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Abstract

We study Harmonic Soft Spheres as a model of thermal structural glasses in the limit
of infinite dimension. We show that cooling, compressing and shearing a glass lead to
a Gardner transition and, hence, to a marginally stable amorphous solid as found for
Hard Spheres systems. A general outcome of our results is that a reduced stability of the
glass favors the appearance of the Gardner transition. Therefore using strong pertur-
bations, e.g. shear and compression, on standard glasses or using weak perturbations
on weakly stable glasses, e.g. the ones prepared close to the jamming point, are the
generic ways to induce a Gardner transition. The formalism that we discuss allows to
study general perturbations, including strain deformations that are important to study
soft glassy rheology at the mean field level.
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1 Introduction

When a liquid is cooled fast enough in such a way that crystallization is avoided, it enters in a
supercooled phase where upon further decreasing the temperature it freezes in an amorphous
solid phase, a glass [1]. This phenomenon has been investigated since the works by Adam
and Gibbs [2] that were aimed to clarify the thermodynamical nature of the glass transition.
Starting from the pioneering works by Kirkpatrick, Thirumalai and Wolynes [3–6], physicists
have realized that there exists a deep connection between the Adam-Gibbs picture of the glass
formation and the statistical physics of disordered systems such as spin glasses. The works of
Franz, Parisi, Mézard and Monasson [7–15] showed how to adapt the replica method, a very
powerful tool to study the properties of system with quenched disorder, to disorder-free Hamil-
tonians. This stream of ideas led finally to the exact description of the amorphous phases of
hard spheres in the limit of infinite dimension [16,17]. Hard sphere systems are good theoret-
ical models of colloidal glasses and have been studied in recent years to understand the critical
properties of the jamming transition. Remarkably, the mean field theory of hard sphere glasses
is able to correctly describe the criticality of jammed packings in three dimensions giving a very
accurate prediction of the critical exponents that appear at the jamming point. Furthermore,
the infinite dimensional solution of the hard sphere model has suggested that colloidal glasses
at very high pressure could undergo a new phase transition, the Gardner transition, that was
firstly found in models of spin glasses [18–21] and whose consequence in the structural glass
case are the object of a very intense research activity [22–26]. Beyond the Gardner point, hard
sphere glasses are predicted to be marginally stable: their properties are deeply affected by
non-trivial soft modes that drive strong non-linear elastic responses [25,27–36].
The aim of the present work is to extend the analysis done for hard spheres to thermal glasses.
We shall present the phase diagram for elastic spheres in infinite dimension and thoroughly
study the properties of the amorphous solid phase. Our main purpose is to understand how
the properties of a glass evolve when external control parameters such as temperature, den-
sity and shear strain are changed. This is very reminiscent of the famous Liu-Nagel phase
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diagram [37] in which it was shown that amorphous solids can be created or destablized vary-
ing temperature, density and stress. Anticipating some of our results, we show in Fig. 1 such
a phase diagram obtained from the exact solution in the limit of infinite dimension. The dif-
ference, and the complication, compared to the original Liu-Nagel’s one is that the properties
of an amorphous solid depend on the temperature and density (bTg , bϕg) at which the glass was
formed, i.e. the point at which the super-cooled liquid falls out of equilibrium, and on the value
of the temperature, pressure (or density) and shear strain that are applied. In consequence, a
full phase diagram should actually contain five axis. These control parameters play different
roles: the former are used to create the glass whereas the latter are the ones varied to probe
and perturb the glass state. In order to simplify the presentation we therefore decided, both in
Fig.1 and for explaining our results, to study the properties of amorphous solids by varying the
temperature and density (bTg , bϕg) at which they are formed and only one of the other control
parameters at the time: temperature, density and shear strain. Fig. 1 shows an example of the
results presented in this work, which corresponds to the following protocol: we apply a shear
strain γ to a glass prepared at γ= 0 and formed at a temperature and density corresponding to
a point on the (bTg , bϕg) plane (this means that the cooling rate is such that the glass transition
takes place at (bTg , bϕg)). In the limit of infinite dimension glasses are well-defined and have
an infinite life-time only below the dynamical line plotted in Fig.1. For each point (bTg , bϕg)
there are two critical values of the strain, a first one at which a Gardner transition takes place
and then a second one corresponding to the yielding transition. By merging these points one
obtains the Gardner and yielding critical surfaces shown in Fig.1.1

More details on the effect of the shear strain and analogous discussions for temperature and
density changes are presented in the following sections. Before that, we present in Secs.
2,3,4,5,6 the analytical methods used and developed to study thermal glasses and a more
straightforward derivation of the replica free-energy compared to previous works on hard-
spheres [22–25]. A reader that wants directly to focus on the physical results can directly
jump to Sec. 7 where we show the phase diagram of thermal glasses and we discuss how the
properties of glasses evolve when external control parameters such as temperature, density
and shear strain are changed.

2 Replica Theory for structural glasses: setting up the general for-
malism

We want to study amorphous states of particles interacting through a central potential V̂ (r).
Let us consider the case in which the system is at high temperature or low density in the so-
called supercooled phase. On compressing or cooling the system, at some point the relaxation
time will become very large and the system will not be able to equilibrate anymore [1]. It will
thus fall out of equilibrium and become a glass. The point at which this freezing transition
takes place depends strongly on the cooling and compression rate. The slower the compression
rate or cooling rate are, the latter the system will fall out of equilibrium. In this way we can
obtain different glasses that can be characterized by the inverse temperature βg and packing
fraction2 ϕg at which they have fallen out of equilibrium. We will thus denote a generic glass
state as α(ϕg ,βg). Once the supercooled liquid enters in the metastable glass state α we can
think that on short timescales (shorter than the α-relaxation time), the system is frozen in a
portion of phase space that characterizes such glass state. However the equilibration of the

1Note that in the γ= 0 plane there is no Gardner transition because in our infinite dimensional analysis we are
focusing on glasses formed at values of (bTg , bϕg) above the Kauzmann transition.

2In general, the control parameter is the density ρ but since we will deal with interacting spheres we will always
use the packing fraction.
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Figure 1: The mean field theory Liu-Nagel phase diagram. Glasses prepared in the
(1/ bϕ, bT ,γ = 0) plane are strained. bϕ and bT are scaled packing fraction and temperature
These scalded variables are defined in the text in Eq. (18) and Eq. (42). Upon straining each
glass undergoes first a Gardner transition and then a yielding instability. There are thus two
surfaces: the most external one is the yielding surface and the internal is the Gardner one.
Note that there is no Gardner transition in the plane at γ = 0. Indeed the plot we show here
must be intended to be what is got when an equilibrium glass prepared in the glass region of
the γ = 0 plane is strained. This can be also seen from Fig. (2) that gives the γ = 0 plane.
Furthermore the yielding transition point must be intended to be only approximate because it
is obtained through a 1RSB computation which is unstable beyond the Gardner surface.

system inside this restricted portion is still exponentially fast (it happens on the timescale of
β-relaxation). Thus we can study the Boltzmann measure restricted to this metastable state.
Let us consider a glass state prepared at (ϕg ,βg) and then cooled or compressed up to the
state point (ϕ,β). We allow also the possibility to introduce a strain γ with a deformation of
the box in which the system is placed. We will denote the interaction potential in the strained
box as V̂γ(r). The free energy of such state is given by

f
�

α(ϕg ,βg),β ,ϕ,γ
�

= −
1
βN

ln
ˆ

X∈α(ϕg ,βg )
dXe−βV γ[X ;ϕ], (1)

where Vγ[X ;ϕ] =
∑

i< j V̂γ(x i − x j) and N is the system size. The notation X ∈ α(ϕg ,βg)
denotes that we are summing up only configurations in phase space that belong to the ergodic
component α(ϕg ,βg). The free energy (1) is called the Franz-Parisi potential and it has been
introduced in spin glasses in [7] and it has been applied to structural glasses in [10, 38, 39].
For completeness, here we will discuss again this construction. For each given state point
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(ϕg ,βg) there are many possible glasses so that the free energy (1) is a random variable. In
the thermodynamic limit we expect it to be self averaging and we can study its mean value

f
�

α(ϕg ,βg),β ,ϕ,γ
�α(ϕg ,βg )

= −
1
βN

ln
ˆ

X∈α(ϕg ,βg )
dXe−βVγ[X ;ϕ]

α(ϕg ,βg )

. (2)

The average of the logarithm can be computed introducing replicas. If we define

W [{ϕa,βa,γa}|ϕg ,βg] = −
1
N

ln
s
∏

a=1

ˆ
X (a)∈α(ϕg ,βg )

dX (a)e−βaVγa [X
(a);ϕa]

α(ϕg ,βg )

, (3)

where we have assumed that each replica has its own temperature, packing fraction and shear
strain, the average free energy (2) is given by

β f
�

α(ϕg ,βg),β ,ϕ,γ
�α(ϕg ,βg )

= lim
s→0

∂

∂ s
W [{ϕa = ϕ,βa = β ,γa = γ}|ϕg ,βg] . (4)

The average over the different glassy states is given by

s
∏

a=1

ˆ
X (a)∈α(ϕg ,βg )

dX (a)e−βaVγa [X
(a);ϕa]

α(ϕg ,βg )

=
1

Z[βg ,ϕg]

∑

α(ϕg ,βg )

e−βg N f [α(ϕg ,βg )]
s
∏

a=1

ˆ
X (a)∈α(ϕg ,βg )

dX (a)e−βaVγa [X
(a);ϕa]

(5)

being

Z[βg ,ϕg] =
∑

α(ϕg ,βg )

e−βg N f [α(ϕg ,βg )] =
ˆ

d f eN(Σ( f )−βg f ) (6)

the partition function at temperature and packing fraction (ϕg ,βg) and where f [α(ϕg ,βg)]
is the free energy of the glass state α(ϕg ,βg). In this way the average over α(ϕg ,βg) is domi-
nated by the equilibrium glassy states whose average free energy satisfies the relation

dΣ( f )
d f

= βg . (7)

The function Σ( f ) is the configurational entropy or complexity [40]. It is well defined only at
the mean field level and thus it is meaningful in the infinite dimensional limit that is the case
we will study here. It is very useful to consider a biased partition function

Zm[βg ,ϕg] =
∑

α(ϕg ,βg )

e−βg Nmf [α(ϕg ,βg )] =
ˆ

d f eN(Σ( f )−βg mf ) . (8)

If we are able to compute Zm then we can compute

Φm[βg ,ϕg] = −
1
N

ln Zm[βg ,ϕg], (9)

from which we can reconstruct the configurational entropy. Indeed we can compute [8,17]

Σ[m,βg ,ϕg] = m2 ∂

∂m

�

1
m
Φm[βg ,ϕg]

�

,

βg f ∗(m,βg ,ϕg) =
∂

∂m
Φm[βg ,ϕg] .

(10)
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From the parametric plot of Σ as a function of f ∗ we can reconstruct the configurational
entropy Σ( f ) [8]. At this point we can introduce a generalized replicated free energy

Wm[{ϕa,βa,γa}|ϕg ,βg , m] = (11)

−
1
N

ln
∑

α(ϕg ,βg )

e−mβg N f [α(ϕg ,βg ),βg ,ϕg ,γ]
s
∏

a=1

ˆ
X (a)∈α(ϕg ,βg )

dX (a)e−βaVγa [X
(a);ϕa] . (12)

From this expression it can be shown that

β f
�

α(ϕg ,βg),β ,ϕ,γ
�α(ϕg ,βg )

= lim
s→0

∂

∂ s
W1[{ϕa = ϕ,βa = β ,γa = γ}|ϕg ,βg , 1] . (13)

Moreover
lim
s→0

Wm[{ϕa = ϕ,βa = β ,γa = γ}|ϕg ,βg , m] = Φm[βg ,ϕg] . (14)

Finally, setting m 6= 1 gives us access to non-equilibrium states. Thus the basic object we
want to compute is Wm. This can be computed by putting an infinitesimal coupling between
m replicas of the system that are at inverse temperature βg and packing fraction ϕg . In the
glassy phase, at the mean field level, this coupling is enough to let all the replicas fall down
inside the same glassy state [17] so that we can write

Wm[{ϕa,βa,γa}|ϕg ,βg , m] = −
1
N

ln
ˆ � n

∏

a=1

dX (a)
�

exp

�

−
n
∑

a=1

βaVγa
[X (a);ϕa]

�

, (15)

where n = m+ s, γa = 0, ϕa = ϕg and βa = βg for a = 1, . . . , m. In the next section we will
compute Wm in the high dimensional limit.

3 Derivation of the replicated free energy in presence of a shear
strain in infinite dimension for a generic interaction potential

We want to derive the expression of Wm[{γa}] in the limit of infinite dimension. This quan-
tity has been already computed in [38] in the case of Hard Spheres and in [41] in the case
of s = 0 and at zero shear strain for a generic interaction potential that is well behaved at
large distances. Here we will present a simpler derivation that will allow us to generalize the
calculation to the case s > 0 and most importantly when an external strain is applied to study
elasticity and soft glassy rheology. We consider interaction potentials of the following form

−β V̂ (r) = −bβ v̂
�

d
�

|r|
D
− 1

��

, (16)

where d is the spatial dimension and D is the diameter of the spheres (or interaction range).
Although we will construct the theory independently on the interaction potential, a simple
example that we will use to obtain a quantitative phase diagram is the one of Harmonic Soft
Spheres that interact through

V̂HSS(r) =
ε

2

�

1−
|r|
D

�2

θ

�

1−
|r|
D

�

. (17)

In this case we have

v̂HSS(h) =
ε

2
h2θ (−h) , bβ =

β

d2
. (18)
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We are also interested in the study of strained particle systems. In this case the box in which
the system is placed is strained in one direction by an amount γ and this deformation can be
traced back into the effective interaction potential [38,39,42]

V̂γ(r) = V̂ (S(γ)r) (19)

being S(γ) a linear transformation defined by its effect on a d-dimensional vector r

[S(γ)r]1 = r1 + γr2 , [S(γ)r]i = ri i = 2, . . . , d . (20)

In order to compute Wm we need to consider m+s systems or replicas of particles. The first
m replicas are composed by spheres with diameter Dg while in the last s replicas the spheres
have diameter D = Dg(1+η/d). The last s replicas will thus be used to follow a glassy state
planted at (ϕg ,βg) to another state point (ϕ,β ,γ). In this way, the diameter D can be used to
select the final packing fraction ϕ and increasing η will correspond to compress the system.
Without losing generality we will set Dg = 1 in what will follow. In the infinite dimensional
limit the virial expansion [43] for Wm can be truncated after the excess term [41,43–45] and
we have that

Wm[ρ] = −
1
N

�
ˆ

dxρ(x)
�

1− lnρ(x)
�

+
1
2

ˆ
dxdyρ(x)ρ(y) f (x − y)

�

, (21)

where

ρ(x) = 〈
N
∑

i=1

m+s
∏

a=1

δ
�

xa − x (a)i

�

〉 (22)

and x (a)i is a d-dimensional vector that gives the position of the sphere i in replica a [17].
Note that

´
dxρ(x) = N . The first term that appears in the right hand side of (21) is called

the entropic (or ideal gas) term while the second one is the interaction (or excess [43]) term.
The function f is the replicated Mayer function

f (x − y) = −1+
n
∏

a=1

e−βa V̂ (a)γa
(xa−ya) (23)

and we have supposed that each replica has its own inverse temperature βa and its own shear
strain deformation γa. Moreover we note that the interaction potential depends explicitly on
the replica index since the first m replicas have diameter Dg = 1 while the last s replicas have
diameter D.3

Although we will not use the Gaussian parametrization for ρ(x) to obtain the results we
will present, it is convenient to show it here since it could be used as an alternative route to
derive the final equations [45]. The replicated system is translational and rotational invariant
and we can introduce the displacement variables ua defined as

ua = xa − X , X =
1
n

∑

a

xa (24)

and ρ(x) depends only on u. We will denote ρ(u) the distribution of the displacements. Thus

ˆ
Duρ(u) = ρ ≡ N/V , Du= nd

� n
∏

a=1

ddua

�

δ

� n
∑

a=1

ua

�

. (25)

3We can also consider the most general case in which each replica has a different diameter Da = Dg(1+ηa/d).
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We can set up a Gaussian parametrization for ρ(u) that is [18]

ρ(u) =
ρn−d

(2π)(n−1)d/2
�

det A(n,n)
�d/2

exp



−
1
2

n−1
∑

a,b=1

�

�

A(n,n)
�−1�

ab
ua · ub



 (26)

and the matrix A gives [46]
〈ua · ub〉= dAab . (27)

Due to translational invariance A is a Laplacian matrix so that it satisfies

n
∑

a=1

Aab =
n
∑

b=1

Aab = 0 . (28)

The matrix A(n,n) is the matrix that is obtained from A by removing the last row and column.
In the infinite dimensional limit it has been shown in [18, 45, 46] that the correct scaling

variable is
αab = d2Aab (29)

and the free energy can be rewritten in terms of a reduced packing fraction defined as
bϕg = 2dϕg/d being ϕg = ρΩd/d where Ωd is the surface of the unit sphere in d dimen-
sions and ρ is the density of the system. It is also useful to define the matrix of the mean
square displacements that is given implicitly in terms of α

∆ab = αaa +αbb − 2αab . (30)

In order to compute the replicated free energy Wm we need to evaluate the entropic and
the interaction term that appear in Eq. (21). The entropic term in the high dimensional limit
is given by [18,45]

−
1
N

ˆ
dxρ(x)

�

1− lnρ(x)
�

= −
�

const.+
d
2

logα(n,n)
�

, (31)

where we have neglected irrelevant (for the sake of this work) constant terms. This expression
can be equivalently derived assuming the Gaussian parametrization of Eq. (26).

The interaction term instead is more complicated. Its derivation has been done in com-
plete generality for the Hard Sphere case. For generic interaction potentials instead, it has
been obtained in [41] in the case of s = 0 and without any shear deformation. Here we will
derive the expression for the interaction term in complete generality in an alternative and very
compact way. In order to do this we first derive the interaction term as a function of ∆ab in
absence of any shear strain and then, using this result we extend our calculation to include its
effect.

3.1 The interaction term in absence of a shear strain

We want to prove that in the infinite dimensional limit

I =
1

2N

ˆ
dxdyρ(x)ρ(y)

�

−1+
n
∏

a=1

e−βa V̂ (a)(xa−ya)

�

= −
bϕg d

2

ˆ ∞
−∞

dh eh d
dh



exp



−
1
2

n
∑

a,b=1

∆ab
∂ 2

∂ ha∂ hb





n
∏

c=1

e−
bβa v̂(ha)

�

�

�

�

�

�

{hc=h−ηc}



 .

(32)
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We will not make any assumption on the exact form of ρ(x) that by the way is fixed by the
saddle point equation. Indeed, as it has been shown in [45], the replicated free energy, in
the infinite dimensional limit, depends only on the first moments of the variables x , as a
consequence the central limit theorem. Using translational invariance we can first write

dx = dd XDu , Du= nd

� n
∏

a=1

ddua

�

δ

� n
∑

a=1

ua

�

, X ≡
1
n

n
∑

a=1

xa , (33)

and an analogous form holds for the measure dy . The field ρ(x) depends only on the dis-
placement variables u so that we will write ρ(x)≡ ρ(u). In this way the interaction term can
be rewritten as

I =
1

2N

ˆ
dxdyρ(x)ρ(y)

�

−1+
n
∏

a=1

e−βa V̂ (a)(xa−ya)

�

=
1

2ρ

ˆ
dd XDuDvρ(u)ρ(v)

�

−1+
n
∏

a=1

exp
�

−bβa v̂
�

−d
�

1−
|X + ua − va|

1+ηa/d

���

�

=
ρ

2

ˆ
dd XDw ρ̃(w)

�

−1+
n
∏

a=1

exp
�

−bβa v̂
�

−d
�

1−
|X +wa|
1+ηa/d

���

�

'
ρ

2

ˆ
dd XDw ρ̃(w)

�

−1+
n
∏

a=1

exp
h

−bβa v̂
�

−d
�

1− |X +wa|
�

1−
ηa

d

���i

�

,

(34)

where

ρ̃(w) =
1
ρ2

ˆ
Duρ(u)ρ(u−w) ,

ˆ
Dwρ̃(w) = 1 . (35)

Translational invariance implies that

〈wa〉 ≡
ˆ
Dwρ̃(w)wa = 0 , 〈wa ·wb〉 ≡

ˆ
Dwρ̃(w)wa ·wb =

2αab

d
,

n
∑

a=1

αab =
n
∑

b=1

αab = 0 . (36)

Let us now consider
|X +wa|2 = |X |2 + |wa|2 + 2X ·wa (37)

and look at the statistics of |wa|2. In the limit of infinite dimension the three terms on the RHS
are all sums of a very large number of terms. This is because they are given in terms of a scalar
product in d dimension that can be expressed as a sum of d terms. In consequence, one can
take advantage of several simplifications induced by the central limit theorem. For example
we have

d〈|wa|2〉= 2αaa . (38)

Moreover we have
〈X ·wa〉= 0 (39)

and
d2〈(X ·wa) (X ·wb)〉= 2|X 2|αab, (40)

where we have also used the rotational invariance. Note that only the first n − 1 of the wa
vectors are independent due to translational invariance. This means that dX · wa ∼ O (1), in
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the infinite dimensional limit, becomes a Gaussian random variable za such that 〈zazb〉= 2αab
and we can write

I =
ρ

2

ˆ
dd X
ˆ � n

∏

a=1

dza

�

δ

�

∑

a=1

za

�

exp
�

−1
2

∑n−1
a,b=1

�

�

2α(n,n)
�−1�

ab
zazb

�

�

(2π)n−1 det(2α(n,n))
�1/2

×

�

−1+
n
∏

a=1

exp
n

−bβa v̂
�

−d
�

1− |X |
�

1+
za

d
+
αaa

d

��

1−
ηa

d

���o

�

=
bϕg d

2

ˆ ∞
−∞

dheh
ˆ � n

∏

a=1

dza

�

δ

� n
∑

a=1

za

�

exp
�

−1
2

∑n−1
a,b=1

�

�

2α(n,n)
�−1�

ab
zazb

�

�

(2π)n−1 det(2α(n,n))
�1/2

×

�

−1+
n
∏

a=1

exp
�

−bβa v̂ (h−ηa + za +αaa)
�

�

=
bϕg d

2

ˆ ∞
−∞

dheh
ˆ � n

∏

a=1

dza

�

δ

� n
∑

a=1

za

�

exp
�

−1
2

∑n−1
a,b=1

�

�

2α(n,n)
�−1�

ab
zazb

�

�

(2π)n−1 det(2α(n,n))
�1/2

× exp

� n
∑

a=1

αaa
∂

∂ ha

��

−1+
n
∏

a=1

exp
�

−bβa v̂ (ha −ηa + za)
�

�

�

�

�

�

�

ha=h

,

(41)

where we have changed integration variable |X | = 1+ h/d that produces the Jacobian factor
eh. Moreover ρΩd → bϕg d and [45,46]

bϕg = ϕg2d/d . (42)

At this point we can rewrite the Gaussian integral over the variables za as a differential operator
[46] to obtain

I =
bϕg d

2

ˆ ∞
−∞

dh eh exp





1
2

n
∑

a,b=1

(2αab)
∂ 2

∂ ha∂ hb
+

n
∑

a=1

αaa
∂

∂ ha





�

−1+
n
∏

c=1

e−
bβc v̂(hc−ηc)

�

�

�

�

�

�

�

{ha=h}

=
bϕg d

2

ˆ ∞
−∞

dh eh exp



−
1
2

n
∑

a,b=1

(αaa +αbb − 2αab)
∂ 2

∂ ha∂ hb





�

−1+
n
∏

c=1

e−
bβc v̂(hc)

�

�

�

�

�

�

�

{ha=h−ηa}

=
bϕg d

2

ˆ ∞
−∞

dh eh exp



−
1
2

n
∑

a,b=1

∆ab
∂ 2

∂ ha∂ hb





�

−1+
n
∏

c=1

e−
bβc v̂(hc)

�

�

�

�

�

�

�

{ha=h−ηa}

= −
bϕg d

2

ˆ ∞
−∞

dh eh d
dh

exp



−
1
2

n
∑

a,b=1

∆ab
∂ 2

∂ ha∂ hb





� n
∏

c=1

e−
bβc v̂(hc)

�

�

�

�

�

�

�

{ha=h−ηa}

,

(43)

where we have heavily used integration by parts. If we consider v̂ = v̂HSS and we take the
hard sphere limit

e−
bβ v̂HSS(h)→ θ (h), (44)

we get back the same result of [38,46].
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3.2 The interaction term in presence of a shear strain

Here we want to generalize the previous calculation to the case in which we add a shear strain
to the system. We want to compute

I =
1

2N

ˆ
dxdy ρ(x)ρ(y)

�

−1+
n
∏

a=1

e−βa V̂ (S(γa)(xa−ya))

�

=
1

2ρ

ˆ
dd XDuDvρ(u)ρ(v)

�

−1+
n
∏

a=1

exp
�

−bβa v̂
�

−d
�

1−
|S(γa)(X + ua − va)|

1+ηa/d

���

�

=
ρ

2

ˆ
dd XDw ρ̃(w)

�

−1+
n
∏

a=1

exp
�

−bβa v̂
�

−d
�

1−
|S(γa)(X +wa)|

1+ηa/d

���

�

'
ρ

2

ˆ
dd XDw ρ̃(w)

�

−1+
n
∏

a=1

exp
h

−bβa v̂
�

−d
�

1− |S(γa)(X +wa)|
�

1−
ηa

d

���i

�

.

(45)

We then consider

|S(γa)(X +wa)|2 = |X +wa|2 + 2γa

�

x1 x2 + x1w(2)a + x2w(1)a +w(1)a w(2)a

�

+ γ2
a

�

x2
2 + 2x2w(2)a +

�

w(2)a

�2�
, (46)

where w(1)a and w(2)a are the first and second component of the vector wa. Using the same line
of reasoning of Eq. (39) and Eq. (40) and taking only the leading contributions, we can show
that in the large d limit we can write

|S(γa)(X +wa)| ' |X |+ x̂ ·wa +
1
2
|wa|2

|X |
+ γa

x1 x2

|X |
+

1
2
γ2

a

x2
2

|X |
, (47)

where x̂ = X/|X |. We can now go to polar coordinates to write

x1 = |X | f1(θd) , x2 = |X | f2(θd), (48)

being θd the polar angle in d dimension. We have

|S(γa)(X +wa)| ' |X |+ x̂ ·wa +
1
2
|wa|2

|X |
+ γa|X | f1(θd) f2(θd) +

1
2
γ2

a|X | f2(θd)
2 . (49)

In the appendix A we show that

lim
d→∞

d
a+b

2

Ωd

ˆ
dθd f a

1 (θd) f
b

2 (θd) =

¨

0 if a or b are odd

(a− 1)!!(b− 1)!! otherwise,
(50)

so that
p

d fi(θd) are Gaussian random variables with zero mean and unit variance. Changing
again integration variable |X |= 1+ h/d we can write

−d
�

1− |S(γa)(X +wa)|
�

1−
ηa

d

��

= h−ηa + za +αaa + γaσ1σ2 +
1
2
γ2

aσ
2
2 , (51)
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where σ1 and σ2 are Gaussian random variables with zero mean and unit variance. We thus
have

I '
ρ

2

ˆ
dd XDw ρ̃(w)

�

−1+
n
∏

a=1

exp
h

−bβa v̂
�

−d
�

1− |S(γa)(X +wa)|
�

1−
ηa

d

���i

�

'
bϕg d

2

ˆ ∞
−∞

dh eh
ˆ

dσ1dσ2

2π
e−(σ

2
1+σ

2
2)/2
ˆ � n

∏

a=1

dza

�

×δ

�

∑

a=1

za

�

exp
�

−1
2

∑n−1
a,b=1

�

�

2α(n,n)
�−1�

ab
zazb

�

�

(2π)n−1 det(2α(n,n))
�1/2

×

�

−1+
n
∏

a=1

exp
�

−bβa v̂
�

h−ηa + za +αaa + γaσ1σ2 +
1
2
γ2

aσ
2
2

��

�

.

(52)

Using the differential representation for Gaussian integrals we get

I '
bϕg d

2

ˆ ∞
−∞

dh eh
ˆ

dσ1dσ2

2π
e−(σ

2
1+σ

2
2)/2

× exp





n
∑

a=1

�

γaσ1σ2 +
1
2
γ2

aσ
2
2

�

∂

∂ ha
−

1
2

n
∑

a,b=1

∆ab
∂ 2

∂ ha∂ hb





�

−1+
n
∏

a=1

e−
bβa v̂(ha)

�

�

�

�

�

�

ha=h−ηa

=
bϕg d

2

ˆ ∞
−∞

dh eh
ˆ

dζ
p

2π
e−ζ

2/2 exp



−
1
2

n
∑

a,b=1

�

∆ab +
ζ2

2
(γa − γb)

2

�

∂ 2

∂ ha∂ hb





×

�

−1+
n
∏

a=1

e−
bβa v̂(ha)

�

�

�

�

�

�

ha=h−ηa

= −
bϕg d

2

ˆ ∞
−∞

dh eh
ˆ

dζ
p

2π
e−ζ

2/2 d
dh

exp



−
1
2

n
∑

a,b=1

�

∆ab +
ζ2

2
(γa − γb)

2

�

∂ 2

∂ ha∂ hb





×

� n
∏

a=1

e−
bβa v̂(ha)

�

�

�

�

�

�

ha=h−ηa

.

(53)

If we take the hard sphere limit of Eq. (44) we get back the replicated free energy that
has been studied in [38,39,47]. However the main advantage here is that this formula can be
applied to soft potential and thus it can be used to study soft glassy rheology.

3.3 The final expression of the replicated free energy

We can finally summarize our result for the expression of the replicated free energy in the case
of a strained system. We got

Wm[{ϕa,βa,γa}|ϕg ,βg , m] = −
�

const+
d
2

logα(n,n) −
bϕg d

2

ˆ ∞
−∞

dh eh
ˆ

dζ
p

2π
e−ζ

2/2

×
d
dh

exp



−
1
2

n
∑

a,b=1

�

∆ab +
ζ2

2
(γa − γb)

2

�

∂ 2

∂ ha∂ hb





� n
∏

a=1

e−
bβa v̂(ha)

�

�

�

�

�

�

ha=h−ηa



 ,
(54)
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Figure 2: Phase Diagram of Harmonic Soft Spheres in the infinite dimensional limit. At zero
temperature, the line converges to the Mode Coupling transition point of Hard Spheres at
bϕMC T ∼ 4.8.

where n= m+ s, γa = 0, ϕa = ϕg and βa = βg for a = 1, . . . , m and

∆ab = αaa +αbb − 2αab . (55)

At this point we are equipped to study both where glassy states appear in the phase diagram
and how they behave when the are compressed, cooled or strained.

4 The planted system: the dynamical transition

We would like first to study where metastable glassy states appear in the (bTg , bϕg) plane. Since
here we are not following the evolution of the system neither in compression, temperature or
shear strain, we can directly set s = 0 in (15) and study Φm

�

bβg , bϕg

�

that is given by

Φm

�

bβg , bϕg

�

= −
�

const.+
d
2

logα(m,m)

−
bϕg d

2

ˆ ∞
−∞

dh eh d
dh

exp



−
1
2

m
∑

a,b=1

∆ab
∂ 2

∂ ha∂ hb





� m
∏

a=1

e−
bβg v̂(ha)

�

�

�

�

�

�

ha=h



 .
(56)

The point in which glassy states appear in the Boltzmann distribution is signaled by a non
trivial saddle point solution for∆ab in the limit m→ 1 that gives back the equilibrium measure
[8,17]. In the simplest situation, having the m replicas correlated means that the saddle point
solution for ∆ab assumes the form

∆ab =∆g(1−δab) (57)

that is the so called 1RSB ansatz. The validity of this solution can be checked a posteriori by
looking at its local stability [18]. Plugging the 1RSB ansatz into (56) and taking the variational
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equation we get the following saddle point equation

1
bϕ
=
∆g

m− 1
∂

∂∆g
e−∆g/2

ˆ ∞
−∞

dh eh
�

1− gm
∆g
(1, h; bβ)

�

, (58)

where

g∆g
(1, h; bβ) = γ∆g

? e−
bβ v̂(h) =

ˆ ∞
−∞

dz
Æ

2π∆g
exp

�

−
z2

2∆g
− bβ v̂(h− z)

�

, (59)

being γσ a normalized Gaussian with variance σ. Let us introduce Ag = ∆g/2. Then, the
saddle point equation can be rewritten as

1
bϕ
=

Ag

m− 1
∂

∂ Ag

ˆ ∞
−∞

dh eh
�

1− gm
2Ag
(1, h+ Ag ; bβ)

�

≡Fm

�

bβ; Ag

�

. (60)

At fixed bβ this equation admits a non trivial solution only for

bϕ ≥
1

maxAg
Fm

�

bβ , Ag

� ≡ ϕd(m; bβ) . (61)

To obtain the equilibrium dynamical transition line in the (bT , bϕ) plane we have to take the
limit m→ 1 so that we have

bϕMC T (bT ) = ϕd(1, bβ) . (62)

Note that in the limit m→ 1 we have

F1

�

bβ; Ag

�

= −Ag

ˆ ∞
−∞

dh eh

�

d
dAg

g2Ag
(1, h+ Ag ; bβ)

�

ln g2Ag
(1, h+ Ag ; bβ) . (63)

In Fig. 2 we show the dynamical line of Harmonic soft spheres obtained using

v̂(h)→ v̂HSS(h) =
h2

2
θ (−h) . (64)

Finally the equations above give back well known results when the hard sphere limit is taken
[17,18,45].

5 Non equilibrium states and off equilibrium dynamics: the real
replica approach

Beyond the dynamical or mode coupling transition point, the system can be in different glasses.
Indeed, if it is at equilibrium, the Boltzmann measure is dominated by glassy states that satisfy
Eq. (7). However beyond equilibrium states, there are non equilibrium ones that can be studied
as well. This can be done playing with the parameter m in such a way that it biases the
Boltzmann measure in Eq. (8) so that the dominant metastable states will be different from
the true equilibrium ones. Indeed, at fixed m the partition function in Eq. (8) is dominated by
the states whose internal free energy satisfies

dΣ( f )
d f

= mβg . (65)

In this way we can study directly Eq. (8) to obtain both the equilibrium and off-equilibrium
properties of the glass phase. Eq. (8) can be computed usign a fullRSB ansatz as we show in
Appendix C and the corresponding saddle point equations can be easily reduced to Eq. (58)
once computed on a replica symmetric solution. However the advantage of computing the
fullRSB solution is that it gives directly access to the stability of the 1RSB saddle point.
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Figure 3: The Gardner transition line in the ( bϕ, m) plane for harmonic soft spheres at bT = 0.1.
Below this line the 1RSB solution is unstable. In the unstable phase there are two possibilities
depending on wether the exponent parameter λ(m) defined in Sec 7.A of [46] is greater or
smaller than m. If λ(m)> m, below the Gardner line there could be a set of fullRSB marginally
stable glassy states. Otherwise there are no glassy states at all [48].

5.1 The Gardner transition for the planted glass state

The stability of the 1RSB solution at the saddle point level can be checked by computing the
replicon eigenvalue. Following exactly the same steps of Sec. 12 of [46] and using the fullRSB
equations of Appendix C we can show that the condition for the instability of the 1RSB solution
is given by

0= −1+
bϕg

2
e−∆g/2

ˆ ∞
−∞

dh eh gm
∆g
(1, h; bβg)

�

∆g
d2

dh2
ln g∆g

(1, h; bβg)

�2

. (66)

In Fig. 3 we plot the Gardner line in the (m, bϕg) having fixed the temperature.

In the limit bβg →∞ this equation gives back the phase diagram of Hard Spheres [18].
Below the instability line there are three possibilities. The first one is that no glassy states
exist. In order to test this possibility we must compute the exponent parameter λ defined
in Sec. 7.A of [46]. Here we do not extend this calculation to the soft sphere case since it
can be easily done following the hard sphere case. The second possibility is that the Gardner
transition is indeed a continuous transition towards a phase where a solution with a finite
number of replica symmetry breaking steps is stable. This situation although not impossible
is very baroque and we do not expect it in a generic case. The last possibility, which will be
our working hypothesis throughout this work, is that the transition is towards a phase where
replica symmetry is broken in a continuous way and glassy states are marginally stable. It has
been shown that this is the case in the Hard Sphere limit [39,46].
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Figure 4: The generic profile of ∆(x) within the fullRSB solution.

6 The potential method: following adiabatically glassy states un-
der external perturbations

In the previous sections we have studied in detail the replicated partition function (8) that gives
access to glassy states. Here we want to see how they behave when an external perturbation
is switched on. We are interested in three main situations: the system is compressed, cooled
or strained. The formalism that gives access to the properties of glasses prepared at ( bϕg , bβg)
and then followed up to ( bϕ, bβ ,γ) is the Franz-Parisi potential that has been discussed in the
Sec. 2. This can be obtained by computing Eq. (12) and Eq. (13).

6.1 The state-following calculation for a general interaction potential: fullRSB
equations

The computation of Eq. (12) and Eq. (13) can be done by extending the formalism developed
in [39]. Here we will not give all the technical steps and we will show only the final result.
The computation of Eq. (12) and Eq. (13) can be done only by assuming a replica symmetry
breaking scheme. Here we will assume that the m replicas that represent the planted state
are in a 1RSB stable glass phase and we will consider a fullRSB scheme for the replicas that
describe the glass once followed in parameter space. This means that the form of the matrix
∆ab is given by a symmetric matrix whose components are

∆ab =∆g(1−δab) a, b = 1, . . . m;

∆ab =∆r a = 1, . . . m; b = m+ 1, . . . , m+ s

∆ab→ {0,∆(x)} a, b = m+ 1, . . . , m+ s .

(67)

Here we will not describe in details the fullRSB parametrization of the sector of slave replicas
since it can be found in [39,46]. The general form of the function ∆(x) is plotted in Fig. (4)
and we assume∆(x) = 0 for x < s. Using this parametrization and assuming that all the slave
s replicas have the same packing fraction and strain, namely that bβa = bβ , ηa = η, γa = γ for
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all a = m+ 1, . . . , m+ s, the replicated free energy is given by

−Wm[{ bϕa,βa = bβ ,γa}| bϕg , bβg , m] = const+
d(m− 1)

2
log∆g +

d
2

log[m(〈∆〉+ s∆1)+ms∆ f

+ s∆g] +
d
2
(s− 1) log 〈∆〉 − s

d
2

ˆ 1

s

dy
y2

log
�〈∆〉+ [∆](y)

〈∆〉

�

−
d bϕg

2

ˆ ∞
−∞

dζ
p

2π
e−ζ

2/2
ˆ ∞
−∞

�

dh eh
¦

1− gm
∆g

�

1, h+∆g/2; bβg

�

× γ∆γ(ζ) ? ĝs/s1(s1, h−η+ (∆γ(ζ) +∆1)/2; bβ)
©�

, (68)

where

〈∆〉=
ˆ 1

s
dy∆(y) ,

[∆](x) = x∆(x)−
ˆ x

0
dy∆(y) ,

ĝ(x , h;β) = ex f (x ,h;β) ,

∆γ(ζ) =∆ f + ζ
2γ2 ,

∆ f = 2∆r −∆(s)−∆g ,

(69)

and f is the Parisi function that satisfies [49]

∂ f
∂ x
=

1
2

d∆(x)
dx

�

∂ 2 f
∂ h2

+ x
�

∂ f
∂ h

�2�

,

f (1, h; bβ) = ln g∆(1)(1, h; bβ) .

(70)

If we take the limit s→ 0 we get back the Monasson replicated free energy of Eq. (92). More-
over taking the derivative with respect to s and sending s→ 0 we get the Franz-Parisi potential
that gives the free energy of a typical glassy state planted at ( bϕg , bβg) once followed to ( bϕ, bβ).
This is given by

− bβ f
�

α( bϕg , bβg), bβ , bϕ,γ
�
α( bϕg ,bβg )

= const+
d
2

log
�

π 〈∆〉
d2

�

−
d
2

ˆ 1

0

dy
y2

log
�〈∆〉+ [∆](y)

〈∆〉

�

+
d
2

m∆ f +∆g

m 〈∆〉
+

d bϕg

2

ˆ ∞
−∞

�

Dζ
ˆ ∞
−∞

dh eh gm
∆g

�

1, h+∆g/2; bβg

�

×
ˆ ∞
−∞

dx ′ f (0, x ′ + h−η+∆(0)/2; bβ)
e
− 1

2∆γ(ζ)(x
′−∆γ(ζ)/2)2

Æ

2π∆γ(ζ)



 . (71)

where Dζ= dζe−ζ
2/2/
p

2π. At this point we have to write the saddle point equations for the
order parameter∆ab. First of all it is quite simple to see that the saddle point equation for∆g
does not depend on ∆r and ∆(x) in the limit s→ 0 since the master replicas are completely
uncorrelated from the slave ones. Indeed ∆g is fixed by Eq. (58). The saddle point equations
for ∆r and ∆(x) can be obtained following the same strategy of [39] and they are shown in
Appendix D. These equations coincide with the ones obtained in [39] the only difference being
f (1, h; bβ). Starting from them it is can be shown that when ∆̇(x) 6= 0 the relation

0= −1+
bϕg

2

ˆ ∞
−∞

dhP(x , h)
�

G(x) f ′′(x , h; bβ)
�2

(72)

holds for all values of x for which ∆̇(x) 6= 0. This equation is crucial to detect the Gardner
transition point. Indeed, when evaluated on a 1RSB ansatz at x = 1, it gives the limit of
stability of the replica symmetric solution.
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6.2 The saddle point equations for equilibrium glasses starting from the normal
glass phase

In this section we consider the case in which the glass that is prepared at ( bϕg , bβg) is at equi-
librium meaning that m= 1. In this case the 1RSB solution for the planted glass is stable, see
Fig. 3, and thus we can expect that if we apply a very small perturbation, the state will remain
stable. Thus we can look for a 1RSB solution of the saddle point fullRSB equations. In this
case there are only two parameters to be fixed that are ∆r and ∆(x) =∆ for x ∈ [0,1] where
∆ is a constant. The free energy of the glass planted at ( bϕg , bβg) and then followed at ( bϕ, bβ ,γ)
is given by

− bβ f
�

α( bϕg , bβg), bβ , bϕ,γ
�
α(bβg , bϕg )

= const+
d
2

2∆r −∆
∆

+
d
2

log(∆)

+
d bϕg

2

ˆ ∞
−∞
Dζ
ˆ ∞
−∞

dh eh g2∆R(ζ)−∆
�

1, h+∆R(ζ)−∆/2; bβm

�

log g∆
�

1, h−η+∆/2; bβs

�

,

(73)

where ∆R(ζ) = ∆r + ζ2γ2/2. Taking the variational equations with respect to ∆ and ∆r we
can reduce the fullRSB equations to their 1RSB counterpart. They are given by

2∆r

∆2
−

1
∆
= bϕg

ˆ ∞
−∞
Dζ
ˆ ∞
−∞

dh eh ∂

∂∆

�

g2∆R(ζ)−∆
�

1, h+∆R(ζ)−∆/2; bβg

�

× log g∆
�

1, h−η+∆/2; bβ
��

0=
2
∆
+ bϕg

ˆ ∞
−∞
Dζ
ˆ ∞
−∞

dh eh
�

∂

∂∆r
g2∆R(ζ)−∆

�

1, h+∆R(ζ)−∆/2; bβg

�

�

× log g∆
�

1, h−η+∆/2; bβ
�

(74)

For γ = 0 we get back the equations that were studied in [27]. In the limit bβg → ∞ and
bβ →∞ we get back the state following equations that were studied in [38]. These equations
can be solved numerically for a specific choice of the interaction potential v̂(h) and we will do
that in the case of Harmonic Soft Spheres.

6.3 The stability of the normal glass phase under external perturbation: the
Gardner transition

The correctness of the 1RSB solution of the state following equations can be checked by looking
at its local stability.4 This can be done following the same line of reasoning of [46], Sec. 12.
This gives access to the replicon eigenvalue that tests directly the stability of the solution. Here
however we follow a simpler strategy, described in the context of the Sherrington-Kirkpatrick
model in [50,51] and in the random perceptron in [52], to obtain the Gardner point starting
directly from the fullRSB solution. Let us suppose that there is a Gardner transition so that the
1RSB solution is unstable. Beyond that point, the correct solution is a solution where ∆(x) is
no more costant and thus it is described by the equations of the previous section. A striking
consequence of those equations is Eq. (72). Eq. (72) holds for all x such that ∆̇(x) 6= 0.
Coming from the fullRSB phase and approaching the Gardner transition, ∆(x) should go to a
constant ∆. This means that Eq. (72) holds up to the Gardner point where ∆(x) converges to
its 1RSB value. In the stable glass phase, the same relation is not satisfied anymore due to the

4We underline here that we are focusing only on replica symmetry breaking instabilities. However there are
also other kinds of instabilities as for example spinodal points, that do not involve RSB. This is the case of the
yielding transition.
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fact that ∆̇(x) = 0. This means that the Gardner transition appears when Eq. (72), evaluated
on a 1RSB solution, is satisfied. Thus evaluating Eq. (72) on the solution of Eq. (74) we get
the condition for the Gardner point

0= −1+
bϕg

2
∆2
ˆ ∞
−∞
Dζ
ˆ ∞
−∞

dh eh+η−∆2 g∆ρ

�

1, h+η−
∆−∆ρ

2
, bβg

�

�

∂ 2

∂ h2
ln g∆(1, h, bβ)

�2

(75)
being ∆ρ = 2∆R(ζ)−∆. In the following we will compute the stability of the 1RSB solution
within different state following protocols. Eq. (75) cannot tell what is the nature of the phase
beyond the instability and as stated above we will assume that a marginal glass phase appears.

7 The phase diagram of Harmonic Soft Spheres

The formalism that we have developed in the previous sections allows us to obtain the phase
diagram of thermal glasses formed by harmonic spheres in the limit of infinite dimension. The
only thing we have to set is the specific function g∆ in which it enters the interaction potential
v̂:

gΛ(1, h; bβ) =
ˆ

dy
p

2πΛ
exp

�

−
y2

2Λ
− bβ v̂(y − h)

�

≡
ˆ

dy
p

2πΛ
exp

�

−
y2

2Λ
−
bβ(h− y)2

2
θ (y − h)

�

.

(76)

By solving the equations discussed in Sec. 4 we obtain the dynamical transition line and the
phase diagram reported in Fig. 2. In the limit of infinite dimension the Mode-Coupling tran-
sition changes nature and instead of being a cross-over it becomes a true transition. At high
temperature and low density the system relaxes on times of order one. Approaching the dy-
namical line the time-scale diverges and below it the system can be trapped in one out of many
stable amorphous solids whose life-time is infinite in the d →∞ limit.
This phase diagram is similar to the one obtained by approximate means in [53] for three
dimensional elastic spheres and coincides at zero temperature with the one already obtained
for hard spheres [17].
In the following we will consider an amorphous solid formed at packing fraction and inverse
temperature ( bϕg , bβg). In a realistic situation, this would mean that the cooling rate is such that

the glass transition takes place at ( bϕg , bβg).5 We can show that in the infinite dimensional limit
the initial equilibrium glass state is always a normal glass so that the state following equations
admit at least at the beginning a 1RSB solution. This means that starting from the equilbrium
glass we have to solve the Eqs. (74) and control the stability of the replicon eigenvalue given
by Eq. (75) in order to check where the Gardner phase emerges.
As anticipated in the introduction, in the next sections we shall study the effect of three pertur-
bations (temperature, density and shear strain) on the amorphous solids prepared at ( bϕg , bβg).

7.1 Perturbation I: Cooling

Here we consider the case in which we form (plant) a glass in the state point ( bϕg , bβg), we

keep bϕg fixed and we consider different values of bβg . We note that we can do that only if
we are below the dynamical transition line of Fig. 2 where the supercooled liquid is indeed a
superposition of glassy states. Starting from these well prepared glasses, we cool the system

5The extension to state following of non equilibrium states is straightforward.
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Figure 5: We plot the internal energy bε (properly scaled with the dimension d) as a function
of the temperature for different glasses planted at ( bϕg = 8, bTg) and then followed when the
temperature is decreased. Picture reprinted from [27].

and check whether a Gardner transition takes place. In Fig. 5 we show the result for such
annealing procedure with the corresponding Gardner transition points [27]. It is interesting
to note that glassy states prepared at higher temperature tend to be much closer to the Gardner
point with respect to well equilibrated low temperature glasses. The dashed lines correspond
to the continuation of the 1RSB solution, which is only an approximation in the marginal
phase.
In order to study the density dependence of the results found by cooling we use the following

protocol. We prepare different equilibrium glasses at the same inverse temperature bβg and
with different initial packing fraction bϕg . Then we cool each one of these glasses. In Fig. 6
we show the phase diagram in this case. Again, we find that well equilibrated glasses, very
far from the dynamical (mode-coupling) transition point tend to be much more stable than
glasses close to the MCT point.
This is the major conclusion of the analysis on cooling: not very stable, i.e. not very deep,
glasses are more prone to undergo a Gardner transition when lowering the temperature. This
opens the possibility that very stable glasses formed at low enough temperature do not display
a Gardner transition [54].

7.2 Perturbation II: Compression

In this case we prepare a glass in the state point ( bϕg , bβg) and we start to compress the system,

namely increasing η and keeping the inverse temperature bβg fixed so that bβ = bβg . The general
phase diagram in this case is in Fig. 7. We note that there are two Gardner transition lines. In
order to discuss them let us start from what happens at zero compression, namely for η = 0.
In this case, since bϕ = bϕg , there exist a temperature, the dynamical point, where glassy states
disappear. At that point the replicon eigenvalue, which controls the instability toward the
Gardner phase, is strictly equal to zero. If we increase η, for temperatures slightly smaller
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Figure 6: The Gardner transition line for glasses that are planted at ( bϕg , bTg = 0.12). Again
we see that well equilibrated glasses undergo the Gardner transition at lower temperatures.
Picture reprinted from [27].

than the dynamical one, we expect to find just by continuity a zero replicon for very small
compressions. This is indeed what happens. Upon compression, glasses very close to the
dynamical temperature tend to be very unstable and to undergo a Gardner transition very
soon. Upon decreasing the planting temperature bTg , we see that this Gardner transition line
can be followed up to zero temperature and it ends on a precise point at η∗. We call this
Gardner transition line, the thermal Gardner transition. Beyond this line, for higher packing
fractions each glass is supposed to be marginally stable and in order to obtain what happens
for sufficiently high values of η we need to compute the fullRSB solution (we leave this for
future work).
As shown in Fig. 7, there is a small island where the Gardner phase emerges which is around
the jamming point of hard spheres. Indeed, let us now consider a glassy state of soft spheres
prepared exactly a zero temperature bTg = 0. Our protocol would then correspond to compress
a glass of hard spheres. In this case, we know from [38] that hard spheres undergo a Gardner
transition before reaching the jamming point. This is the point η− in Fig. 8 which coincides
with what has been found in [38]. Compressing further, the system enters in a marginal
glass phase and then jams at ηJ . For soft spheres, one can keep compressing generating zero
temperature states with non zero energy. In this case we find that the system goes back from
a marginal glass phase to a normal glass phase at η+ (the bTg → 0 limit can be discussed
analytically, see appendix B). By continuity, if we switch on a very small temperature, the
points η− and η+ get shifted. As shown in Fig. 8, this leads to a Gardner transition line.
The major outcome from the analysis on compression is that the Gardner transition takes place

whenever the system is pushed toward an instability. Indeed it takes place before the spinodal
and in vicinity of the jamming transition where the system is marginally stable (leading to a
an island of marginal glasses surrounding the jamming point). This is crucial to ensure the
correct criticality at the jamming transition [46] and clearly shows that the jamming transition
point is very special.
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Gardner transitions are just an approximation since they are computed within a 1RSB ansatz
which is unstable.

7.3 Protocol III: Shearing

Here we study the case in which one imposes to a glass prepared at ( bϕg , bβg) a strain γ as in
(20). The corresponding phase diagram was anticipated in Fig.1. One finds that increasing
the strain glasses first undergo a Gardner transition and then a yielding transition.
In Fig. 9 we plot the stress as a function of the strain for glasses prepared at the same packing
fraction bϕg = 6 and different temperatures bTg . The stress bσ is obtained within the 1RSB
ansatz by

bσ ≡
bβσ

d
=
bβ

d

∂ f
�

α(ϕg ,βg),β ,ϕ,γ
�α(ϕg ,βg )

∂ γ
=

−
bϕgγ

2

ˆ ∞
−∞
Dζζ2

ˆ ∞
−∞

dh eh ∂

∂∆r
g2∆R(ζ)−∆

�

h+∆R(ζ)−
∆

2
; bβg

�

ln g∆

�

h−η+
∆

2
; bβg

�

,

(77)

where∆R(ζ) =∆r+γ2ζ2/2. We also plot the Hard Sphere case that corresponds to bTg = 0 and
that has been studied in [38,39]. As it can be seen from the curves, the shear modulus at γ= 0
is a decreasing function of the temperature: colder glasses are more rigid than hotter ones.
Moreover, when the temperature is decreased the curves display an overshoot that becomes
more and more pronounced as the temperature is lowered. We observe that for sufficiently
high strain, each glass undergoes a Gardner transition. Beyond that point each glass enters in
a marginally stable phase. The 1RSB solution is just an approximation in that regime (dashed
line), to obtain a fully correct description one would need to solve numerically the fullRSB
equations [39] (we leave it for future work). As shown by the 1RSB solution, strained glasses
become unstable at a spinodal point. At that point the 1RSB equations loose the glassy solution
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where ∆ and ∆r are finite and the system enters in a liquid/plastic phase. Within the fullRSB
solution we expect the same behavior: the stress-strain curves can be followed up to a spinodal
point that corresponds to the mean field yielding transition [38,39,55].
The analysis performed in this section leads to a conclusion very analogous to the one of the
previous section: the Gardner transition emerges in regimes where the system is approaching
an instability. When shearing, this instability corresponds to the yielding transition for which
it would be interesting to develop a fullRSB analysis and determine the universality class at
least within mean-field theory (naively it could be the one of the Random Field Ising model
as for other glassy critical points [56–60] but additional physical effects due to fullRSB could
play a role).

8 Conclusions

In this work we have extended and generalized the methods and the results obtained for Hard
Spheres to the case of general soft spheres thermal glasses.
We have found that, generically, structural glasses undergo a Gardner transition towards a
marginal glass phase when strongly perturbed. We have shown that this is the case when
glasses are compressed, cooled and strained. By focusing on Harmonic Soft Spheres glasses
we have been able to connect our results to Hard-Spheres ones. In particular we have found
that the jamming point is very special in the temperature-density phase diagram, since it is
surrounded by a marginally stable (Gardner) phase. The two main lessons we draw from the
infinite dimensional results are that: (1) the Gardner transition is more likely to emerge when
the system is pushed toward an instability (e.g. by shearing or compression), (2) the Gardner
transition is favored when the initial glass state is less stable, e.g. closer to the jamming point
where it is marginally stable and closer to the dynamical transition. Establishing whether
three dimensional thermal glasses display a Gardner transition (or at least a remnant of it)
is a crucial open issue [54]. Hopefully, our results will be useful guidelines for this line of
research. Another important outcome of the present work is a greatly simplified derivation of
the replicated free energy in the case of a generic interaction potential. This allows to treat
shear strain deformations in thermal glasses and opens the way to study soft glassy rheology
from first principles in the mean field limit. Moreover, the marginality of the Gardner phase
brings about strong non linear responses and avalanches and thus the formalism we developed
is the starting point to investigate them from first principles [27,61].
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A Evaluation of d dimensional angular integrals

We want to evaluate

Ad ≡
d

a+b
2

Ωd

ˆ
dθd f a

1 (θd) f
b

2 (θd) . (78)
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We can use as usual Gaussian integrals. We get

Ad =
d

a+b
2

Nd

ˆ
dd x

(
p

2π)d
xa

1 x b
2 e−|x |

2/2 , Nd =
ˆ

dd x

(
p

2π)d
|x |a+be−|x |

2/2, (79)

from which it follows that Ad = 0 unless a and b are even. In the following we will assume
that this is the case. Moreover we have that

Ωd
�p

2π
�d
=
�
ˆ ∞

0
dx xd−1e−x2/2

�−1

(80)

and moreover that ˆ ∞
0

dx xa−1e−x2/2 = 2(a−2)/2Γ
�a

2

�

. (81)

Using this we get

Ad = d
a+b

2

�p
2π
�d

Ωd
(a− 1)!!(b− 1)!!

�
ˆ ∞

0
dx xd+a+b−1e−x2/2

�−1

= d
a+b

2 (a− 1)!!(b− 1)!!
Γ (d/2)

2(a+b)/2Γ ((d + a+ b)/2)
.

(82)

Since

lim
d→∞

d
a+b

2
Γ (d/2)

2(a+b)/2Γ ((d + a+ b)/2)
= 1, (83)

we get that

lim
d→∞

Ad =

¨

0 if a and b are not even

(a− 1)!!(b− 1)!! otherwise .
(84)

B Compression at zero temperature

We can discuss in a simple way the case in which we compress the system starting from
bTg = bT → 0. In this limit we have that

∆= νbTg , (85)

while we expect that ∆r stays of order one. The replicated free energy is thus given by

s = const+
2bβ
d

�

2∆r

ν
−

1
1+ ν

C̃(∆r)
�

, (86)

where we have defined

C̃(∆r) =
bϕg

2

ˆ ∞
−∞

dh ehΘ

�

h+∆r
p

4∆r

�

(h−η)2 θ (η− h) . (87)

We can easily write the saddle point equations for ν and ∆r that are given by

2∆r

ν2
=

1
(1+ ν)2

C̃(∆r) ,

2
ν
=

1
1+ ν

∂

∂∆r
C̃(∆r) .

(88)
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At this point we have only to compute the replicon eigenvalue. Taking Eq. (75), setting γ= 0
and taking properly the zero temperature limit we get that the Gardner transition happens
when the following condition is satisfied

0= −1+
bϕg

2

� ν

1+ ν

�2
ˆ η

−∞
dh ehΘ

�

h+∆r
p

4∆r

�

. (89)

The previous equations can be simplified. Indeed the saddle point equations can be rewritten
as

2
∆r
=

�

C̃ ′(∆r)
�2

C̃(∆r)
,

2∆r

C̃(∆r)
=
� ν

1+ ν

�2
,

(90)

where we have defined C̃ ′(∆r) = ∂ C̃(∆r)/∂∆r . The equation on ∆r is closed and can be
solved numerically. Moreover we have that the replicon eigenvalue can be written in terms of
the saddle point solution for ∆r and it is given by

0= −1+
bϕg∆r

C̃(∆r)

ˆ η

−∞
dh ehΘ

�

h+∆r
p

4∆r

�

. (91)

The solution of these equations gives us the points η+ and η∗ of Figs. 7 and 8.

C FullRSB equations for the planted glass phase

The fullRSB saddle point equations that describe the planted glass state at ( bϕg , bβg) can be
derived following exactly the same strategy of [46] and here we will not give more details on
that. The final equations are the same as Eq. (116) of [46], the only difference being in the
initial condition for f (1, h) that here is replaced by

f (1, h; bβg) = ln g∆(1)(1, h; bβg). (92)

Furthermore, in the zero temperature limit of the Harmonic soft sphere case, they give back
the same saddle point equations of the Appendix of [46]. Starting from these equations it can
be shown that whenever ∆(x) has a continuous (not flat) part where ∆̇(x) 6= 0 the following
equation is satisfied

0= −1+
bϕg

2
e−∆(m)/2

ˆ ∞
−∞

dh P(x , h)
�

G(x) f ′′(x , h; bβg)
�2

. (93)

This will be important to establish the stability of the 1RSB solution. Indeed the relation
evaluated at x = 1 and on a 1RSB profile for ∆(x) gives the stability of the normal glass
phase. Finally, these equations, reduced to the 1RSB ansatz give Eq. (58).

D FullRSB saddle point equations for the state following protocol

In this section we summarize the fullRSB equation in the state following approach. They can
be derived using the same strategy as [39] being the only difference the initial condition for
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f .

G(x) = x∆(x) +
ˆ 1

x
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Ġ(x)
2x

�

P ′′(x , h)− 2x(P(x , h) f ′(x , h; bβ))′
�

,

1
G(0)

= −
bϕg

2

ˆ ∞
−∞

dhP(0, h)
�

f ′′(0, h; bβ) + f ′(0, h; bβ)
�

,

m∆ f +∆g

mG(0)2
=
bϕg

2

ˆ ∞
−∞

dh P(0, h)
�

f ′(0, h; bβ)
�2

,
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G(x)

=
1

G(0)
+ xκ(x)−

ˆ x

0
dyκ(y) x > 0

(94)
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