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Abstract

We establish the existence of ‘time quasilattices’ as stable trajectories in dissipative dy-
namical systems. These tilings of the time axis, with two unit cells of different durations,
can be generated as cuts through a periodic lattice spanned by two orthogonal directions
of time. We show that there are precisely two admissible time quasilattices, which we
term the infinite Pell and Clapeyron words, reached by a generalization of the period-
doubling cascade. Finite Pell and Clapeyron words of increasing length provide system-
atic periodic approximations to time quasilattices which can be verified experimentally.
The results apply to all systems featuring the universal sequence of periodic windows.
We provide examples of discrete-time maps, and periodically-driven continuous-time dy-
namical systems. We identify quantum many-body systems in which time quasilattices
develop rigidity via the interaction of many degrees of freedom, thus constituting dissi-
pative discrete ‘time quasicrystals’.

Copyright F. Flicker.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 30-10-2017
Accepted 15-06-2018
Published 03-07-2018

Check for
updates

doi:10.21468/SciPostPhys.5.1.001

Contents

1 Introduction 2

2 Quasilattices and Quasicrystals 3

3 Symbolic Dynamics 6
3.1 Nonlinear Dynamics Definitions 7
3.2 Symbolic Dynamics Background and Nomenclature 9
3.3 Word Lifting 11
3.4 Maximal Sequences and the Generalized Composition Rule 12
3.5 Application to the Period-Doubling Cascade 13

4 Growing Time Quasilattices 15
4.1 Admissible Time Quasilattices 15
4.2 Proof of Maximality of the Pell Words 17
4.3 The Pell Cascade 18
4.4 Other Time Quasilattices 21

1

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001
mailto:flicker@physics.org
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.5.1.001&amp;domain=pdf&amp;date_stamp=2018-07-03
http://dx.doi.org/10.21468/SciPostPhys.5.1.001


SciPost Phys. 5, 001 (2018)

5 Pell Words in Continuous-Time Dynamical Systems 21
5.1 A Continuous-Time Dissipative Autonomous System: the Rössler Attractor 22
5.2 A Continuous-Time Dissipative Driven System: the Forced Brusselator 25

6 Time Quasicrystals 27

7 Conclusions 29

References 31

1 Introduction

The spontaneous breaking of translation symmetry occurs whenever a crystal grows from a
liquid. The result is a reduction of the continuous symmetry down to a discrete symmetry,
the space group of the lattice. Recently it was asked whether the same process can occur
in time. The name ‘time crystals’ was coined for hypothetical systems which spontaneously
break time-translation symmetry in their ground states [1–3]. It later transpired that such
a process is impossible [4–6], although a loophole left open the possibility of breaking the
discrete time translation symmetry of periodically-driven systems down to a multiple of the
period [7–10]. This led to physical implementations in both cold atoms and nitrogen vacancy
defects in diamond [11,12].

Concurrent with these developments, it was realized that the notion of space group sym-
metry can be extended to include time. These ‘choreographic crystals’ may feature a higher
symmetry, when considering their constituent elements in both space and time, than is revealed
by any instantaneous snapshot [13]. Additionally, symmetry operations have been identified
in periodically-driven ‘Floquet crystals’. Example symmetry operations include so-called time
glides, combining a translation in time with a mirror in space [14].

Together these studies establish an understanding of periodicity and disorder on an equal
footing in time and space. At first thought these cases seem to exhaust the possibilities for
long-range order. Yet there exist long-range ordered objects which are neither periodic nor
disordered: between these two extremes we find ‘quasicrystals’, atomic decorations of ‘quasi-
lattices’ which are aperiodic tilings consisting of two or more unit cells. Despite lacking pe-
riodicity, they nevertheless feature a form of long-range order, which can be seen from the
possibility of their construction as slices through higher-dimensional lattices [15–18].

In this paper we demonstrate the existence of time quasilattices: aperiodic tilings of the
time axis using unit cells of two different durations. Despite lacking periodicity, they feature
long-time order deriving from the fact that the sequence can be generated as a slice through
a periodic two-dimensional lattice spanned by two orthogonal directions of time. We identify
the time quasilattices as trajectories within nonlinear dynamical systems, coarse-grained to
the scale of simply asking whether we are on the left L or right R of the system. The sequence
of symbols L and R thus obtained matches the sequence of cells of a 1D quasilattice. We find
that precisely two quasilattice sequences can grow as stable, attracting trajectories in nonlin-
ear systems. We term these the Pell and Clapeyron quasilattices. We provide a systematic
method by which to ‘grow’ these time quasilattices, showing that each finite-duration periodic
approximation is also a stable, attracting trajectory, which provides a method of physically
implementing the result. Additionally, we present a pedagogical introduction to relevant tech-
niques employed in the field of symbolic dynamics. While well-known in the study of nonlinear
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systems, these techniques provide a range of possibilities for extending ideas in the fields of
time crystals, Floquet crystals, choreographic crystals, and quasicrystals, and it is our hope that
in presenting them here further richness of results can be attained in these respective fields.

We provide examples of time quasilattices in a range of dissipative dynamical systems:
the discrete-time logistic map, the continuous-time autonomous Rössler attractor, and the
continuous-time periodically-driven forced Brusselator. Extending the crystal lattice analogy,
we further identify time quasicrystals: systems in which the symmetry of a periodic driving is
spontaneously broken to the symmetry of a time quasilattice, in which the stability is made
rigid by the interactions between the macroscopic number of degrees of freedom of a quantum
many-body state. We examine a number of recent experimental proposals concerning discrete
time crystals in driven dissipative many-body systems [19–21], identifying that several ad-
ditionally host time quasicrystals. We detail experimental signatures of these new states of
matter.

This paper proceeds as follows. In Sections 2 and 3 we provide background on the sub-
jects of quasilattices/quasicrystals, and symbolic dynamics, respectively. The aim is to develop
the connections between the areas of study, and so we provide a solid introduction in each
case. In Section 4 we present the bulk of our results, demonstrating that, of the ten classes
of physically-relevant one-dimensional quasilattices, precisely two can exist as stable, attract-
ing orbits in discrete-time nonlinear dynamical systems. In Section 5 we extend our results
to continuous-time dynamical systems, providing routes to a physically-testable implementa-
tion. In Section 6 we explain the additional criteria which systems with the symmetries of
time quasilattices must fulfill in order to constitute true states of matter – time quasicrystals
– and identify these structures in recent experimental proposals. Finally in Section 7 we pro-
vide concluding remarks, and discuss the relationship between time quasilattices and periodic
space-time systems.

2 Quasilattices and Quasicrystals

Quasilattices are aperiodic tilings consisting of two or more unit cells. Despite lacking period-
icity, the placement of cells is not random: an N -dimensional quasilattice can be generated as a
slice through a 2N -dimensional periodic lattice [15–17]. Certain properties are more naturally
expressed in terms of this higher-dimensional lattice. For example, two- or three-dimensional
quasilattices feature discrete rotational symmetries in their diffraction patterns which are for-
bidden by the crystallographic restriction theorem, which states that only 2-, 3-, 4-, or 6-fold
symmetries are allowed for periodic tilings in these dimensions. The symmetries demonstrated
by quasilattices’ diffraction patterns (5-fold, 8-fold, 10-fold, and 12-fold [22]) are neverthe-
less permitted to crystal lattices in the higher-dimensional space through which they were
sliced [23–25]. Equivalently we can say that quasilattices are objects whose reciprocal-space
dimension does not match their real-space dimension [16,17].

Here we focus on the case of one-dimensional quasilattices, which can be generated as
cuts through two-dimensional lattices. We reserve the name ‘quasicrystal’ for physical systems
(quasilattice plus atomic basis) in dimensions two and higher. The phrase ‘quasilattice’ is used
for the mathematical structure describing the physical system. A large number of quasicrystals
has been grown artificially, and there have even been found two naturally-occurring examples,
both in the same Siberian meteorite [26,27].

In one dimension, it is a standard convention to refer to both the physical systems and
their mathematical descriptions as quasilattices, disallowing the use of the term quasicrystal.
This permits a precise definition of quasicrystals as those systems featuring diffraction patterns
with symmetries forbidden by the crystallographic restriction theorem [15–17, 28, 29]. This

3

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001


SciPost Phys. 5, 001 (2018)

definition precludes the possibility of quasicrystals in one dimension, as rotations are not well
defined. The only break which we make with this convention is in Section 6 in which we iden-
tify time quasilattices stabilized by many-body interactions: in order to emphasize that these
states constitute an extension of the concept of time crystals to include quasilattice symmetry,
we term them time quasicrystals, despite the fact that they exist in one dimension of time.

We define a 1D quasilattice to be an aperiodic tiling of a one-dimensional space with tiles
of two different lengths, generated as a cut through a two-dimensional lattice. A necessary but
not sufficient condition for an aperiodic tiling of two tiles to be a quasilattice is that each cell
appears with precisely two spacings [28]. In Figure 1 we demonstrate the ‘cut-and-project’
quasilattice construction: we draw an irrationally-sloped line through the two-dimensional
lattice, intersecting a vertex. For simplicity we take a square lattice with a unit cell length
of one, but any regular lattice is acceptable. Drawing a second line parallel to the first which
intersects the 2D lattice at the opposite vertex of the same unit cell, we project all vertices of the
2D lattice down onto the 1D lines whenever the vertices fall between the lines. If the gradient
of the line is tan (α), the spacings of the projected points will be either cos (α) or sin (α). The
result is therefore two different unit cells tiling the line, and the sequence is guaranteed to be
aperiodic by the irrationality of tan (α).

If we are only interested in the sequence of cells which appears, rather than the cells’ rela-
tive lengths, a simpler method is available, which we term the ‘intersection method’, explained
in reference [28]. Starting with the same irrationally-sloped line, whenever the line intersects
a vertical line of the 2D lattice we write one symbol, say R, and whenever the line intersects a
horizontal line of the 2D lattice we write a second symbol, say L. The sequence of Rs and Ls
will match that given by the cut-and-project method.

The best-known example of a 1D quasilattice is the infinite Fibonacci word (‘word’ here
intuitively referring to a sequence of letters, R and L). This can be generated either by cut-
and-project or intersection, using a line whose gradient is the golden ratio ϕ:

ϕ = (ϕ − 1)−1 =
1
2

�

1+
p

5
�

.

Consider again the case where the line intersects a vertex of the lattice. Such cases form a set
of zero measure, but are instructive here [28]. From the first intersection of a lattice line after
the (unique) intersection with a lattice vertex, the sequence of cells begins as follows:

RLR2 LRLR2 LR2 L . . .

This is shown in Fig. 1.
The Fibonacci quasilattice can also be generated by so-called ‘inflation rules’:

R→ RL, L→ R, (1)

which are applied to every symbol, starting from the left of the word, at every iteration:

R→ RL→RLR

→RLR2 L

→RLR2 LRLR

→RLR2 LRLR2 LR2 L

→RLR2 LRLR2 LR2 LRLR2 LRLR

→ . . .

The lengths of these sequences are the Fibonacci numbers Fn, and hence they are known as
Fibonacci words. The infinite Fibonacci word F∞ is the Fibonacci quasilattice [30].
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Figure 1: Different methods of creating a 1D quasilattice as a slice through a 2D lattice (as
we are interested in time quasilattices, the 2D space is spanned by two orthogonal directions
of time). Lower, in gold, is the Fibonacci quasilattice, made by taking a slice through the
lattice at an angle given by the inverse of the golden ratio (or the ratio itself, which would
interchange the cell labels). If a vertex of the 2D lattice falls between the parallel golden lines,
it is projected onto them. The result is two cell lengths which we label R and L. The sequence
of long and short cells is the Fibonacci quasilattice (infinite Fibonacci word) RLR2 LRLR2 L . . ..
This is the ‘cut-and-project’ method. If we are only interested in the sequence of cells, we can
simply write an R whenever a vertical lattice line is intersected, and an L when a horizontal
line is intersected. The lower line is used to make these intersections, and the methods can be
seen to agree. In silver this ‘intersection’ method is applied to a line with gradient 1p

2
, related

to the silver ratio 1+
p

2. This is generating what we term the Pell quasilattice. Note that the
intersection method in the Fibonacci case starts generating the correct sequence from the first
intersection after the vertex, whereas the Pell case is offset along the line. This is because we
have taken a non-canonical ordering of the Pell substitution rules (in the sense of [28]), for
reasons to be explained later.

Note that, while each iteration of the inflation rules leads to extra cells growing on the right
of the previous word, the growth mechanism is inherently nonlocal, requiring a substitution
of every letter in the word simultaneously. The consistency of the leftmost string of each word
is given by a discrete scale invariance implied by the inflation rules: considering the infinite
Fibonacci word, while it can be described by the unit cells R and L, it can equally-well be
described by any inflation of these cells, for example RL and R, RLR and RL, etc. This property
is shared with crystal lattices, which can be described by any integer multiple of their primitive
unit cell.

While all quasilattices can be generated by cut-and-project, only some can be generated by
inflation rules [17]. Conversely, inflation rules can generate objects which are not quasilattices,
as we see in Section 3.5 when considering the period-doubling cascade. We can describe the
Fibonacci inflation rules by a matrix

A=

�

1 1
1 0

�

such that

A

�

R
L

�

=

�

R+ L
R

�
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and the nth term can be made by instead acting on the vector with An. The eigenvalues of A are
ϕ and ϕ−1. In general, quasilattices of two cell types can be described by matrices such as this,
featuring non-negative integer entries, whose eigenvalues are Pisot-Vijayaraghavan numbers:
quadratic irrationals a+

p
b with rational a, b, such that a+

p
b > 1 and 0<

�

�a−
p

b
�

�< 1 [17,
28].

There are an infinite number of quasilattices which can be generated by the intersection
method of Figure 1. They fall into equivalence classes. For example, shifting the intersect-
ing line perpendicular to itself generates ‘locally isomorphic’ quasilattices, where any finite
sequence of cells appearing in one appears in the others [15]. Loosely, these can be thought
of as translations of one another. Others may be equivalent up to inflations, deflations, or
translations of others [28]. While all N -dimensional quasilattices can be created through a
cut-and-project from a 2N -dimensional lattice, only a subset of these can also be generated
through inflation rules [16,17].

The recent work of reference [28] identifies that, in fact, only ten equivalence classes
of 1D quasilattice exist which are truly physically relevant, in the sense that they relate to
higher-dimensional counterparts through their identifying irrational numbers, which describe
both the relative lengths of the cell types (volume, in general dimensions), and the relative
frequency of the cells’ appearances. In Table 1 we reproduce these quasilattices and their
inflation rules from reference [28]. The physical significance of the ten classes is that their
counterparts in two and three dimensions are precisely the quasicrystals which have been
grown in the lab, or discovered as naturally-occurring materials [24, 25, 28]. This suggests
their suitability for study with an eye to physical implementation. A theoretical argument due
to Levitov underpins the experimental observation that all known two- and three-dimensional
quasicrystals feature 5- 8- 10- or 12-fold symmetry [22]. The same argument explains why
physical quasicrystals relate only to quadratic irrational numbers, whereas a more general
class of similar objects can be constructed mathematically [18].

By way of example, consider again the Fibonacci quasilattice. This has cell lengths related
by the golden ratio ϕ. The length of Fibonacci word n is the nth Fibonacci number Fn, and we
refer to the corresponding word with the same symbol Fn. The ratio of lengths of successive
Fibonacci words also tends to the golden ratio:

ϕ = lim
n→∞

Fn

Fn−1
.

The Fibonacci quasilattice generalizes to the two-dimensional case of the Penrose tiling, shown
in Figure 2. The Penrose tiling’s diffraction pattern has ten-fold rotational symmetry, forbid-
den in two-dimensional crystal lattices but allowed in four or five-dimensional crystal lattices
through which it can be considered a slice [15,28]. The ratio of the two cells’ areas, as well as
their relative frequency of occurrence, is given by the golden ratio. The full significance of the
relationship between the Fibonacci quasilattice and the Penrose tiling requires a consideration
of Coxeter groups and Ammann decorations, explained in detail in references [28,29].

3 Symbolic Dynamics

In this section we present a brief overview of relevant results in the field of symbolic dynamics.
Aside from being necessary background to the subsequent sections, the hope is that a peda-
gogical introduction to the ideas will be useful to authors working in the fields of time crystals,
Floquet crystals, choreographic crystals, and quasicrystals. In Section 3.1 we define some ba-
sic terms in the study of general nonlinear dynamical systems. In Section 3.2 we present the
basic ideas of symbolic dynamics. One technique, word lifting, is particularly important to the
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Table 1: (After [28]). The ten equivalence classes of physically-relevant 1D quasilattices. The
substitution matrix A, applied to the vector (R, L)T , generates the substitutions R→ ρ, L→ λ
under addition. The ‘slope’ column indicates the slope of the line drawn through a square
two-dimensional lattice to generate each sequence by either cut-and-project or intersection.
The columns ρ and λ show the cell sequences generated from R and L respectively. Ref [28]
identifies a canonical ordering of substituted cells; we do not follow this, as it grows the quasi-
lattices symmetrically to the left and right of the starting point, whereas we will wish to refer
to the right of the generated string as the future. See also the discussion in Section 4.1.

Case A eigenvalues slope ρ λ

1

�

1 1
1 0

�

1
2

�

1±
p

5
� 1

2

�

1±
p

5
�

RL R

2a

�

1 1
2 1

�

1±
p

2 ±
p

2 RL R2 L

2b

�

0 1
1 2

�

” 1±
p

2 L RL2

3a

�

1 2
1 3

�

2±
p

3 1
2

�

1±
p

3
�

RL2 RL3

3b

�

2 1
3 2

�

” ±
p

3 R2 L R3 L2

3c

�

1 1
2 3

�

” 1±
p

3 RL R2 L3

4a

�

3 1
4 1

�

2±
p

5 −1±
p

5 R3 L R4 L

4b

�

2 1
5 2

�

” ±
p

5 R2 L R5 L2

4c

�

1 1
4 3

�

” 1±
p

5 RL R4 L3

4d

�

0 1
1 4

�

” 2±
p

5 L RL4

present work, and Section 3.3 is devoted to it. Section 3.4 presents the ‘generalized composi-
tion rule’, which is the key mathematical tool used to prove the existence of time quasilattices.
The results are returned to frequently in later sections. Finally, in Section 3.5, we apply the
ideas to the period-doubling cascade into chaos, both as an already well-understood exam-
ple, and to provide a point of reference when explaining the generalization to the Pell and
Clapeyron cascades in Section 4.

3.1 Nonlinear Dynamics Definitions

In this section we briefly define some concepts in the study of nonlinear dynamical systems
and chaos which will be referred to later in the paper. Detailed introductions and more precise
definitions can be found for example in references [30,32,33].

Dynamical systems are defined by their equations of motion, which take the general form

ẋ= f (x)

with x a vector describing the state at a given time. In this paper we will consider x to be
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Figure 2: Sections of two-dimensional quasicrystals, after [18]. Left: the Penrose tiling. The
ratio of the areas of the tiles is the golden ratio ϕ, as is the relative frequency of occurrence of
the two tiles [31]. Approximate 5- or 10-fold symmetry can be seen at different points, and the
diffraction pattern features true 10-fold symmetry. This is the two-dimensional generalization
of the Fibonacci quasilattice, which also features cell lengths and relative frequencies in the
golden ratio. Middle: the Ammann-Beenker tiling. The ratio of cell areas is

p
2. The tiles’

relative frequencies lie in the silver ratio 1+
p

2. Approximate 8-fold symmetry can be seen
at points, and the diffraction pattern is 8-fold symmetric [23]. This is the two-dimensional
generalization of the Pell quasilattice, similarly related to the silver ratio. Right: The two-
dimensional generalization of the Clapeyron quasilattice (which has cell lengths related by
2+
p

3). The diffraction pattern is 12-fold symmetric.

positions. If the equations are such that they can be rewritten as a Lagrangian

L (x, ẋ) =
1
2

ẋ2 − V (x)

the system has an associated Hamiltonian and conserves energy; otherwise it is dissipative. If
time only enters the equations implicitly via x (t) the equations are said to be autonomous,
and if time appears explicitly through some driving they are non-autonomous (driven). Non-
autonomous equations can be rewritten in an autonomous form by introducing extra variables,
as we will show in Section 5 when dealing with the forced Brusselator.

The continuous-time systems we consider in Section 5 feature ‘attractors’, regions which
attract trajectories from within a wider ‘basin of attraction’ and to which trajectories converge
at infinite time. A ‘strange attractor’ additionally has a fractal structure. A convenient tool for
analyzing continuous-time dynamical systems is the Poincaré section, a slice through trajecto-
ries. This can be used to construct the Poincaré first-return map, which plots intersection n+1
of a trajectory with the Poincaré section against intersection n, provided the trajectory passes
through the section in the same direction.

We refer to trajectories in discrete-time maps as ‘orbits’, which need not be periodic (closed).
When considering continuous-time systems we will always have in mind the relation to the
discrete-time maps via the Poincaré first-return map, and so refer to orbits in these cases also.
An orbit is ‘Lyapunov stable’ if all trajectories which start sufficiently close to it remain so for
all time [32]. If a Lyapunov-stable orbit is also attracting, then it is said to be stable, although
we often reiterate the attracting nature of stable orbits here. The Lyapunov stability of an
orbit can be characterized by its Lyapunov exponents, which are calculated using a local lin-
earization of the nonlinear map at a point in time. At a maximum the linear term vanishes.
In the cases considered here this leads to ‘superstability’, which can be thought of either as
a Lyapunov exponent of −∞ or as trajectories converging onto the orbit at a faster-than-
exponential rate [34]. There is a separate notion of ‘structural stability’, meaning the orbits
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1

10
0

xn

x n
+
1

-1 xn 1
-1

1

x n
+
1

Figure 3: The logistic map xn+1 = 1−µx2
n. Left: for µ= 0.5 the map features a single stable

fixed point. This can be found by the ‘cobwebbing’ technique: draw a vertical line to the map,
then a horizontal line to the diagonal xn+1 = xn, then iterate. This feeds the output of one
iteration into the input of the next, and so on. Right: for µ = 1.2 the fixed point is unstable,
but there exists a stable period-2 orbit onto which trajectories converge (again found through
cobwebbing).

under consideration are unaffected by sufficiently small changes to the system parameters. All
cases considered in this paper are structurally stable.

3.2 Symbolic Dynamics Background and Nomenclature

In this section we present a pedagogical introduction to some basic concepts in symbolic dy-
namics. The ideas are presented clearly in reference [34], an excellent resource. Other classic
references include [30,35–37].

In the majority of this paper we focus on the logistic map:

xn+1 = 1−µx2
n (2)

with real-valued x ∈ [−1,1]. Note that this is not the standard writing of the map, but leads
to a neater analysis in what follows. The map is shown in Fig. 3 for several choices of the pa-
rameter µ, along with the corresponding stable, attracting orbits of the dynamics. The logistic
map models a discrete-time dissipative dynamical system, with each iteration constituting a
time step. Despite the map’s simplicity, it features stable periodic orbits of all periods, as well
as chaos [32,35,37]. The map was originally introduced as a simplified model of animal pop-
ulation dynamics [38]. Additionally, it falls into the same universality class as a wide range of
continuous-time nonlinear dynamical systems. In Section 5 we demonstrate that the results
found for the logistic map can be extended to continuous-time dynamical systems of both
the autonomous (Rössler) and periodically-driven (forced Brusselator) type. These extensions
provide testable predictions for physical systems, but the simplicity of the logistic map makes
it invaluable in introducing and proving the relevant ideas.

Symbolic dynamics applied to the logistic map entails a coarse-graining to simply asking
whether we are on the left, L (x < 0), or right, R (x > 0), of the maximum [35–37]. The xn in
the iterations are found to an appropriate precision, and recorded. Once the desired number
of iterations has been carried out, we assign a letter to each according to whether it is greater
or smaller than zero. The central point x = 0 has a special significance, since its appearance
in an orbit implies superstability: there is no linear expansion of the curve at its maximum,
so the Lyapunov exponent is −∞, and trajectories converge faster than exponentially onto
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such orbits. We denote this point C . Iterations of the map can be carried out by the ‘cobweb-
bing’ technique: drawing successive vertical lines to the map and and horizontal lines to the
diagonal line f (x) = x . If we consider the set of points of the diagonal line which are hit,
and which side of the map they fall onto, we will find a sequence of letters taken from the set
{R, L, C}. This sequence of letters is termed a word. When the word is periodic we write only
the repeating part. We will be interested in finding ‘admissible’ words: those which describe
stable, attracting, orbits.

The superstable period two sequence is described by the word RCRC . . . = (RC)∞, from
now on denoted RC . The word LC is inadmissible, as there is no intersection of the line
f (x) = x in the range −1 < x < 0. The admissible words of the logistic map turn out to be
universal, in the sense that the same words are the admissible words of any differentiable 1D
maps. If the map is additionally unimodal, having a single maximum like the logistic map, the
sequence in which the words develop as the parameter µ is increased is also universal [36]. It
is called the ‘universal sequence’, and it provides a re-ordering of the set of integers (so that
each integer appears once as the length of a stable orbit) [39]. Continuous-time dynamical
systems fall into this same universality class provided they are sufficiently dissipative. Note that
all sufficiently dissipative continuous-time strange attractors have differentiable 1D discrete
maps as their Poincaré sections, and all differentiable 1D discrete-time maps can be related to
continuous-time attractors [40]. In fact, dissipation may be too strong a requirement, as we
discuss in Section 7 when considering non-dissipative Hamiltonian systems.

All orbits longer than two are described by words beginning RL, as the trajectory first
goes to the largest x it will ever hit (positive, so R), then the smallest x it will hit (negative,
so L). This provides a useful constraint when searching for quasilattices, as it specifies that
the first cell generated by the inflation rule must be labeled R, and the second L. Simple
algorithms exist for determining the admissibility of a given word, and therefore dynamical
trajectories. Reference [34] gives an extensive explanation of various methods. One of these,
the generalized composition rule, we explain and employ shortly.

Despite a great deal of overlap between the study of quasiperiodic dynamical systems and
the study of quasilattices, the latter have not previously been identified as admissible trajec-
tories in dynamical systems. A comment is necessary regarding the relation to quasiperiodic
systems, which feature two or more incommensurate frequencies, and which are well-studied
in the context of dynamical systems. Quasiperiodic systems could either be described as hav-
ing an uncountably-infinite number of unit cells of different lengths, or as having one unit
cell of infinite length, or neither. Quasilattices, on the other hand, have a finite number of
unit cells, with most studies focussing on the case of two [41]. They therefore feature a mini-
mum and maximum spacing between cells [16,17]. If we consider an irrationally-sloped line
drawn through a 2D lattice, as in Fig. 1, the spacing of intersections of the line with the lat-
tice is quasiperiodic, and may be infinitesimally small. The sequence of symbols generated,
however, is a quasilattice.

References [30,42] consider a simple linear quasiperiodic system defined by the map

xn+1 = xn +α (3)

on the interval x ∈ [0,1) (with x = 0 and x = 1 identified) for quadratic irrational α. By divid-
ing the domain into two partitions, a coarse-graining is defined which leads the quasiperiodic
motion to spell the corresponding word describing the quasilattice. The lack of nonlinearity,
however, makes these states ‘marginally stable’, meaning they have zero Lyapunov exponent,
and can be destroyed with infinitesimal perturbations. This is the key difference with the
quasilattice states we identify here, which maintain their sequences under such perturbations.
Stability is key in the present study, as in the previous work on time crystals (a point we return
to in Section 6) [7–10].
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It should be noted that, in any chaotic regime, all periodic and aperiodic orbits appear but
are unstable [37]. This includes both the quasilattice trajectories we seek, and their periodic
approximations. In Anosov chaotic systems, obeying Smale’s Axiom A, unstable orbits have
both stable and unstable manifolds [43,44]. If a trajectory starts on an orbit’s stable manifold,
it stays close to the orbit for all time, although it is unstable to perturbations taking it off
the manifold. ‘Control of chaos’ involves protocols to direct trajectories onto given stable
manifolds, and to stabilize chosen orbits within chaotic systems [45–48]. These techniques
require the evolution to be monitored, and tailored perturbations to be added based on both
the particular system and the evolution of the trajectory. In the present work we seek to
drive a dynamical system purely periodically, and to receive a response which spontaneously
breaks the symmetry down to that of a quasilattice. In this way the work generalizes the
results of previous work on time crystals, in which a periodic driving received a response
breaking the symmetry to a periodic response of twice the period. For this reason we disallow
symmetry-breaking perturbations on top of the driving. We discuss what can be termed true
time quasicrystals in Section 6.

3.3 Word Lifting

Once a sequence is established to be admissible, it is necessary to identify the parameter set-
tings which will allow its realization. In the logistic map of Eq (2), it is necessary to identify
the parameter µ. This process is known as ‘word lifting’ [34].

The logistic map is many-to-one, so its inverse is multivalued. In taking the inverse we have
to specify which of the two branches to take, left or right. So define two inverse functions like
so:

f −1
L (x)¬ L (x) = −µ−

1
2
p

1− x

f −1
R (x)¬ R (x) = µ−

1
2
p

1− x ,

where ‘¬’ indicates a definition. A period-N orbit is defined by

f ◦ f ◦ f ◦ . . . f (x) = x

with N nested functions. We will focus on superstable fixed points, which feature the points
x = 0 and f (0) = 1. To invert the sequence of maps we have to specify which branch to take
at each iteration. Take the example of the superstable period five sequence RLRRC:

f ( f ( f ( f ( f (0))))) = 0

↓ f (0) = 1

f ( f ( f ( f (1)))) = 0

↓
f ( f ( f (1))) = R (0)

and, inverting the other functions to form the original word,

1= R ◦ L ◦ R ◦ R (0)

1= µ−
1
2

√

√

1+µ−
1
2

È

1−µ−
1
2

Ç

1−µ−
1
2
p

1− 0

↓ ×µ

µn+1 =

s

µn +
r

µn −
q

µn −
p

µn.
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The indices introduced in the final expression indicate an iterative expression with which to
find µ numerically. In general, for the logistic map, each letter in the word simply dictates the
corresponding ± in the sequence in the final expression. As µ must still be found numerically,
it is simpler to define separate functions for R and L, and iterate the expression

µn = Rµn−1
◦ Lµn−1

◦ Rµn−1
◦ Rµn−1

(0) ,

where ‘◦’ indicates function composition. It is a testament to the power of the technique that,
despite each nested function introducing an additional square root, we are able to apply word
lifting to seventy-letter words without issue.

3.4 Maximal Sequences and the Generalized Composition Rule

In this section we define some terms and operations used later in the paper. We stick to com-
mon conventions, and refer the reader to the references for further explanation and proofs [32,
34,39].

Parity of Words: the parity of a word Σ, P (Σ), can be established by the following facts:

P (R) = 1

P (L) = −1

P (ΛΣ) = −P (Λ) P (Σ)

that is, the parity of the word counts the number of Rs; a word with an odd number of Rs is
said to be odd, and, somewhat counter-intuitively, has parity +1.

Order of Words: letters are ordered L < C < R, which just corresponds to their ordering
along the real line. Given two words

W1 =W ∗σ . . .

W2 =W ∗τ . . . ,

where W ∗ is common to both words, the order of the words is as follows:

W ∗ even,

¨

σ > τ

σ < τ

→W1 >W2

→W1 <W2

W ∗ odd,

¨

σ > τ

σ < τ

→W1 <W2

→W1 >W2.

Note that the order of two words matches the order in which they appear as µ is increased
in the logistic map, or the equivalent of µ is increased in a general unimodal differentiable
map [36,39].

Maximal Words: the significance of maximality is that any superstable periodic orbit is
described by a maximal word, and if any maximal word has its last letter substituted with a C
its orbit becomes superstable [37]. A word Σ is maximal iff

Σ≥ Sk (Σ) ∀k

where the shift operator Sk removes the first k letters of the word (shifts the symbols by k to
the left). If the word is of finite length, it is maximal if it is larger than all its subshifts [30].

The generalized composition rule: this is a method of generating maximal sequences by
substituting letters into already known maximal sequences. Using the notation that Σ|C is the
word Σ with its final letter substituted with a C , given a maximal word Σ, the substitutions
R→ ρ and L→ λ also yield a maximal word if the following are true:
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1. P (λ) = P (L), P (ρ) = P (R)

2. ρ > λ

3. ρ|C is maximal

4. ρλ|C is maximal

5. ρλ∞ is maximal.

We again refer to the references for the proof, but note that the first rule ensures that substitu-
tions maintain the parity of the word, and the other rules ensure the substitution’s maximal-
ity [34].

The Periodic Window Theorem: any parameter µ corresponding to a superstable orbit
must be contained in a window of values µ of finite measure corresponding to stable (but not
superstable) orbits [34,37]. This can be seen for the logistic map in Fig. 4. Note that while the
window is guaranteed to exist and be of finite measure, its actual width is system-dependent,
and cannot necessarily be simply determined. It is not even true, for example, that either
longer words or later words in the universal sequence have smaller windows [34].

3.5 Application to the Period-Doubling Cascade

In order to demonstrate the use of these concepts, we consider the the period-doubling cascade
route to chaos in the logistic map. The working in this section is well-understood, but it
provides a useful reference when considering the Pell cascade in subsequent sections [32,34,
37,49,50]. Period doubling can be generated by repeated use of the substitutions

R→ ρ = RL

L→ λ= RR. (4)

This is the simplest possible nontrivial substitution compatible with the generalized composi-
tion rule, as parity (number of Rs) must be preserved, meaning ρ must have an odd number,
and λ an even number, of Rs. Applied to the initial symbol R we have:

R→RL

→RLR2

→RLR3 LRL

→RLR3 LRLRLR3 LR3

→RLR3 LRLRLR3 LR3 LR3 LRLRLR3 LRLRL

→ . . .

The length of the word after n iterations is 2n. Figure 4 shows the points cycled between
once transients have died down, i.e. the points constituting the stable orbit, for each value
of µ in the logistic map of Eq. (2). The plot is known as an orbit diagram [32]. Inspecting
the letters of each word generated by Eq. (4), we find the sequences of points visited in the
uppermost part of each periodic window (after the line crosses x = 0) in each period doubling
in Fig. 4. Since the mapping in Eq. 4 obeys the criteria of the generalized composition rule,
and since the starting term R is maximal and admissible, each term is therefore maximal and
admissible.

Some of the smaller periodic cycles are shown to the right of the diagram. For µ < 3
4

there is a single stable fixed point which is converged to for all starting conditions. While the
value x∞ converged to depends on µ, it always lies on the right of the map, so is described
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0 1x[5000 - 5200]

RLμ=2

P1=R

P2=RL

P∞
P3

..
.

..
..

21

22
2∞

μ=1

-1

xn

xn+1

Figure 4: The orbit diagram of the logistic map of equation (2). The map is iterated for 5000
steps at each value of µ, to allow stable orbits to converge, then 200 points are plotted. Points
x < 0 are on the left of the map, and are labeled L (labels x = 0 : C , x > 0 : R). Period
doublings are marked with dashed lines. Chaos results above 2∞ at µ ≈ 1.4012. The boxes
on the right show the superstable orbits of period 2, 4, and 3 (bottom to top). Additionally,
the grey solid arrows indicate the sequence of superstable orbits constituting the Pell cascade
(Section 4.3). The Pell quasilattice P∞ is reached by µ≈ 1.6703.

by the word R. At µ = 3
4 there is a period-doubling bifurcation to a stable 2-cycle (period 2

orbit) which can be found analytically. At µ = 5
4 this period 2 orbit becomes superstable, as

it contains the point x = 0 (implying the other point, x = 1). This process then repeats an
infinite number of times: with increasing µ, a stable 2n orbit described by the word ΣR (ΣL)
becomes superstable, ΣC , then stable ΣL (ΣR), then a period-doubling bifurcation occurs to
orbit length 2n+1 (note that the terminal letter alternates, hence the importance of the words’
parities). An infinite number of such bifurcations then occurs in a period-doubling cascade,
until at around µ≈ 1.42 period 2∞ is reached, and a chaotic regime is entered.

The periodic window theorem can be seen in action in Figure 4. The value µ = 1 cor-
responds to a superstable period-2 orbit, since f (x) = 1 − x2 iterates between x = 0,1.
Symbolically, the corresponding word is RC . There is a finite range of values 3

4 < µ < 1 where
the period-2 orbit RR is stable (R in our conventions), and a finite range 1< µ < 5

4 where the
period-2 orbit RL is stable. Equivalent results can be seen for the higher period-doubled orbits
in the cascade.

It is interesting to note that the period-doubling cascade generated by the substitution rules
of Eq. (4) shares many properties with the growth of a quasilattice: each new word contains
the previous word as its leftmost string, and the final word in the period-doubling cascade will
consist of an infinitely-long aperiodic string of two symbols with two spacings between each
symbol (zero or one between Rs, one or three between Ls) [30]. These are necessary but not
sufficient conditions for quasilattices. To check whether the infinitely period-doubled word is
a quasilattice, we can examine its substitution matrix:

A=

�

1 1
2 0

�

which has eigenvalues 2 and -1. The requirement for a 2 × 2 substitution matrix to define
a quasilattice is that its eigenvalues are Pisot-Vijayaraghavan numbers: one must be greater

14

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001


SciPost Phys. 5, 001 (2018)

than one, and the absolute magnitude of the other must be strictly less than one [16, 28].
The period-doubling sequence therefore fails on the grounds that the smaller eigenvalue has
a magnitude of exactly one. This is why it does not appear in Table 1. While only an infinites-
imal difference, it is the difference between rationality and irrationality. There can be no
cut-and-project construction corresponding to the matrix A, since the intersection line would
require rational slope 2, which implies a periodic sequence of cells, yet the inflation rules are
generating an aperiodic sequence.

4 Growing Time Quasilattices

In this section we present our main results. Building on the background in the previous sec-
tions, we demonstrate the existence of ‘time quasilattices’: tilings of the time axis by two unit
cells of different duration, in an aperiodic pattern which can be described as a slice through a
two-dimensional tiling of a space spanned by two orthogonal time directions. We require time
quasilattices to be both stable to perturbations, and to attract nearby trajectories in the phase
space. We also require them to ‘grow’ in a systematic manner, by inflation rules.

We will show that the quasilattice cells, labeled R and L, correspond to the letters in ad-
missible words in symbolic dynamics, and therefore the points visited at each iteration of a
discrete-time differentiable unimodal map coarse-grained into two halves. We consider the
specific example of the logistic map, but the results apply to the map’s entire universality
class, which contains all discrete-time differentiable 1D maps, as well as continuous-time dy-
namical systems which are sufficiently dissipative that their dynamics are well-represented by
Poincaré sections which are approximately 1D. This point is returned to in Section 5 in which
we consider physical implementations of the results.

This section proceeds as follows. In Section 4.1 we identify that there are precisely two
physically-relevant 1D quasilattices admissible as stable attracting orbits in nonlinear dynam-
ical systems. We term these the infinite Pell word, and the infinite Clapeyron word. In Sec-
tion 4.2 we prove the result rigorously using the tools of symbolic dynamics. Focussing on the
simpler Pell word, in Section 4.3 we identify an analogue to the period-doubling cascade route
to chaos, which we term the ‘Pell cascade’, which provides a systematic growth mechanism of
the infinite Pell word by successive periodic approximations (finite Pell words). These provide
a practical method of implementing time quasilattices in finite-duration experiments.

4.1 Admissible Time Quasilattices

Employing the tools explained in the background sections, proving the existence of time quasi-
lattices reduces to the task of identifying quasilattice inflation rules of the form

R→ ρ, L→ λ,

which obey the generalized composition criteria of Section 3.4.
Checking the ten sets of inflation rules listed in Table 1 against the criteria of Section 3.4, it

seems that there is only one match. The Fibonacci words of class 1 are ruled out, for example,
as the corresponding inflation rules do not preserve the words’ parities. The first admissible
class is 2a, generated by the substitution rules

R→ ρ = RL, L→ λ= RRL. (5)

The corresponding substitution matrix

A=

�

1 1
2 1

�
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has eigenvalues 1 ±
p

2: the silver ratio and its Galois conjugate. The sequence of words
generated by the substitutions applied to R is

R→RL

→RLR2 L

→RLR2 LRLRLR2 L

→RLR2 LRLRLR2 LRLR2 LRLR2 LRLRLR2 L

→ . . .

of lengths 1, 2, 5, 12, 29, 70, . . . (sequence A000129 in OEIS [51]). These are known as the
Pell numbers, Pn, after Euler’s inaccurate attribution of their discovery to John Pell [52]. We
refer to the words as ‘Pell words’, and denote both the Pell word and its length by Pn. The
silver ratio is to the Pell words Pn as the golden ratio is to the Fibonacci words Fn, i.e.

1+
p

2= lim
n→∞

Pn

Pn−1
.

The infinite Pell word P∞ we term the Pell quasilattice. This quasilattice was previously con-
sidered in reference [53].

Inspecting the inflation rules of the remaining nine quasilattice classes other than the Pell
quasilattice, it appears at first that all others are incompatible with the generalized compo-
sition rules. However, some care has to be taken, since the inflation rules listed in Table 1
are ambivalent to the labels attached to each cell. For example, class 3a is listed as having
substitution rules

R→ RL2, L→ RL3,

which do not preserve parity (number of Rs). If we relabel the cells R↔ L we have

L→ LR2, R→ LR3,

which do preserve parity. Additionally, we are free to cyclically permute the letters in the substi-
tuted sequences ρ and λ, as this just corresponds to translating the corresponding quasilattice
by a finite number of symbols (time steps). Cyclic permutation is allowed provided that it
preserves the topology of the quasilattice. This can be understood by attempting to re-order
the Pell inflation rules as follows:

R→ RL, L→ LRR,

which would lead to the words:

R→ RL→ RL2R2→ RL2R2 LR3 LRL→ . . .

The sequence is not growing a quasilattice, as it does not obey the necessary condition of
having two cell types with two spacings between each cell. On the other hand, the topology-
preserving re-ordering

R→ RL, L→ RLR

leads to the words

R→RL

→RLRLR

→RLRLR2 LRLR2 L

→RLRLR2 LRLR2 LRLRLR2 LRLR2 LRLRLR→ . . .

16

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001


SciPost Phys. 5, 001 (2018)

which obey the necessary condition, and can be seen to be leading to a translation of the usual
Pell quasilattice (simply note that the distribution of Rs and Ls is tending to the silver ratio as
before). This re-ordering fails to fulfill the criteria of Section 3.4, however.

Classes 1, 2b, 3b, 4b, and 4d are inadmissible in any combination, as the rules violate par-
ity. Considering all possible cyclic permutations of the letters within ρ and λ in the remaining
classes, ten can be re-arranged into admissible forms. However, a quick check of the inflated
words shows that nine do not constitute quasilattices. The result is that there is only one ad-
ditional quasilattice which can lead to stable attractive orbits in nonlinear dynamical systems.
It is defined by the inflation rules of class 3a, adjusted to the following form:

R→ RLR2, L→ LR2, (6)

which lead to the substitutions

R→RLR2

→RLR2 LR3 LR3 LR2

→RLR2 LR3 LR3 LR2 LR3 LR3 LR3 LR2 LR3 LR3 LR3 . . .

i.e. words of length 1, 4, 15, 56, 209, . . . (OEIS A001353). Up to sign differences these are
known as the ‘Clapeyron numbers’ (OEIS A125905) after appearing in a treatise on beam
bending by Clapeyron [54]. We name the corresponding words the Clapeyron words Cn, with
the infinite Clapeyron word C∞ being the Clapeyron quasilattice. The ratios of cell lengths of
the Clapeyron words asymptotically approach the value

2+
p

3= lim
n→∞

Cn

Cn−1
.

The analyses presented throughout this paper apply equally well to the Clapeyron quasilattice
as to the Pell quasilattice, although we focus on the simpler Pell case.

4.2 Proof of Maximality of the Pell Words

To prove all Pell words are maximal, it is sufficient to show that the Pell substitution rules of
Equation (5) obey the generalized composition rules of Section 3.4. We restate and address
criteria (1)-(5) of Section 3.4 individually.
(1) P (λ) = −1, P (ρ) = 1:

P (ρ) = −P (R) P (L) = 1Ø
P (λ) = −P (R) P (RL) = P (R) P (R) P (L) = −1Ø

(2) ρ > λ:
The common word appearing as a leftmost string between ρ and λ is W ∗ = R, which is of odd
parity. The next letter in ρ is L, and that in λ is R. Since L < R, and the common word is of
odd parity, this implies that ρ > λØ
(3) ρ|C is maximal:

We must check that all finite shifts of the word Σ= ρ|C , i.e. truncations of the word from
the leftmost letter, are smaller than Σ itself. The only shifted word is Σ1:

Σ= ρ|C = RC

Σ1 = C .
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The common word W ∗ = blank, which contains an even number of Rs (zero) and is therefore
even. The next letter R> C ∴ Σ> Σ1, so ρ|C is maximal Ø
(4) ρλ|C is maximal:

Σ= ρλ|C = RLRRC

and, as before, we check all shifts of the word (b is the blank word):

Σ1 = LRRC , W ∗ = b, even, L < C ∴ Σ> Σ1

Σ2 = RRC , W ∗ = R, odd, L < R ∴ Σ> Σ2

Σ3 = RC , W ∗ = R, odd, L < C ∴ Σ> Σ3

Σ4 = C , W ∗ = b, even, R> C ∴ Σ> Σ4

∴ Sk
�

ρλ|C
�

< ρλ|C ∀k

and ρλ|C is maximal Ø
(5) ρλ∞ is maximal:

Σ= ρλ∞ = RL (RRL)∞

Σ1 = L (RRL)∞ , W ∗ = b, even, R> L ∴ Σ> Σ1

Σ2 = RRL (RRL)∞ , W ∗ = R, odd, L < R ∴ Σ> Σ2

Σ3 = RL (RRL)∞ = Σ

therefore

Sk (ρλ∞)≤ ρλ∞∀k

and ρλ∞ is maximal Ø
The Pell inflation rules therefore obey the generalized composition criteria. Since the word

R is maximal, and the Pell words are generated by application of the Pell inflation rules to R,
all Pell words are therefore maximal, including the Pell quasilattice P∞. �

An identical analysis can be applied to the Clapeyron word inflation rules to prove their
admissibility, and can be applied to all other quasilattices listed in Table 1 to see that these two
are the only possible time quasilattices. In all cases the results can be verified by attempting to
locate the corresponding values of µ using word-lifting: if the words are inadmissible, even a
single iteration of µn+1 (µn) is likely to fail, whereas the value of µ converges for a wide range
seed values even for the length 70 Pell word (requiring 69 nested square-root functions).

4.3 The Pell Cascade

The transition to chaos in the logistic map comes about through an infinite number of appli-
cations of the period-doubling substitutions R→ RL, L→ RR applied to the symbol R. This is
know as a period-doubling cascade, as each iteration leads to a word twice the length of its
predecessor. The Pell quasilattice is generated through an infinite number of applications of
the Pell inflation rules, Equation 5, to the symbol R, and we term the sequence the Pell cas-
cade. Just as in the period-doubling cascade, successive terms in the Pell cascade are reached
through increasing the value of the parameter µ in the logistic map of Equation (2). The first
few values, and the limit P∞, are indicated in Figure 4.

The values of the parameter µ used to generate successive Pell words as stable attracting
orbits in the logistic map are given in Table 2, found using the word lifting technique. In
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Table 2: The sequence of parameters µC required to give successive superstabilized Pell words
Pn|C , of length Pn, as superstable attractive orbits in the logistic map of Equation (2). The first
two values are known analytically. The others are found via word lifting, and are accurate to
at least the number of digits stated. The lower and upper bound of each periodic window, µ±,
is also stated; the period-70 window is smaller than machine precision (10−16).

Pn µC µ− µ+

1 0 0 3/4
2 1 3/4 5/4
5 1.625413725123 1.62443 1.62838
12 1.66964217697186 1.66964 1.66965
29 1.67028686872861 µC − 3× 10−10 µC + 2× 10−9

70 1.67028763874509 - -
∞ ≈ 1.670288

order to give a faster convergence of the numerical iterations, the final letter of each word has
been substituted with the central point C , which makes the corresponding orbit superstable.
The word itself can be found by infinitesimally increasing or decreasing µ so as to undo this
substitution (by appeal to the periodic window theorem). The values of µ are converging
on a value of µ∞ = 1.6703 . . .. This rapid convergence is a consequence of the fact that
the Pell numbers Pn grow faster than 2n, which itself follows from the additional letter in
the symbol L Pell substitution compared to the period-doubling substitution. The Clapeyron
cascade accelerates more rapidly still. While the widths of the periodic windows are rapidly
decreasing, in general the window widths are known to be system-dependent, and in any case
cannot be said to simply decrease with increasing word length [33,34].

Note that the successive Pell words do not appear contiguously, as do the successive words
in the period-doubling cascade. Periodic windows in a chaotic regime are entered via the
intermittency route to chaos, and exited through a period doubling cascade. All the words
within one window therefore take the form of a word with the period doubling substitution
rules applied to it. It follows that each Pell word longer than RL appears within its own
periodic window in the chaotic regime, and the sequence cannot be contiguous. As a result,
although the values of µ required to generate each successive word increase monotonically,
there may exist additional admissible words between each iteration which are not Pell words.
It is possible to find all admissible words between two words by appeal to the periodic window
theorem [34]. We omit the details here, but note that even within the chaotic regime, there
are still non-Pell words interspersed between the Pell words. For example,

P3 ≺ RLR2 LRLC ≺ P4 ≺ P4RLR2 LRLC ≺ P4RLR2 LRC ≺ P5 ≺ . . .

where ‘A≺ B’ indicates that word A appears at a lower µ than word B in the logistic map.
The inflation property of quasilattices is key in the present study. Each unit cell R and L

corresponds to a single iteration of discrete time in the dynamical system, and so these cells are
of the same length. A single inflation leads to the cells RL and RRL. These are also perfectly
good unit cells which can be used to tile the Pell quasilattice, but are now of different lengths,
two and three. This already suffices to define the infinite Pell word, appearing as a stable
attracting orbit in discrete-time dynamical systems, as a time quasilattice: a tiling of the time
axis by unit cells of two different durations, forming an aperiodic sequence generated as a slice
through a periodic tiling of two-dimensional time. Should it be desired that the durations of
the cells, in addition to their frequency of appearance, also lie in the silver ratio, systematic
approximations can be formed by repeated action of the inflation rules.
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Figure 5: The sequence of points xn visited in the logistic map with µ = 1.625 . . . chosen to
give the superstabilized period-5 Pell word P3.
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Figure 6: Temporal Fourier transforms of the sequences of points visited for superstable Pell
words P4, P5, P6 (periods 12, 29, 70). 3000 points are taken in each run. The Bragg peaks are
converging on the quasilattice values, demonstrating that the successive Pell words constitute
a systematic approximation scheme to the infinite word, while a dense background begins to
form demonstrating the quasilattice nature of the infinite word.

In Figure 5 we show the sequence of points xn visited in the first 30 iterations of the logistic
map with µ= 1.625 . . . chosen to give the superstabilized period-5 Pell word P3|C . In Figure 6
we show the temporal Fourier transform of the first 3000 iterations for Pell words P4|C , P5|C ,
and P6|C of periods 12, 29, and 70, respectively. The plots demonstrate two important points.
First, the largest Bragg peaks shift only slightly between successive words. They are converging
on their locations in the infinite Pell word, showing that the successive finite words indeed
form a systematic approximation to the quasilattice. The largest Bragg peak is converging
on

�

1+
p

2
�−1

, as expected for the infinite Pell word which is described by two cells with
lengths related through the silver ratio 1+

p
2. Second, the longer words begin to develop a

dense background in addition to the Bragg peaks. This is expected for quasilattices, which lie
between periodicity, which would show sharp Bragg peaks, and disorder, which would show
a dense, uniform distribution.
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4.4 Other Time Quasilattices

Other than the infinite Pell and Clapeyron words, no other quasilattices can possibly be grown
as stable attractive sequences in dynamical systems, as the other cases fail to fulfill the gener-
alized composition rules.

It could always be the case that the infinite words describing the other eight quasilattice
classes happen to be stable. For example, the eight-letter Fibonacci word RLRRLRLR happens
to be stable despite the Fibonacci inflation rules not fitting the composition criteria. Other
examples exist, and we cannot rule out the possibility that the Fibonacci quasilattice is also
stable. Without a systematic growth rule it is not clear how this could be seen. Even if the
infinite word could be shown to be stable but lacking in a systematic growth mechanism,
the result would not be testable in any finite-duration experiment, so would be physically
uninteresting.

Nevertheless, taking again the example of the infinite Fiboncacci word, searching along its
length we can find many sub-words of any desired finite length. If we find a sub-word which
is admissible as a stable periodic orbit, it could still be used as a periodic approximation to the
Fibonacci quasilattice. In effect, we would simply be starting the Fibonacci word at a different
point in time. To construct a set containing all the possible sub-words (and more) we note
that the Fibonacci inflation rules imply that neither two Ls nor three Rs are ever adjacent in
the word. We could then consider all possible words of a given length consisting of the letters
L and R and excluding words according to this observation. Actually, an infinite hierarchy of
such restrictions is necessary: it is also true that neither two blocks of RL nor three blocks of
RLR are ever adjacent, for instance. Such systems are considered elsewhere, for example in
references [30,55], where they are treated by various techniques of combinatorics.

Sub-words of the infinite Fibonacci word can be found which describe stable admissible
orbits of most lengths. The number of distinct n-letter sub-words of the Fibonacci quasilattice
is n + 1. Searching all possible sub-words up to length 500, the cumulative total number
of admissible words appears to grow as a logarithmic Devil’s staircase, as shown in Fig. 7.
However, even in the instances of admissible sub-words, we re-iterate that without a systematic
growth mechanism such as we have found for the Pell and Clapeyron quasilattices, the result
is uninteresting from a physical point of view.

5 Pell Words in Continuous-Time Dynamical Systems

The work so far has focussed on the logistic map of Eq. (2), a discrete-time dissipative dy-
namical system [37]. In this section we generalize our results to a range of continuous-time
dynamical systems, in order to provide physically testable examples.

We proceed as follows. In Section 5.1 we consider a continuous-time dissipative system
without driving, the Rössler attractor, and show that the results obtained for the logistic map
extend to this system. Lacking predefined time steps, however, the duration of each step ceases
to be stable to perturbations, and the result is no longer a time quasilattice in the desired
sense. In Section 5.2 we consider a continuous-time periodically-driven dissipative system,
the forced Brusselator, in which the length of each period of the time quasilattice is fixed by
the periodicity of the external driving. This constitutes a time quasilattice in a continuous-time
dissipative system. In both cases the systems considered are specific cases used to illustrate
much wider classes.
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Figure 7: Black points: the cumulative total number of admissible words (in the sense
of the universal sequence) found in the sub-words of the Fibonacci quasilattice up to a
given length. Black lines connect the points. Silver curve: logarithmic fit to the data,
y = 93.1 log (1+ x/126.6). There are n+ 1 sub-words of the Fibonacci quasilattice of length
n, so the cumulative total number of sub-words up to length n, neglecting admissibility, is
1
2 (n+ 1) (n+ 2).

5.1 A Continuous-Time Dissipative Autonomous System: the Rössler Attractor

The Rössler system is defined by the continuous-time equations of motion:

ẋ (t) = −y − z

ẏ (t) = x + a y

ż (t) = b+ z (x − c) . (7)

The system is dissipative. For a wide range of parameters the system features a strange at-
tractor. The case of a = 0.2, b = 0.5, c = 5.7 is shown in Fig. 8. We define a Poincaré
section through the attractor by finding its intersections with the half-plane x = 0, y > 0. The
trajectories’ intersections with the plane are shown in the figure.

We use the Poincaré section to construct a Poincaré first return map, plotting the y co-
ordinate at intersection n+ 1, yn+1, against the y co-ordinate of the previous intersection yn.
The map is unimodal, bearing a strong resemblance to the logistic map. The first return map is
shown for three values of the parameter b in Fig. 9. Note that the maps are well-approximated
by 1D lines, which follows from the large dissipation in the Rössler equations of motion.

Varying b over the range 0 < b < 2 we find all the qualitative features derived for the
logistic map. In Figure 10 we plot an orbit diagram for the Rössler system by plotting y5000 to
y8000 (it is assumed stable orbits have been reached after this many iterations) against 2− b.
Chaos develops via a period-doubling cascade reached by around 2− b = 1.3. The universal
sequence of periodic windows within the chaotic regime is again visible, with the period-6
orbit just below 2− b = 1.4, and the period-3 orbit at around 2− b = 1.65. The maxima in
the first-return maps vary as a function of b, and we have located and plotted them on the
orbit diagram in black. These constitute the superstable points in the orbits. Note that each
periodic window again has a superstable point contained within it.
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Figure 8: The Rössler strange attractor given by Eq. (7) for parameter values a = 0.2, b = 0.5,
c = 5.7. The black points mark the intersections with the Poincaré section given by the half-
plane x = 0, y > 0. We iterated the equations of motion, Equation (7), using a fourth-order
Runge-Kutta algorithm.

Figure 9: The Poincaré first-return map obtained from the Rössler equations of motion (cf.
Fig. 8) by plotting the y co-ordinate, yn+1, of intersection n+1 with the Poincaré section x = 0,
y > 0, against the y co-ordinate of the previous intersection yn. The parameters are a = 0.2,
c = 5.7, 2− b = 1.4 (silver), 2− b = 1.5 (gold), 2− b = 1.6 (black). Note that the maxima
shift slightly as a function of the varying parameter b.

As an example of a Pell word in the Rössler system, the period-5 window can be seen around
2−b ≈ 1.5. Zooming in, we found the window to be located around 2−b ≈ 1.492. Setting this
parameter value, the system rapidly converges to a period-5 orbit, which has intersections with
the first return map described by the word RLRRC . A slight decrease of 2− b then stabilizes
the Pell word P5 = RLRRL. The 2− b = 1.492 first-return map (after allowing transients to die
down) is shown superposed on the close-by 2− b = 1.5 chaotic map in Figure 11, along with
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Figure 10: Orbit diagram for the Rössler system found by plotting intersections y5000 to y8000
of the Poincaré section for a range of parameters b. It is assumed stable orbits have been
converged to for parameters at which they exist. The maxima of the first-return maps have
been used to identify the superstable line shown in black (points indicate identified maxima).
All qualitative features of the logistic map appear, including a period-doubling cascade into
chaos, and a series of periodic windows following the universal sequence which have opened
around superstable orbits.

Figure 11: In gold is a reproduction of the 2 − b = 1.5 first-return map from Fig. 9. In
black is the first-return map for 2− b = 1.492. The slight change in parameter takes us into a
period-5 window stabilized by the superstable orbit described by the superstabilized Pell word
P5|C = RLRRC (the first 5000 steps have been omitted so that the periodic orbit is reached).
The cobweb has been added to emphasize how the results for discrete-time maps have carried
to this continuous-time system.

the cobweb which generates it in the discrete-time 1D map. Figure 12 shows the trajectory
itself.

24

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001


SciPost Phys. 5, 001 (2018)

Figure 12: The projection into the x y plane of the continuous-time orbit generated by the
superstabilized Pell word P5|C = RLRRC , found by setting a = 0.2, 2− b = 1.492, c = 5.7 in
the Rössler equations and iterating for 5000 steps before plotting so as to allow the orbit to
stabilize. In gold is the Poincaré section.

The results match nicely with those predicted by the logistic map. From the existence of
the universal sequence in the Rössler system it follows that the Pell words, including the infi-
nite Pell word, exist as stable attracting orbits in the Poincaré first-return map. A qualitatively
similar, physically-implemented system is the Belousov-Zhabotinsky autocatalytic chemical re-
action [56–58]. This system, too, is known to feature the universal sequence, and therefore
also features the Pell words as admissible trajectories.

However, having moved to continuous time, neither system can reasonably be described as
a time quasilattice. Although the sequence of Ls and Rs visited by the trajectory remains fixed,
the ‘time of flight’ between successive intersections of the Poincaré section is neither fixed,
nor stable to perturbation. In order to find such stability, we consider a periodically driven
dissipative system in the next section.

5.2 A Continuous-Time Dissipative Driven System: the Forced Brusselator

The forced Brusselator (portmanteau of ‘Brussels’ and ‘oscillator’) is described by the equations

ẋ (t) = A− (B + 1) x + x2 y +α cos (ωt)

ẏ (t) = Bx − x2 y. (8)

The undriven model with α = 0 has been used to model certain autocatalytic chemical re-
actions, and again bears similarity to the Belousov-Zhabotinsky reaction [57–59]. Featuring
an external driving frequency ω the equations are non-autonomous, although they can be
rewritten as an autonomous set of four equations by defining

u (t) = cos (ωt)

u̇ (t) = −ωz

ż (t) =ωu
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Figure 13: The Poincaré first-return map obtained from Poincaré section u = 0 of the forced
Brusselator of Equation (8) with A= 0.38, B = 1.2, α = 0.05. In gold are the points obtained
at driving frequencyω= 0.72, where the response is chaotic. In black are the points obtained
at driving ω = 0.725 which gives a stable period-5 orbit described by the Pell word RLRRL.
The equations were iterated with a fourth-order Runge-Kutta algorithm iterated 105 steps,
discarding the first 5000 steps to allow transients to decay.

which can then be iterated using a Runge-Kutta algorithm. The natural Poincaré section to take
is now any constant u plane, corresponding to a periodic sampling of the system. Note that
admission to the section is dependent upon the trajectory crossing with the correct orientation.

The phase space of the equations is quite complex. While it does feature period-doubling
cascades as functions of various parameters, we were unable to locate any leading directly into
universal sequences as in the previous examples. Nevertheless, the existence of the universal
sequence words within the system has previously been confirmed [34,59].

Taking the parameter values A = 0.38, B = 1.2, α = 0.05, we find that a chaotic regime
at frequency ω = 0.72 develops into a stable period-5 window at ω = 0.725. In Figure 13
we show the Poincaré first-return map obtained from the Poincaré section u = 0 crossed in a
positive sense, for both the chaotic response (gold) and period-5 response (black). As before,
we see that the trajectory is described by the Pell word RLRRL (this frequency is slightly away
from the superstable point RLRRC , so the word itself appears). In Figure 14 we show the
period-5 trajectory and the Poincaré section.

The forced Brusselator system has the advantage over the Rössler system that the time
taken between intersections of the Poincaré section is fixed to be a multiple of the driving
frequency. The cell lengths R and L are therefore identically equal to one period of the driving,
and are stable to perturbations either of other system parameters or to random kicks to the
trajectory. Subsequent inflations such as RL, RRL constitute two different cell lengths which
can be used to tile longer Pell words when located in the system, including (in principle) the
Pell quasilattice.

It should be noted that the forced Brusselator does not fall into the same universality class
as the Rössler system or the logistic map, as it features a cubic nonlinearity. Fortunately, this is
not necessary for the words of the universal sequence to appear as stable orbits on the associ-
ated Poincaré map. In fact, the universal sequence has previously been identified in the forced
Brusselator system [34]. This is important: if we know that the universal sequence appears,
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Figure 14: The trajectory followed by the forced Brusselator equations of motion in the
period-5 window considered in Figure 13. The Poincaré section u = cos (ωt) is shown (only
trajectories passing from negative to positive u are included).

even in a re-ordered form, it means that all Pell and Clapeyron words appear. This means we
can make periodic approximations to the Pell and Clapeyron quasilattices of arbitrary dura-
tion, by refining our experimental precision. If the universal sequence does not appear, it may
be that individual words can be found regardless, but the process may fail at or above a given
duration. Furthermore, without some reason to believe that all the words appear in principle,
we are merely investigating periodic orbits of the first-return maps, as opposed to using them
as periodic approximations to time quasilattices.

The forced Brusselator is stabilized to perturbations in part by its dissipation (the equations
of motion can again not be rewritten into a Hamiltonian form). Despite lacking a conserved
quantity which can be thought of as energy, it is still possible to define a temperature-like
external noise in dissipative systems, at least away from the superstable points. Robustness
of the trajectories to finite temperature necessarily requires the interactions of a macroscopic
number of degrees of freedom, not present here [21]. The next section addresses this issue.

6 Time Quasicrystals

In the previous sections we established the concept of time quasilattices: the mathematical
structure of quasilattices, in the time direction. We found them as stable and structurally sta-
ble trajectories in dissipative dynamical systems. Until now we have not been concerned with
the physical origin of the stabilising non-linearity, owing to the universality of chaotic dynam-
ics [32]. After the present paper appeared online, a number of experimental proposals for
realizing discrete time crystals in driven dissipative quantum many-body systems were pro-
posed [19,20]. In this section we identify signatures of time quasilattices in these systems; as
the structures are additionally rigid in the same sense as time crystals, we identify these re-
sponses as new states of matter, ‘time quasicrystals’. We begin by providing precise definitions
of these phrases before identifying signatures of the states.
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Discrete time crystals feature a period-doubled response to a periodic driving [7–10].
There should also be a sense of rigidity, in order to bring them in line with our intuition
regarding spatial crystals [21]. The three cases of interest in the present context are as fol-
lows.

• A time quasilattice returns an aperiodic response to a periodic driving, featuring two
unit cells of different durations, where each cell appears with precisely two spacings
and the ratio of cell populations tends to a Pistot-Vijayaraghavan number as the number
of cells tends to infinity. Both the durations of the cells and their sequence are stable
and structurally stable to perturbations, so the order persists indefinitely.

• A discrete time crystal occurs when (i) the discrete time translation symmetry of a periodic
driving is spontaneously broken by a lower-period response, which is (ii) made both
stable and structurally stable to perturbations and finite temperature by (iii) the local
interactions of many degrees of freedom, and which (iv) persists indefinitely. There
should also be (v) a sense in which it can be understood to be a ground state.

• A discrete time quasicrystal occurs when the discrete time translation symmetry of a pe-
riodic driving is spontaneously broken by a time quasilattice response, which is made
both stable and structurally stable to perturbations and finite temperature by the local
interactions of many degrees of freedom, and which persists indefinitely. There should
also be a sense in which it can be understood to be a ground state.

Note that this definition of time crystals does not necessarily include quantum mechanical
effects; classical discrete time crystals have been proposed, and the original proposal for clas-
sical time crystals, which break continuous time translation symmetry, was not ruled out by
the no-go theorems applied to the quantum case [2,6,21].

Some leeway is built into requirement (v), since the concept of a true ground state requires
energy to be conserved, which is not the case in any of the known examples of discrete time
crystals. In refs. [7–10] the periodic driving leads to a pseudo-energy being conserved modulo
2π, and it is in this sense requirement (v) is fulfilled. Reference [21] uses the phrase rigid sub-
harmonic entrainment for dissipative systems fulfilling the other criteria, reserving the phrase
classical discrete time crystals for the case in which the classical many-body system remains rigid
when coupled to a finite-temperature bath (although, since inherently out-of-equilibrium, the
concept of a ground state is again avoided). Other references refer to these states as dissipative
discrete time crystals [19] or equivalent phrases [20,60]. This is the convention we adopt here.

The advantage of explicitly allowing dissipation is that states beyond period doubling can
be stabilized. In reference [19] a protocol is outlined to identify dissipative discrete time
crystals in quantum many-body cavity/circuit QED setups governed by the Dicke model. Nu-
merical simulations of the classical limit show several signatures the authors identify in a
simplified discrete-time nonlinear model featuring a period-doubling cascade into chaos. The
authors further argue that these signatures are also present in the quantum many-body limit
which would be realized by the experiments they propose. The experimental identification of
a period-doubling cascade is a sufficient condition for all of the Pell and Clapeyron words to
appear, and would prove that these systems feature time quasilattices. Since the stability de-
rives from the interactions of many degrees of freedom, and the quantum many-body system
features spontaneous symmetry breaking into this state, these setups would then feature true
(dissipative, discrete) time quasicrystals.

In reference [20] dissipative discrete time crystals are identified in a numerical model of
a driven open quantum system (bosonic atoms in a double-well potential). There is a clear
period doubling cascade into chaos in the model’s classical limit – again, a sufficient condition
for the presence of time quasilattices, and therefore in this scenario (dissipative, discrete) time
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quasicrystals. The authors also identify the continuation of the classical period-doubled state to
the quantum regime via two-time correlation functions, opening the possibility of identifying
quantum dissipative discrete time quasicrystals in this system.

A proposal for a non-dissipative discrete time crystal based on a kicked Lipkin-Gleshkov-
Glick model is provided in [60]. This model features a Hamiltonian system of spins with
a periodic driving, and the authors identify candidate experimental implementations in Bose
Einstein condensates and trapped ion systems. Rigid responses of various periods are identified
within a classically chaotic regime, although no period-doubling cascade is immediately obvi-
ous. Strictly, the proposals in both references [19] and [60] violate requirement (iii) above,
since the many-body interactions stabilizing the discrete time crystal phases are infinite-range
rather than local. Local couplings ensure that the concept of dimensionality is well-defined
in abstract mathematical models: depending on the topology of local connections, a model of
many-body interactions could correspond to a range of physical dimensions. In the present
context of physical interacting particles, however, this requirement seems unnecessarily limit-
ing (the systems are all three dimensional).

In all these cases, the procedure for identifying the time quasicrystals in the classical regime
would be to identify the sequence of periodic approximations (the finite-length Pell or Clapey-
ron words) as an externally-tunable field is varied. The external field depends on the indi-
vidual systems [19, 20, 60]. Several Pell and Clapeyron words can already be seen without
further analysis in the classical limit of reference [20]. The time quasicrystals themselves are
indistinguishable from any of their periodic approximants featuring a period longer than the
observation time. Nevertheless, their existences and stabilities are guaranteed by the periodic
window theorem [59].

In experimental searches for time quasicrystals, the only things which can be measured
are periodic approximations. This restriction is made necessary by the finite duration of the
experiment. Each periodic response is simply a dissipative discrete time crystal, and so the
techniques developed in the references already suffice to identify them in both the classical
and quantum regimes. The only extension necessary experimentally would be to identify that,
as a function of the tunable system parameters, a sequence of time crystals is found with
periods increasing as either the Pell or Clapeyron words.

7 Conclusions

In this paper we have demonstrated the existence of time quasilattices in dissipative dynam-
ical systems. These are aperiodic tilings of the time axis with two different unit cells, which
can be constructed as slices through two orthogonal time directions. We demonstrated that
time quasilattices can appear as stable, attracting orbits in any dissipative nonlinear dynami-
cal system which features the universal sequence, or any re-ordering thereof [34,39]. This is
a wide universality class, encompassing physical applications in the study of animal popula-
tions [38], chemical reactions [57,58], hydrodynamics [61], and electronics [62,63], to name
a few. We demonstrated that these time quasilattices can be ‘grown’ by repeated application
of their inflation rules, meaning that systematic finite periodic approximations can be found
in any system in which they exist, giving an experimentally-testable method of searching for
them.

Of the ten equivalence classes of physically-relevant one-dimensional quasilattices recently
identified by Boyle and Steinhardt [28], we find that precisely two are able to form time
quasilattices. These are class 2a, the infinite Pell word P∞ related to the silver ratio 1+

p
2,

and class 3a, the infinite Clapeyron word C∞ related to 2+
p

3. The relevance of these cases
is that they generalize to higher-dimensional quasicrystals which can be grown in the lab [24,
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25]. Class 2 generalizes to the Ammann-Beenker tiling, a two-dimensional tiling with an
8-fold rotationally-symmetric diffraction pattern, and class 3 generalizes to the cases of two-
dimensional tilings with 12-fold rotationally-symmetric diffraction patterns [23].

It is necessary to consider the time quasilattices’ place in the set of periodic space-time
orders discussed in the Introduction. Choreographic crystals constitute an extension of the
concept of space group symmetry to encompass the time direction [13]. The interesting cases
contain multiple moving elements, whereas the time quasilattices discussed here focus on the
trajectory of a single particle. Interestingly, chaotic systems can demonstrate synchroniza-
tion when coupled, while maintaining their unpredictability [32, 48, 64]. This synchroniza-
tion can take the form of a fixed delay between points on the particles’ trajectories; it has
even been demonstrated to persist to the quantum regime of systems with a chaotic classical
limit [65–67]. Since both periodicity and chaos can synchronize it would seem likely that time
quasilattices, lying between the two, can do so as well. This would suggest a multi-particle im-
plementation of dissipative time quasilattices which could feature an enhanced choreographic
order.

Discrete time crystals spontaneously break the discrete time translation symmetry of a pe-
riodic driving force with a response of twice the period [7–10]. They are also required to
be stabilized to finite temperature through the interactions of many degrees of freedom, fit-
ting our intuition for what constitutes a ‘state of matter’. There should also be some sense in
which they can be considered the ground state of a system, as with crystals in space. Several
experimental proposals have recently appeared for discrete time crystals in dissipative sys-
tems [19, 20]. Numerical simulations show clear examples of period-doubling cascades into
chaos in the systems’ classical limits. This is a sufficient condition for realizing time quasilat-
tices. If identified experimentally these systems would therefore feature (dissipative, discrete)
time quasicrystals: the discrete time translation symmetry of a periodic driving is spontaneously
broken to the symmetry of a time quasilattice, which is stabilized against perturbations via the
local interactions of a quantum many-body state. They can be experimentally identified by
their sequences of periodic approximations (finite Pell and Clapeyron words).

It is interesting to consider what steps would need to be taken to identify time quasilattices
in a non-dissipative (Hamiltonian) context. A Hamiltonian system would need to be located
with a sufficiently one-dimensional Poincaré first-return map, which demonstrates the univer-
sal sequence of admissible words. The system would either need to be constructed from a
macroscopic number of degrees of freedom, or a macroscopic number of such systems would
need to be coupled, such that the interactions between the degrees of freedom stabilize the
order to finite temperature. We note that dissipation is not the key criterion for the existence of
an effective one-dimensional Poincaré first-return map: hyperbolicity is [30,55]. This requires
that the flow have at least one positive, one negative, and one zero Lyapunov exponent, with
the associated eigenvectors giving the directions of the unstable, stable, and marginal mani-
folds of the flow [43,44]. The proof of such a property has not even been rigorously established
for the Rössler map, but numerical evidence for it exists in a wide range of systems, including
Hamiltonian [33, 48, 55]. The universal sequence, as its name suggests, is ubiquitous. To-
gether, these facts suggest the identification of time quasilattices in Hamiltonian systems may
be an achievable goal.

From a theoretical perspective, perhaps the most exciting application of time quasicrystals
could be as a test of theories concerning multiple dimensions of time. Higher dimensions of
space are routinely discussed in the theoretical physics literature, and quasicrystals have been
proposed as implementations in several recent papers [68–72]. Higher time dimensions are
occasionally considered, but have received relatively less attention [73–75]. It is our hope that
the present suggestion of the possibility of testing such theories will lead to wider discussion
of these ideas.
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[55] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner and G. Vattay, Chaos: Classical and Quan-
tum, Niels Bohr Institute, Copenhagen (2016).

[56] A. M. Zhabotinsky, A history of chemical oscillations and waves, Chaos 1, 379 (1991),
doi:10.1063/1.165848.

[57] J.-C. Roux, R. H. Simoyi and H. L. Swinney, Observation of a strange attractor, Physica D
8, 257 (1983), doi:10.1016/0167-2789(83)90323-8.

[58] F. Argoul, A. Arneodo, P. Richetti, J. C. Roux and H. L. Swinney, Chemical chaos: From
hints to confirmation, Acc. Chem. Res. 20, 436 (1987), doi:10.1021/ar00144a002.

[59] B.-L. Hao, G.-R. Wang and S.-Y. Zhang, U-sequences in the periodically forced brusselator,
Commun. Theor. Phys. 2(3), 1075 (1983), doi:10.1088/0253-6102/2/3/1075.

[60] A. Russomanno, F. Iemini, M. Dalmonte and R. Fazio, Floquet time crys-
tal in the Lipkin-Meshkov-Glick model, Phys. Rev. B 95, 214307 (2017),
doi:10.1103/PhysRevB.95.214307.

[61] M. Giglio, S. Musazzi and U. Perini, Transition to chaotic behavior via a repro-
ducible sequence of period-doubling bifurcations, Phys. Rev. Lett. 47, 243 (1981),
doi:10.1103/PhysRevLett.47.243.

[62] P. S. Linsay, Period doubling and chaotic behavior in a driven anharmonic oscillator, Phys.
Rev. Lett. 47, 1349 (1981), doi:10.1103/PhysRevLett.47.1349.

[63] J. Testa, J. Pérez and C. Jeffries, Evidence for universal chaotic behavior of a driven non-
linear oscillator, Phys. Rev. Lett. 48, 714 (1982), doi:10.1103/PhysRevLett.48.714.

[64] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex
networks, Phys. Rep. 469(3), 93 (2008), doi:10.1016/j.physrep.2008.09.002.

[65] T. E. Lee and H. R. Sadeghpour, Quantum synchronization of quantum van
der Pol oscillators with trapped ions, Phys. Rev. Lett. 111, 234101 (2013),
doi:10.1103/PhysRevLett.111.234101.

[66] M. R. Hush, W. Li, S. Genway, I. Lesanovsky and A. D. Armour, Spin correlations as a
probe of quantum synchronization in trapped-ion phonon lasers, Phys. Rev. A 91, 061401
(2015), doi:10.1103/PhysRevA.91.061401.

34

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001
http://dx.doi.org/10.1111/j.1749-6632.1980.tb29699.x
https://oeis.org
https://arxiv.org/abs/1805.10343
http://dx.doi.org/10.1016/1385-7258(81)90015-9
http://dx.doi.org/10.1063/1.165848
http://dx.doi.org/10.1016/0167-2789(83)90323-8
http://dx.doi.org/10.1021/ar00144a002
http://dx.doi.org/10.1088/0253-6102/2/3/1075
http://dx.doi.org/10.1103/PhysRevB.95.214307
http://dx.doi.org/10.1103/PhysRevLett.47.243
http://dx.doi.org/10.1103/PhysRevLett.47.1349
http://dx.doi.org/10.1103/PhysRevLett.48.714
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1103/PhysRevLett.111.234101
http://dx.doi.org/10.1103/PhysRevA.91.061401


SciPost Phys. 5, 001 (2018)

[67] N. Lörch, S. E. Nigg, A. Nunnenkamp, R. P. Tiwari and C. Bruder, Quantum synchroniza-
tion blockade: Energy quantization hinders synchronization of identical oscillators, Phys.
Rev. Lett. 118, 243602 (2017), doi:10.1103/PhysRevLett.118.243602.

[68] S. Weinberg, The Quantum Theory of Fields: Volume 3, Supersymmetry, Cambridge Uni-
versity Press, ISBN 9781139643436 (2000).

[69] E. Witten, Search for a realistic Kaluza-Klein theory, Nucl. Phys. B 186(3), 412 (1981),
doi:10.1016/0550-3213(81)90021-3.

[70] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin and O. Zilberberg, Topological states
and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109, 106402 (2012),
doi:10.1103/PhysRevLett.109.106402.

[71] Y. E. Kraus, Z. Ringel and O. Zilberberg, Four-dimensional quantum Hall ef-
fect in a two-dimensional quasicrystal, Phys. Rev. Lett. 111, 226401 (2013),
doi:10.1103/PhysRevLett.111.226401.

[72] K. A. Madsen, E. J. Bergholtz and P. W. Brouwer, Topological equivalence of
crystal and quasicrystal band structures, Phys. Rev. B 88, 125118 (2013),
doi:10.1103/PhysRevB.88.125118.

[73] P. A. M. Dirac, Wave equations in conformal space, Ann. Math. 37(2), 429 (1936),
doi:10.2307/1968455.

[74] I. Bars, Gauge symmetry in phase space consequences for physics and spacetime, Int. J. Mod.
Phys. A 25(29), 5235 (2010), doi:10.1142/s0217751x10051128.

[75] R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative branes, supergroups and
the signature of spacetime (2016), arXiv:1603.05665.

35

https://scipost.org
https://scipost.org/SciPostPhys.5.1.001
http://dx.doi.org/10.1103/PhysRevLett.118.243602
http://dx.doi.org/10.1016/0550-3213(81)90021-3
http://dx.doi.org/10.1103/PhysRevLett.109.106402
http://dx.doi.org/10.1103/PhysRevLett.111.226401
http://dx.doi.org/10.1103/PhysRevB.88.125118
http://dx.doi.org/10.2307/1968455
http://dx.doi.org/10.1142/s0217751x10051128
https://arxiv.org/abs/1603.05665

	Introduction
	Quasilattices and Quasicrystals
	Symbolic Dynamics
	Nonlinear Dynamics Definitions
	Symbolic Dynamics Background and Nomenclature
	Word Lifting
	Maximal Sequences and the Generalized Composition Rule
	Application to the Period-Doubling Cascade

	Growing Time Quasilattices
	Admissible Time Quasilattices
	Proof of Maximality of the Pell Words
	The Pell Cascade
	Other Time Quasilattices

	Pell Words in Continuous-Time Dynamical Systems
	A Continuous-Time Dissipative Autonomous System: the Rössler Attractor 
	A Continuous-Time Dissipative Driven System: the Forced Brusselator

	Time Quasicrystals
	Conclusions
	References

