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Abstract

We study the complete moduli space of vacua of 3d N = 4 U(N) SQCD theories with N f
fundamentals, building on the algebraic description of the Coulomb branch, and deduce
the low energy physics in any vacuum from the local geometry of the moduli space. We
confirm previous claims for good and ugly SQCD theories, and show that bad theories
flow to the same interacting fixed points as good theories with additional free twisted
hypermultiplets. A Seiberg-like duality proposed for bad theories with N ≤ N f ≤ 2N−2 is
ruled out: the spaces of vacua of the putative dual theories are different. However such
bad theories have a distinguished vacuum, which preserves all the global symmetries,
whose infrared physics is that of the proposed dual. We finally explain previous results on
sphere partition functions and elucidate the relation between the UV and IR R-symmetry
in this symmetric vacuum.
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1 Introduction

The gauge coupling has positive mass dimension in three spacetime dimensions. This makes
three-dimensional gauge theories super-renormalizable and free in the ultraviolet, regardless
of the gauge group and matter content. At lower energies µ, the dimensionless effective
coupling g2

eff(µ) = g2(µ)/µ becomes stronger and interesting low energy physics can arise.
Naively, the Maxwell/Yang-Mills term is irrelevant and drops out at low energies, leaving no
mass scales. One might thus expect all 3d gauge theories to reach an interacting infrared fixed
point. This is indeed the case if the number of matter fields N f is large: the gauge theory flows
to a weakly coupled infrared fixed point in a large-N f expansion, with infrared effective cou-
pling g2

eff ∼ 1/N f . This naive picture can be modified drastically by quantum effects. As the
number of flavours N f is lowered, the infrared fixed point becomes more and more strongly
coupled. Below a critical value N f = N c

f for the number of flavours, however, a different low
energy phase often kicks in, with spontaneous breaking of the flavour symmetry or a mass
gap [1–4].

It is natural to ask whether the low energy phase diagram of three-dimensional gauge
theories can be made more precise in the presence of supersymmetry. Our interest here is
in 3d N = 4 supersymmetric Yang-Mills theories (8 supercharges), which have low enough
supersymmetry to allow matter fields but high enough to ensure theoretical control. We will
focus for definiteness on 3d N = 4 SQCD theories with U(N) gauge groups and N f flavours
of hypermultiplets in the fundamental representation.

A classification of 3d N = 4 gauge theories according to their expected low energy prop-
erties was put forward by Gaiotto and Witten [5]. They assumed that a 3d N = 4 gauge
theory flows to a 3d N = 4 SCFT in the infrared, and that the superconformal R-symmetry
in the infrared is the same R-symmetry that is manifest at high energies. They then analysed
whether this assumption is consistent with unitarity bounds applied to half-BPS gauge invari-
ant chiral primary operators of an N = 2 subalgebra. The bound ∆ = R ≥ 1/2, where ∆ is
the conformal dimension, is automatically satisfied by operators built out of hypermultiplets.
It is however non-trivial for ’t Hooft monopole operators built out of vector multiplets, since
their R-charges, which arise quantum-mechanically, are sensitive to the gauge group and mat-
ter content of the theory. In the terminology of [5], a 3d N = 4 gauge theory is called good
if all its monopole operators strictly obey the unitarity bound. A good theory is then expected
to flow to an infrared SCFT with superconformal R-symmetry that is manifest in the UV. For
U(N) SQCD, this is the case if N f ≥ 2N . A gauge theory is instead called ugly if the unitarity
bound is satisfied, but some monopole operators saturate it. It is then expected to flow to an
IR SCFT whose superconformal R-symmetry is manifest in the UV, plus a decoupled free sector
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given by the monopole operators which saturate the bound. For U(N) SQCD, this happens
if N f = 2N − 1, and the monopole operators of magnetic charge (±1,0, . . . , 0) are the lowest
components of the twisted hypermultiplet that becomes free in the infrared. Finally, a gauge
theory is called bad if it has monopole operators with zero or negative R-charge. Because the
naive unitarity bound is violated, a bad theory cannot flow to an SCFT whose superconformal
R-symmetry is visible at high energies. For U(N) SQCD, this happens if N f ≤ 2N − 2.

The infrared limit of bad theories is generally not well understood. It is expected that
the monopole operators that violate the naive unitarity bound decouple at low energies, and
that the leftover interacting part is described by an SCFT defined by a good theory, but the
precise mechanism and the details are not clear. The intuition that the infrared SCFTs of
good theories also describe the interacting infrared fixed points of bad theories is supported
by the classification of dual AdS4 type IIB backgrounds of [6, 7], which are in one-to-one
correspondence with good linear and circular unitary quivers, leaving no room for holographic
duals of bad quiver theories of these types. In the case of U(N) SQCD theories, a concrete
proposal for the infrared limit of a subclass of bad theories was made by Yaakov [8], based on
mathematical identities [9] between the matrix integrals that calculate (regularized) partition
functions on S3 [10]. Yaakov conjectured that a bad SQCD theory with U(N) gauge group and
N ≤ N f ≤ 2N −2 flavours is infrared dual to the good U(N f −N) SQCD with N f flavours, plus
2N − N f free twisted hypermultiplets. This generalizes the analogous statement made in [5]
for the ugly U(N) SQCD with 2N − 1 flavours, which is expected to be IR dual to the good
U(N − 1) SQCD with 2N − 1 flavours plus a single free twisted hypermultiplet.

The main purpose of this paper is to revisit these proposals and clarify the infrared fate of 3d
N = 4 U(N) SQCD theories with N f flavours. We will determine the low energy effective field
theory as a function of N , N f and, crucially, the supersymmetric vacuum. Indeed, 3d N = 4
gauge theories have a rich moduli space of supersymmetric vacua, consisting of a Higgs branch
H , a Coulomb branch C , and mixed branches, and the low energy theory critically depends
on the choice of vacuum. We will determine the low energy theory by analysing the local
geometry of the moduli space (at fixed N and N f ) near any chosen vacuum. At a smooth point
of moduli space, the low energy physics is governed by a set of free fields, and the metric on the
moduli space is locally flat. More interesting physics occurs at singular points of moduli space:
the low energy theory contains an interacting SCFT with extra massless degrees of freedom,
and the metric on the space of vacua becomes locally conical. One can therefore identify low
energy theories that involve interacting SCFTs by looking at conical singularities of the moduli
space of supersymmetric vacua.

To perform this analysis we cannot rely on metric information on the full moduli space
of vacua, because the non-perturbative corrections to the hyperkähler metric on the Coulomb
branch [11] are not known explicitly for 3d N = 4 U(N) SQCD theories.1 We will instead
describe the moduli space of supersymmetric vacua as a complex algebraic variety, building on
recent advances in understanding Coulomb branches of 3dN = 4 gauge theories [15–17]. We
will unify the well-known description of the classically exact Higgs branch with the more recent
description of the quantum corrected Coulomb branch [17], providing a complete picture of
the moduli space of supersymmetric vacua of 3d N = 4 U(N) SQCD theories at the quantum
level. We will determine the singularity structure of the Coulomb branch, which corresponds
to intersections of Coulomb and Higgs branch factors of mixed branches.

As a complex algebraic variety, the moduli space of vacua of a 3d N = 4 gauge theory is
independent of the real gauge coupling [17] and hence renormalization group invariant. The
algebraic analysis of the moduli space of vacua therefore gives us direct information about the
low energy physics. The geometry of the moduli space of the gauge theory zoomed near a
particular vacuum must reproduce the moduli space of vacua of the low energy theory that

1See [12–14] for some explicit results in SU(2) and pure SU(N) theories.
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the gauge theory flows to in that vacuum. By analysing the local algebraic geometry of the
moduli space of vacua, we will thus be able to identify the infrared effective theory of good,
ugly and bad 3d N = 4 U(N) SQCD theories, for any vacuum.2 If the vacuum corresponds to
a singular point in moduli space, the infrared theory contains an interacting SCFT, along with a
free sector if this singular point is part of a singular locus of positive dimension. The geometry
transverse to the singular locus determines the interacting SCFT, while the geometry tangent
to the singular locus determines the free sector. Our analysis of U(N) SQCD confirms that the
infrared physics at any singular point of its Coulomb branch is always given by the infrared
fixed point of a good theory, plus a number of free twisted hypermultiplets. We find that the
infrared physics at a generic point of the codimension r singular locus of the Coulomb branch
of U(N) SQCD with N f flavours is the same as that of the good U(r) SQCD theory with N f
flavours at the origin of its moduli space, plus N − r free twisted hypermultiplets. The details
of the infrared theory are controlled by the gauge and global symmetry breaking pattern in
the given vacuum, analogously to what happens in four dimensions [18].

These results apply equally to good, ugly and bad U(N) SQCD theories. The only difference
is in the maximum value of r, the highest codimension of a singular locus in the Coulomb
branch, which is equal to N for good theories and to bN f /2c < N for ugly/bad theories. For
good U(N) SQCD theories (with N f ≥ 2N flavours), the singular locus of highest codimension
in the Coulomb branch is just the origin of the full moduli space, at which the Higgs and
Coulomb branch meet: this becomes the conformal vacuum of the infrared SCFT. For ugly and
bad theories the singular locus of highest codimension in the Coulomb branch, at which the
Coulomb branch meets the full Higgs branch, has positive dimension and is part of a mixed
branch. This is due to the incomplete Higgsing on the Higgs branch.

Having understood the singularity structure of the full moduli space of vacua of U(N)
SQCD theories and the low energy physics at any point in moduli space, we can revisit the
infrared dualities proposed for ugly and bad theories. In the case of the ugly U(N) SQCD with
N f = 2N −1 flavours, we confirm that the theory is infrared dual to the good U(N −1) SQCD
with 2N −1 flavours plus a free twisted hypermultiplets, by showing that the moduli spaces of
vacua of the proposed dual theories are the same algebraic varieties. Instead we find that the
bad U(N) SQCD with N ≤ N f ≤ 2N − 2 flavours is not infrared dual to the good U(N f − N)
SQCD theory with N f flavours plus 2N − N f free twisted hypermultiplets: the moduli spaces
of the putative dual theories are different algebraic varieties. In fact, the full moduli space of
vacua of the good U(N f −N) SQCD with N f flavours can be embedded in the moduli space of
vacua of the bad U(N) SQCD with N f flavours, but the remaining Coulomb branch moduli of
the bad theory do not factorize, and the Higgs branch of the bad theory also contains higher
dimensional components.

We find instead that for N ≤ N f ≤ 2N − 2 there is a symmetric vacuum at which the low
energy effective theory coincides with the fixed point of the putative dual good U(N) SQCD,
plus 2N − N f decoupled free twisted hypermultiplets.3 This vacuum is not the most singular
point in the Coulomb branch, and one can flow to higher rank SCFTs at more singular locations.
At the most singular locus of the Coulomb branch, the infrared physics consists of the infrared
fixed point of U(bN f

2 c) with N f flavours plus N − bN f
2 c free twisted hypermultiplets. Instead

the symmetric vacuum is singled out because it preserves all the global symmetries. While the
infrared physics (and the local geometry of the moduli space of vacua) in the vicinity of the
symmetric vacuum is the same as that of the dual theory proposed in [8], this statement does

2Our analysis was inspired by the analysis of the moduli space of vacua of 4d N = 2 SU(N) SQCD performed
in [18], but we study the set of algebraic equations that define the 3d Coulomb branch instead of the Seiberg-Witten
curve of the 4d theory.

3The symmetric vacuum does not exist for Nf < N . For ugly theories it is mapped to the origin of the moduli
space of the dual good theory and of the extra C2. For good theories the symmetric vacuum is the origin of the
moduli space, which becomes the conformal vacuum in the infrared.

4

https://scipost.org
https://scipost.org/SciPostPhys.3.3.024


SciPost Phys. 3, 024 (2017)

Cbad

Cgood

C*

regular

C1

C2

 P

Figure 1: A schematic picture of the Coulomb branch of the bad theory Cbad with its nested
sequence of singular subloci C1 ⊃ C2 ⊃ · · · ⊃ C ∗ of increasing codimension. The Coulomb
branch of the good theory Cgood is included into Cbad as a codimension 2N − N f subvariety,
and its most singular point P lies on a non-maximal singular subvariety of Cbad.

not extend globally. A schematic summary of these results is depicted in Figure 1. If a non-
zero Fayet-Iliopoulos parameter is turned on, the Coulomb branch is lifted leaving only the
symmetric vacuum, the Higgs branch is partially lifted and deformed to the cotangent bundle
of the Grassmannian of N planes in N f dimensions, and the moduli spaces of the supposedly
dual theories match. This explains the relation between exact three-sphere partition functions,
which are defined (by a suitable choice of contour integration) at non-zero FI parameter for
bad theories. The picture that we have found is very reminiscent of that in 4d N = 2 SU(N)
SQCD theories [18], which also fails to realize a Seiberg-like duality globally on the moduli
space of vacua. The role of our symmetric vacuum is played there by the root of the baryonic
branch.

Finally, we analysed how the twisted hypermultiplets that decouple at low energy at the
symmetric vacuum transform under the R-symmetry of the UV and the IR SCFTs. The set of
decoupling degrees of freedom always contains the chiral monopole operators of zero or nega-
tive UV R-charges, but N = 4 supersymmetry requires that certain chiral monopole operators
of positive UV R-charges pair up with those monopole operators to form free twisted hyper-
multiplets. For bad theories, the SU(2)C R-symmetry which acts on the Coulomb branch and
is manifest in the UV is unbroken in the symmetric vacuum, but it is different from the super-
conformal R-symmetry of the infrared SCFT. The UV SU(2)C R-symmetry is instead a diagonal
combination of the IR SU(2)C R-symmetry and of the principal embedding of SU(2) inside the
accidental flavour symmetry group U(2N − N f ) acting on the free twisted hypermultiplets.

The rest of the paper is organized as follows. In Section 2 we discuss the moduli space
of vacua of good SQCD theories, the structure of singularities and the low energy physics on
the Coulomb branch. In Section 3 we analyse ugly theories, and in Section 4 we analyse bad
theories. In Section 5 we elucidate the question of Seiberg duality, and show that there is no
such duality for bad theories. We conclude with some future directions of research in Section
6. Some explicit examples of our general analysis are included in Appendix A.
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2 The moduli space of vacua of good theories

In this section we study the space of vacua of N = 4 U(N) SQCD with N f ≥ 2N flavours
(fundamental hypermultiplets), which are good according to the classification of [5]. We start
with a review of the classical moduli space of the theory, then we provide the description of the
quantum Coulomb branch using the approach of [17] and we analyse its singularities, which
we identify with roots of Higgs branches in the full moduli space of vacua. We also study the
effect of massive deformations on the moduli space of vacua. Our results confirm previous
statements in the literature.

2.1 Classical moduli space

The U(N) SQCD theory has a vector multiplet with dynamical bosonic fields a gauge field
Aµ and three real scalars (φ1,φ2,φ3), valued in the u(N) gauge algebra, and N f funda-
mental hypermultiplets whose bosonic fields are pairs of complex scalars Hα = (Qα, (eQα)†)T ,
α= 1, · · · , N f , transforming in the fundamental representation N of the gauge group.4 Under
the R-symmetry group SU(2)C ×SU(2)H , the vector multiplet scalars φ i transform as a triplet
of SU(2)C and the hypermultiplet scalars (Qα, (eQα)†)T transform as a doublet of SU(2)H . The
hypermultiplet scalars can be assembled into an N × N f complex matrix Q = (Qa

α) and an
N f × N matrix eQ = (eQαa), where a = 1, · · · , N is a colour index and α = 1, · · · , N f a flavour
index.

The vacua of the theory are parametrized in part by the VEVs of vector multiplet and
hypermultiplet scalars, which are constrained by the vacuum equations

µî ≡ Tr 2(HH†σî) = 0 , î = 1,2, 3

εi jk[φ
j ,φk] = 0 , i = 1,2, 3

(φ i ⊗12)H = 0 , i = 1,2, 3 .

(2.1)

Here indices i, j, k label triplets of SU(2)C , whereas î labels triplets of SU(2)H . 12 is the
identity matrix and σî are Pauli matrices, all acting on SU(2)H doublets, and Tr 2 denotes the
trace over SU(2)H doublet indices. Colour indices are not contracted in the first line of (2.1),
which transforms in the adjoint representation of the gauge group, but flavour indices are
contracted. One can turn on Fayet-Iliopoulos (FI) parameters, which are triplets of SU(2)H
and would appear in the first line of (2.1), and also mass parameters, which are triplets of
SU(2)C and would appear in the third line. We will briefly discuss their effect in Section 2.5.

The vacuum equations (2.1) can be obtained by dimensional reduction from 6d N = (1, 0)
supersymmetry. The first line of (2.1) already appears in six dimensions and constrains Higgs
branch components of the moduli space, where the hypermultiplet scalars take vacuum expec-
tation value (VEV): it is an SU(2)H triplet of D-term equations, that sets to zero the moment
maps of the u(N) action on hypermultiplets. The remaining vacuum equations descend from
gauge covariant kinetic terms in six dimensions, with φ i = A3+i . The second line of (2.1)
constrains Coulomb branch components of the moduli space, where vector multiplet scalars
take VEV: it ensures that the adjoint scalarsφ i can be diagonalized simultaneously. Finally, the
third line of (2.1) governs the interplay between Higgs and Coulomb branch factors of mixed
branches of the moduli space of vacua.

More explicitly, for N f ≥ 2N the last line of (2.1) implies that the classical moduli space of
vacuaM splits into the union of N + 1 subspaces

Br =Cr ×HN−r , r = 0, · · · , N , (2.2)

4Hα has an implicit colour index.
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called branches, characterized by the fact that the vector multiplet scalars, which parametrize
the Coulomb factor Cr , take value in the Cartan subalgebra of a u(r) subalgebra of u(N),

φ i = diag(φ i
1, . . . ,φ i

r , 0, . . . , 0) (2.3)

and the hypermultiplet scalars, which parametrize the Higgs factor HN−r , belong to the cor-
responding kernels,

Q =

�

0
Q(N−r)×N f

�

, eQ† =

�

0
eQ†
(N−r)×N f

�

, (2.4)

and have vanishing moment maps µî for the u(N − r) subalgebra of u(N) that acts on their
non-zero entries. At a generic point onBr the gauge group is broken to U(1)r .

The full classical moduli space has therefore the form

M =
N
⋃

r=0

Br =
N
⋃

r=0

(Cr ×HN−r) , (2.5)

with C0 = H0 = {0} being a point. The top-dimensional Coulomb component CN ≡ C is
called the Coulomb branch, and the top-dimensional Higgs component HN ≡H is called the
Higgs branch. With a slight abuse of notation, we will identify the branch BN = C × {0}
where the hypermultiplet scalars are all set to zero with the Coulomb branch C , and the
branch B0 = {0} × H where the vector multiplet scalars are all set to zero with the Higgs
branchH . The other branchesBr with r = 1, . . . , N − 1 are called mixed branches.

Let us now describe the Higgs and Coulomb factors of the classical mixed branches in more
detail, starting with the Higgs factorsHr . The equations describingHr are the same as those
describing the Higgs branch of U(r) SQCD with N f flavours, so it is enough to describe the
Higgs branchH =HN . The Higgs branchH of U(N) SQCD with N f flavours is parametrized
by the VEVs of the hypermultiplet scalars, subject to the triplet of D-term equations in the first
line of (2.1) and quotiented by the gauge group action. This identifies the Higgs branch H
with the hyperkähler quotient

H = ~µ−1(0)/U(N) =HNN f ////U(N) , (2.6)

which has quaternionic dimension N(N f − N). At a generic point on the Higgs branch H ,
the gauge group is completely broken, the hypermultiplets are partially massive and the low
energy physics is that of N(N f −N) free massless hypermultiplets. Importantly, the hyperkähler
metric onH does not receive quantum corrections [19], therefore the classical description is
exact.

For later purposes, it is useful to describe the moduli space of vacua as a complex alge-
braic variety in a fixed complex structure. This is equivalent to selecting an N = 2 subal-
gebra of the N = 4 superalgebra, with a manifest R-symmetry U(1)R ⊂ SU(2)H × SU(2)C .
We choose the U(1)R symmetry which is the diagonal combination of the Cartan elements
of SU(2)H × SU(2)C . The hypermultiplets decompose into chiral multiplets Q = (Qa

α) and
eQ = (eQαa) of R-charge 1/2, which are subject to the F - and D-term equations

QeQ = 0 , QQ† − eQ†
eQ = 0 , (2.7)

and to gauge equivalence. This describes the Higgs branch as a Kähler quotient,

H = {Q ∈ CN×N f , Q̃ ∈ CN f ×N | QQ̃ = 0}//U(N)
∼= {M ≡ Q̃Q ∈ CN f ×N f | M2 = 0, rk(M)≤ N} ,

(2.8)
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where Ca×b denotes the space of a-by-b complex matrices. In the last expression we gave the
equivalent description in terms of the gauge invariant meson operators M .

The classical description of the Coulomb factor Cr is the same as that of the Coulomb
branch of U(r) SQCD, so we can focus on the description of the Coulomb branch C = CN
of U(N) SQCD. The classical equations [φ i ,φ j] = 0 imply that the matrices φ i can be diago-
nalised simultaneously as in (2.3), leading to 3N real parameters φ i

a, a = 1, · · · , N . In three
dimensions, there are additional moduli related to the gauge field. This can be understood as
follows. At a generic point on C the gauge group is broken to a maximal torus U(1)N by the
φ i VEVs. The abelian gauge connections Aa, a = 1, · · · , N , for this abelian subgroup can be
dualized via5

2π
g2
? dAa = i dγa (2.9)

to periodic scalars γa ∼ γa + 2π called dual photons, which also take expectation value in the
vacuum. Here g is the bare Yang-Mills coupling. The naive Coulomb branch is therefore

C ≈ (R3 × S1)N/SN , (2.10)

where the R3 factors are parametrized by φ i
a, the S1 factors are parametrized by γa, and

the quotient by the permutation group of N elements SN arises from residual gauge trans-
formations in the Weyl group. Formula (2.10) is usually referred to as the classical Coulomb
branch. The approximate symbol means that this description only applies to generic points of
the Coulomb branch, where all hypermultiplets are massive and the low energy physics is that
of N free abelian vector multiplets.

Due to N = 4 supersymmetry, the Coulomb branch (as any of the Cr) is a hyperkähler
manifold with an SU(2) isometry identified with the SU(2)C R-symmetry that acts on the vector
multiplet scalars. Unlike the Higgs branch, the metric on the Coulomb branch receives quan-
tum corrections (at one-loop for abelian theories and generically non-perturbatively) which
affect the topology of the dual photon fibration. Taking into account the quantum corrections
will lead to a globally consistent description of the full moduli space of vacua, preserving the
mixed branch structure of equation (2.5).

2.2 The quantum Coulomb branch

In order to describe the exact Coulomb branch of the theory we will rely on the approach
of [17], which proposes an algorithm to build the Coulomb branch as a complex algebraic
variety with coordinates corresponding to VEVs of chiral monopole operators. To this end,
let us first rewrite the classical Coulomb branch (2.10) as a complex algebraic variety in a
fixed complex structure. The vector multiplet scalars (φ i

a,γa) are rearranged into the complex
scalars (which are lowest components of chiral superfields)

ϕa = φ
1
a + iφ2

a , u±a = exp
�

±
�

2π
g2
φ3

a + iγa

��

. (2.11)

ϕa ∈ C are the eigenvalues of the adjoint complex scalar Φ ≡ φ1 + iφ2 of R-charge 1. The
complex scalars u±a satisfy the classical relations

u+a u−a = 1 (no sum over a) (2.12)

and parametrize N copies of C∗. The classical Coulomb branch is thus reexpressed as

C ≈ (C×C∗)N/SN (2.13)

5This formula holds in Euclidean signature. In Lorentzian signature there is no i in the RHS.
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and is parametrized by VEVs of symmetric (Weyl invariant) polynomials of ϕa and u±a .
The single-valued operators u±a are (bare) chiral ’t Hooft monopole operators. Indeed,

inserting the operator (u+a )
na(x) if na > 0 (or (u−a )

−na(x) if na < 0) in the Euclidean path
integral is equivalent, by the duality (2.9), to requiring that gauge field configurations have a
Dirac monopole singularity at the insertion point x with flux6

1
2π

∮

S2
x

dA(a) = na ∈ Z . (2.14)

A corresponding singularity is prescribed forφ3
a in order to preserve half of the supersymmetry

and therefore define a chiral operator for the fixedN = 2 superalgebra. These bare monopole
operators can further be dressed by the complex scalars ϕa. The symmetric polynomials in ϕa
and u±a are thus gauge invariant dressed monopole operators.

The definition of monopole operators as singular boundary conditions in the path integral
is better suited to the quantum theory, since it holds everywhere in moduli space, including
points with enhanced gauge symmetry where the abelian duality breaks down. N = 4 super-
symmetry forbids dressed monopole operators to have superpotential constraints, but the op-
erators still obey chiral ring relations that arise from the quantum dynamics of the theory [20]
and translate into polynomial relations for the coordinates on C . It is not straightforward to
derive these relations.

To discuss the Coulomb branch of vacua and the associated chiral ring, it was however
argued in [17] that it is sufficient to use the abelianized description in terms of Weyl invariant
polynomials of ϕa and u±a . This description is valid in a dense open subset of the Coulomb
branch where the gauge group is broken to its maximal torus U(1)N ≡

∏N
a=1 U(1)a and all

W -bosons have non-zero complex masses. In the quantum theory, the dependence of the bare
monopole operators u±a on the real scalars φ3

a in the right of (2.11) receives quantum correc-
tions and consequently the chiral ring relations (2.12) of the abelianized theory are modified.
It was proposed in [17] that the quantum corrected abelianized relations that replace (2.12)
are7

u+a u−a
∏

b 6=a

(ϕa −ϕb)
2 = ϕ

N f
a , a = 1, · · · , N . (2.15)

The Coulomb branch (CB) relations of the non-abelian theory are obtained by recasting
the relations (2.15) in terms of operators of the non-abelian theory, using the so-called abelian-
ization map which expresses the VEV of any non-abelian dressed monopole operator as a Weyl
invariant polynomial of the u±a and ϕa. The Coulomb branch is generated by the subset of
monopole operators of magnetic charge (0,0, · · · , 0) and (±1, 0, · · · , 0) [15, 17]. This means
that the theory has infinitely many quantum relations, which allow to solve for all the other
monopole operators in term of this finite basis, leaving only a finite number of relations be-
tween those. The (VEV of) operators in this basis are given in terms of the (VEV of) abelian
operators by

Φn =
∑

a1<···<an

ϕa1
· · ·ϕan

(n= 1, · · · , N)

V±n =
N
∑

a=1

u±a
∑

b1<···<bn
bi 6=a

ϕb1
· · ·ϕbn

(n= 0, · · · , N − 1) .
(2.16)

6For a generic gauge group G, the monopole charges are labelled by embeddings U(1)→ G and ~n takes value
in the coweight lattice of G, quotiented by the Weyl group.

7In [17] the factor
∏

b 6=a(ϕb −ϕa)2 appears in the right hand side of the relation in the denominator, however
it is implicitly assumed there that the relation can be brought to the above form and is still valid when two ϕc VEVs
coincide. Our sign conventions slightly differ from [17].
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The CB relations of the non-abelian theory are then succinctly described by the generating
polynomial relation

R(z) :=Q(z)eQ(z) + U+(z)U−(z)− P(z) = 0 ∀z ∈ C , (2.17)

with

Q(z) =
N
∏

a=1

(z −ϕa) , U±(z) =
N
∑

a=1

u±a
∏

b 6=a

(z −ϕb) , P(z) = zN f , (2.18)

and eQ is an auxiliary polynomial in z of degree eN = N f −N .8 ThusR is a polynomial of degree
N + eN = N f . The map from the gauge invariant relations (2.17) to the abelianized relations
(2.15) is obtained by evaluating the polynomial relation (2.17) at z = ϕa, a = 1, · · · , N . The
gauge invariant Coulomb branch (CB) operators Φn, V±n are identified with the coefficients of
the polynomials Q and U±,

Q(z) =
N
∑

n=0

(−1)nΦnzN−n , eQ(z) =
eN
∑

n=0

(−1)neΦnz eN−n ,

U±(z) =
N−1
∑

n=0

(−1)nV±n zN−1−n ,

(2.19)

with Φ0 = 1. The CB relations are obtained by setting to zero the coefficients Rk of the poly-
nomial R(z)

R(z) =
N f
∑

k=0

(−1)kRkzN f −k , (2.20)

leading to N f + 1 relations among the CB operators:

Rk :=
∑

n1+n2=k

Φn1
eΦn2
+
∑

n1+n2=2N−2−N f +k

V+n1
V−n2
−δk,0 = 0 , (0≤ k ≤ N f ) (2.21)

where the sum is over non-negative integers n1, n2.9 The first N f −N +1 such relations deter-
mine the coefficients eΦn of eQ. The remaining N relations are the non-trivial Coulomb branch
relations of the non-abelian theory among the 2N dressed monopole operators V±0≤n≤N−1 and
the N symmetric polynomials Φ1≤n≤N , which were predicted using Hilbert series techniques
in [15].10 In the following we will find it convenient to view the coefficients of eQ as additional
CB operators and to manipulate the N f + 1 relations altogether.

Note that the CB relations (2.21) are invariant under a C∗ action (the complexification of
the U(1)R-symmetry) with charges

R[Φn] = n , R[Φ̃n] = n , R[V±n ] =
N f

2
− N + 1+ n . (2.22)

The charges are all positive and the Coulomb branch is algebraically a cone.
So far we have only reviewed the context and gathered the ingredients necessary to start

our analysis. We will next use this algebraic description to study the singularities of the
Coulomb branch.

8The polynomials Q(z) and Q̃(z) are not to be confused with the hypermultiplet scalars which we denoted by
the same letters. We hope that the distinction will be clear from the context.

9We have absorbed an inconsequential (−1)N f factor in front of the monopole terms to simplify equations in
the following.

10The Hilbert series technique only applies to good and ugly theories.
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2.3 Singular loci and infrared SCFTs

The Coulomb branch geometry is singular along positive (quaternionic) codimension loci, sig-
nalling the presence of massless W-bosons and matter hypermultiplets, and the opening of
Higgs branches. In this section we exhibit the nested structure of the Coulomb branch singu-
lar locus, with singular subspaces of increasing codimension.

The singular locus of the Coulomb branch C (1)sing is described as the subvariety of C where
the Jacobian matrix of the system of equations (2.21) degenerates, namely when its rank is
not maximal. The Jacobian matrix J = (J i

k) = (∂ Rk/∂ Oi) can be computed by differentiating
the relations (2.21),

∑

n1+n2=k

(Φn1
deΦn2

+ eΦn1
dΦn2

) +
∑

n1+n2=2N−2−N f +k

(V+n1
dV−n2

+ V−n1
dV+n2

) ≡ J i
kdOi , (2.23)

with 0 ≤ k ≤ N f and where Oi = (Φn|eΦm|V+p |V
−

q ) collectively denote the coordinates on C .
We obtain

J =














































0 1
eΦ0 0 Φ1 1
...

. . .
...

. . .
eΦ
eN−N+1 Φ

eN−N+2 V−0 V+0
...

...

eΦN−1 · · · eΦ0 ΦN
...

. . .
...

. . .
...

...
. . .

eΦ
eN−1 · · · eΦ

eN−N ΦN · · · Φ1 1

eΦ
eN · · · eΦ

eN−N+1
. . . Φ1 V−N−1 · · · V−0 V+N−1 · · · V+0

. . .
...

...
. . .

...
. . .

...
eΦ
eN ΦN V−N−1 V+N−1















































,
(2.24)

where we have only indicated non-zero entries. The singular locus corresponds to the points
where the above matrix has rank smaller than N f +1 and which belong to the Coulomb branch,
that is satisfying (2.21).

There is an obvious singular locus given by

C (1)sing = {ΦN = eΦeN = V+N−1 = V−N−1 = 0} ∩C . (2.25)

In this case the rank of J is reduced because the last row vanishes. This subvariety is described
by the equations

∑

n1+n2=k

Φn1
eΦn2
+
∑

n1+n2=2N−2−N f +k

V+n1
V−n2
= δ0,k , 0≤ k ≤ N f − 2 , (2.26)

where only the operators Φ1≤n≤N−1, eΦ0≤n≤N f −N−1 and V±0≤n≤N−2 appear. This is isomorphic to
the Coulomb branch of the good SQCD theory with gauge group U(N−1) and N f −2 flavours:

C (1)sing
∼=CU(N−1),N f −2 , (2.27)

where we introduced the notation CU(p),q for the Coulomb branch of U(p) SQCD with q fun-
damental flavours.11

11In this notation, C =CU(N),N f
.
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This is the physically expected result: the singular space corresponds to having a triple
(ϕa, u+a , u−a ) vanishing, giving rise to massless hypermultiplets.12 We checked that there are
no other singular loci for N = 2,3 (and any N f ). For arbitrary value of N it becomes more
difficult to show mathematically that the Coulomb branch has no other singular submanifold,
however this is still the physically expected result.

Since the singular locusC (1)sing is isomorphic to the Coulomb branchCU(N−1),N f −2, it contains

itself a singular subvariety C (2)sing. Proceeding recursively we find a nested sequence of singular

loci C (r)sing, 1≤ r ≤ N , isomorphic to the Coulomb branch of the U(N − r) theory with N f − 2r
flavours,

C ∗ ≡ C (N)sing ⊂ · · · ⊂ C
(r)
sing ⊂ C

(r−1)
sing ⊂ · · · ⊂ C (0)sing ≡C ,

C (r)sing = {ΦN−i = eΦeN−i = V+N−1−i = V−N−1−i = 0 | i = 0, · · · , r − 1} ∩C
∼=CU(N−r),N f −2r ,

(2.28)

with C (0)sing = C the full Coulomb branch. The singular subvariety C (r)sing is the locus in the
Coulomb branch C where the Jacobian matrix has rank reduced by r at least. r is also the
quaternionic codimension ofC (r)sing insideC ; we will refer to it simply as the codimension in the
following. The singular locus of highest codimension, the most singular locus C ∗, is reached
for r = N and contains a single point of the full Coulomb branch, the origin of C ,

Good theories (N f ≥ 2N) : C ∗ = {Φn>0 = 0 , eΦ0 = 1 , eΦn>0 = 0 , V±n = 0} . (2.29)

In order to understand the infrared physics when sitting at a given point on a singular
submanifold, we must study the geometry close to this singular point, which is identified with
the Coulomb branch of the infrared theory. First we remark that the geometry close to the
origin C ∗ is isomorphic to the full Coulomb branch C : indeed the Coulomb branch of a good
theory is algebraically a cone, invariant under rescaling (a C∗ action with positive weights),
and C ∗ is the tip of this cone, the fixed point of the C∗ action. This signals the presence of an
interacting CFT, which we denote TU(N),N f

.13

Close to a generic point of C (r)sing, namely away from the higher codimension subspace

C (r+1)
sing , the local geometry U [C (r)sing] of the Coulomb branch is described by taking a certain

limit of the CB relations. The most direct way to study the local geometry for r > 0 is from the
abelianized relations (2.15). The codimension r singular locus C (r)sing is characterized by the

vanishing of the operators ΦN−i = eΦeN−i = V±N−1−i = 0 for i = 0, · · · , r − 1. This corresponds
to having r vanishing triples (u+a , u−a ,ϕa) out of N . Let us assume without loss of generality
that this happens for a = 1, · · · , r. We then take the limit |u±a |, |ϕa| � 1 for 1≤ a ≤ r, keeping
u±a ,ϕa of order one for r + 1≤ a ≤ N , in the abelianized relations (2.15). This leads to

u+a u−a

N
∏

b=r+1

ϕ2
b

r
∏

b=1
b 6=a

(ϕa −ϕb)
2 = ϕ

N f
a , a = 1, · · · , r .

u+a u−a

N
∏

b=r+1

(ϕa −ϕb)
2 = ϕ

N f −2r
a , a = r + 1, · · · , N .

(2.30)

12Note that the U(N − 1) and SU(Nf − 2) (appearing in (2.27)) are the unbroken gauge and flavour symmetry
group on the Higgs branch where the massless hypermultiplets takes VEV.

13In the classification of linear quiver SCFTs of [5], TU(N),N f
corresponds to Tρ

ρ̂
[SU(Nf )], with ρ = (1, 1, · · · , 1)

and ρ̂ = (Nf − N , N).
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Redefining the abelian monopole operators u±a → u±a /
∏N

b=r+1ϕb, the equations in the first
line become the abelianized relations of a (good) U(r) gauge theory with N f flavours, and the
region we are probing is the origin of its Coulomb branch. The local geometry close to this
origin is scale invariant and matches the full Coulomb branch CU(r),N f

. The equations in the
second line reproduce the abelianized relations of a U(N− r) theory with N f −2r flavours, and
we are probing the region away from its singular locus, where it is parametrized by N − r free
twisted hypermultiplets. Locally the geometry is then a flat C2(N−r) space. We conclude that
the geometry close to any generic point of C (r)sing can be described algebraically as the product

U [C (r)sing] =CU(r),N f
×C2(N−r) . (2.31)

It is more involved to derive this result directly from the gauge invariant description. We do it
in some simple examples in Appendix A.

From the local geometry (2.31) and the discussion leading to it, one can deduce the low-
energy physics of the SQCD theory at any point on the Coulomb branch in terms of free fields
and the interacting SCFTs TU(r),N f

, with r = 1, · · · , N . When flowing above a generic point

P ∈ C (r)sing, 0 ≤ r ≤ N − 1, the infrared effective theory probes the region close to P, which is

of the form (2.31). The first factor matches the Coulomb branch of the SCFT TU(r),N f
.14 The

second factor corresponds to the VEVs of N − r free twisted hypermultiplets. We thus find the
low-energy theory

P ∈ C (r)sing
IR
−→ TU(r),N f

+ (N − r) free twisted hypermultiplets . (2.32)

For r = 0, namely at a generic point on the Coulomb branch, the low-energy theory is that of
N free twisted hypermultiplets, as expected. As one goes to more singular loci on the Coulomb
branch, the low-energy theory contains fewer free fields and a CFT of increasing rank r, until
one reaches the origin of the Coulomb branch where there are no free fields and the low-energy
physics is that of the TU(N),N f

SCFT.

2.4 The total moduli space

We can now reach a complete description of the moduli space of vacua, including Coulomb,
Higgs and mixed branches, by showing that the codimension r singular locus in the Coulomb
branch C (r)sing coincides with the root of a Higgs factor of a mixed branch. This Higgs factor
has complex dimension 2r(N f − r) and is isomorphic to the full Higgs branch of a U(r) SQCD
theory with N f flavours.15

As reviewed in Section 2.1, the Higgs branch of U(N) SQCD with N f massless flavours is

H ≡HU(N),N f
= {Q ∈ CN×N f , Q̃ ∈ CN f ×N | QQ̃ = 0}/GL(N ,C)
∼= {M ≡ Q̃Q ∈ CN f ×N f | M2 = 0, rk(M)≤ N} .

(2.33)

The first line of (2.33) expresses the Higgs branch in terms of the gauge variant quarks and
antiquarks Q and Q̃, subject to the F -term equation QQ̃ = 0 due to the adjoint Φ in the vec-
tor multiplet, and quotiented by the action of the complexified gauge group. The second line
describes the Higgs branch in terms of the gauge invariant mesons M . The latter expres-
sion implies that the Higgs branch is the closure of the nilpotent orbit O(2N ,1Nf −2N )

16 of the

14We will see below that a Higgs factor of a mixed branch, isomorphic to the Higgs branch of U(r) SQCD with
Nf flavours emanates from this singular locus, and that the full moduli space of TU(r),N f

is reproduced.
15Our analysis in this section follows closely the analysis of the non-baryonic Higgs branches of 4d N = 2 SU(N)

SQCD with Nf fundamental flavours performed in [18].
16(2N , 1N f −2N ) is shorthand for (2, 2, . . . , 2

︸ ︷︷ ︸

N times

, 1, 1, . . . , 1
︸ ︷︷ ︸

N f −2N times

).
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complexified flavour group SL(N f ,C), which is defined by the condition rk(M) = N . The clo-
sure O (2N ,1Nf −2N ) is defined by the condition rk(M) ≤ N and is the union of all the suborbits
O(2r ,1Nf −2r ) with r ≤ N (for N f ≥ 2N). Let us denote byHr the subvariety of the Higgs branch

H corresponding to O (2r ,1Nf −2r ):

Hr
∼= {M ∈ CN f ×N f | M2 = 0, rk(M)≤ r} ≡ O (2r ,1Nf −2r ) . (2.34)

Explicitly, onHr the quark chiral superfields Q and Q̃ can be written up to gauge and flavour
rotations as

Q =























0 κ1 0 0 . . . 0 0 0 . . . 0
0 0 0 κ2 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 κr 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
...

...
0 0 0 0 . . . 0 0 0 . . . 0























,

Q̃T =























κ1 0 0 0 . . . 0 0 0 . . . 0
0 0 κ2 0 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . κr 0 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
...

...
0 0 0 0 . . . 0 0 0 . . . 0























,

(2.35)

so that the nilpotent meson matrix takes the Jordan normal form

M =



































0 κ2
1 0 0 . . . 0 0 0 . . . 0

0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 κ2

2 . . . 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 κ2
r 0 . . . 0

0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 0 0 . . . 0



































, (2.36)

with r non-trivial two-by-two nilpotent Jordan blocks. It is clear from (2.35) that at a generic
point ofHr the U(N) gauge group is broken to a residual gauge group Gr = U(N − r) and the
flavour group SU(N f ) is broken to a residual flavour group Fr = SU(N f −2r). By the Higgsing
analysis, its quaternionic dimension is given by the number of residual neutral hypermultiplets:

dimH Hr = N f N − (N2 − (N − r)2)− (N − r)(N f − 2r) = r(N f − r) , (2.37)

in agreement with the dimension of O (2r ,1Nf −2r ) that can be computed purely using group the-
ory [21].

Note that Hr are the same Higgs factors which appeared in (2.5). In fact Hr are the
singular subvarieties of the full Higgs branch, which correspond to the fixed loci of a U(N − r)
subgroup of the U(N) gauge group in the hyperkähler quotient construction. As explained in
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Coulomb
branch

Higgs
branch

mixed 
branch

Figure 2: A schematic picture of the full moduli space of vacua, consisting of a Coulomb branch
(blue), a Higgs branch (red) and a mixed branch (purple).

Section 2.1, the r-th Higgs factorHr extends to a mixed Higgs-Coulomb branch, the Coulomb
part of which corresponds to turning on the adjointΦ and monopole operators for the unbroken
U(N − r) gauge group. Components of the Higgs branch with different r extend differently
to the Coulomb branch, and therefore should be treated as different: as r decreases, the
dimension of the Higgs factor of the mixed branch decreases, while the dimension of the
Coulomb factor increases.

Taking into account the breaking of the gauge group to U(N − r) and of the flavour group
to SU(N f − 2r) onHr , we conclude that the Higgs branchHr is extended to a mixed branch
Hr ×CU(N−r),N f −2r . The Coulomb branch factor of this mixed branch is nothing but the codi-

mension r singular locus C (r)sing of the full Coulomb branch (2.28). At the root of Hr , which

corresponds to C (r)sing×H
∗, withH ∗ the point where the mesons vanish (M = 0), more trans-

verse directions open up along the Coulomb branch and one is probing the region inside the
full Coulomb branch around points inC (r)sing. The local geometry of the Coulomb branch has the

form of equation (2.31), where C2(N−r) describes the tangent directions to C (r)sing at a generic
point, and CU(r),N f

describes the transverse geometry to the singularity in the full Coulomb
branch. U(r) is the gauge group which is broken on the Higgs branch factor Hr

∼=HU(r),N f
,

and unbroken at its root. Taking into account mixed branches as well, it is easy to see that
the local geometry Utot[C

(r)
sing×H

∗] of the full moduli space of U(N) SQCD with N f flavours

near a generic point of C (r)sing ×H
∗ is

Utot[C
(r)
sing ×H

∗]∼= C2(N−r) ×MU(r),N f
, (2.38)

whereMU(r),N f
denotes the full moduli space of U(r) SQCD with N f flavours. The right-hand-

side is precisely the moduli space of vacua of the IR effective theory at a generic point of C (r)sing,
in agreement with (2.32).

We see therefore that the structure of the full moduli space of vacua of U(N)with N f ≥ 2N
flavours is the union of branches

M =
N
⋃

r=0

(CN−r ×Hr) , (2.39)

with Hr
∼= HU(r),N f

and CN−r ≡ C
(r)
sing
∼= CU(N−r),N f −2r . A schematic picture with only three

branches is shown in Figure 2.
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C
N-r

H
r

C
N-r-1

H
r+1

Figure 3: Two mixed branches CN−r ×Hr (black) and CN−r−1 ×Hr+1 (red) intersecting on
the common subvariety CN−r−1 ×Hr .

Different branches intersect on singular subvarieties of the moduli space, with the branches
opening in different directions, as schematically depicted in Figure 3,

(CN−r1
×Hr1

)∩ (CN−r2
×Hr2

) =CN−rmax
×Hrmin

, (2.40)

with rmin =min(r1, r2) and rmax =max(r1, r2). The Higgs branch isH ∼=C0×HN =C ∗×HN .
The Coulomb branch is C ∼= CN ×H0 = CN ×H ∗. The origin of the full moduli space is
C ∗ × H ∗, the intersection point of all branches, where one flows to the TU(N),N f

SCFT at
its conformal vacuum. These results are in agreement with [5]. The goal of this work is to
perform a similar analysis for ugly and bad theories.

From the Higgs and Coulomb branch analysis of [5], it is expected that the previous picture
generalizes to arbitrary good linear quiver theories with unitary gauge nodes, with the property
that RG flows on their moduli space of vacua end in the class of SCFTs Tρ

ρ̂
[SU(N)] [5] and

that the branches meet at a point corresponding to the most singular locus on the Coulomb
branch.

2.5 Masses, FI parameters and moduli space of vacua

U(N) SQCD theories with N f fundamental hypermultiplets have two kinds of relevant defor-
mations compatible with N = 4 supersymmetry: mass terms and FI terms.

Mass parameters are obtained by turning on constant commuting values for the SU(2)C
triplets of scalars in the background vector multiplet for the SU(N f ) flavour symmetry that acts
on the Higgs branch. Choosing a complex structure, the triplet of masses decomposes into a
complex and a real mass. We are interested in the complex structure, which is sensitive to the
complex mass, but not to the real mass. Algebraically, the relevant parameters are therefore
complex masses mα, with

∑N f

α=1 mα = 0,17 which act as equivariant parameters for (the Cartan
subalgebra of) the flavour symmetry SU(N f ). The mass deformation generically lifts the Higgs
branch and all mixed branches, except for the full Coulomb branch which is deformed. What
remains of the Higgs branch is its origin H ∗, which is the fixed point of the action of the

17More precisely the sum
∑N f
α=1 mα can be set to an arbitrary complex value by a common shift of all masses,

which is unphysical.
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flavour symmetry.18 The Coulomb branch is not lifted, but its complex structure is deformed
as follows [17]. The abelianized relations (2.15) become

u+a u−a
∏

b 6=a

(ϕa −ϕb)
2 =

N f
∏

α=1

(ϕa −mα) , a = 1, · · · , N , (2.41)

where the right-hand-side is the product of the effective complex masses of the flavour hyper-
multiplets. The generating polynomial of chiral ring relations still has the form (2.17), but
P(z) = zN f is replaced by the characteristic polynomial of the SU(N f ) flavour symmetry,

P(z) =
N f
∏

α=1

(z −mα) =
N f
∑

n=0

(−1)nMnzN f −n , (2.42)

where Mn =
∑

α1<···<αn
mα1
· · ·mαn

(M0 is equal to 1 and M1 can be set to 1 by shifting z). For
generic values of the masses, the deformed Coulomb branch is non-singular.

On the other hand, Fayet-Iliopoulos parameters are obtained by turning on a constant
value for the SU(2)H triplet of scalars in the background twisted vector multiplet for the U(1)J
topological symmetry that acts on the Coulomb branch and assigns charges±1 to the monopole
operators V±n . Again, the complex structure of the moduli space of vacua is only affected by
a complex FI parameter ζ. A non-vanishing ζ gives mass to the dynamical vector multiplet
and lifts the Coulomb branch. The only Coulomb vacuum that survives the deformation is the
origin C ∗ of the undeformed Coulomb branch, which is the only vacuum invariant under the
topological symmetry. The Higgs branch (2.33) is instead deformed by the FI parameter into
a non-singular space. The F -term equation QQ̃ = ζ1N implies the gauge invariant relation
M2 = ζM . Up to gauge and flavour rotations, the hypermultiplet scalars take the form

Q =









0 κ1 0 0 . . . 0 0 0 . . . 0
0 0 0 κ2 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 κN 0 . . . 0









,

Q̃T =









λ1 κ̃1 0 0 . . . 0 0 0 . . . 0
0 0 λ2 κ̃2 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . λN κ̃N 0 . . . 0









,

(2.43)

with κaκ̃a = ζ for all a = 1, · · · , N . The meson matrix takes the Jordan normal form

M =



































0 λ1κ1 0 0 . . . 0 0 0 . . . 0
0 ζ 0 0 . . . 0 0 0 . . . 0
0 0 0 λ2κ2 . . . 0 0 0 . . . 0
0 0 0 ζ . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 λNκN 0 . . . 0
0 0 0 0 . . . 0 ζ 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 0 0 . . . 0



































, (2.44)

18If non-generic masses associated to a subgroup G′F ⊂ SU(Nf ) of the flavour symmetry are turned on, the set of
fixed points of the action of G′F on the Higgs branch is not lifted.
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with N eigenvalues equal to ζ and N f − N eigenvalues equal to 0. Note that this is a defor-
mation of the full Higgs branch HN of quaternionic dimension N(N f − N),19 that emanates
from the origin C ∗ of the Coulomb branch in the absence of an FI parameter. (As a hyper-
kähler manifold, the deformed Higgs branch is the cotangent bundle over the Grassmannian
Gr(N , N f ).) All the other mixed branches are lifted.

3 Ugly theories

Before moving to the study of bad theories we briefly address the question of ugly theo-
ries, corresponding to N f = 2N − 1. It was found in [5] that the space of vacua has a
branch C2 ×HU(N−1),2N−1, with C2 parametrizing the VEV of a free twisted hypermultiplet
andHU(N−1),2N−1 isomorphic to the Higgs branch of U(N − 1) SQCD with 2N − 1 flavour hy-
permultiplets. It was deduced that at the origin of HU(N−1),2N−1 (and at any point along C2)
the theory flows to the TU(N−1),2N−1 SCFT with a decoupled free twisted hypermultiplet. This
is referred to as an infrared duality between the ugly theory and the good U(N − 1) theory
with 2N − 1 flavours and a decoupled twisted hypermultiplet. This duality was tested using
sphere partition functions in [8,22].

Here we confirm and complete these results by computing the Coulomb branch of the ugly
theory and showing that it is exactly given by C2×CU(N−1),2N−1. One can show in general that
the full moduli space of the ugly theory is of the formMugly = C2 ×MU(N−1),2N−1, the direct
product of C2 with the full moduli space of the U(N −1) good theory.20 Therefore the duality
between infrared SCFTs is corroborated by an exact agreement between the moduli space of
vacua of the two dual theories at the level of the algebraic description, which is insensitive to
the gauge coupling and therefore renormalization group invariant.

The Coulomb branch of the ugly theory with gauge group U(N) and N f = 2N − 1 funda-
mental hypermultiplets is described by the polynomial relation

Q(z)eQ(z) + U+(z)U−(z) = P(z) ,

with [Q] = N , [eQ] = N − 1 , [U±] = N − 1 , [P] = 2N − 1 , (3.1)

where [X ] denotes the degree of the polynomial X . The expansions of the polynomials are as
follows

Q(z) = zN −
N−1
∑

n=0

(−1)nΦn+1zN−1−n , eQ(z) = zN−1 −
N−2
∑

n=0

(−1)neΦn+1zN−2−n ,

U±(z) = V±0 zN−1 +
N−1
∑

n=1

(−1)nV±n zN−1−n , P(z) = z2N−1 +
2N−1
∑

n=1

(−1)nMnz2N−1−n .

(3.2)

Importantly eQ(z) is a monic polynomial, i.e. its higher degree term zN−1 has coefficient one,

19The deformed Higgs branch is a hyperkähler quotient of the baryonic branch of the SU(N) SQCD theory with
Nf fundamentals studied in [18] by its baryonic U(1)B symmetry, with complex moment map equal to the complex
FI parameter ζ. The mesonic branch of [18] is lifted by the FI deformation.

20We leave the study of mixed branches as an exercise to the reader.
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in order to solve (3.1). The relations (3.1) can be rearranged in the following dual form:21

QD(z)eQD(z) + U+D (z)U
−
D (z) = P(z) ,

with [QD] = N − 1 , [eQD] = N , [U±D ] = N − 2 , [P] = 2N − 1 ,

QD(z) = eQ(z) ,
eQD(z) =Q(z)− V+0 V−0 eQ(z) + V+0 U−(z) + V−0 U+(z) ,

U±D (z) = U±(z)− V±0 eQ(z) .
(3.3)

This precisely describes the Coulomb branch of the good theory with U(N − 1) gauge group
and 2N −1 fundamental hypermultiplets. In addition we see that the monopole operators V±0 ,
which carry R-charge 1/2, decouple from the dual Coulomb branch equations (3.3) and yield
a C2 factor corresponding to the VEV of a free twisted hypermultiplet.22 The Coulomb branch
of the ugly theory is therefore

Cugly :=CU(N),2N−1 = C2 ×CU(N−1),2N−1 , (3.4)

providing further support for the infrared duality with U(N − 1) SQCD with 2N − 1 flavours
and a free twisted hypermultiplet.

4 Bad theories

We now reach the more interesting and rather unexplored territory of bad theories by consid-
ering the U(N) SQCD theory with N f ≤ 2N − 2 flavour hypermultiplets.

Bad theories have the distinctive feature that the gauge group cannot be completely hig-
gsed, therefore all the branches of their moduli space have some Coulomb directions, and they
admit monopole operators with negative or zero U(1)R R-charge. Since the U(1)R R-charge is
identified with the conformal dimension for chiral operators in a super-conformal theory and
this dimension cannot be smaller than one-half in a unitary CFT, it has been deduced that the
R-symmetry of a candidate infrared SCFT cannot coincide with the UV R-symmetry. A possible
scenario is that the negative (or zero) R-charge monopole operators decouple at low energy,
becoming free twisted hypermultiplets with accidental symmetries, and that the R-symmetry
of the infrared theory, which is made of an interacting SCFT and free twisted hypermultiplets,
is a mixing of the UV R-symmetry and accidental global symmetries.23 We will make this more
precise at the end of Section 5.2. In this section we will study the full moduli space of vacua
of the bad SQCD theories in detail and explain their infrared behaviour everywhere on this
space.

The discussion of the space of vacua of bad SQCD theories is very similar to that of the
good SQCD theories with a few crucial differences. The classical D− and F−term equations are
identical (given by (2.1)), but the solutions show only bN f

2 c+ 1 branchesBr , r = 0, · · · , bN f
2 c,

so the space of vacua has the form

M =
b

Nf
2 c
⋃

r=0

Br =
b

Nf
2 c
⋃

r=0

(CN−r ×Hr) . (4.1)

On the mixed branch with the smallest Coulomb factor CN−bN f /2c and the largest Higgs factor
HbN f /2c, bN f /2c triples of scalars (ϕa, u+a , u−a ) vanish. HbN f /2c is what we call the Higgs branch

21There is an ambiguity in the mapping of topological symmetries, corresponding to U+D ↔ U−D .
22It is a twisted hypermultiplet since it is charged under the U(1)C ⊂ SU(2)C R-symmetry.
23See also [23] on UV versus IR R-symmetries in bad theories.
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H . The Higgs factorsHr are described, as for good theories, as closures of nilpotent orbits of
SL(N f ,C), O (2r ,1Nf −2r ), see (2.34).

We now consider the Coulomb branch of vacua C :=CN using the formalism of [17], and
analyse its singularity structure as we did for good theories in Section 2.

4.1 Coulomb branch

As for good theories, the algebraic description of the Coulomb branch C is based on the
abelianized relations (2.15). The CB generators are again the complex scalar operators,
Φn, 1≤ n≤ N , and dressed monopole operators of magnetic charge (±1, 0, · · · , 0), V±n ,
0≤ n≤ N − 1. The CB relations are still captured by the polynomial relation (2.17), which
we repeat here for convenience:

R(z) :=Q(z)eQ(z) + U+(z)U−(z)− P(z) = 0 ∀z , (4.2)

where Q and U± are polynomials whose coefficients coincide with the generators Φn and V±n ,
and eQ is now an auxiliary polynomial of degree eN = N − 2:

Q(z) =
N
∑

n=0

(−1)nΦnzN−n , eQ(z) =
N−2
∑

n=0

(−1)neΦnz eN−n ,

U±(z) =
N−1
∑

n=0

(−1)nV±n zN−1−n , P(z) = zN f ,

(4.3)

where Φ0 = 1. The polynomial relation (4.2) is equivalent to the 2N −1 relations between the
CB operators:

Rk :=
∑

n1+n2=k

�

Φn1
eΦn2
+ V+n1

V−n2

�

− (−1)N f δk,2N−N f −2 = 0 , (0≤ k ≤ 2N − 2) . (4.4)

One can use the relations with k = 0, · · · , N − 2 to solve for the eΦn in terms of the other
generators, which are constrained by the N remaining relations, however we find it again
more convenient, and it will prove very useful, to keep the eΦn as additional generators and to
work with the simple relations (4.4).

Note that the CB relations (4.4) are invariant under a C∗ action (the complexification of
the U(1)R-symmetry) with charges

R[Φn] = n , R[Φ̃n] = N f − 2N + 2+ n , R[V±n ] =
N f

2
− N + 1+ n . (4.5)

Notice that there are monopole operators (and Φ̃n operators) with non-positive R-charge.

4.2 Singular loci and infrared SCFTs

The singular subspace of the Coulomb branch is obtained as in Section 2.3 by considering the
Jacobian matrix of the system of equations (4.4) and looking for loci of reduced rank in the
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Coulomb branch. The Jacobian matrix is

J (N ,N f ) =




























0 1 V−0 V+0
eΦ0 0 Φ1 1 V−1 V−0 V+1 V+0
...

. . . . . .
...

. . .
...

. . .
...

. . .
ΦN−2 · · · 1

eΦN−2 · · · eΦ0 0 ΦN−1 · · · Φ1 V−N−1 · · · V−0 V+N−1 · · · V+0
0 eΦN−2 · · · eΦ0 ΦN · · · Φ2

. . .
...

. . .
...

. . .
...

. . .
...

eΦN−2 ΦN V−N−1 V+N−1





























.
(4.6)

When N f ≤ 1 we find that there is no singularity on the Coulomb branch, which is there-
fore a smooth space. When 2 ≤ N f ≤ 2N − 2 we find that J (N ,N f ) has reduced rank on the
Coulomb branch locus ΦN = eΦN−2 = V±N−1 = 0 (this locus is not part of the CB when N f ≤ 1).
This is again the physically expected result: the singular space corresponds to having a triple
(ϕa, u+a , u−a ) vanishing, giving rise to massless hypermultiplets. We explicitly checked that there
are no other singular loci only for N = 2,3 (and any N f ), and expect that this holds generally
on physical grounds.

The equations ΦN = eΦN−2 = V±N−1 = 0 define the singular locus of quaternionic codimen-
sion one. On this subvariety of the Coulomb branch, the equations (4.4) reduce to the CB
relations of the U(N −1) theory with N f −2 flavour hypermultiplets, hence the singular locus
is isomorphic to the Coulomb branch CU(N−1),N f −2:

C (1)sing = {ΦN = eΦN−2 = V+N−1 = V−N−1 = 0} ∩C ∼= CU(N−1),N f −2 . (4.7)

When N f ≤ 3, the subspace C (1)sing ' CU(N−1),N f −2 is smooth. When N f ≥ 4, this singular

locus contains itself a singular subspace C (2)sing which corresponds to CB loci where the rank
of the Jacobian matrix (4.6) is reduced by two. This is the subvariety of the CB defined by
ΦN = eΦN−2 = V±N−1 = 0 and ΦN−1 = eΦN−3 = V±N−2 = 0, which is isomorphic to the Coulomb
branch CU(N−2),N f −4.

This structure goes on, leading to a nested sequence of singular subspaces of increasing
codimension C (r)sing, r = 1, · · · , bN f

2 c,

C ∗ ≡ C (bN f /2c)
sing ⊂ · · · ⊂ C (r)sing ⊂ C

(r−1)
sing ⊂ · · · ⊂ C (0)sing ≡C ,

C (r)sing = {ΦN−i = eΦN−2−i = V+N−1−i = V−N−1−i = 0 | i = 0, · · · , r − 1} ∩C
∼=CU(N−r),N f −2r ,

(4.8)

with C (0)sing = C the full Coulomb branch. The sequence terminates at the most singular locus

C ∗, which is isomorphic to the Coulomb branch of the U(N − bN f
2 c) with zero or one flavour

hypermultiplet depending on whether N f is even or odd: C ∗ ∼=C
N−b

Nf
2 c,N f mod 2

.

The singularity structure (4.8) is completely analogous to that of Coulomb branches of
good theories (2.28), except that the nested sequence of singular loci terminates with the
most singular locus C ∗ which has positive quaternionic dimension N−bN f

2 c, rather than being
a point.

To understand the low energy physics at the singular loci, we again study the CB geometry
close to the singularities. The analysis of Section 2.3 remains valid for bad theories: in a neigh-
bourhood U [C (r)sing] of a generic point in C (r)sing, the geometry has the form of a direct product,
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with a factor isomorphic to the Coulomb branch of a good U(r) theory with N f flavours and a
“free" factor C2(N−r),

U [C (r)sing] =CU(r),N f
×C2(N−r) . (4.9)

The factor C2(N−r) corresponds to the directions tangent to the singular locus
C (r)sing 'CU(N−r),N f −2r near a generic point in C (r)sing, which are parametrized by N − r
free twisted hypermultiplets. The factor CU(r),N f

is the geometry transverse to the singular

locus C (r)sing inside C , where the intersection with the singular locus is the origin of the
Coulomb branch of the U(r) theory with N f flavours.

We conclude that the infrared physics at a generic point P in the singular locus C (r)sing cor-
responds to the interacting theory TU(r),N f

, which is the infrared fixed point of a good theory,
plus N − r free twisted hypermultiplets,

P ∈ C (r)sing
IR
−→ TU(r),N f

+ (N − r) free twisted hypers . (4.10)

This is the same as for good theories, the only difference being the range of r, which here
is 0 ≤ r ≤ bN f

2 c. In particular, near any point of the most singular locus C ∗, we find the

TU(bN f /2c),N f
SCFT with N − bN f

2 c free twisted hypermultiplets.

4.3 The full moduli space

As for good theories, the full moduli space is obtained by gluing together the Higgs and
Coulomb branches. This is done by identifying the flat CB directions that open up at the
subvarietyHr of the Higgs branch with the CB singular locus C (r)sing, or equivalently by identi-

fying the flat HB directions that open up at the subvariety C (r)sing of the Coulomb branch with
Hr . Indeed, the Higgs factorHr is isomorphic to the Higgs branchHU(r),N f

of the U(r) theory
with N f flavours. At a generic point in Hr the transverse Coulomb factor CN−r in (4.1) is
isomorphic to the Coulomb branch of a U(N − r) theory with N f − 2r flavours, agreeing with

C (r)sing. Moreover, at the root (or origin) ofHr , where there is enhanced U(r) gauge symmetry,
we should see that a Coulomb branch CU(r),N f

opens up: this matches precisely the geometry

transverse to C (r)sing inside C (4.9). This leads to the full moduli space

M =
b

Nf
2 c
⋃

r=0

(CN−r ×Hr) , (4.11)

with CN−r =C
(r)
sing.

Near a generic point inCN−r×Hr the theory is free, with N−r free twisted hypermultiplets
and r(N f − r) free ordinary hypermultiplets. At the root of Hr (but at a generic location in
CN−r), the local geometry of the full moduli space takes the same form as in (2.38). This
confirms that the infrared physics is described by (4.10), with a TU(r),N f

interacting SCFT and
N − r free twisted hypermultiplets.

4.4 Masses, FI parameters and moduli space of vacua

Like good theories, bad U(N) SQCD with N f flavours of fundamental hypermultiplets have rel-
evant deformation parameters: N f SU(2)C triplets of mass parameters, which are scalars for
the background vector multiplets associated to the SU(N f ) flavour symmetry, and one SU(2)H
triplet of FI parameters, which are scalars for the background twisted vector multiplets asso-
ciated to the U(1)J topological symmetry. As usual, we will focus on the complex parameters

22

https://scipost.org
https://scipost.org/SciPostPhys.3.3.024


SciPost Phys. 3, 024 (2017)

that the complex algebraic geometry of the moduli space of vacua is sensitive to: the complex
mass parameters mα, α= 1, . . . , N f , and the complex FI parameter ζ.

The effect of complex masses on the moduli space of vacua of bad theories can be anal-
ysed in complete analogy with the case of good theories presented in Section 2.5. The mass
deformation deforms the Coulomb branch, and lifts the Higgs branch and all mixed branches,
leaving only SU(N f )-symmetric vacua in which the VEV of hypermultiplet scalars vanish.

The effect of the Fayet-Iliopoulos deformation presents some differences with the case of
good theories, as we now explain in more detail. Let us start with the Coulomb branch. The
FI deformation gives mass to the dynamical vector multiplet and lifts the flat directions of
the Coulomb branch. The remaining supersymmetric Coulomb vacua are precisely the vacua
invariant under the U(1)J topological symmetry, which are characterized by zero expectation
values of monopole operators: U±(z) = 0. Substituting in the Coulomb branch relations
(2.17) at zero masses, we deduce that Q(z) = zN and Q̃(z) = zN f −N . This singles out a unique
U(1)J invariant vacuum P , in which the gauge invariant Coulomb branch operators take the
following expectation values:

P : Φn = 0 , 1≤ n≤ N , V±n = 0 , 0≤ n≤ N − 1 ,

eΦn = 0 , n 6= 2N − N f − 2 , eΦ2N−N f −2 = (−1)N f .
(4.12)

The vacuum P is the bad theory analogue of the vacuum C ∗ that survives the FI deformation
for good theories: it is the only Coulomb vacuum that preserves U(1)J . While C ∗ is the origin
of the Coulomb branch C of the good theory, which is algebraically a cone, we stress that the
vacuumP is in no way the origin of the Coulomb branch of the bad theory, which algebraically
is not a cone.24

Note that the U(1)J invariant vacuum P on the Coulomb branch only exists if N f ≥ N ,
because eQ(z) is by definition a polynomial of z. For N f < N , the topological symmetry is
spontaneously broken everywhere on the Coulomb branch, and the FI deformation lifts the
Coulomb branch entirely.

Next, we discuss the effect of the FI deformation on the Higgs branch. In Section 2.5 we
saw that for good theories the FI parameter deformed the full Higgs branch (2.33) to a smooth
manifold of the same quaternionic dimension N(N f −N), and lifted all the singular subvarieties
of the Higgs branch which were part of mixed branches at zero FI parameter.

In the case of bad theories, instead, the Higgs branch of the undeformed theory has a top-
dimensional component HbN f /2c of quaternionic dimension bN f /2c(N f − bN f /2c) and is part
of a mixed branch. This contains lower dimensional singular components Hr of dimension
r(N f −r)with decreasing r < bN f /2c, which are part of mixed branches of increasing Coulomb
branch dimension N − r. Turning on an FI parameter lifts most of these Higgs components,
leaving only a smooth Higgs branch of dimension (N f −N)N , which is a deformation ofHN f −N

and only exists if N f ≥ N .25 If N f < N , the FI deformation completely lifts the Higgs branch.
We will focus on bad theories with N f ≥ N in the following. On their deformed Higgs branch,
the hypermultiplet scalars can be brought up to flavour and gauge transformations to the

24Like C ∗ for good theories, P is still a fixed point of the C∗ action that complexifies U(1)R, but the Coulomb
branch is not a cone because not all its generators have positive R-charge.

25The surviving deformed component is again a hyperkähler quotient of the baryonic branch of the SU(N) SQCD
theory by the baryonic U(1)B symmetry at complex moment map ζ. (The baryonic branch only exists for N f ≥ N .)
The lifted components descend from non-baryonic branches.
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form [18]

Q =























0 κ1 0 0 . . . 0 0 0 . . . 0
0 0 0 κ2 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 κÑ 0 . . . 0
0 0 0 0 . . . 0 0 κ0 . . . 0

0 0 0 0 . . . 0 0 0
.. . 0

0 0 0 0 . . . 0 0 0 . . . κ0























,

Q̃T =























λ1 κ̃1 0 0 . . . 0 0 0 . . . 0
0 0 λ2 κ̃2 . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . λÑ κ̃Ñ 0 . . . 0
0 0 0 0 . . . 0 0 κ̃0 . . . 0

0 0 0 0 . . . 0 0 0
.. . 0

0 0 0 0 . . . 0 0 0 . . . κ̃0























,

(4.13)

with κaκ̃a = ζ for all a = 0, · · · , Ñ ≡ N f − N , ensuring the F -term equations QQ̃ = ζ1N . The
meson M = Q̃Q satisfies M2 = ζM and takes the Jordan normal form

M =



































0 λ1κ1 0 0 . . . 0 0 0 . . . 0
0 ζ 0 0 . . . 0 0 0 . . . 0
0 0 0 λ2κ2 . . . 0 0 0 . . . 0
0 0 0 ζ . . . 0 0 0 . . . 0
...

. . .
...

0 0 0 0 . . . 0 λÑκÑ 0 . . . 0
0 0 0 0 . . . 0 ζ 0 . . . 0
0 0 0 0 . . . 0 0 ζ . . . 0
...

. . .
...

0 0 0 0 . . . 0 0 0 . . . ζ



































, (4.14)

with N f − N zero eigenvalues and (N f − N) + (2N − N f ) = N eigenvalues equal to ζ.
It might come as a surprise that a lower-dimensional component HN f −N of the Higgs

branch survives the FI deformation, while the top-dimensional component is lifted, together
with all the other components. Recall however that all Higgs branches of the undeformed the-
ory are part of mixed branches, which are generically lifted since the only Coulomb vacuum
that survives the FI deformation is the U(1)J invariant vacuum P . As we will emphasize in
the next section, the point P belongs to the singular locus C2N−N f

of the Coulomb branch,
out of which a Higgs factor HN f −N of the mixed branch C2N−N f

×HN f −N emanates. When
the FI parameter ζ is turned on, all that remains of the full moduli space is the point P on
the Coulomb branch, and the Higgs factorHN f −N that emanated fromP becomes the smooth
Higgs branch described above. If N f < N , the FI deformation lifts the moduli space entirely,
and supersymmetry is spontaneously broken.

If the FI parameter ζ is non-vanishing and the flavour masses mα are all different, both the
Coulomb and the Higgs branch of the moduli space of vacua are lifted, leaving at most isolated
vacua which are fixed points of the action of the unbroken U(1)J ×U(1)N f −1 global symmetry.
Here U(1)J is the topological symmetry that acts on the Coulomb branch, and U(1)N f −1 is the
maximal torus of the flavour symmetry SU(N f ) which and acts on the Higgs branch of the
theory with massless hypermultiplets.
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To find the locations of these vacua on the Coulomb branch, we look for fixed points of
the U(1)J action on the Coulomb branch deformed by the masses for the hypermultiplets.
Monopole operators, which are charged under U(1)J , must have zero VEV, and the generating
polynomial of Coulomb branch relations reduces to

Q(z)eQ(z) = P(z)≡
N f
∏

α=1

(z −mα) . (4.15)

This equation requires eQ(z) to be a monic polynomial of degree N f − N ≥ 0. There are
�N f

N

�

isolated Coulomb vacua specified by which N of the N f masses mα are equal to the roots ϕa

of Q(z), or equivalently which N f − N masses are equal to the roots of eQ(z). The massless
hypermultiplets (Qa

α, (eQ†)aα) which take expectation value in each of these vacua are those
for which σa = mα. The meson matrix M has a diagonal VEV with N eigenvalues equal to ζ
and the remaining N f − N eigenvalues equal to zero. When the masses go to zero, the

�N f
N

�

isolated Coulomb vacua collapse to the symmetric vacuum P , and a continuous Higgs branch
opens up.

Note that for good or ugly theories, eQ(z) is already a monic polynomial of degree N f −N .
For bad theories with N ≤ N f ≤ 2N − 2, instead, eQ(z) has degree N − 2, and the requirement
that it reduces to a monic polynomial of lower degree N f −N sets eΦn = 0 for 0≤ n≤ 2N−N f −2
and eΦ2N−N f −2 = (−1)N f . For N f < N , the Coulomb branch relations (4.15) cannot be solved
for all values of z and supersymmetry is spontaneously broken, as we already observed for
zero masses.

5 Seiberg non-duality

It was proposed in [8] that bad U(N) SQCD theories with N ≤ N f ≤ 2N − 2 flavours are
infrared dual to the good U(N f −N) SQCD theories with N f flavours plus 2N−N f free twisted
hypermultiplets, realizing a Seiberg-like duality forN = 4 theories. This claim is supported by
the computations of the exact 3-sphere partition function [8], of the 2d twisted superpotential
of the mass deformedN = 2∗ theory on R2×S1 [24], the supersymmetric index of the theory
on S2 (or S1×S2 partition function) [25], and recently of vortex partition functions [26] in the
proposed dual theories. All these computations, however, apply to the theory deformed by an
FI term. The precise claim remains obscure since it does not explain at which point(s) on the
space of vacua of the undeformed flat space theory this infrared duality is supposed to occur.
Even more puzzling is the observation that at zero FI parameter the Higgs branches of the
would-be dual theories do not agree.26 We will use our results on the infrared physics of bad
theories to revisit the claims about Seiberg-like dualities. We will show that there is no exact
duality, since the moduli space of vacua of the putative dual theories are different globally (we
will find however that the moduli space of the good theory is embedded into the moduli space
of the bad theory). Instead, what has been proposed as the dual of the bad theory is only the
low energy effective description at the particular point P of the moduli space of vacua of the
bad theory, in the spirit of [18]. We will also explain the results on partition functions found
in the literature, which arise after one turns on an FI parameter. Finally we will identify the
relation between the UV and IR R-symmetries in the special vacuum P .

26But they do at non-zero FI parameter, where the Higgs branch is the cotangent bundle of the Grassmannian of
N -planes (or (Nf − N)-planes) in Nf dimensions: Gr(N , Nf )∼= Gr(Nf − N , Nf ).
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5.1 Infrared effective theories and the symmetric vacuum

The structure of the moduli space of the bad SQCD theories studied in the previous section
leads to a number of infrared effective theories that depend on the Coulomb vacuum.27 The
SQCD theory in a generic vacuum of the codimension r singular locus CN−r ≡ C

(r)
sing flows to

the low energy theory TU(r),N f
plus N− r additional free twisted hypermultiplets. In particular

the effective theory at the most singular locus C ∗ = CN−bN f /2c is TU(bN f /2c),N f
with N − bN f

2 c
free twisted hypermultiplets.

From this perspective the “Seiberg dual” theory proposed in [8] is the same as the low
energy effective theory at any generic point on the singular locus C2N−N f

of the Coulomb
branch C , where the infrared CFT is TU(N f −N),N f

with 2N − N f free twisted hypermultiplets.
However there seems to be no particular reason at this point to distinguish this infrared duality
from the others arising at different locations on C .

Let us call Cb the Coulomb branch of the bad theory with gauge group U(N) and N f
flavours in the range N ≤ N f ≤ 2N−2 andCg the Coulomb branch of the the good theory with
gauge group U(N f − N) and N f flavours. As before we set to zero all masses. An interesting
observation is that the Coulomb branch Cg is a subvariety of the Coulomb branch Cb:28

Cg ⊂ Cb . (5.1)

This can be seen as follows. The space Cb is described by

QN (z)eQN−2(z) + U+N−1(z)U
−
N−1(z) = zN f , (5.2)

where the indices indicate the degree in z of the polynomials and QN (z) is a monic polynomial.
The space Cg on the other hand is described by the polynomial relation

QN f −N (z)eQN (z) +U+N f −N−1(z)U
−
N f −N−1(z) = zN f , (5.3)

with QN f −N (z) a monic polynomial. This relation implies that eQN (z) is monic too. The em-

bedding (5.1) is found by solving (5.2) with29

QN (z) = eQN (z) , eQN−2(z) = QN f −N (z) , U±N−1(z) = U∓N f −N−1(z) . (5.4)

The polynomial relation (5.3) then implies that the polynomial relation (5.2) is satisfied. The
subvariety (isomorphic to) Cg inside Cb is described as

Cg
∼=Cb ∩ {V±n = 0 , 0≤ n≤ 2N − N f − 1 ,

eΦn = 0 , 0≤ n≤ 2N − N f − 3 ,

eΦ2N−N f −2 = (−1)N f } .
(5.5)

Comparing with the description of the singular loci Cb,N−r ≡ C
(r)
b,sing of the bad theory, we

deduce that the subvarietyCg ⊂ Cb intersects all the singular lociCb,N−r with 1≤ r ≤ N f −N ,
but does not intersect the singular loci of codimension r > N f − N :

Cg ∩Cb,N−r

�

6= ; for 0≤ r ≤ N f − N ,
= ; for N f − N + 1≤ r .

(5.6)

27We will always sit at the originH ∗ of the Higgs branch, where all hypermultiplet scalars vanish.
28This was pointed out to us by D. Gaiotto.
29At the level of the Coulomb branch analysis, the mapping of topological charges has a sign ambiguity. Our

choice here anticipates the analysis of the sphere partition function in Section 5.2.
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On the subvariety Cg there is a distinguished point P ≡C ∗g which is the origin ofMg , where
the TU(N f −N),N f

SCFT lives. This is nothing but the U(1)J invariant Coulomb vacuum dis-

cussed in Section 4.4. This point in Cg is defined by QN f −N (z) = zN f −N , eQN (z) = zN and
U+N f −N−1(z) = 0. In the Coulomb branch Cb the point P is described by

P : QN (z) = zN , eQN−2(z) = zN f −N , U±N−1(z) = 0 . (5.7)

It is easy to see that P is the point of intersection of the subvariety Cg and the codimension
N f − N singular locus Cb,2N−N f

inside Cb:

P =Cg ∩Cb,2N−N f
. (5.8)

Hence the geometry of Cb close to P is

U [P ] =CU(N f −N),N f
×C2(2N−N f ) ≡Cg ×C2(2N−N f ) . (5.9)

The geometry transverse to Cg at the point P is that of 2N −N f free twisted hypermultiplets.
A similar conclusion holds for Higgs branches. The classical analysis reviewed in Sections

2.4 and 4 shows that the Higgs branch Hg of the good U(N f − N) theory with N f flavours is
embedded in the Higgs branchHb of the bad U(N) theory with N f flavours:

Hg
∼= O (2Nf −N ,12N−Nf ) ⊂Hb

∼= O (2bNf /2c,1Nf mod 2) . (5.10)

Taking mixed branches also into account, one can see that the full moduli space Mg of the
good theory is embedded in the full moduli spaceMb of the bad theory. The local geometry of
Mb near P (which corresponds to the origin of the full moduli spaceMg of the good theory)
takes the form

Utot[P ] =Mg ×C2(2N−N f ) , (5.11)

reproducing the full moduli space of TU(N f −N),N f
plus 2N − N f free twisted hypermultiplets.

This shows that the “Seiberg dual” theory of [8] is in fact the low energy effective description
at the point P : the bad U(N) SQCD theory with N f flavours in the distinguished vacuum
P ∈ Cb flows to the TU(N f −N),N f

infrared CFT with 2N − N f free twisted hypermultiplets,

vacuum P
IR
−→ TU(N f −N),N f

+ (2N − N f ) free twisted hypers . (5.12)

Notice that the point P does not belong to the most singular locus of the bad theory Tb, but
rather it is a generic point in C2N−N f

. It is perhaps a surprise of our analysis of bad theories
that the point where all Φn and V±n vanish is not the most singular point in the Coulomb branch
geometry (unlike for good theories).

We remark that the vacuum P preserves all the global symmetries of the theory, and not
only U(1)J . We will therefore refer to P as the symmetric vacuum.

5.2 FI parameter, S3 partition function, and R-symmetry

We have found that the proposed Seiberg duality does not hold globally on the space of vacua
of the bad theory, but it is a local effective description in the vicinity of the symmetric vacuum
P . We will explain in this section the results on sphere partition functions found in [8],
which arise when a non-zero FI parameter is turned on, but first we need to identify the chiral
operators decoupling in the infrared theory at P .

The free twisted hypermultiplets in the infrared theory at the symmetric vacuum P arise
from the fluctuations of operators which parametrize the space tangent to Cb,2N−N f

⊂ Cb at
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P . Let us denote the operator fluctuations δΦn=1,··· ,N ,δeΦn=0,··· ,N−2, δV±n=0,··· ,N−1. The CB
relations (4.4) of the bad theory reduce as follows when they are expanded near the vacuum
P . The first 2N − N f − 1 relations serve to fix the fluctuations δeΦn=0,··· ,2N−N f −2, the next N

relations serve to fix δΦn=1,··· ,N , using eΦ2N−N f −2 ∼ 1. The remaining N f − N relations are
identified with the CB relations of the good U(N f − N) theory with N f flavours, which arise
after solving for the eΦ operators in the good theory. The fluctuations identified with the CB
operators of the good theory are δeΦn=2N−N f −1,··· ,N−2 and δV±2N−N f ,··· ,N−2, corresponding to the

Φ and V∓ operators of the good theory respectively. A detailed analysis for the U(3) theory
with N f = 4 flavours is presented in appendix A.2.

The fluctuations of the monopole operators δV±n=0,··· ,2N−N f −1 decouple from the equations
and parametrize the 2N − N f free twisted hypermultiplets of the infrared theory. From the
R-charge formula

R[V±n ] =
N f

2
− N + 1+ n , (5.13)

we see that the monopole operators which decouple contain all the operators of negative or

vanishing R-charge δV±n=0,··· ,N−bN f /2c−1, as well as some operators of positive R-charge.

Turning on a non-zero FI parameter ζ lifts the Coulomb branch to the symmetric vacuum
P and gives a complex mass ζ to all the free twisted hypermultiplets, which have charge one
under the topological U(1)J that is weakly gauged. The effective theory at the only surviving
Coulomb vacuum P , when ζ 6= 0, is then the TU(N f −N),N f

fixed point deformed by the FI term
with parameter −ζ along with 2N − N f free massive twisted hypermultiplets with mass ζ.

This explains the observations of [8] about sphere partition functions. It was observed
that the exact sphere partition function of the bad theory ZN ,N f

, defined by choosing a suitable

choice of integration contour of the matrix integral,30 and the sphere partition function of the
good theory ZN f −N ,N f

satisfy an identity31 which at zero flavour masses can be recast into the
form

ZN ,N f
(η) = ZN f −N ,N f

(−η)
2N−N f −1
∏

n=0

Zchiral(η, rn)Zchiral(−η, rn) (η 6= 0) ,

with rn =
N f

2
− N + 1+ n ,

(5.14)

where η is the real FI parameter in the bad theory, −η is the real FI parameter of the good
theory, and Zchiral(m, r) is the sphere partition function of a free chiral multiplet of real mass m
and R-charge r. This is in complete agreement with our results: on the sphere the matter fields
acquire a mass due to the coupling to the background gravity multiplet, lifting the deformed
Higgs branch, therefore the theory on the sphere at non-zero FI parameter has a single vacuum,
identified with the symmetric vacuumP (the root of the deformed Higgs branch) in the limit of
large sphere radius. The partition function is independent of the sphere radius, thus we expect
from our analysis that the partition function of the bad theory will match the partition function
of the good theory multiplied by the partition function of 2N−N f free twisted hypermultiplets,
which arise from (a rearrangement of) the 2N − N f couples of chiral multiplets (δV+n ,δV−n )
with opposite masses η,−η and identical R-charges rn, n= 0, · · · , 2N−N f −1. This is precisely

30For good and ugly theories the matrix model computing the sphere partition function is convergent for any real
value of η. For bad theories the matrix model integral on the physical contour is divergent, however, for η 6= 0, it
can be regularized by changing integration contour. It is this regularized matrix integral which satisfies the identity
(5.14). This is explained in [8] (see footnote 2), summarizing results derived in [9].

31We spotted a typo in formula (3.35) in [8] which should read ηu = −η− (2Nc − Nf − 1)ω2 .
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the content of (5.14).32

The R-charges appearing in the above expressions are those under the U(1) R-symmetry
that is manifest in the UV and is used to define the sphere partition function of the bad theory.
As emphasized in [8], this differs from the infrared superconformal R-charge, which should be
one-half for the chiral multiplets in free hypermultiplets, which saturate the unitarity bound.
Let us denote U(1)UV and U(1)IR the UV and IR R-symmetries. In the symmetric vacuumP all
operators charged under U(1)UV are set to zero, therefore U(1)UV is not spontaneously broken
and is a symmetry of the infrared theory as well. In addition there is an accidental infrared
U(2N − N f )K global symmetry rotating the (2N − N f ) free hypermultiplets with equal mass
η (and ζ). Under U(2N − N f )K , the chiral multiplets of mass η transform in the fundamen-
tal representation and the chiral multiplets of masses −η transform in the anti-fundamental
representation. Moreover all chiral multiplets must have canonical super-conformal R-charge
one-half under U(1)IR.

It is then relatively straightforward to identify the relation between U(1)UV and U(1)IR in
the infrared theory, in order to reproduce the U(1)UV R-charges assigned to the decoupling
chiral multiplets in equation (5.14). We find that

U(1)UV = diag(U(1)IR× U(1)K) , (5.15)

where U(1)K denotes the U(1) ,→ U(2N − N f )K embedding under which the fundamental

representation decompose into (N − N f
2 −

1
2 , N − N f

2 −
3
2 , · · · ,−N +

N f
2 +

1
2). The U(1)UV R-

charges of a pair of chiral multiplets forming a free twisted hypermultiplet of the infrared
theory are then

r+UV,n = N −
N f

2
− n , r−UV,n =

N f

2
− N + 1+ n , n= 0, · · · , 2N − N f − 1 . (5.16)

This matches the R-charges in (5.14), which can be rewritten as

ZN ,N f
(η) = ZN f −N ,N f

(−η)
2N−N f −1
∏

n=0

Z (n)hyper(η) (η 6= 0) ,

Z (n)hyper(η) = Zchiral(−η, rn)Zchiral(η, r2N−N f −1−n) = Zchiral(−η, r−UV,n)Zchiral(η, r+UV,n) .

(5.17)

This is not the whole story since with N = 4 supersymmetry the chiral multiplets in
a twisted hypermultiplet are doublets of an SU(2)IR R-symmetry, whose Cartan generator
is U(1)IR. The symmetric vacuum P manifestly preserves U(1)UV and, since the choice of
U(1)UV ⊂ SU(2)UV ≡ SU(2)C is arbitrary, it must be that the full SU(2)UV is unbroken. Thus
the infrared theory preserves SU(2)UV. We conclude that SU(2)UV must be a combination of
SU(2)IR and an SU(2)K ⊂ U(2N−N f )K accidental symmetry in the infrared theory. The above
considerations lead to the identification

SU(2)UV = diag(SU(2)IR× SU(2)K) , (5.18)

with SU(2)K the principal embedding of SU(2) inside U(2N − N f )K , namely the embedding
associated to the partition [2N − N f ] of 2N − N f .33

32The FI parameter appearing in the sphere partition function is actually a real FI parameter, whereas we have
been studied the deformation of the space of vacua due to complex FI terms. This does not affect the discussion.
The FI parameters form a triplet under theN = 4 SU(2)H R-symmetry and the qualitative results are independent
of which component of the triplet is chosen.

33U(1)K is generated by 1
2τ3 with τ3 =diag(1,-1)∈ su(2)K .
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We conclude that the decoupling monopole operators combine into free twisted hypermul-
tiplets (δV−n ,δV+2N−N f −1−n). An explicit example is detailed in Appendix A.2. This identifica-

tion was already proposed in [25], based on the computation of the (regularized) supersym-
metric index of the bad theory using its factorization into vortex partition functions and an
identity relating it to the index of the putative dual (as can be done with the sphere parti-
tion function). Notice that, contrary to the naive expectation, the chiral monopole operators
of negative or zero U(1)UV R-charges are not the only operators which decouple. In fact each
such chiral monopole operator is paired with a monopole operator of positive U(1)UV R-charge
(which does not violate the N = 2 unitarity bound) to make a free twisted hypermultiplet in
the infrared theory.34

In this section we have explained the relation between sphere partition functions found
in [8]. Similarly, other exact results [24–26], computed at non-vanishing FI parameter, are
explained by the observation that the Coulomb branch is lifted to the symmetric vacuum P in
those cases.

6 Future directions

In this paper we have analysed the quantum moduli space of vacua of 3d N = 4 U(N) SQCD
theories, in particular in the bad regime of parameters N f ≤ 2N−2. This allowed us to describe
the low-energy effective theories at singular loci on the Coulomb branch as infrared fixed points
of good theories plus free fields, and to revisit and correct the claims about Seiberg-like duality
for N = 4 theories. There are many interesting directions one can explore from this starting
point and we will list only a few here.

First, this analysis can be repeated for 3d N = 4 SQCD theories with classical gauge
groups. To do so, one should further develop the method of [17] to determine the Coulomb
branch geometry in terms of the VEV of gauge invariant operators. For orthogonal and sym-
plectic groups we expect a simple description to exist, since the Coulomb branch is a complete
intersection [15]. For SU(N) gauge group, the Coulomb branch is not a complete intersec-
tion, but it can be obtained as a hyperkähler quotient of the U(N) Coulomb branch by the
topological U(1)J symmetry that acts on monopole operators.35

Secondly, it would be interesting to generalise our analysis to circular quivers with uni-
tary gauge groups, which have holographic dual solutions exhibiting cascading RG flows and
enhançons [27–29]. We expect that these cascading RG flows are explained by the physics
of the symmetric vacuum in the dual 3d N = 4 circular quivers, analogously to the rôle of
the baryonic root in explaining the holographic RG flows of [30, 31] for 4d N = 2 circular
quivers [32,33].

Another direction is to study the space of vacua of 3d N = 4 theories of Chern-Simons
type [34, 35], which should be of the same form as N = 4 Yang-Mills theories, but with
branches where both monopole operators and matter scalars take VEV (see e.g. [36, 37]).
This could reveal new dualities between the infrared fixed points of Yang-Mills quivers and
Chern-Simons SCFTs.

Finally, it was found in [18] that Seiberg duality of 4d N = 1 SQCD (with a quartic
superpotential) can be understood from the low-energy limit ofN = 2 SQCD softly broken to
N = 1 by a mass for the vector multiplet scalar. It would be interesting to study the analogous
situation in three dimensions, breaking N = 4 supersymmetry to N = 2 by a complex or real
mass, and see if this leads at low energies to Seiberg-like or level-rank-like dualities of 3d
N = 2 SQCD theories [38–40].

We hope to report our progress in some of these directions in the near future.

34The spectrum of UV R-charges of the chiral monopole operators which decouple is symmetric around one-half.
35Gauging the topological U(1)J symmetry is equivalent to partially freezing U(N) to SU(N).
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A Geometry near singular submanifolds

In this appendix we explicitly analyse the geometry near singular loci CN−r ≡ C
(r)
sing in two

examples, using only gauge invariant operators. The analysis will confirm the result (2.31).
The first example is that of a good theory. The second example is a bad theory and we analyse
the geometry near the singular locus whose low energy effective theory is the one proposed
as a Seiberg-like dual theory in [8].

A.1 U(2) with Nf = 4

First we look at the U(2) SQCD theory with N f = 4 flavours. This is a good theory. The CB
relations (2.21) (at zero complex masses) are

eΦ0 = 1 ,

eΦ1 +Φ1eΦ0 = 0 ,

eΦ2 +Φ1eΦ1 +Φ2eΦ0 + V+0 V−0 = 0 ,

Φ1eΦ2 +Φ2eΦ1 + V+0 V−1 + V−0 V+1 = 0 ,

Φ2eΦ2 + V+1 V−1 = 0 .

(A.1)

The geometry close to a generic point in the codimension one singular locus C (1)sing can be

obtained by taking the operators Φ2, eΦ2, V±1 to be of order ε� 1:36

Φ2 = O(ε) , eΦ2 = O(ε) , V±1 = O(ε) . (A.2)

To be away from the more singular locus C (2)sing, we need to assume that at least one operator

among Φ1, eΦ1 and V±0 is of order ε0. After solving for eΦ0 and eΦ1, we can rewrite the relations
as

−(Φ1)
2 + V+0 V−0 = −eΦ2 −Φ2

Φ1eΦ2 −Φ2Φ1 + V+0 V−1 + V−0 V+1 = 0 ,

Φ2eΦ2 + V+1 V−1 = 0 .

(A.3)

Let us choose a generic vacuum on the singular submanifold with Φ1 of order ε0, Φ1 = O(ε0).
We can then solve for eΦ2 using the equation in the second line eΦ2 = Φ2−(Φ1)−1(V+0 V−1 +V−0 V+1 ).
Using this expression and the relation in the first line, one can recast the third relation as

u+u− = Φ4(1+O(ε)) , (A.4)

with

u± = V±1 −
Φ2

Φ1
V±0 −

Φ2
2

Φ3
1

V±0 − 2
Φ3

2

Φ5
1

V±0 , Φ=
Φ2

Φ1
. (A.5)

36The scaling of the operators with ε corresponds to taking one triple (ϕa, u+a , u−a ) to be of order ε.
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In the limit ε → 0, this reproduces the CB relation of the U(1) theory with N f = 4 flavours,
that we are probing at its origin. This leaves the first relation in (A.3), which can be written
more suggestively as

V+0
Φ1

V−0
Φ1
= 1+O(ε) , δΦ1 free , (A.6)

where δΦ1 denotes the fluctuation about the VEV Φ1. In the limit ε → 0, this agrees with
the smooth Coulomb branch C×C∗ of the free U(1) theory, which is locally isomorphic to C2

around any point. The geometry near a generic point in C (1)sing is then of the form

U [C (1)sing] =CU(1),4 ×C2 , (A.7)

in agreement with (2.31).
The codimension two singular locusC (2)sing is the most singular locus of the U(2) theory with

N f = 4 flavours and is a single point C ∗, as for all good theories, where the theory should
flow to the interacting fixed point TU(2),4 without decoupling hypermultiplets, according to
(2.31). At the level of CB relations, this means that the geometry is invariant under the scaling
symmetry about the point C ∗, so that the geometry near C ∗ is the same as CU(2),4. It is easy
to see that indeed the CB relations are invariant under the rescaling

(Φ1, eΦ1, V±0 )→ ε(Φ1, eΦ1, V±0 ) , (Φ2, eΦ2, V±1 )→ ε
2(Φ1, eΦ1, V±0 ) , (A.8)

which corresponds to zooming in on the origin C ∗ of CU(2),4.

A.2 U(3) with Nf = 4

The second example is the U(3) theory with N f = 4 flavours. The CB relations are

eΦ0 + V+0 V−0 = 1 ,

eΦ1 +Φ1eΦ0 + V+0 V−1 + V−0 V+1 = 0 ,

Φ2eΦ0 +Φ1eΦ1 + V+0 V−2 + V−0 V+2 + V+1 V−1 = 0 ,

Φ3eΦ0 +Φ2eΦ1 + V+1 V−2 + V−1 V+2 = 0 ,

Φ3eΦ1 + V+2 V−2 = 0 .

(A.9)

We study the geometry close to the codimension one singular locus C (1)sing, to which the sym-
metric vacuum discussed in Section 5 belongs. The geometry near a generic point is obtained
by letting the operators Φ3, eΦ1, V±2 be of order ε,

Φ3 = O(ε) , eΦ1 = O(ε) , V±2 = O(ε) , (A.10)

with ε� 1, and keeping at least one of the operators Φ2, eΦ0, V±1 to be of order ε0.
The first three relations in (A.9), when ε goes to zero, describe the Coulomb branch of a

U(2) theory with two flavours, that we are probing around a generic point, so that the fluc-
tuations of the operators involved in the equations describe two free twisted hypermultiplets
parametrizing C4. This leaves us with the last two equations constraining the operators Φ3, eΦ1
and V±2 , which are of order ε.

Let us assume eΦ0 = O(ε0). Then the second, third and fourth equations can be used to
solve for Φ1,Φ2 and Φ3 respectively. Plugging this in the fifth equation, one finds after some
manipulations

u+u− = Φ4 , with u± = V±2 −
eΦ1

eΦ0

V±1 +
eΦ2

1

eΦ2
0

V±0 , Φ=
eΦ1

eΦ0

. (A.11)
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U(1)IR U(1)K U(1)UV

V±0
1
2 −1

2 0
V±1

1
2

1
2 1

Table 1

This is the Coulomb branch of the U(1) theory with N f = 4 flavours, that we probe at the scale
invariant point, the origin. The local geometry is therefore CU(1),4 × C4 in agreement with
(2.31).

The symmetric vacuum P (where all global symmetries are preserved) has also eΦ0 = 1,
V±1 = 0, V±0 = 0 (see Section 5). The map of operators with those of the effective TU(1),4 theory
at this point is simply u± = V±2 , Φ= eΦ1. The fluctuations of eΦ0, Φ1 and Φ2 are fixed by the first
three CB equations, leaving the fluctuations of V±0 and V±1 free and parametrizing the C4 space

tangent toC (1)sing atP . This means that the (fluctuations of the) monopole operators V±0 and V±1
become the complex scalars of free twisted hypermultiplets. Their superconformal U(1)IR R-
charges have to be 1

2 . This does not match their UV U(1)UV R-charge which is 0 for V±0 and 1 for
V±1 . We conclude that the U(1)IR R-charge is a combination of the U(1)UV R-symmetry, which
is preserved at the point P , and accidental global symmetries under which the monopoles are
charged. The accidental global symmetry here is the U(2)K global symmetry which rotates the
two free twisted hypermultiplets as a doublet. The U(1) R-symmetry therefore mixes with a
Cartan U(1)K ⊂ SU(2)K :

U(1)UV = diag(U(1)IR× U(1)K) , (A.12)

with the charges given in Table 1. Since the infrared fixed point has N = 4 supersymmetry,
U(1)IR is only a subgroup of the SU(2)IR super-conformal R-symmetry acting on the Coulomb
branch and the monopole operators in twisted hypermultiplets organise into complex doublets
of SU(2)IR. We observe that (V+1 , V−0

†) is a doublet of SU(2)IR with U(1)K charge +1
2 and

(V−1
†, V+0 ) is another doublet of SU(2)IR with U(1)K charge −1

2 . They make a free twisted
hypermultiplet transforming in the representation 21 of the global symmetry U(2)K .

In addition, the full SU(2)UV R-symmetry is preserved along the RG flow at P and is
distinct from SU(2)IR. Hence the SU(2)UV symmetry must be a combination of SU(2)IR and
the accidental SU(2)K ⊂ U(2)K global symmetry which arise at the infrared fixed point. This
leads to

SU(2)UV = diag(SU(2)IR× SU(2)K) . (A.13)

Under SU(2)UV the fields decompose into the complex representations 3+ 1, with the triplet
(V+1 , V+0 + V−0

†, V−1
†) and the singlet V+0 − V−0

†. It is not clear in which multiplet of the UV
N = 4 supersymmetry these operators transform. We hope to address this question in the
future.
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