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Abstract

Scale invariance usually occurs in extended systems where correlation functions decay
algebraically in space and/or time. Here we introduce a new type of scale invariance,
occurring in the distribution functions of physical observables. At equilibrium these
functions decay over a typical scale set by the temperature, but they can become scale
invariant in a sudden quantum quench. We exemplify this effect through the analysis
of linear and non-linear quantum oscillators. We find that their distribution functions
generically diverge logarithmically close to the stable points of the classical dynamics.
Our study opens the possibility to address integrability and its breaking in distribution
functions, with immediate applications to matter-wave interferometers.
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1 Introduction

Scale invariance is a common property of continuous phase transitions, defined through the
renormalization of the space and time coordinates. Scale invariance can be used to find the uni-
versal properties of the neighboring phases, through the renormalization group (RG) method.
By construction, the RG approach does not directly apply to systems described by a small num-
ber of degrees of freedom, whose dimension cannot be rescaled continuously. A fundamental
question is whether these few-body systems can show a universal behavior, and how to detect
it 1.

To address this question, we consider scaling transformations that act on physical observ-
ables, and we look for the invariance of their distribution functions. A trivial example is offered
by constant distribution functions, which do not change when the observables are rescaled. As
we will see, systems at thermal equilibrium generically belong to this universality class: un-
der a scaling transformation of the variables, thermal fluctuations, and thus the temperature,
effectively increase. In the asymptotic limit, the rescaled distributions tend to an infinite-
temperature ensemble, where all possible values are equally probable, and the probability
distribution is a constant. A natural direction to look for non-trivial scaling laws is offered
by systems that do not thermalize, such as integrable models following a quantum quench.
Several previous studies considered quenches in many-body systems and analyzed the scaling
of the spatio-temporal coordinates 2. Here, we study sudden quenches in few-body quantum
oscillators and show that they give rise to probability distributions with a novel type of scale
invariance.

In the context of phase transitions, it is common to define the scale invariance through the
two-point correlation function F(x1− x2)≡ 〈φ(x1)φ(x2)〉, where φ is some physical property
of an extended system and x1/2 are two positions in space. A system is said to be scale invariant
for large x if F satisfies the scaling ansatz

F(x)≈ λαF(λx) , (1)

where α is a critical exponent 3. Eq. 1 is satisfied, for instance, if the correlation function
decays at large distances as a power-law, F(x) ∼ x−α. In this paper, we instead consider
the distribution function P of a physical observable x , and show that under appropriate con-
ditions, P(x) can be scale invariant as in Eq. 1. Specifically, the above mentioned thermal
case corresponds to a situation where P(x) = Ae−αx2

, which tends to a constant for small x .
In this paper we show that the distribution functions of quenched oscillators are generically
characterized by a logarithmic divergence4 P(x) ≈ κlog(x), which is scale invariant because
P(λx) = P(x) + κlog(λ)≈ P(x), for x → 0.

At an intuitive level, the scale invariance can be simply understood by considering the lin-
earized equations of motion close to a stable point. Being linear, these equations are invariant
under the scaling transformation x → λx , where x is the distance from the stable point and λ

1One possible strategy that was discussed in the literature is to use the time axis as a scaling variable [1]. The
corresponding RG approaches focus on the dynamics of individual orbitals, and help understand the transition
between regular motion and chaos [2,3]. Here, we instead consider ensembles of initial conditions, and study the
statistical properties of their long-time dynamics.

2See for example Refs. [4–19] for quantum quenches of integrable many-body systems.
3For a more rigorous definition of scale invariance, one may wish to consider the finiteness of the ratio between

the left and right hand sides of Eq.(1), in the limit of x → ∞. Note that in a scale invariant system, higher-
order correlation functions are scale invariant as well. Their scale invariance is defined by extending Eq. 1 to
multi-variable functions.

4Note that the logarithmic divergence does not pose any problem in terms of normalizability of the distribution
function because

∫ 1

0
d x log(x) is finite.
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is a constant 5. To obtain a scale invariant ensemble, it is then sufficient to complement these
equations with a scale invariant initial state, such as a particle with a fixed momentum, whose
position in real space is completely uncertain. The key result of this work is that this simple
phenomenon survives non linearities and is intimately related to the model’s integrability.

2 The harmonic oscillator

We open our discussion with the analysis of an isolated harmonic oscillator H0 = (x2+ p2)/2,
where x and p are canonical conjugates. Here, the simplest example of a scale invariant
state is offered by |p = 0〉, which satisfies 〈x |p = 0〉 = const. In a semiclassical description
(which is exact for an harmonic oscillator), this state corresponds to the Wigner distribution
P(x , p) = P0δ(p), where P0 is a normalization constant 6. Under the effects of H0, this en-
semble rotates in phase space: each point follows a circular trajectory around the stable point
x = p = 0, with constant angular velocity. Thus, after time averaging, one obtains a dis-
tribution function that is inversely proportional to the circumference of a circle with radius
r =

p

x2 + p2, or

P(x , p) =
2P0

2π
p

x2 + p2
. (2)

Here the factor 2 in the numerator accounts for the orbits starting from x and −x , which
contribute to the same circumference. We can now use Eq. 2 to compute the (time-averaged)
marginal probability of x

P(x) =

∫ x0

−x0

dp P(x , p) =
P0

π

∫ x0

−x0

dp
1

p

x2 + p2
=

2P0

π
arsinh

�

x0

|x |

�

x�x0−−−→−
2P0

π
log (|x |) + o(1) , (3)

where x0 is an arbitrary cutoff, and o(1) is a constant term that does not diverge as |x | → 0.
Eq. 3 shows that the distribution function of x diverges logarithmically and is therefore scale
invariant (see the Introduction) 7.

In this work, we show that the logarithmic divergence found in Eq. 3 is universal, because
is not affected by non-linearities. This result is non-trivial because, for any finite x , there
exists a time after which the non-linearities have a significant effect on the dynamics. The
logarithmic divergence is nevertheless preserved, as long as the fixed point x = p = 0 is stable
and the dynamics in its surroundings is characterized by invariant tori. For a scale invariant
initial state, the time-averaged P(x , p) is inversely proportional to the circumference of the
appropriate torus, which is in turn proportional to the distance from the stable point. The
integration over one variable will then generically lead to a logarithmic divergence 8.

5In this sense, the present scale invariant states can be associated with a Gaussian fixed point. At equilib-
rium, these fixed points offer the simplest example of scale invariant critical points. An interesting question for
further studies is whether distribution functions can show non-Gaussian fixed points that are scale invariant as a
consequence of non-linear terms.

6See Ref. [20] for an introduction to phase-space methods for quantum mechanics.
7This analysis can be extended to a generic harmonic oscillator with mass m, and natural frequency ω0: by

working with normalized variables, it is straightforward to see that P(x) does not depend on m and ω0 (see
Appendix A.1)

8In addition, the nonlinearities foster the observation of the scale invariant distribution function: For a non-
linear system, the periods of the different trajectories are unequal, and the long-time probability distribution will
generically tend to the time-averaged expression.
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3 An integrable quantum oscillator

To exemplify this effect, we first focus on the nonlinear quantum oscillator described by the
Hamiltonian

H =
µ

S
S2

z + 2JSx . (4)

Here the spin operators satisfy [Sx , Sy] = iSz and S2
x +S2

y +S2
z = S(S+1). Eq. 4 is named after

Lipkin-Meshkov-Glick [21–23] and has a wide range of applications: It describes mean-field
ferromagnets in a transverse magnetic field, as well as the two-site Bose-Hubbard model (see
Appendix A.2). The equilibrium and nonequilibrium properties of Eq. 4 have been described
theoretically [24–37], and realized experimentally with exciton polaritons [38, 39], trapped
ions [40], and ultracold atoms [41–43]. Experiments with matter-wave interfermeters are
particularly well suited to verify our predictions because they give natural access to the full
distribution functions of the phase and number differences [44–48].

For large S, the Hamiltonian in Eq. 4 is well approximated by a semiclassical descrip-
tion [49,50], where the spin operators are substituted by two continuous variables, n and φ,
defined by Sz/S = n, S±/S =

p
1− n2 exp(±iφ)/2. The canonical variables n and φ respec-

tively correspond to the number and phase differences of the two-site Bose-Hubbard model.
Under this transformation, the Hamiltonian in Eq. 4 is mapped to

H
2S
=
µ

2
n2 + J

p

1− n2 cos(φ) . (5)

The classical dynamics associated with this Hamiltonian has two fixed points on the line n= 0,
respectively, at φ = 0 and φ = π. Their dynamical stability depends on the ratio between J
and µ: for J < |µ|, the system is stable only around φ = 0, while for J > |µ| the system
becomes stable around φ = π as well. This transition is associated with an equilibrium mean-
field phase transition (for µ < 0), or with the disappearance of macroscopic self-trapping (for
µ > 0) [51, 52]. As we will see, this point determines a discontinuous change in the scaling
properties of the distribution functions.

To achieve a scale invariant distribution function we consider the initial states |Sz = 0〉.
This state corresponds to the ground state of the Hamiltonian in Eq. 4 with J = 0. Thus, the
present dynamics is equivalent to the experimentally-relevant situation of a quantum quench in
which J is suddenly changed from 0 to a finite value [53–55]. In the semiclassical description
of Eq. 5, this initial state is mapped to an ensemble with n = 0 and a uniformly distributed
φ ∈ (−π,π), or equivalently P(n,φ) = δ(n)/2π. Fig. 1 shows the evolution of this ensemble,
obtained by the numerical solution of the Hamilton-Jacobi equations derived from Eq. 5, for
J = 0.2µ. The marginal distribution P(φ) is shown in the lower panel and evolves from
P(φ) = P0 = 1/2π to the universal shape P(φ) = −(1/π2) log(φ), as predicted by Eq. 3. This
result confirms that the nonlinear terms present in the Hamiltonian in Eq. 5 do not affect the
logarithmic divergence close to the stable point.

We now compare the above-mentioned semiclassical calculations with the exact diagonal-
ization of the quantum Hamiltonian in Eq. 4 with S = 1000. In the quantum model, the loga-
rithmic divergence can be observed in the distribution of the operator
my ≡ Sy/S =

p
1− n2 sin(φ), which can be approximated by my ≈ φ, in the vicinity of

the stable point n= φ = 0. The time-averaged distribution function of my is defined quantum
mechanically by

P(my) = lim
τ→∞

1
τ

∫ τ

0

d t
�

�〈Sy = myS|ψ(t)〉
�

�

2
, (6)

where |ψ(t)〉 = e−iĤ t |Sz = 0〉, and H is the Hamiltonian in Eq. 4. As shown in Fig. 2(a), the
resulting distribution function diverges logarithmically around my = 0. In actual systems, this
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Figure 1: Upper panel: Phase-space representation of the time evolution of Eq. 5
with J/µ = 0.2. Each plot represents the dynamics of 4000 points with initial
conditions n(t = 0) = 0 and φ(t = 0) uniformly distributed between −π and π.
Each pixel is colored according to the corresponding value of φ(t = 0). (a) The
initial state is |n = 0〉 and corresponds to a thin horizontal line in phase space.
(b-d) Time snapshots of the evolution of the quantum ensemble. Lower panel:
Time evolution of the marginal probability distribution P(φ(t)). At long times
P(φ)≈ −(1/π2) log(φ) + 0.17 (black line).

divergence is rounded at 1/S, which plays the role of the infra-red cutoff of our theory (see
Appendix A.3 for details). The inset of Fig. 2(a) shows that the prefactor of the logarithm
suddenly jumps at J/µ = 1: At this point, the number of stable points across the mz = 0
line jumps from 1 to 2, leading to a doubling of the prefactor of the asymptotic distribution
function 9. A similar argument can be used to determine the universal scaling of other physical
observables (see Appendix A.4).

4 Breaking of integrability

The logarithmic divergence of the distribution function is due to the presence of closed orbits
in the vicinity of a stable point. These orbits are protected by the integrability of Eq. 4, which
involves the same number of degrees of freedom (Sx , Sy , Sz) as of conserved quantities (S2,
Sz , and H). To study the effects of integrability breaking terms, we now turn to two models
where the number of degrees of freedom is larger than the number of conserved quantities:
the Dicke model and the kicked rotor.

The Dicke model [56] is a canonical model of quantum optics. It describes the interaction
between a quantized cavity mode (a) and a large ensemble of spins (or, equivalently, a single
large spin S). In the thermodynamic limit of S → ∞, the Dicke model undergoes a phase
transition from a normal to a super-radiant phase [57,58], at a critical value of the cavity-spin
coupling, λ = λc . This transition was throughly described both at equilibrium and out-of-

9A closer inspection of Fig. 2 shows that for J < µ, P(my) shows a cusp at finite my . This cusp is associated with
two additional stable fixed points at Sz 6= 0, which correspond to the two ferromagnetic equilibrium states. The
presence of these stable points is at the origin of the macroscopic quantum self-trapping effect. As approaching
J = µ, the cusp shifts to smaller my and, for J > µ, it joins the divergence at my = 0, doubling the prefactor of the
logarithm. A similar behavior can be obtained by the numerical solution of the semiclassical equations of motion
associated with Eq. 5.
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Figure 2: Time-averaged probability distribution function of physical observables for
three different models: numerics (continuous curves) and logarithmic fits (dashed
lines). In all three model the distribution function diverges logarithmically close to
the fixed points of the classical dynamics. Inset: The prefactor of the logarithmic
divergence, κ, shows a non-analytic behavior at phase transitions and at the onset of
chaos.

equilibrium, and recently observed in cavity-QED 10. The Dicke model has the same number
of conserved quantities as the model defined in Eq. 4, but one additional degree of freedom.
As a consequence, the Dicke model can give rise to a chaotic motion, whose onset occurs in
the close vicinity of the phase transition [60].

We numerically simulate the Dicke model using the semiclassical equations of motion de-
rived in Ref. [60], which are valid for S� 1 (see Appendix A.5). Our initial state corresponds
to a pure state where |Sz〉 = −S/2, and the photon is largely squeezed, to mimic a scale in-
variant state. At long times, the probability distribution of the squeezed quadrature diverges
logarithmically (See Fig. 2(b)). The prefactor of the logarithm is constant for all λ < λc , and
equals that in Eq. 3. At the critical coupling λc , the system becomes chaotic and tends to ther-
malize: correspondingly, the logarithmic divergence suddenly disappears (see the inset of Fig.
2(b)).

We next move to a canonical model used to describe the transition between regular and
chaotic dynamics, the kicked rotor (see Appendix A.6). This model has a fixed point at
x = p = 0, whose vicinity becomes chaotic at a critical value of the kick strength Kc = 4.
In Fig. 2(c), we show the long-time distribution obtained from an initial ensemble with a uni-
formly distributed momentum p ∼ U(0,2π) and a constant position x = 0. We observe that the
distribution function of p develops a logarithmic divergence close to p = 0. Interestingly, we
find that the prefactor is not constant, but follows the empirical law κ= (−2P0/π)

p

1− K/Kc .
This curve is non-analytic at Kc , at the onset of chaos, where the logarithmic divergence is
washed out. These findings strengthen the relation between the integrability and the logarith-
mic divergence of the probability distribution 11.

5 Beyond Hamiltonian systems: dissipation

We now turn to study the effects of dissipation, relevant to the experimental realization with

10See Ref. [59] for an introduction to the superradiant transition of the Dicke model
11Note that the present semi-classical analysis does not take into account the dynamical localization due to quan-

tum coherence [61]. The consequences of this effect on the logarithmic divergence requires further investigation.
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matter-wave interferometers [53,62]. We model this effect by

dφ
d t
= n− Γ

n
p

1− n2
cos(φ) , (7)

dn
d t
= −Γ

p

1− n2 sin(φ)− 2ηn , (8)

whereη is the dissipation rate 12. In the limit ofη→ 0 these equations of motion are equivalent
to the Hamilton-Jacobi equations associated to Eq. 4. The dissipative term is invariant under
the scaling transformation φ → λφ, n→ λn: As demonstrated by the numerical calculations
of Fig. 3(a) (for J/µ = 0.2, η/µ = 0.1) the distribution of φ is still logarithmically divergent,
although the prefactor becomes time dependent.

To understand this behavior, we go back to the phase-space picture, where each point
follows a spiral motion (inset of Fig. 3(b)). Close to the stable point, the motion is described by
a damped harmonic oscillator, whose solution givesφ(t) = φ0e−ηt cos(ωt). As a consequence,
the phase-space density grows as eηt and the time-averaged distribution is given by

Pτ(φ, p) =
1
τ

∫ τ

0

d t
2P0/πeηt

p

φ2 + n2
=
�

eητ − 1
ητ

�

2P0/π
p

x2 + p2
,

and Pτ(φ)≈ −
2P0

π

�

eητ − 1
ητ

�

log (|φ|) . (9)

As shown in Fig. 3(b), this expression is in quantitative agreement with the numerical solution
of the full non-linear model.
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Figure 3: (a) Time-averaged probability distribution of φ in the presence of dissi-
pation, for different waiting times τ. (b) Prefactor of the logarithm, obtained by
a numerical fit of the form Pτ(φ) = κ(τ) log(|φ|) (crosses) and by the analytical
expression Eq.9 (black line). Inset: phase-space trajectory in the presence of dissipa-
tion.

6 Conclusion: Towards a full scaling theory

A logarithmic divergence is invariant under the scaling transformation x → λx , and this prop-
erty can be used to address the effect of generic perturbations. Under the scaling transfor-
mation, all non-linear terms appearing in the equations of motion tend to zero (“irrelevant”).

12Note that our dissipative term differs from the expression used in Ref. [62], where a force proportional to
−η(dφ/d t)was considered. Our linear term has a phenomenologically similar effect, but simplifies the calculation
of the correspondent fluctuating forces.
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These terms do not affect the logarithmic divergence of the distribution functions (Figs. 1 and
2(a-b)). Linear perturbations are invariant under the scaling transformation (“marginal”):
These terms modify the prefactor of the logarithmic divergence, and eventually lead to its
disappearance (Figs. 2(c) and 3).

Finally, if a term does not depend on x , it effectively grows under the scaling transforma-
tion, and destroys the logarithmic divergence (“relevant”). A natural example is offered by the
random forces associated with a coupling to a thermal bath. These forces generically drive the
system towards an equilibrium distribution function, of the form Peq(φ) = P0 exp(−E(φ)/T ),
where the E(φ) is the energy. This expression is analytical around φ = 0, indicating that P(φ)
does not diverge. To study this effect numerically, we consider Eq. 8 with an additional stochas-
tic force f (t). According to the fluctuation-dissipation theorem, this force satisfies 〈 f (t)〉= 0,
and 〈 f (t) f (t ′)〉= 4ηTδ(t− t ′), where T is the temperature of the bath. As shown in Fig. 4 (at
temperature T = 0.1), the system flows towards a thermal distributions, and the logarithmic
divergence is destroyed.

The logarithmic divergence of the distribution function is therefore a clear indicator of
the absence of thermalization in quenched oscillators. Our scaling theory can be used to an-
alyze the effect of generic perturbations (see Appendix A.7). This approach shows a possible
way to generalize our findings to many-body systems: the Lipkin-Meshkov-Glick and Dicke
models are exact mean-field solutions of interacting systems with infinite-range interactions.
By considering the perturbations induced by a finite-range, it will be possible to study the
crossover to extended many-body systems. Finally, by including the effects of disorder, one
can attempt to describe the non-Gaussian distribution functions that were recently found in
quantum quenches of many-body-localized systems [63].
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Figure 4: Same as Fig. 3, in the presence of a thermal noise at temperature T = 0.1.
The system thermalizes and the logarithmic divergence of the distribution function
is destroyed.
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A Appendix

A.1 Harmonic oscillator with non-unit mass and frequency

In the main text we considered an harmonic oscillator with natural frequency ω0 = 1, and
mass m= 1, whose phase-space orbits are circles. Let us now consider an harmonic oscillator
of the form H = (p2/m+mω2

0 x2)/2. Its equations of motion are given by

d x
d t
=

p
m

,
dp
d t
= −mω2

0 x . (10)

For convenience, we now introduce the rescaled variables x̂ = pmω0 x and p̂ = p/
p

mω0,
whose equations of motion are

d x̂
d t
= −ω0 p̂ ,

d p̂
d t
= −ω0 x̂ . (11)

If we rescale the time to t̂ = tω0, we are back to the case discussed in the main text. Thus,
using Eq. 3, we find that the time-averaged distribution function of x̂ (for small x̂) is

P( x̂)≈ −
2P̂0

π
log( x̂). (12)

Here P̂0 is determined by the initial conditions, given by
P( x̂ , p̂) = P(pmω0 x̂ , p̂/

p
mω0) = P(x , p) = P0δ(

p
mω0 p̂) = P0δ(p̂)/

p
mω0, or equivalently

P̂0 = P0/
p

mω0. Using this relation, we finally obtain

P(x) = P

�

x̂
p

mω0

�

=
p

mω0P( x̂)≈ −
2P0

π
log(x). (13)

Importantly, Eq. 13 does not depend on m or ω0, giving a first hint about the universality of
this result.

A.2 Two-site Bose-Hubbard model

The two-site Hubbard model is described by the Hamiltonian

H =
µ

N

∑

i=1,2

�

ψ†
iψi −

N
2

�2

+ J(ψ†
1ψ2 + h.c.) , (14)

where µ is the chemical potential, and J the tunneling element. Because the model com-
mutes with the total number of particles, we restrict ourself to the subspace with a fixed
N =ψ†

1ψ1 +ψ
†
2ψ2.

The Hamiltonian in Eq. 14 is conveniently described in terms of N spin-1/2 variables, ~σi ,
whose z component describes the site occupied by the ith particle [64,65]. This mapping is for-
mally achieved through the Schwinger boson representation of spin operators
Sα = 1/2

∑

i, j=1,2 ψ̂
†
iσ

i, j
α ψ j , where α = x , y, z and σα are Pauli matrices. By introducing

the total spin operator ~S =
∑N

i=1 ~σi , one can exactly map Eq. 14 to the Lipkin-Meshkov-Glick
model, Eq. 4 of the main text, with S = N/2.
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A.3 Finite size scaling

Our derivation of a scale invariant distribution functions relies on a semiclassical description
of a quantum model. Specifically, the analysis of the Lipkin-Meshkov-Glick model of Eq. 4
referred to the limit S → ∞, where the quantum spin becomes a semiclassical rotor. In
this appendix we consider the effects of a finite S. For this purpose, we study the steady-state
distribution functions of the model for different values of S. As shown in Fig. 4, the logarithmic
divergence is already evident for S = 250. Because the minimal value of my = Sy/S is 1/S, the
distribution function is terminated at this value. As S increases, the cutoff becomes smaller,
and the logarithmic divergence more pronounced. Thus, a finite S has a similar role to the
infra-red (IR) cutoff of a scale invariant theory, which is usually determined by the finite size
of the system.

10 -3 10 -2 10 -1 10 0

|m
y
|

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(m

y
)

S=2000
S=1000

S=500
S=250

Figure 5: Steady-state distribution function of my = Sy/S ≈ φ, Eq. 6, for the Lipkin-
Meshkov-Glick model, Eq. 4 with J/µ = 0.5 and different values of the total spin
S. The constant of motion S plays the role of an IR cutoff for the scale invariant
distribution function.

A.4 Other observables

In the main text, we focused on the probability function of the variables φ and n and we
showed that they diverge logarithmically around the stable fixed point n = φ = 0. The dis-
tribution function of other physical observables can be directly computed from P(n,φ). For
instance, let us consider the operator mx = Sx/S =

p
1− n2 cos(φ). Close to the stable point

n = φ = 0, this quantity can be approximated as mx ≈ 1− (n2 +φ2)/2. Following the same
arguments as in Sec. A.1 we obtain

P(1−mx)≈ P(n2 +φ2) =
P0

π

1
p

n2 +φ2
=

P0

π
p

1−mx
. (15)

This result is numerically confirmed in Fig. 6.

A.5 Dicke model

The Hamiltonian of the Dicke model [56] is

H = ħhω0Sz +ħhωa†a+
λ
p

2S
(a+ a†)(S+ + S−) . (16)
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J/ =1.2
J/ =1.5

Figure 6: Steady-state distribution function of 1−mx = 1−Sx/S ≈ φ2, for the Lipkin-
Meshkov-Glick model, Eq. 4. The probability function of this quantity diverges as
p

1−mx (dashed line) on both sides of the transition.

Here S is a spin operator (as in the main text) and a is a canonical bosonic operator satisfying
[a, a†] = 1. In the limit of S → ∞, this model undergoes a phase transition [57, 58] at
λc =

p
ω0ω/2.

For large S, the Dicke model in Eq. 16 is well approximated by the semiclassical Hamilto-
nian (Eq. 65 of Ref. [60])

Hsc = − jω0 +
1
2

�

ω2 x2 + p2
x −ω+ω

2
0 y2 + p2

y −ω0

�

+ 2λ
p

ωω0 x y

√

√

√

1−
ω2

0 y2 + p2
y −ω0

4 jω0
, (17)

were x , px , y , and py are two pairs of canonical coordinates (associated with the two quadra-
tures of of the cavity boson, and of the spin, respectively).

The correspondent equations of motion are (Eqs. 68-69 of Ref. [60])

ẋ = px ,

ẏ = py

�

1−
λ

2 j

√

√ ω

ω0

x y
p

1−η

�

,

ṗx = −ω2 x − 2λ
p

ωω0 y
p

1−η ,

ṗy = −ω2
0 y − 2λ

p

ωω0 x
p

1−η
�

1−
ω0 y2

4 j (1−η)

�

, (18)

where

η=
1

4 jω0

�

ω2
0 y2 + p2

y −ω0

�

. (19)

This model shows a transition between regular and chaotic motion at λ≈ λc .
In our numerical calculations, we considered S = 106. The initial state of the spin was

chosen to represent the quantum state |Sz = −S〉 (which corresponds to the ground state of the
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model for λ= 0). In the semiclassical picture, this state is represented by a Wigner distribution
in which y and py are extracted from Gaussian ensembles with zero average and variances
1/(2ω0) and ω0/2, respectively. The state of the boson was chosen to represent a vacuum
squeezed state with 〈x〉 = 〈p〉 = 0, 〈x2〉 = 106/4 and 〈p2〉 = 10−6, satisfying the minimal
uncertainty relation between canonical variables. The model’s parameters are chosen such
that the frequency of the x and y oscillators are incommensurate: ω0 = 1/

p
2 and ω =

p
3.

We observed empirically that the case ω=ω0 gives rise to a distinct behavior, which requires
further investigation. The equations of motion were solved using the Euler method with time-
step discretization of d t = 0.01, and the distribution functions were averaged over times up
to t = 100.

A.6 Kicked rotor and Chirikov standard map

The Hamiltonian of the kicked rotor is (See Ref. [66] and references therein)

H(t) =
1
2

p2 − K cos(x)
∑

n

δ(t − nT ) , (20)

where δ is the Kronecker delta function. Note that in previous literature, the model is often
defined with an opposite sign of K , or equivalently after the transformation x → x +π.

The stroboscopic dynamics of the model (i.e. the evolution of the system after a discrete
number of time periods) is governed by the Chirikov standard map

pn+1 = pn − K sin(xn) , (21)

xn+1 = xn + pn+1. (22)

Due to the periodicity of the model, it is then common to define the dynamics on a torus,
where x and p are restricted to the interval (0, 2π).

The dynamics of the model in Eq. 22 is characterized by three distinct regimes: For
K < Kc ≈ 0.9716 the model is localized between invariant tori (i.e. p does not grow with
time); For Kc < K < 4 the model has a mixed phase space, where the dynamics is diffusive for
most some conditions, and localized in vicinity of the stabel point x = p = 0; For K > 4 the
region around the stable point becomes chaotic.

A.7 Extended Lipkin-Meshkov-Glick model

In this section we explain how to apply the scaling analysis to predict the effect of non-linear
terms on the logarithmic divergence. For this task, we consider the a generalization of Eq. 4,
which includes two additional terms

H =
µ

S
S2

z + 2JSx +αSz +
β

S
S2

x . (23)

Within the semiclassical approach, the first term, Sz = n enters into the equations of motion
of dφ/d t as a constant term. This term grows under scaling and destroys the logarithmic
divergence. In contrast, S2

x = (1− n2) cos2(φ) is a non-linear perturbation and does not affect
the logarithmic divergence. These predictions are verified numerically in Fig. 7, where we
consider the initial state |Sz = 0〉 with S=1000, evolve it in time with the Hamiltonian of
Eq. 23, and compute the (time averaged) distribution probabilities of the operator my = Sy/S.
As predicted by the scaling analysis, the coupling α destroys the logarithmic divergence, while
β leaves it unchanged.
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Figure 7: Steady-state distribution function of my = Sy/S ≈ φ, Eq. 6, for the general-
ized Lipkin-Meshkov-Glick model, Eq. 23. The coupling αSz is relevant and destroys
the logarithmic divergence, while βS2

x is irrelevant and does not affect it.
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