
This corresponds to taking the k →∞ limit with q kept fixed. In this case, we can take the
gauge field to solve

Fµν = 0 ⇒ Aµ = A(0)µ = ∂µλ . (14)

Then, neglecting the gravitational backreaction (N →∞) and all possible (self)-interactions
of the scalar, the solution for the gauge field continues to be pure gauge, whereas the solution
for φ can be obtained perturbatively from (8)

φ = φ(0) +φ(1) +φ(2) + . . . , (15)

where
(�−m2)φ(n) = iq

�

φ(n−1)∇µAµ(0) + 2Aµ(0)∂µφ
(n−1)

�

+ q2A2
(0)φ

(n−2) . (16)

Note that the resulting boundary expression will be linear in O , but will contain all possible
powers of the current. To find the expression for the gauge-invariant scalar operator φ̂, one

7To define K (A), one first needs to fix gauge that completely determines A in terms of the boundary data. In the
two-sided black hole, these propagators have contributions from both boundaries.
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additionally needs to include, perturbatively, the contributions of the bulk-to-boundary Wilson
line in (1).

Applying the above procedure, one finds that the boundary representation of φ̂ defined in
(1) at linear order in O and all orders in the current is given by

φ̂(y) =

∫

d2 x ′ K(φ)(y|x ′) eiq[λ(bx)−λ(x ′)]O (x ′) , (17)

where λ has been defined in (14). This expression matches the gauge transformation of φ̂,
as the bulk field is represented by boundary operators that only transform under gauge trans-
formations at bx . A simpler way to derive the above expression would be to note that in the
k→∞, q fixed limit, φ̂ satisfies the free wave equation

(�−m2)φ̂ = 0 , (18)

obtained by plugging in A= A(0) = dλ into the equation of motion (8). Thus, φ̂ can be written
as the usual smeared expression of boundary operators of the form

Ô (x |x0)≡ O (x) eiq[λ(bx)−λ(x)] . (19)

Suppose now we have two boundaries, and that the Wilson line Γ is connected to some point
bxR on the right boundary. If the bulk operator is inside the horizon, then the smearing function
K has support on both boundaries, and we have

φ̂(y) =

∫

d2 xL KL(y|xL) e
iq[λR(bxR)−λL(xL)]OL(xL) +

∫

d2 xR KR(y|xR) e
iq(λR(bxR)−λR(xR))OR(xR)

=WLR(bxL , bxR)

∫

d2 xL KL(y|xL)O
( j)
L (xL , bxL) +

∫

d2 xR KR(y|xR)O
( j)
R (xR, bxR) , (20)

where λL/R are the values of the gauge parameter at the left/right boundary and

WLR(bxL , bxR) = eiq[λR(bxR)−λL(bxL)] . (21)

This expression precisely coincides with (3) and shows explicitly the way in which the
boundary-to-boundary Wilson line is entering the computation. For simplicity, we have chosen
the left operators to be all connected to some arbitrarily chosen point bxL on the left boundary.
The dressed operators on the left/right boundaries are, in this case

O ( j)L/R(xL/R, bxL/R) = eiq(λL/R(bxL/R)−λL/R(xL/R)OL/R = eiq
∫

A∂L/ROL/R , (22)

where in the last term we have rewritten the argument of the exponential as an integral over
the gauge field on the boundary, running from xL/R to bxL/R. Thus, in three dimensions with
k→∞, the dressing of the charged boundary operators O by the currents is very simple - just
a Wilson line running along the respective boundary. This is represented in figure 3.

Note that since the bulk gauge field in three-dimensional Chern-Simons theory is pure
gauge in our approximation, the Wilson line only depends on the value of the gauge parameter
at the boundaries, and not on the shape of the Wilson line in the bulk.

2.2 Holographic interpretation

In the above discussion, λ is the classical gauge parameter, subject to appropriate boundary
conditions. Of course, in order to obtain the CFT representation of φ̂, we need to trade λ for
the appropriate boundary operators, using the holographic dictionary.
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Figure 3: Expression for the gauge-invariant bulk scalar φ̂ (blue line) in terms of the smeared
dressed right operators (orange lines) and right-framed left operators (red lines). The left
contributions can be decomposed into a dressed operator contribution and a boundary-to-
boundary Wilson line.

The bulk Chern-Simons field A= dλ is holographically dual to a holomorphic, conserved
two-dimensional CFT current. Consequently, it is natural to use light-cone coordinates on the
boundary, x± = (x± t)/

p
2, when working in Lorentzian signature. The radial bulk coordinate

will be denoted by z, with boundary(-ies) located at z = zα.
Remember that in pure three-dimensional Chern-Simons theory, A+ and A− are canonically

conjugate to each other, and thus only one of them can fluctuate. Setting A− = ∂−λ = 0, we
have [20]

〈 j(α)+ (x
+)〉=

k
2

A+(x
+, zα) , (23)

where j(α) is the CFT current on the boundary at zα. Since A+(x+, zα) = ∂+λ(x+, zα), λ(x+, zα)
should correspond to a putative “chiral boson” operator eϕα(x+), which by definition satisfies

k
2
∂+ eϕα(x

+) = j(α)+ (x
+) (24)

on each boundary. Such a chiral boson is familiar from the discussion of the correspondence
between pure U(1) Chern-Simons theory on a three-dimensional manifold and the chiral boson
RCFT on its boundary [21]. To better understand what happens, it is useful to expand eϕ(x+)
in Fourier modes:

eϕ(x+) = eϕ0 +
∑

n6=0

eϕn einx+ . (25)

All modes of eϕ except for the zero mode8 can be reconstructed from the modes of the current
j(x+). However, it is only the zero mode that can carry electrical charge; indeed, from the j j
OPE we formally deduce that

eϕ(z) j(0)∼
1
z

⇒ [ eϕn, j0] = δn,0 . (26)

An important issue is whether the zero mode eϕ0 is physical, which will only be true if it
corresponds to a gauge-invariant quantity in the bulk. In the case of a single-sided geometry,
the expectation value of eϕ0 can be shifted by a constant gauge transformation in the bulk,
which does not modify at all the physical data contained in 〈 j+(x+)〉. Thus, in this case the
zero mode is unphysical and all the data we need to reconstruct the bulk field is encoded in

8While the concept of “zero mode” of a chiral object is not quite well-defined, we only use this terminology as
an intermediate step to understanding what happens in the case of two boundaries.
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the boundary current; indeed, we can easily check that the expression for the operators (19)
that make up φ̂ does not involve the zero mode

eϕ(bx)− eϕ(x) =
2
k

∫

bx

x
j(x+) . (27)

In the case of two boundaries, the expression for φ̂ contains a contribution from the Wilson
line

WLR(bxL , bxR) = eiq[ eϕ(bxR)− eϕ(bxL)] . (28)

The zero mode eϕL
0 − eϕ

R
0 of the (unexponentiated) Wilson line cannot be rewritten in terms

of the boundary currents. However, while the zero modes eϕ0
L/R are not separately gauge

invariant, their difference cannot be changed by a gauge transformation, and thus is physical.
Thus, the Wilson line (which did not exist in the single-boundary case) is now a physical
operator acting on the Hilbert space of the two CFTs, and its charge is carried by the zero
mode.

The expression (28) indicates that the Wilson line behaves as a vertex operator associated
to a non-chiral free boson

ϕ(x+L , x+R ) = eϕ(x+R )− eϕ(x
+
L ) , (29)

whose left-moving part originates from the CFT on the left boundary and right-moving part -
from the CFT on the right boundary9, with a shared zero mode. This is precisely what happens
in the case of pure Chern-Simons theory on a manifold with two boundaries (the annulus),
where the chiral bosons from the two boundaries combine into a single non-chiral boson [22].
Note however that at the microscopic level, the situation we have at hand is quite different
from that of pure Chern-Simons theory: for us, Chern-Simons is just the low-energy limit of
a consistent theory of quantum gravity in AdS3 dual to some large N CFT2, which contains
many additional degrees of freedom. This leads to differences in both the single-sided and the
two-sided case.

In the duality of pure U(1) Chern-Simons theory on a disk (i.e. global AdS3) with the
chiral boson, magnetic vortices in the Chern-Simons theory correspond to winding states of
the chiral boson, with energy of order the Chern-Simons level, k. Such high energy states
(recall that k ∼ N for weakly coupled Chern-Simons in the bulk) in the AdS bulk theory will
no longer be well approximated by decoupled Chern-Simons, and the spectrum of winding
states in our situation will be determined by details of the bulk physics.

In the two-sided case, the full microscopic Hilbert space is the tensor product of the CFT
Hilbert spaces on the left and the right boundary, and it has a very different structure from
that of the non-chiral compact boson CFT dual to pure Chern-Simons on a spacetime with two
boundaries. In the latter case, due to the zero mode, there is no natural way to split the Wilson
line in pure Chern-Simons theory into a left- and a right-boundary contribution, and thus the
Hilbert space does not factorize. The same conclusion applies to the Wilson line we found
perturbatively around the eternal black hole background.

The fact that the zero mode of ϕ can only be defined in two-sided geometries, in addition
to the non-existence of fixed CFT operators whose product gives the Wilson line, suggests that
the latter is a state-dependent operator. Note that at low energies, the Wilson line will behave
as the exponential of the non-chiral boson (29) around any state dual to a two-sided geometry,
including states dual to spacetimes with long wormholes [23]. In particular, it behaves as if
it were a primary chiral vertex operator eiq eϕL/R(x+L/R) from the point of view of the CFT on the
left/right boundary, i.e. it behaves as a local operator from the point of view of either CFT.
This follows simply from the bulk operator algebra.

9The coordinate x+R is a right-moving coordinate in the right CFT, due to the opposite orientation of the right
boundary with respect to the radial direction in the bulk.
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The commutation relations of the Wilson line with the low-lying CFT operators can be
deduced from the relevant Dirac brackets in bulk perturbation theory. We perform this analysis
in the next section.

2.3 Choice of gauge and quantization

In the previous section, we showed that an essential ingredient of the bulk field φ̂ is the
boundary-to-boundary Wilson line, a pure-gauge configuration that only exists on manifolds
with two boundaries and is charged under Q = 1

2(QR − QL). The purpose of this section is
to work out the Dirac brackets of the Wilson line with the gauge-invariant bulk fields, from
which the commutation relations of the Wilson line operator with the low-lying CFT operators
follow. While the end result could have simply been inferred from the commutators of the
currents and the definition (24), we use this technically simple example to illustrate how the
computation would proceed in general and to outline the main physical issues that arise.

The computation of the commutators proceeds in three steps:

1. Fix a gauge. In order to obtain the correct commutators, in particular that of the Wilson
line with QL/R, it is essential to perform a careful treatment of the choice of gauge on
a manifold with two asymptotic boundaries. The choice of gauge condition should not
restrict the boundary data, but at the same time it should completely determine the bulk
gauge field in terms of it.

2. Compute the Dirac brackets of the gauge-fixed bulk fields.

3. Express the bulk fields in terms of boundary operators using the boundary-to-bulk
dictionary, and deduce the corresponding boundary commutators.

Let us start by discussing the choice of gauge. The usual gauge used in holography is
radial/holographic gauge, which has the advantage that the expression for the bulk gauge
field is local in the boundary currents10. Working out the Dirac brackets in this gauge, all
components of the gauge field turn out to be neutral under the boundary charge. This matches
well with the fact that in e.g. global AdS, there cannot exist any charged pure gauge field
configurations.

However, in the eternal black hole, global radial gauge is too restrictive: first, it forbids
the Wilson line, including its zero mode that we in principle would like to take on arbitrary
values; secondly, it disallows two sets of independent boundary currents. This is particularly
easy to see in the case of three-dimensional Chern-Simons theory, where the analysis is highly
simplified by the fact that the Chern-Simons action is topological. Thus, one can replace the
eternal black hole background by just flat space

ds2 = dz2 + 2d x+d x− (30)

with two boundaries, which we take to be at radial positions z = 0 and z = a.
As discussed, on-shell we have A= dλ. We would like to impose A− = 0 at both boundaries;

this leaves λ(x+, z). Moreover, we would like to impose that

∂+λ(x
+, 0) =

2
k
〈 jL
+(x

+)〉 , ∂+λ(x
+, a) =

2
k
〈 jR+(x

+)〉 . (31)

Since we want jL,R(x+) to be completely independent, it is clear that radial gauge, Az = 0, is
not an option, since then λ= λ(x+) only, which implies that the variations of the two boundary

10In non-radial gauges, e.g. the AdS analogue of Coulomb gauge [11] or the gauge (32) we use below, one finds
expressions for the bulk gauge field that are explicitly non-local in the boundary currents.
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currents are correlated. Let us try instead the gauge

∂zAz = 0 ⇒ λ(x+, z) = λL(x
+) +

z
a
(λR(x

+)−λL(x
+)) . (32)

As we see, this gauge condition allows us to have the boundary conditions we want, while
completely fixing the gauge field everywhere in terms of the boundary data jL,R(x+) and the
zero mode of ϕ ≡ eϕR− eϕL which, as we argued in the introduction, needs to be independently
specified:

k
2

A+(x
+, z) = jL(x

+) +
z
a
( jR(x

+)− jL(x
+)) , (33)

Az(x
+, z) =

1
a
ϕ(x+) . (34)

The non-chiral boson ϕ(x+L , x+R ), which a priory depends on two sets of lightlike boundary
coordinates x+L,R, satisfies

k
2
∂x+L
ϕ(x+L , x+R ) = − jL(x

+
L ) ,

k
2
∂x+R
ϕ(x+L , x+R ) = jR(x

+
L ) , (35)

where it is self-understood that jL,R only have a + component. As already explained, x+L is a
left-moving coordinate on the left boundary, but x+R is a right-moving coordinate on the right
boundary. In (34) we have taken x+L = x+R = x+, which is why only one argument appears.
Note also that Az is non-locally determined in terms of the boundary currents. This seems to
be a generic feature of non-radial gauges.

Once we have fixed the gauge, we can now work out the Dirac brackets of the remaining
degrees of freedom in this gauge. This is done in appendix A, and we find

{A+(x+, z), A+(x
′+, z′)}D.B. = −

4π
k
∂+δ(x

+ − x ′+)
�

1−
z + z′

a

�

, (36)

{A+(x+, z), Az(x
′+, z′)}D.B. = −

4π
ka
δ(x+ − x ′+) . (37)

The first Dirac bracket is perfectly consistent with the expression (33) for A+ in terms of the
boundary currents and the current commutator. The second Dirac bracket tells us the commu-
tator of the field ϕ with the boundary currents:

{ jL(x+),ϕ(x ′+)}D.B. = { jR(x+),ϕ(x ′+)}D.B. = −2πδ(x+ − x ′+) . (38)

It is easy to check, using these expressions, that the Wilson line has the correct commutators
with the boundary charges.

One can also work out the Dirac brackets of the charged scalar φ̂ with ϕ and check that the
charge of a bulk scalar framed to one of the boundaries is correctly rendered. See appendix
A for details. Since the Chern-Simons action is topological, the commutation relations that
we derived are valid not only in the eternal black hole background, but also in any three-
dimensional space-time with two boundaries.

The same computation can in principle be performed in higher dimensions. On the one
hand, the analysis is complicated by the fact that we now need to work on the actual black hole
background, since the action is no longer topological. On the other hand, for Maxwell theory
the CFT operators are given by the boundary limit of only gauge-invariant bulk quantities,
whose Dirac brackets can be computed without explicitly solving the gauge condition, as we
show in section 3.3.
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3 Charged scalar coupled to Maxwell theory in D > 3

In this section, we would like to show that the same analysis can be performed for Maxwell
theory in D > 3. The results are qualitatively the same, even though the details change and,
unfortunately, in this case we will not have nice, explicit expressions as in D = 3.

As in the previous section, we start with an analysis of the bulk equations of motion, and
show they require the inclusion of the Wilson line in the expression for φ̂. Unlike in three
dimensions, the shape of the Wilson line now does matter, even in the small coupling limit.
In section 3.2, we sketch the computation of the value of a nicely-shaped (unexponentiated)
Wilson line in terms of the boundary currents and the relative zero mode of the boundary
gauge parameters. In 3.3, we show that even without knowing the explicit expression for the
Wilson line in terms of the boundary currents, its commutators with local operators on the two
boundaries are local, in the sense that they vanish outside the boundary lightcone.

3.1 Equations of motion analysis

Consider now the action

S =

∫

dD y
p

g
�

−
1

4e2
FµνFµν − Dµφ Dµφ? −m2|φ|2

�

, (39)

where Dµ = ∂µ − iqAµ, with q ∈ Z, and D = d + 1. The equations of motion read

∇µFµν = e2Jν , (�−m2)φ = iq(φ∇µAµ + 2Aµ∂µφ) + q2A2φ . (40)

In the limit e→ 0, we can neglect the backreaction of the scalar field on Fµν, and the equation
for φ becomes linear (in φ). This limit allows us to consistently include all contributions to
the charge, while still having manageable equations.

In this approximation, the scalar equation can be written entirely in terms of the gauge-
invariant quantities φ̂(y), defined in (1), and the field strength

(�−m2)φ̂ = −iq φ̂∇M

∫

Γ

FM P d y P − 2iq∇M φ̂

∫

Γ

FM P d y P + q2 φ̂ gMN

∫

Γ

FM P d y P

∫

Γ

FNQd yQ ,

(41)

where the integral is performed the path Γ that appears in the definition of φ̂ and runs from
the bulk point y to the boundary point bxR. In deriving this expression, we have used the
identity11

∂M

∫

Γ

A= −AM (y)−
∫

Γ

FM P d x P . (42)

Note that, unlike in three dimensions where F = 0, in D > 3 the shape of the Wilson line
does matter. The expression for φ̂ can be obtained by solving (41) perturbatively in the field
strength F . At zeroth order F = 0, so A = dλ. Then, φ̂ satisfies the free wave equation and
the solution is

φ̂(0)(y) =

∫

dd xLKL(y|xL) ÔL(xL) +

∫

dd xRKR(y|xR) ÔR(xR) , (43)

where

ÔL(xL , bxR) = OL(xL) e
iq(λ(bxR)−λ(xL)) , ÔR(xR, bxR) = OR(xR) e

iq(λ(bxR)−λ(xR)) . (44)

11 To evaluate the derivative of the Wilson line, it is useful to work in coordinates in which the Wilson line
stretches along z, at xµ = const, where z, xµ become approximately Poincaré coordinates near the boundary. In
D > 3, the normalizable boundary condition has limz→0 Aµ = 0.
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Near the boundary in Poincaré coordinates, the asymptotic behaviour of the gauge field is

Aµ(x , z)∼ zd−2aµ(x) , Az ∼ zd−3az(x) , (45)

assuming normalizable boundary conditions. This implies that near each boundary, the al-
lowed gauge parameters take the form

λ= λ0 + f (x) zd−2 + . . . , (46)

where λ0 is a number, ∂µλ0 = 0. This implies that ÔR = OR, whereas ÔL = eiq(λR
0−λ

L
0)OL . As

already discussed, the zero mode of the relative gauge parameter carries charge, and this is
already the most non-trivial part of the Wilson line.

Next, we can pertubatively include the contribution of the integrated field strengths. These
contributions will be entirely expressible in terms boundary currents, since FMN satisfies sec-
ond order equations of motion and its boundary values are determined by the CFT currents
via

lim
z→0

p
g F zµ = jµ . (47)

Thus, the integrated field strengths will just dress the operators and the Wilson line by addi-
tional powers of the CFT currents. The expression one obtains at the end is precisely of the
form (3).

We can also derive (3) from the known fact [8] that in radial gauge, the expression for
φ̂ is given only by smearing dressed operators O ( j), for some dressing by the current. Let us
rename the path that unites the point y - where the bulk field is inserted - to the boundary
point bxR to be ΓR, shown in figure 6(a). Since in the approximation in which we are working,
the equation of motion (41) is linear in φ̂, the solution for the bulk field φ̂ in the interior of
the black hole consists of two pieces

φ̂(ΓR) = φ̂L(ΓR) + φ̂R(ΓR) , (48)

where φ̂L(ΓR) only has support on the left boundary and φ̂R(ΓR) only on the right one, but each
of them has charges QL = 0, QR = q and separately solves the wave equation with Γ = ΓR, as
we have explicitly indicated. The idea is now to evaluate φ̂L/R separately using radial gauge.
However, as we already discussed, global radial gauge is not allowed in the eternal black hole
background; instead, we will be imposing radial gauge patchwise in the left/right parts of the
space-time (which include the interior bulk point all the way to the left/right boundary) and
then put the results together. Our procedure is depicted in figure 4.

I

II

III

IV

(a) We can find the boundary expression for
φ̂R by imposing radial gauge to the right of
the dotted line in the figure above.

I

II

III

IV

(b) By imposing radial gauge to the left of
the vertical dotted line, we find the bound-
ary expression for φ̂L(ΓL), which is framed
to the left via the dashed Wilson line.

Figure 4: Argument to find the boundary representation of φ̂ using patchwise radial gauge.
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We first impose radial gauge to the right of the dotted line in figure 6(a). Since the Wilson
line attached to φ̂ ends on the right boundary, we know that φ̂R can be written as some specific
smearing over dressed operators O ( j)R , whose precise dressing depends on ΓR. This corresponds
to the first term in (3).

As for φ̂L , we now impose radial gauge in the left half of the eternal black hole (figure
6(b)). If φ̂L were framed to some point on the left boundary, say via a curve Γ = −ΓL , then
it would have some specific expression in terms of dressed operators on the left boundary
involving O ( j)L - where, again, the precise dressing depends on the shape of ΓL and on its
boundary endpoint. We denote this left-framed operator by φ̂L(ΓL), which satisfies (41) with
Γ = −ΓL . However, φ̂L(ΓR) is framed to the right boundary, and not the left, so the expression
we want differs from the expression for φ̂L(ΓL) precisely by a boundary-to-boundary Wilson
line stretching along ΓL + ΓR:

φ̂L = φL(ΓL) ·WLR(Γ ) , WLR = exp

�

iq

∫

ΓL

A+ iq

∫

ΓR

A

�

. (49)

This represents the second term in (3). Using the equation of motion for φ̂L(ΓL), it is not
hard to show that, irrespectively of how we choose ΓL , φ̂L satisfies (41) with Γ = ΓR. This
shows how the shape of the Wilson line is constrained by the equations of motion. Of course,
in general the Wilson line need not pass through the bulk point y; changing its shape will
simply multiply the expression for the bulk field by eiq

∮

A, where the integral is performed
along the closed contour corresponding to the difference of the two Wilson lines. Converting
the contour integral to a surface integral over the field strength, the difference in Wilson lines
is a functional of the boundary currents only.

3.2 Evaluating the Wilson line

In the above section, we have established the necessity of the Wilson line also in higher di-
mensions. Its most non-trivial part - which is not encoded in the CFT currents - is the zero
mode, which we have already discussed; however, as we are mostly interested in the localized
Wilson line, it would be very interesting to also have an expression for its non-zero modes in
terms of the CFT currents.

Unlike in three dimensions, where the relation between the CFT currents and the Wilson
line is very simple (35), here we will unfortunately be unable to provide completely explicit
expressions for the Wilson line in terms of the currents. We will, however, describe in detail
the procedure through which such an expression may be obtained. We write the final result
in terms of integrals over the bulk-to-boundary propagator in AdS-Schwarzschild, which is
known numerically (see e.g. [24]) and can be used in principle to compute the Wilson line.

For simplicity, we work with the unexponentiated Wilson line, ϕ =
∫

Γ
A. To determine

the value of ϕ, we must first pick a shape. We concentrate on the planar AdS-Schwarzschild
black brane, though very similar statements hold for the spherically symmetric black hole. The
metric of the AdSd+1-Schwarzschild black brane is

ds2 = − f (r)d t2 +
dr2

f (r)
+ r2d ~x2 , f (r) =

r2

`2
−

µ

rd−2
, (50)

where ` is the AdS length and µ parametrizes the mass. This set of coordinates is only valid
in region I of the eternal black hole, but we can use similar coordinates in each of the four
regions. In region III, the coordinate t runs in the opposite direction from region I.

We would like to choose a nice family of Wilson lines in this geometry. A natural and simple
choice are Wilson lines that stretch along bulk geodesics that unite points of tL = −t0, tR = t0
on the two boundaries and stay at ~x = const.
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t-t

Figure 5: Wilson line stretching along a boundary-to-boundary geodesic.

These geodesics are labeled by the conserved “energy” E. They are only non-trivial on the
(t, r) plane, where they satisfy

f (r) ṫ = E , ṙ2 = f (r) + E2 . (51)

Here˙= d/dσ, where σ ∈ (−∞,∞) is the affine parameter along the geodesics. We choose
the origin for σ such that σ = 0 at t = 0 in region II. We obtain the full geodesic by gluing the
solution across the three regions. Instead of E, we can alternatively parametrize the geodesics
by the time t0 they reach on the right boundary; this is shown explicitly in appendix B for the
case of three bulk dimensions. The geodesic with t0 = 0 is the one that goes straight through
the bifurcation surface.

Note that these geodesics also provide a global time foliation of the eternal black hole.
Indeed, introducing a timelike coordinate τ such that the geodesics are lines of constant τ,
the metric can be written as

ds2 = dσ2 − a2(σ,τ)dτ2 + b2(σ,τ)d x2
i , i = 1, . . . , d − 1 . (52)

Note thatτmust equal±t as we approach the boundaries atσ→±∞. We give explicit change
of coordinates from (r, t) to (σ,τ) for the special case of three dimensions in appendix B.

We would now like to compute the value of the Wilson line stretching along these geodesics.
Unlike the general Wilson line - which is labeled by two different boundary positions - these
symmetric Wilson line can be labeled just by their endpoint (t, ~x) on the right boundary

ϕ(t, ~x) =

∫ ∞

−∞
Aσ(τ,σ, ~x) dσ , (53)

where the integral is performed along a line of constant τ, ~x , with limσ→∞τ= t.
Next, we need the expression for Aσ all along the geodesic. For this, we first need to fix

an allowed gauge in the bulk, e.g. ∂σAσ = 0, that completely determines Aσ in terms of the
boundary currents and the zero mode, just like in the three-dimensional analysis of section
2.3. However, solving the gauge condition is extremely tedious on the black hole background.

It turns out to be much simpler to work out the derivatives of the Wilson line with respect
to the boundary coordinates t, ~x , as these only involve integrals of the gauge-invariant field
strength. Consider first the derivative of ϕ(t, ~x) with respect to the boundary time t, which is
given by the difference as∆t → 0 between two bulk geodesics with endpoints at t and t+∆t.
In the coordinates (52), we have

∆ϕ(t, ~x) =

∫

τ=const.
dσFτσ(τ,σ, ~x)∆t . (54)
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Written covariantly, we have

∂tϕ(t, ~x) =

∫

nM FMN tN dσ , (55)

where tM = ∂ yM

∂ σ is the tangent vector to the geodesic, whereas nM = ∂ yM

∂ τ is the devia-
tion vector between the two neighbouring geodesics.12 It is useful to work in terms of the
Schwarzschild coordinates (t, r), patching them together as needed. Then,

∂tϕ(t, ~x) =

∫

Ft r

�

∂ t
∂ τ

∂ r
∂ σ
−
∂ r
∂ τ

∂ t
∂ σ

�

dσ =

∫

Ft r a(σ,τ)dσ . (56)

In turn, Fr t is entirely determined by the CFT currents via the following second-order equa-
tion13

�

−
r2

f (r)
∂ 2

t + r2 f (r)∂ 2
r + ∂

2
i

�

Fr t + (r
2 f ′ + (d + 1)r f )∂r Fr t + (d − 1)( f + r f ′)Fr t = 0 (58)

and the boundary conditions
lim

r→∞
rd−1Fr t = j0L/R (59)

near the left/right boundary. This implies that all along the geodesic, the solution for Fr t can
be written as

Fr t(y) =

∫

dd xL K(F)L (y|xL) j0L(xL) +

∫

dd xR K(F)R (y|xR) j0R(xR) , (60)

where K(F)L,R satisfy the equation of motion (58) and y = (t, r, ~x). In pure AdS, these prop-
agators are simple derivatives of delta functions; unfortunately, on a general eternal black
hole background, the expressions for them are not known. Using these ingredients, the final
expression for the Wilson line will take the form

∂tϕ(x) =

∫

dd x ′KL(x |x ′) j0L(x
′) +KR(x |x ′) j0R(x

′) , (61)

where x denotes all the boundary coordinates. It would be extremely interesting to compute
the smearing functions KL,R and see whether, as in three dimensions, the derivative of the
unexponentiated Wilson line is given by a simple expression in terms of the boundary currents.

The above gives the derivative of the unexponentiated Wilson line with respect to t. We
can similarly compute its derivative with respect to x i by integrating the corresponding field
strength

∂iϕ(t, ~x) =

∫

rFiσdσ =

∫

�

rFir
∂ r
∂ σ
+ rFi t

∂ t
∂ σ

�

dσ . (62)

In empty AdS, Fir satisfies a decoupled second order differential equation, which can be used
to determine it everywhere in terms of j i

L,R. However, in a black hole background, there is

12This vector field can be determined from the geodesic deviation equation and the boundary conditions
nM = ±δM

0 as σ→±∞.
13This is quite similar (but not exactly the same when the black hole is present) to the wave equation for a scalar

field

r2(�−m2)Φ=
�

−
r2

f (r)
∂ 2

t + r2 f (r)∂ 2
r + ∂

2
i

�

Φ+ (2r f + r2 f ′)∂rΦ−m2r2Φ . (57)

In fact, Fr t behaves near infinity just as rΦ with m2 = −2(d − 2)/`2, which is inside the BF bound in AdSd+1.
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a mixing with Fi t , which is determined by both j0 and j i . Again, it would be extremely in-
teresting if this expression could be evaluated exactly, to find out whether ∂iϕ bears a simple
relation to the CFT currents.

Thus, we can in principle find all derivatives of the (unexponentiated) Wilson line as a
linear functions of the currents. The only missing piece from the full Wilson line is the zero
mode, which can be added in by hand.

3.3 Locality of the Wilson line

While the expressions derived in the previous section show how to obtain, in principle, an
expression for the unexponentiated Wilson line in terms of the boundary currents and the
additional zero mode, they are not very useful for understanding the behaviour of the Wilson
line within correlators. In this section we show that, with a particular choice of the path, the
Wilson line behaves as a local operator from the point of view of either CFT, in the sense that
it commutes with all local CFT operators at spacelike separation.

We would thus like to compute the commutator of a low-lying local CFT operatorA (t ′, ~x ′)
with Wilson line at some (earlier) global time τ, where A is either a charged operator or a
current. For this, it is sufficient to know the commutator ofA (τ′, ~x ′)with the unexponentiated
Wilson lineϕ(τ, ~x), which can be obtained by evaluating the corresponding bulk Dirac bracket.
While it is easy to compute equal-time commutators in the bulk, non-equal time ones are much
harder. Our strategy will be to first use backward time evolution in the bulk to writeA (t ′, ~x ′)
in terms of its value and first derivative on a τ = const. surface, and then use the equal-time
Dirac brackets to compute the bulk commutators.

Remember the Dirac brackets are defined in terms of the Poisson brackets via

{O1,O2}D.B. = {O1,O2}P.B. − {O1,χi}P.B.(C
−1)i j{χ j ,O2}P.B. , (63)

where χi represent the second class constraints and Ci j = {χi ,χ j}P.B.. The main simplification
we will use in this section is that Dirac brackets of gauge-invariant quantities (as opposed to
the Dirac brackets of non-gauge-invariant fields that have been gauge fixed) can be computed
without explicitly solving for C−1, and in fact they just equal the Poisson brackets.14

We consider quantising Maxwell theory on a manifold with metric (52), in the gauge
∂σAσ = 0. The momenta conjugate to the gauge field are

πa = F aτpg , (64)

where the index a runs over all the spatial directions in the bulk. The constraints read

χ1 = π
0 , χ2 = ∂aπ

a − J0pg , χ3 = ∂σAσ , χ4 = ∂σπ
σ a2(σ,τ)
p

g
+ ∂ 2

σA0 , (65)

where χ4 is supposed to implement ∂τ∂σAσ = 0. Using the above, one can easily show that
the equal time Dirac bracket of the gauge field strength with the Wilson line is simply equal to
their Poisson bracket. The equal-time Dirac bracket of the scalar with the Wilson line is zero.

Let us start by computing the commutator of Fστ(τ′,σ′, ~x ′) with a (geodesic) Wilson line
ϕ(τ, ~x) =

∫

Aσ(τ,σ, ~x) dσ, for τ′ > τ. This component of the gauge field strength satisfies
a second order differential equation by itself. If the bulk point y ′ is deep in the interior, then

14For Maxwell theory on a manifold without boundary, this can be simply be understood from the fact that before
imposing the gauge-fixing conditions, the constraints χ1,2 below used to be first class constraints that generate
gauge transformations, and thus have zero Poisson bracket with the gauge-invariant quantities of interest. Thus,
the only non-zero correction to the Poisson bracket can come if (C−1)34 is non-zero; however, one can explicitly
check that it vanishes, using the fact that {χ1,χ2}P.B. = 0.
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we can use the initial conditions for Fστ and its first derivative on the τ = const. surface to
construct Fστ(τ′,σ′, ~x ′)

Fστ(τ
′,σ′, ~x ′) =

∫

dd−1 x ′′dσ′′
�

GF (τ
′,σ′, ~x ′|τ,σ′′, ~x ′′)Fστ(τ,σ′′, ~x ′′)+

+ GF ′(τ
′,σ′, ~x ′|τ,σ′′, ~x ′′)∂τFστ(τ,σ′′, ~x ′′)

�

, (66)

where GF , GF ′ are determined from the equations of motion and only have support inside the
intersection of the lightcone emanating from y ′ with the τ = const. surface. It is not hard to
show that the second term has vanishing Poisson bracket with Aσ, and thus can be dropped in
computing the commutator with the Wilson line. Finally, we obtain

{Fστ(τ′,σ′, ~x ′),ϕ(τ, ~x)}=
∫

dσGF (τ
′,σ′, ~x ′|τ,σ, ~x) . (67)

We are ultimately interested in the case in which the insertion of the field strength is on the
boundary, since limσ′→±∞π

σ = j0L/R. Then, GF is not only fixed by the data on the τ= const.
surface, but also by requiring normalizable boundary conditions as |σ| →∞. Thus, we have
reduced computing the Dirac bracket of the boundary current with the Wilson line to eval-
uating the simple expression (67).When τ′ = τ, it is easy to see this expression yields the
expected commutator

{ jµL/R(τ, ~x ′),ϕ(τ, ~x)}= ∓δµ0 δ
(d−1)(~x − ~x ′) (68)

with the CFT currents, and thus the charges. When τ′ 6= τ, there are also nontrivial commu-
tators of j i and the Wilson line.

Since in (67) all contributions come from inside the bulk lightcone associated to (τ′,σ′, ~x ′),
this implies (at least for the nicely-shaped Wilson lines we are considering) that the commuta-
tor of the Wilson line with the boundary operator is local, in the sense that it vansihes outside
the boundary lightcone. It also implies that the commutator of the Wilson line with local op-
erators on a single boundary only depends on the geometry outside the horizon, and thus will
be the same in the eternal black hole, or in a long wormhole spacetime.

Finally, we can also compute the commutator of the Wilson line with the charged boundary
operators. The equal-time Dirac bracket of the scalar field or its conjugate momentum with
the Wilson line can be shown to be zero. In order to get a non-zero answer at unequal times,
we need to take into account the non-linear evolution of the scalar in terms of both φ and A;
terms proportional to the field strength on the initial surface will contribute to the commutator
with the Wilson line operator. Given that all the propagators involved are causal, it is clear
that the resulting answer will vanish outside the boundary lightcone; in this sense, the Wilson
line behaves as a local operator from the CFT point of view. This conclusion holds not only in
the eternal black hole, but also in any two-sided black hole spacetime.

4 CFT representation of the boundary-to-boundary Wilson line

In this section, we discuss the CFT representation of the boundary-to-boundary Wilson line. In
the introduction, we have argued that the Wilson line should correspond to a state-dependent
operator; in any case, it action on the small Hilbert space around a given state should be
well-defined. The subject of the present section is to determine this action on the thermofield
double state.
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We will consider both the operator

ϕ =

∫

Γ

Aµd xµ (69)

and the Wilson line

W = P exp

�

iq

∫

Γ

Aµd xµ
�

, (70)

regulated by appropriate counterterms. Remember that the operator ϕ is - strictly speaking -
not a well-defined operator, as it is only defined mod 2π; however, its action is much easier to
evaluate than that of W . In the special case that the effective bulk theory is weakly coupled
Chern-Simons in three dimensions, these operators will be independent of the path.

These operators cannot be expressed purely in terms of the boundary currents, however
they do exist in CFT at least in 1/N perturbation theory, when acting on states that are small
excitations of the thermofield double state. We will exhibit this by first determining their
matrix elements between such states (which abstractly defines the operators), and then by
constructing them as the leading divergence in the bulk operator product of left and right
charged operators that approach the bifurcation surface. The latter construction also requires
a particular state, since in general states, there will be no divergence in that operator product.
Finally, we will discuss the relation of the Wilson line with the Papadodimas-Raju construction
of the mirror operators in the eternal black hole.

4.1 Action on the thermofield double state

To specify the operators abstractly on the small Hilbert space, it is sufficient to determine
their action on the black hole state and their commutation relations with left and right single
trace operators. In this section, we concentrate on the action of ϕ on the small Hilbert space
associated to the thermofield double state, which can be entirely reconstructed from

ϕ|Ψ〉tfd , [ϕ,O ] . . . |Ψ〉tfd . (71)

The latter can be determined order by order in bulk perturbation theory, as we have done in
sections 2.3 and 3.3. The former can be found using the Euclidean path integral description
of the thermofield state, as we show below.

Consider the path integral description of the thermofield double state. From the CFT per-
spective, it is given by the Euclidean path integral on an cylinder of length β/2, interpreted
as a wavefunctional of boundary conditions on the two boundaries of the cylinder [25]. This
gives an element of the tensor product Hilbert space.

We consider a bulk Wilson line stretching along the surface t = 0 at ~x = const, i.e. the
straight geodesic Wilson line ϕ(0, ~x) that passes through the bifurcation point. Any other
Wilson line can be obtained from this one by multiplication by a functional of the currents.
The bulk dual is dominated by the saddle shown in figure 6. The Wilson line operator acting on
this state is given by the associated insertion of

∫

t=0 dσAσ in this bulk Euclidean path integral.
Consider deforming this Wilson line to run along the boundary. One has

ϕ(0, ~x) =

∫ β/2

0

d tEAtE
+

∫

B
F , (72)

where B is the bulk euclidean slice at fixed ~x . This operation only applies to the insertion of
the operator ϕ in this particular path integral, with no other insertions.
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0 b/2
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Et

(a) Insertion in the path integral that corre-
sponds to the Wilson line

∫

t=0
dσAσ.

0 b/2

tt

E

F

t

(b) This can be deformed to a Wilson line
stretching along the Euclidean time direction
at r →∞, by picking up a surface integral
of the field strength.

Figure 6: Path integral evaluation of the Wilson line action on the thermofield double state.

In the three-dimensional weakly coupled Chern-Simons case, the field strength F vanishes
on the saddle point, and the above expression simplifies to

ϕ(0, x) =
2
k

∫ β/2

0

d tE jtE
(i tE , x) , (73)

where jtE
has been defined such that jtE

(iβ/2, x) = i j0R(0, x) and jtE
(0, x) = −i j0L(0, x). The

factors of i come from the analytic continuation of the gauge field.
It is also interesting to consider the action of the Wilson line ϕ̄ that still stretches along the

t = 0 surface, but is smeared in the x direction

ϕ̄ =

∫

d x ϕ(0, x) =
2
k

∫ β/2

0

d tE

∫

d x jtE
(i tE , x) =

2πiβ
k

Q , (74)

where Q = 1
2πi

∫

d tE jtE
and we have used the fact that an insertion of Q in the path integral

that produces the thermofield double state is equivalent to an insertion of QR, or of −QL , since
(QL +QR)|Ψ〉tfd = 0. Thus, we find that the action of the spatially averaged Wilson line on the
thermofield double state is given by

ϕ̄ |Ψ〉tfd =
2πiβ

k
Q |Ψ〉tfd . (75)
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Note that the thermofield double state is not an eigenstate of ϕ̄, as one may have naively
expected. Thus, while the operator algebra of the unexponentiated Wilson line is that same as
that of a free boson, its action on the thermofield double state is non-trivial. If we computed
the action of ϕ on other states dual to two-sided geometries, we expect that the answer would
again be different, while the operator algebra stays the same.

We can perform a similar analysis in higher dimensions. There, the boundary contribution
to the path integral vanishes due to the boundary conditions (45), but the bulk integral over F ,
which is gauge invariant, can be written in terms of the boundary currents operators ( j0) using
the standard bulk to boundary kernel. This computation is a bit too complicated to perform
here. However, it is easy to compute the action of the spatially averaged Wilson line ϕ̄. This
time we work with the spherically symmetric black hole geometry, whose metric is given by
(50) with d ~x2→ dΩ2

d−1, the metric on the unit (d − 1) sphere. We have

ϕ̄ =

∫

dd−1Ω

∫ ∞

r+

dr

∫ β/2

0

d tE FtE r . (76)

In free Maxwell theory, the flux through a surface of radius r at time τ

Φ(r, tE) =
1
e2

∫

r,tE=const.
dd−1Ω F tE rpg (77)

is constant with respect to both r and tE and it equals iQ. Using the metric (50), we find

ϕ̄ = e2

∫ ∞

r+

dr
r2

∫ β/2

0

d tE Φ=
iβe2

2r+
Q . (78)

Again, we find a non-trivial action of the Wilson line on the thermofield double state

ϕ̄ |Ψ〉tfd =
iβe2

2r+
Q|Ψ〉tfd (79)

proportional to the relative charge.
It is interesting to ask whether the expressions we found are consistent with the commu-

tation relations of ϕ̄ we found from the bulk analysis. In three dimensions, we have

[Q, ϕ̄] = 2πiR , (80)

where 2πR is the length of the spatial circle. The expectation value of this commutator is

2πiR= 〈Ψtfd|Q ϕ̄|Ψ〉tfd − 〈Ψt f d |ϕ̄Q|Ψ〉tfd =
4πiβ

k
〈Ψtfd|Q2|Ψ〉tfd , (81)

where we used the fact that ϕ̄ is hermitean. Thus, for our calculation to be consistent, we
should have

〈Ψtfd|Q2|Ψ〉tfd =
kR
2β

. (82)

The expectation value of Q2 can be computed, as in [16], by turning on an infinitesimal electric
potential µ and computing the resulting expectation value of the relative charge Q

〈Q〉µ =
1
Z

∑

E

q e−β(E−µq) = µβ〈Ψtfd|Q2|Ψ〉tfd +O (µ2) . (83)
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In three-dimensional Chern-Simons theory, the electric potential is proportional to the A− com-
ponent of the gauge field on the boundary, more precisely A− = −µ, as can be seen from (101).
This in turn leads to a non-zero charge

Qµ = −
k

4π

∫

d x A− =
kRµ

2
. (84)

Comparing (84) and (83), we find perfect agreement with (82).
A similar comparison can be performed in higher dimensions. We have

[Q, ϕ̄] = i vol(Ωd−1) , (85)

where vol(Ωd−1) is the volume of the (d − 1)s sphere. For consistency, we need that

〈Ψt f d |Q2|Ψ〉tfd =
vol(Ωd−1)r+

βe2
. (86)

This agrees perfectly with the formulae in [16], who found 4πr+/βe2 in four dimensions.

4.2 Construction via the bulk OPE

In this section we will describe a more physical way to construct the Wilson line operator, from
the product of a pair of bulk operators with standard HKLL descriptions. This construction will
still be state-dependent, in that it involves finding the operator coefficient of a certain diver-
gence in the operator product which only exists around certain states (and in 1/N perturbation
theory). Such a construction of the Wilson line operator as a limit of simple (i.e., products of a
small number of single-traces) operators only applies to entangled states of the tensor product
theory which are dual to black holes with a single bifurcation surface, in other words without
a long throat.

Consider a gauge invariant charged field operator in the right wedge, dressed by a Wilson
line that connects it to some point bxR on the right boundary. We denote it schematically by

φ̂R(y) = eiq
∫

bxR
y φ(y) . (87)

This has a standard HKLL description in terms of a perturbative expansion in integrals of
products of single trace right CFT operators. Similarly, the corresponding anti-particle on the

left, framed by a Wilson line to the left boundary, φ̂†
L(y

′) = φ†(y ′)e−iq
∫

bxL
y′ , can be expressed

entirely in terms of left operators.
Bringing these two operators together near the bifurcation surface results in a singular

OPE, at least in 1/N perturbation theory, for states close to the thermofield state. This is just
the bulk OPE. In particular, if one ignored issues of gauge invariance,

φ(y)φ†(y ′)∼
1

|y − y ′|D−2
I + . . . (88)

for a bulk scalar field; this is the most singular term.15

For the charged scalars framed in way described above, the Wilson lines used in the framing
remain after the OPE contraction. Only at the bifurcation surface can one have a contraction
of this type between purely left and purely right operators. Therefore, we can define

WLR(bxL , bxR) = lim
y→B ,L

lim
y ′→B ,R

|y − y ′|D−2φ̂†
L(y)φ̂R(y

′) , (89)

15For this singularity to be present, we should first take the limit N →∞ , and then y → y ′.
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+-

Figure 7: Construction of the Wilson line via OPE fusion at the bifurcation surface of a nega-
tively charged operator from the left and a positively charged operator from the right.

where the limits are taken to the bifurcation surface,B , from the left and the right. It is clear
that this operator satisfies the correct commutation relations, since they are derived from bulk
perturbation theory, and so must be consistent with the bulk OPE. Note that around general
states (not close to the thermofield state), this limit has no divergence, and so no WLR can be
extracted.

One may wonder whether this representation of the Wilson line acting on the thermofield
double state agrees with the expression we found in the previous section. To see this, remem-
ber that the action of any left operator on the thermofield double state can be replaced by the
action of a right operator whose insertion time is t+ iβ/2 [12]. Using this, the expression (89)
can be rewritten as the coefficient of the divergence of two right bulk operators of opposite
charges inserted at the same radial position close to the bifurcation surface, but at times 0 and
iβ/2. At the horizon, gt t vanishes, so the two points are very close together; thus, we can
again use the bulk OPE to replace the two scalar insertions by the identity. As for the attached
Wilson lines, if they were originally stretching along the t = 0 surface, now they will stretch
from r+(1+ ε) to infinity along the t = 0 line and from infinity to r+(1+ ε) along t = iβ/2.
This yields exactly the same Wilson line that we were computing in the previous section.

4.3 Action on gauge-shifted states

In this subsection, we would like to make a connection to the work of [15] on mirror operators
and state-dependence in the eternal black hole. The authors considered a set of time-shifted
states

|ΨT 〉= eiHL T |Ψ〉t f d (90)

whose gravity dual differs from the usual eternal black hole only by a large diffeomorphism.
Their argument pro state dependence consisted of two parts. First, by considering re-

lational observables (which is just the statement that the bulk field should be gauge invari-
ant), [15] showed that the mirror operator had to depend on the gauge parameter T . Then,
they showed that by taking T to be exponentially large, there didn’t exist a state-independent
operator that behaved correctly in all the time-shifted states.

In this section, we discuss the analogue of this argument for the case of electrically (rather
than gravitationally) charged operators. As we will show, the dependence of the mirror op-
erators on the large gauge parameter can be entirely understood in terms of the Wilson line,
which also predicts certain corrections to the expression proposed in [15]. The advantage of
thinking about the Wilson line is that the entire problem of state-dependence is shifted to a
single object, whose presence - as we have argued - is already required by the bulk-to-boundary
dictionary in the eternal black hole. However, we will not find any state-dependence in our
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electromagnetic analogue. We understand this as a consequence of the gauge group being
compact.

The analogue of the time-shifted states in our electromagntic setup are the “gauge-shifted”
states

|Ψλ〉= e−iQLλ|Ψ〉t f d . (91)

The states |Ψλ〉 can also be obtained via a path integral: one performs the same path integral
over the Euclidean cylinder that produces the thermofield double state; however, when gluing
the Euclidean geometry onto the Lorentzian CFTs, one has a choice of relative global charge
rotation generated by Q = 1

2(QR−QL). While there is no natural “zero” of the charge rotation,
the different states will have maximal entanglement between charged operators rotated by
different phases. The zero mode of the Wilson line measures precisely this relative phase
rotation. This construction is perfectly analogous with the path integral representation of the
time-shifted states [15].

Using the path integral construction, the microscopic formula for |Ψλ〉 is

|Ψλ〉=
1

Æ

Zβ

∑

E

e−βE/2eiqλ |E,−q〉L|E, q〉R , (92)

where q is the charge of the of the microstate of energy E and we are assuming the energy
spectrum is non-degenerate. The correlated structure of the charges is due to the fact that
(QL +QR)|Ψλ〉= 0 [16].

The expressions in [15] are valid in the approximation in which all gravitational dressing
of the scalar operator is neglected, except for the commutator with the Hamiltonian. In our
language, this means that only the zero mode of the Wilson line is kept. As is evident from
our discussion in section 2, this is not quite a consistent approximation (the non-zero modes
have the same scaling with the gauge coupling), but it does capture the essential part of the
physics, i.e. it has the correct commutators with the boundary charges. We can then translate
the results of [15] into our Wilson line language, with the replacement

q↔ω , λ↔ T , (93)

where λ is the zero mode of the unexponentiated Wilson line ϕ, and q is the charge of the
bulk field in question.

Using the fact that (in the gravity approximation), the set of states |ΨT 〉 are almost or-
thogonal for different values of T , [15] wrote an expression for the mirror operators that has
the expected behaviour within correlation functions. A simplified version of this expression in
Fourier space is

eOω =
∫ Tcut

−Tcut

dT eiωTOω,L PΨT
, (94)

where PΨT
is the projector onto the small Hilbert spaceHΨT

, satisfying PΨT
Oγ|ΨT 〉= Oγ|ΨT 〉.

In our case, the overlap of the λ-shifted states can be estimated to be

〈Ψλ|Ψλ′〉=
1
Zβ

∑

E

e−βEeiq(λ′−λ) ≈ e−N(λ−λ′)2 , (95)

where N ∝ k in three dimensions and N ∝ 1/e2 in higher D. This shows that the λ-shifted
states are almost orthogonal for |λ−λ′|> N−

1
2 .

Now, by analogy with the arguments of [15], we find that in the λ-shifted states, the mirror
operators behave as OL eiqλ. Thus, on the ensemble of states |Ψλ〉, the mirror operator is given
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by (94) with the replacement (93), where λ is integrated from 0 to 2π. We would like to
compare this expression with the mirror operators that we found:

eO = OL WLR . (96)

As discussed, in order to compare with [15], we only need to consider the zero mode of WLR in
the expression above. When acting on the thermofield double state, this zero mode is precisely
given by the spatial average we considered in section 4.1. Using our expressions from section
4.1, the action of the Wilson line WLR onHΨλ is given by

WLR|Ψλ〉=WLRe−iQLλ|Ψ〉tfd = eiqλe−iQLλWLR|Ψ〉tfd = eiqλ+qαQL |Ψλ〉 , (97)

WLROR|Ψλ〉= [WLR,OR]|Ψλ〉+OReiqλ−βQ|Ψλ〉= [WLR,OR]|Ψλ〉+ eiqλ+qαQLOR|Ψλ〉 , (98)

where α= 2πβ/k in three dimensions and βe2/2r+ in higher D.
We see from the above expressions that, due to the non-trivial action of the zero mode of

the Wilson line on the thermofield double state, the λ-dependence of the mirror operator is
not just eiqλ, but there is an additional shift eαqQL . In other words - the λ-shifted states are
not eigenstates of the Wilson line operator, as (94) seems to indicate. Moreover, when the
mirror operator acts on non-trivial elements of the small Hilbert space around |Ψλ〉, there is
also a commutator term, which in general will not vanish. The action of the Wilson line on
the λ-shifted states becomes even more complicated if we keep all the modes of the Wilson
line, as we should in order to have a consistent approximation. Using the methods presented
in sections 4.1, 2.3 and 3.3, this action can in principle be written down entirely explicitly.

Now, let us comment on the issue of state dependence. In [15], state dependence was
due to the fact that, since T could be taken to be arbitrarily large, there were many more
states |ΨT 〉 than the dimension of the Hilbert space, so one could derive a contradiction. In
particular, the expression (94) breaks down for T very large, for reasons nicely explained
in [14,15]. Another way to see state dependence was that by integrating over very long times,
one would project onto energy eigenstates, which then lead to a contradiction because such
states are not expected to have a smooth horizon.

In our case, the gauge parameter is compact, λ ∼ λ + 2π, and thus an appropriately
modified analogue of the expression (94) will work for all λ, at least as far as the exponentiated
Wilson line is concerned.16 Therefore, in order to see state-dependence in our setup, we should
study instead how the Wilson line behaves in the time-shifted states, i.e. we should consider
its gravitational dressing.

It is easiest to derive a contradiction for the unexponentiated spatially-averaged Wilson
line17, ϕ̄. Taking the expectation value of the commutator (80) in the time-shifted states (90)
and expanding in the energy eigenbasis, we find

2πiR= 〈ΨT |[Q, ϕ̄]|ΨT 〉=
1
Zβ

∑

E,E′
e−

β
2 (E+E′)+i(E−E′)T (q′ − q)〈E′,−q′|L〈E′, q′|R ϕ̄ |E,−q〉L|E, q〉R .

(99)

16 One can also ask whether the unexponentiated Wilson line operator ϕ, which appears to be perfectly well-
behaved around each of the states |Ψλ〉, continues to be well-defined on the ensemble of all such states The answer
is clearly no: ϕ is not a globally well-defined operator because it is compact; another way to say this is that it is
not gauge-invariant under integer-valued relative gauge transformations between the two boundaries.

What is interesting to note is that the same kind of arguments that imply a contradiction in having a globally
defined linear operator in the gravitational case here imply that ϕ is not globally well-defined - there is a con-
tradiction between the commutation relation [Q,ϕ] = i, which is supposed to be valid in each of the states |Ψλ〉,
and the expectation value of this commutator in the zero-charge eigenstate

∮

dλ|Ψλ〉. This suggests that subtleties
in defining non-perturbatively diffeomorphism-invariant gravitational analogs of the Wilson line operators in the
time-shifted states are important for their state dependence.

17To be more precise, we consider a periodic function of ϕ̄ that is very close to ϕ̄ between −π and π, so that
the operator is gauge invariant. In all of the states we are about to consider, the value of ϕ̄ is close to 0, so the
behavior of the periodic function close to ±π will not affect the argument.
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This equality is meant to hold in the domain of validity of the bulk analysis, up to exponentially
small corrections. Since the left-hand side is independent of T , while the right-hand side is a
sum over terms with frequencies E − E′, this relationship cannot hold for T arbitrarily large.

Note that the sum is dominated by microstates with energies of order the black hole energy,
whose level spacing is of order e−N . Therefore, if ϕ̄ has the minimum possible width, δE ∼ e−N ,
in the energy eigenbasis, then (4.31) can be valid for a range of T of up to order δ−1

E . For time-
shifted states beyond this window, one will find that a different operator (as specified by its
matrix elements in the energy eigenbasis) obeys (4.31).

An alternative to this state-dependent construction of the Wilson line operators was de-
scribed by [19], in which the bulk gauge field is emergent at a scale below the Planck scale.
The Wilson lines in the exponentially time-shifted states will be curved in the interior, so that
in that scenario, one will exit the domain of validity of the gauge field description.

5 Discussion

In this article, we have shown that in order to correctly reproduce bulk perturbation theory
in presence of charged operators in the background of an eternal black hole, a new gauge-
invariant operator needs to be included in the holographic dictionary, namely a boundary-to-
boundary Wilson line.

This operator appears to only exist around entangled states of the two CFTs that are dual
to connected two-sided geometries, which suggests it is a state-dependent operator. Due to the
factorized structure of the microscopic Hilbert space, this operator can be written as a (sum
of) products of a charged operator from the left CFT, and an oppositely charged operator from
the right. However, which left/right operator pair represents the Wilson line seems to depend
on the state of the system.

We have studied various properties of the Wilson line, such as its relation to the CFT cur-
rents and its operator algebra; in particular, we showed that it behaves as a local operator
from the point of view of either boundary CFT. In the special case of a three-dimensional bulk,
we showed that the (unexponentiated) Wilson line obeys the same operator algebra as a non-
chiral boson, but its action on the thermofield double state is non-trivial.

Our work provides a systematic way to incorporate 1/N corrections into the expression
for the bulk field in the eternal black hole background. In particular, it clarifies the relation
between mirror operators in single-sided black hole backgrounds and left operators in the
eternal black hole: as we explained in the previous section, the mirror operators used in the
reconstruction of a bulk field framed to the right boundary behave (96) as local left operators
connected to the right boundary via the Wilson line. Since the Wilson line does not in general
commute with the right operators, this will lead to modifications to the defining properties
of the mirror operators [13] already at the first order18 in 1/N . Our methods determine this
commutator to any desired order in perturbation theory.

The expression (96) suggests that when taking into account general 1/N corrections, it may
be natural to split the construction of mirror operators in the single-sided black hole into two
steps. In the first step, one finds a (left) mirror operator that commutes, when acting onHΨ ,
with all the right operators, including the conserved charges; these are the analogues of the OL
in the eternal black hole to any order in 1/N . In particular, one constructs mirror conserved
charges and a mirror Hamiltonian. In the second step, one defines an operator that behaves
as the Wilson line. The advantages of this two-step procedure would be that the first step

18Strictly speaking, the non-trivial commutators of the mirror operators with the boundary Hamiltonian postu-
lated in [13] already represent such a 1/N correction.
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simply amounts to applying a Tomita-Takesaki type construction to the algebra19 generated by
the right operators to arbitrary order in 1/N , and that all the non-trivial commutators of the
(right-framed) mirror operators with the right CFT operators are encoded in a single object:
the Wilson line. It would be interesting to understand whether such a two-step construction
emerges naturally from a Tomita-Takesaki type construction applied to systems with a global
symmetry.

It would be very interesting to extend these results to gravity. There, the framing of gauge-
invariant operators is much more complicated than in gauge theory - see [26] for a recent
discussion. However, for the particular case of three dimensions, the bulk theory reduces
at low energies to pure Einstein gravity in AdS3, which can be rewritten as two copies of
SL(2,R) Chern-Simons theory [27, 28]. The bulk low energy sector that is described by the
weakly coupled Chern-Simons is dual, in the eternal black hole background, to two copies of
non-chiral Liouville theory. Each copy is associated to one of the SL(2,R) factors and involves
currents from both boundaries, as well as left to right Wilson lines. In this case, by integrating
over a large range of gauge shifted states (which can now be interpreted as time shifted), one
can asymptotically project onto energy eigenstates. Unlike in the gauge charge situation, such
eigenstates must be essentially factorized, implying that no single operator can approximate
this Liouville operator algebra on all of the shifted states.

In other words, although the boundary-to-boundary Wilson lines would seem to be well
described by the weakly coupled Chern-Simons approximation in all the time-shifted states,
this approximation must eventually break down in any complete theory of gravity in AdS3.20 As
discussed at the end of section 4.3, it is possible that subtleties in defining these Wilson lines in
a way that is both diffeomorphism invariant and remains in the weakly coupled Chern-Simons
approximation (for example, so that no sharp Planckian features appear in the path of the
Wilson line even for very long time shifts) for all of the time shifted states is important in this
breakdown. It would be very interesting to further explore this issue.
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A Dirac quantization of U(1) Chern-Simons

We work out the Dirac bracket quantization of the CS gauge field in the gauge ∂zAz = 0,
adapted to the presence of two boundaries, and check that it automatically produces a Wilson
line operator that is charged. This shows that as long as we correctly pick the gauge, bulk
perturbation theory will produce the correct charges for the bulk fields.

We first consider the case of pure Chern-Simons theory, and then we couple it to a charged
scalar field. The full action is given by (7).

19Modulo caveats [13] due to the fact that the right operators do not exactly form an algebra.
20Of course, near any such state, the Liouville approximation gives the correct operator algebra; it is just that

these are not realized as globally well-defined linear operators.
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A.1 Pure Chern-Simons

In the coordinates (30), the variation of the action reads21

δSon−shel l =
k

8π

∫

z=0

d x+d x−(A+δA−−A−δA+)−
k

8π

∫

z=a
d x+d x−(A+δA−−A−δA+) . (100)

We would like to fix A− = 0 at both boundaries, which can be achieved by adding the boundary
terms

Sbnd =
k

8π

∫

z=0

d x+d x−A+A− −
k

8π

∫

z=a
d x+d x−A+A− . (101)

After adding these, the action can be brought to the simple form

S + Sb =
k

4π

∫

d3 x [Az∂+A− + A+(∂−Az − ∂zA−)] . (102)

One can then proceed to quantizing this action, e.g. à la Dirac. The momenta conjugate to AM
are constrained:

π+ = π− = 0 , πz −
k

4π
A+ = 0 , (103)

and the Gauss law, which is a secondary constraint, simply reads

χ1 = F+z = 0 (104)

Two of these constraints are first class: π− and the combination

Ω= F+z −
4π
k

�

∂+π
+ + ∂z(π

z −
k

4π
A+)

�

, (105)

while the rest are second class. It is useful to perform the Dirac procedure in two steps, by first
eliminating the conjugate variables π−, A− (which decouple from the rest) and the momenta
π+,πz , and only then gauge fixing. After the first step, the only non-trivial commutator is

{A+(x+, z), Az(x
′+, z′)}= −

4π
k
δ(x+ − x ′+)δ(z − z′) , (106)

but we are still left with the Gauss law constraint (104), which is first class. To make it second
class, we will be imposing the gauge condition

χ2 = ∂zAz = 0 , (107)

which, as we argued in the main text, is compatible with the boundary conditions we want to
impose. The Poisson bracket of the constraints is

{χ1,χ2} ≡ C12 =
4π
k
∂z∂z′δ(z − z′)δ(x+ − x ′+) . (108)

The Dirac brackets are constructed as

{ f , g}D.B. = { f , g} −
∫

{ f ,χi}(C−1)i j{χ j , g} , (109)

where C−1 is the inverse of the constraints matrix. Denoting

(C−1)i j =
k

4π
K(z, z′)εi j δ(x+ − x ′+) , (110)

21We use conventions ε+−z = 1.
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with ε12 = 1, we find that

∂ 2
z K(z, z′) = ∂ 2

z′K(z, z′) = δ(z − z′) , (111)

with solution
K(z, z′) = (z − z′)Θ(z − z′) +α(z′)z + β(z′) , (112)

where α(z′),β(z′) are linear functions of z′. This kernel acts nicely on any function that does
not have poles in z− z′. In fact, the requirement that C−1Cλ= λ for any doublet of functions
λT =

�

λ1 λ2
�

completely fixes α(z′) and β(z′), since
∫

dz′dz′′K12(z, z′)C21(z
′, z′′)λ1(z

′′) = λ1(z) + (α(a)z + β(a))λ
′
1(a)− (z(α(0) + 1) + β(0))λ′1(0) .

(113)

Requiring that the terms proportional to λ′ vanish fixes

α(a) = β(a) = α(0) + 1= β(0) = 0 , (114)

which determines the linear functions α(z′),β(z′). The final expression for K(z, z′) is

K(z, z′) = (z − z′)Θ(z − z′) +
�

z′

a
− 1

�

z . (115)

The Dirac bracket of A+ with itself is

{A+(x+, z), A+(x
′+, z′)}D.B. =

4π
k
[∂z′K(z, z′) + ∂zK(z, z′)]∂x+δ(x

+ − x ′+)

=
4π
k

�

z + z′

a
− 1

�

∂x+δ(x
+ − x ′+) . (116)

On the other hand, the bulk-boundary dictionary (33)

A+(x
+, z) =

2
k

h

jL
+(x

+) +
z
a

�

jR+(x
+)− jL

+(x
+)
�

i

(117)

yields

[A+(x
+, z), A+(x

′+, z′)] =
4
k2
[ jL
+(x

+), jL
+(x

′+)]
�

1−
z + z′

a

�

+

4
k2

zz′

a2

�

[ jL
+(x

+), jL
+(x

′+)] + [ jR+(x
+), jR+(x

′+)]
�

. (118)

This expression matches (116) provided that

[ jL
+(x

+), jL
+(x

′+)] = −[ jR+(x
+), jR+(x

′+)] = −iπk ∂x+δ(x
+ − x ′+) , (119)

which can be checked agrees with the usual current-current OPE. The difference in signs be-
tween the jL and jR commutators is due to the different choice of orientation of the right
boundary.

The other non-zero Dirac bracket is

{A+(x+, z), Az(x
′+, z′)}D.B. = −

4π
k
δ(x+ − x ′+)[δ(z − z′) + ∂z∂z′K(z, z′)] = −

4π
ka
δ(x+ − x ′+) ,

(120)

from which we can find the commutator of the nonchiral boson ϕ = a Az defined in (34) with
the CFT currents

[ jL
+(x

+),ϕ(x ′+)] = [ jR+(x
+),ϕ(x ′+)] = −2πiδ(x+ − x ′+) , (121)

which is perfectly consistent with (35) and the current-current commutator. The commutators
of the conserved charges QL =

1
2π

∫

jL
+(x

+)d x+, QR = −
1

2π

∫

jR+(x
+)d x+ with ϕ are thus

[QR,ϕ] = −[QL ,ϕ] = i . (122)
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A.2 Coupling to matter

Let us now couple the Chern-Simons theory to a matter current Jµ. To be specific, we will take
the matter to be a complex scalar field, with the total action given by (7). We assume that the
only non-zero components of the metric are g+− and gzz . There are now two new primary
constraints [29], in addition to (103)

πφ + (D
−φ)?

p
g = 0 , πφ? + D−φ

p
g = 0 , (123)

and the Gauss law constraint now reads

χ ′1 = F+z +
4π
k
p

g J− = F+z +
4πiq

k
(φπφ −φ?πφ?) . (124)

The first class constraints are π− and the combination

Ω′ = F+z +
4πiq

k
(φπφ −φ?πφ?)−

4π
k

�

∂+π
+ + ∂z(π

z −
k

4π
A+)

�

. (125)

The non-trivial equal-time Poisson brackets are

{π+,πz −
k

4π
A+}P.B. =

k
4π
δ(x+ − x ′+)δ(z − z′) ,

{π+,πφ + (D
−φ)?

p
g}P.B. = −iqg+−

p
gφ?δ(x+ − x ′+)δ(z − z′) ,

{π+,πφ? + D−φ
p

g}P.B. = iqg+−
p

gφδ(x+ − x ′+)δ(z − z′) ,

{πφ + (D−φ)?
p

g,πφ? + D−φ
p

g}P.B. = (∂+ − ∂ ′+)δ(x
+ − x ′+)δ(z − z′)g+−

p
g+

2iqA+g+−
p

gδ(x+ − x ′+)δ(z − z′) ,

{πφ? + D−φ
p

g,πφ + (D
−φ)?

p
g}P.B. = (∂+ − ∂ ′+)δ(x

+ − x ′+)δ(z − z′)g+−
p

g−
2iqA+g+−

p
gδ(x+ − x ′+)δ(z − z′) . (126)

Imposing the gauge-fixing condition γ= ∂zAz = 0, we find two additional brackets

{∂zAz ,πz −
k

4π
A+}P.B. = δ(x

+ − x ′+)∂zδ(z − z′) ,

{∂zAz ,Ω′}P.B. = −
4π
k
δ(x+ − x ′+)∂z∂z′δ(z − z′) . (127)

We are interested in the Dirac brackets of the Wilson line ϕ = a Az , which are given by

{Az(y), A+(y
′)}D.B. = (C

−1)z+(y, y ′) +
4π
k
∂z(C

−1)Ω+(y, y ′) ,

{Az(y),φ(y
′)}D.B. = (C

−1)zφ(y, y ′) +
4π
k
∂z(C

−1)Ωφ(y, y ′) , (128)

where (C−1)i j denote the respective components of the inverse matrix of constraints and y, y ′

label bulk points with x− = x ′−. We have the following relations among its components

(C−1)z+(y, y ′) =
4π
k
δ(y − y ′) , (C−1)Ω+(y, y ′) =

4π
k
∂z′(C

−1)Ωγ(y, y ′) , (129)

where (C−1)Ωγ(y, y ′) satisfies

∂ 2
z (C

−1)Ωγ(y, y ′) = ∂ 2
z′(C

−1)Ωγ(y, y ′) =
k

4π
δ(y − y ′) . (130)

A careful analysis along the lines of the previous section yields

(C−1)Ωγ(y, y ′) =
k

4π
K(z, z′)δ(x+ − x ′+) , (131)
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where K(z, z′) is given in (115). Thus, we find that the (equal-time) Dirac bracket of Az with
A+ is given by exactly the same expression (120) as in the previous section. We also have

∂+′(C
−1)Ωφ(y, y ′)− iqA+(y

′)(C−1)Ωφ(y, y ′) =
iq
2
φ(y ′) (C−1)Ω+(y, y ′) ,

∂+′(C
−1)zφ(y, y ′)− iqA+(y

′)(C−1)zφ(y, y ′) =
2πiq

k
φ(y ′)δ(y − y ′) . (132)

Using these relations, we find that the commutator of the Wilson line with the scalar field
satisfies

∂+′{ϕ(y),φ(y ′)}D.B. − iqA+(y
′) {ϕ(y),φ(y ′)}D.B. =

2πiqa
k

φ(y ′)
�

δ(y − y ′) + ∂z(C
−1)Ω+(y, y ′)

�

,

=
2πiq

k
φ(y ′)δ(x+ − x ′+) . (133)

Solving this equation to lowest order, we find that

{ϕ(y),φ(y ′)}D.B. = −
2πiq

k
φ(y ′)Θ(x+ − x ′+) , (134)

which is perfectly consistent with the commutators of the scalar field and the currents.
Let us now consider the commutator

{φ(y), A+(y
′)}D.B. =

4πiq
k
(C−1)Ω+(y, y ′)φ(y) +

4π
k
∂+′(C

−1)φΩ(y, y ′) . (135)

The last term is a total derivative and it will not contribute to the commutator with the bound-
ary charges, so let us just drop it for now. We obtain

{φ(y), A+(y
′)}D.B. =

4πiq
k
φ(y)∂z′K12(z, z′)δ(x+ − x ′+)

=
4πiq

k
φ(y)

� z
a
−Θ(z − z′)

�

δ(x+ − x ′+) . (136)

The gauge-invariant operators connected by a Wilson line to either boundary are

φ̂L = eiq
∫ 0

z Az(x ,z′)dz′φ(x , z) = e−iqzAz(x)φ(x , z) , (137)

φ̂R = eiq
∫ a

z Az(x ,z′)dz′φ(x , z) = eiq(a−z)Az(x)φ(x , z) . (138)

where we have used the fact that Az = const. Their commutators with the bulk gauge field are

[φ̂L(y), A+(y
′)] = −

4πiq
k
φ̂L(x

+, x−, z)Θ(z − z′)δ(x+ − x ′+) , (139)

[φ̂R(y), A+(y
′)] =

4πiq
k
φ̂R(x

+, x−, z)
�

1−Θ(z − z′)
�

δ(x+ − x ′+) . (140)

Setting z′ = 0 or z′ = a we can find the commutator with the currents on the two boundaries,
jL(x+) =

k
2 A+(x+, 0) and jR(x+) =

k
2 A+(x+, a), which are as expected

[φ̂L(y), jL(x
′+)] = −2πiqφ̂L(y)δ(x

+ − x ′+) , [φ̂L(y), jR(x
′+)] = 0 . (141)

B Global coordinates in three dimensions

In this appendix, we explicitly perform the change of coordinates between the Schwarzschild
coordinates (50) to the global coordinates (52) using the boundary-to-boundary geodesics
depicted in figure 5 in the simplest case of three bulk dimensions.
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The BTZ black hole metric reads

ds2 = −
r2 − r2

+

`2
d t2 +

`2dr2

r2 − r2
+
+ r2dx2 . (142)

We concentrate on a set of geodesics at constant x, which satisfy

ṫ(r2 − r2
+) = −E r+`

2 , ṙ2 = r2 − r2
+ + E2r2

+ (143)

for some dimensionless constant E. The solution is

r(λ) = r+ coshλ−
r+E2

2
e−λ , t(λ) = t0 +

`2

2r+
ln

e2λ − (1− E)2

e2λ − (1+ E)2
. (144)

The geodesic will penetrate the horizon if 0< |E|< 1. The minimum of the radial coordinate
r on this geodesic is rmin = r+

p
1− E2, which occurs at λ = 1

2 ln(1− E2). Requiring that rmin
is reached on the symmetry line (inside the horizon) at t = 0 fixes22

t0 =
`2

2r+
ln

1+ E
1− E

. (145)

which implies that limλ→±∞ t(λ) = ±t0, and thus the geodesic extends symmetrically between
the two boundaries. It is thus useful to introduce a new affine coordinate

σ = λ−
1
2

ln(1− E2) , (146)

which will have its zero on the symmetry line. The metric can now be rewritten in terms of σ
and the parameters E or t0

ds2

`2
= dσ2 −

dE2

(1− E2)2
r2

r2
+
+

r2

`2
dx2 , (147)

where r = r(σ, E), or
ds2

`2
= dσ2 −

r2

r2
+

dτ2 +
r2

`2
dx2 , (148)

where τ= t0 r+/`
2 and

r(σ,τ) = r+
coshσ
coshτ

. (149)

The τ = const. surfaces are hyperboloids. The minimum value of r on a constant τ hyper-
surface is rmin = r+/ coshτ and it occurs at σ = 0. The constant τ hypersurface crosses the
horizon at σ = ±τ. To obtain the full change of coordinates (t, r) → (τ,σ), note that d t is
given by

d t2 =
`4

r2 − r2
+

�

dr2

r2 − r2
+
+

r2dτ2

r2
+
− dσ2

�

=

�

`2(dτ sinh 2σ− dσ sinh 2τ)
2r+(cosh2σ− cosh2τ)

�2

. (150)

Integrating, we find

t =
`2

2r+
ln

sinh(σ+τ)
sinh(σ−τ)

. (151)

Note that near the boundaries,we have t = ± `
2

r+
τ, as we should.

22It may be useful to remember that arctanh x = 1
2 ln 1+x

1−x .
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