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Abstract

We show that the Wilsonian renormalization group (RG) provides a natural regularisa-
tion of the Quantum Master Equation such that to first order the BRST algebra closes on
local functionals spanned by the eigenoperators with constant couplings. We then apply
this to quantum gravity. Around the Gaussian fixed point, RG properties of the conformal
factor of the metric allow the construction of a Hilbert space L of renormalizable inter-
actions, non-perturbative in ħh, and involving arbitrarily high powers of the gravitational
fluctuations. We show that diffeomorphism invariance is violated for interactions that
lie inside L, in the sense that only a trivial quantum BRST cohomology exists for interac-
tions at first order in the couplings. However by taking a limit to the boundary of L, the
couplings can be constrained to recover Newton’s constant, and standard realisations of
diffeomorphism invariance, whilst retaining renormalizability. The limits are sufficiently
flexible to allow this also at higher orders. This leaves open a number of questions that
should find their answer at second order. We develop much of the framework that will
allow these calculations to be performed.
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1 Introduction and review

As is well known, quantum gravity suffers from the problem that it is not renormalizable when
perturbatively expanded in κ =

p
32πG (where G is Newton’s gravitational constant) and

Planck’s constant ħh [1–4]. By using the Wilsonian renormalization group (RG), we discovered
a promising route out of this impasse, which points to a theory that would still be perturbative
in κ but is now non-perturbative in ħh [5,6].

The key is the so-called conformal factor instability which has up to now generally been
side-stepped, or dealt with by analytically continuing the conformal factor functional integral
along the imaginary axis: ϕ 7→ iϕ [7]. If we do not continue ϕ to imaginary values, a sensible
(in particular Banach) space of interactions around the Gaussian fixed point is only achieved if
a quantisation condition is imposed on bare interactions involving ϕ, which is that they should
be square integrable over amplitude ϕ ∈ (−∞,∞) with weight

exp
�

ϕ2/2ΩΛ
�

, (1.1)

where ΩΛ = |〈ϕ(x)ϕ(x)〉| is the (magnitude of the) free propagator at coincident points,
regularised by an UV (ultraviolet) cutoff Λ. The result is L−, a Hilbert space of interactions
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with a number of marvellous properties [5, 8]. For non-derivative interactions, it is spanned
by a tower of operators

δ
(n)
Λ
(ϕ) :=

∂ n

∂ ϕn
δ
(0)
Λ
(ϕ) , where δ

(0)
Λ
(ϕ) :=

1
p

2πΩΛ
exp

�

−
ϕ2

2ΩΛ

�

(1.2)

(integer n ≥ 0), all of which are relevant at the linearised level, their dimensions being
[δn] = −1−n (in four dimensional spacetime). Since ΩΛ ∝ ħh, they are non-perturbative
in ħh. To get interactions for general gravitational fluctuations we need also the traceless fluc-
tuation field hµν whose self-interactions form a Hilbert space in the usual way in quantum field
theory, i.e. spanned by polynomials. Together we then get the full Hilbert space of L of bare
interactions [5] that are square integrable under

exp
ϕ2 − h2

µν

2ΩΛ
(1.3)

(in four dimensional spacetime), and which is spanned by operators whose top term has the
form

δ
(n)
Λ
(ϕ)σ(∂ ,∂ ϕ, h) , (1.4)

where σ(∂ ,∂ ϕ, h) is a local Lorentz invariant monomial involving some or all of the com-
ponents indicated (and thus hµν can appear here differentiated or undifferentiated or not at
all). These operators have scaling dimension Dσ = dσ + [δn], where dσ = [σ(∂ ,∂ ϕ, h)] is
the engineering dimension of σ. From the Wilsonian RG, we know that if we can build the
theory using only bare operators that are (marginally) relevant, implying Dσ ≤ d (where d is
the spacetime dimension) and corresponding couplings [gσn ]≥ 0, then we can build a contin-
uum limit [9, 10].1 Since this continuum limit is constructed at the Gaussian fixed point, it
corresponds to a perturbatively renormalizable quantum field theory.

For every σ, infinitely many of the operators (1.4) are relevant. Since the perturbative
expansion of the classical action in κ, leads to interactions of arbitrarily high power in the
fluctuation field, this quantisation would seem to be tailor-made for finding a route out of the
impasse. A crucial question however is whether, on restriction to the space spanned by the
(marginally) relevant operators, it is possible to build in a quantum version of diffeomorphism
invariance at the renormalized level, and thus obtain a perturbatively renormalizable theory
of quantum gravity. The answer appears to be yes: diffeomorphism invariance is implemented
by taking suitable limits to the boundary of L, thus enlarging the Hilbert space with states of
infinite norm whilst nevertheless staying renormalizable, while at the same time constraining
couplings to give κ in appropriate circumstances.

In ref. [5], it was already shown that there is no solution within L to incorporating diffeo-
morphism invariance if we ask this question of a classical action, where the problem reduces to
choosing a parametrisation of the metric. However such a question presupposes the existence
of the corresponding classical limit. Since the operators (1.2) on which the theory is to be
built, all vanish as ħh→ 0, there is no such correspondence principle.

The correct question to ask is whether BRST invariance [11–14] can be consistently im-
plemented directly at the quantum level [5]. At its most general, we can ask whether there is
any such non-trivial BRST algebra in L that smoothly goes over to linearised diffeomorphism
invariance in the κ → 0 limit. By non-trivial we mean in particular that there should exist

1Actually we can also include irrelevant couplings as discussed for this case in ref. [5], but they would have to
vanish fast enough as Λ→∞ .
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quasi-local interactions2 that are BRST closed but not exact, the latter corresponding merely
to quasi-local reparametrisations of the field variables.

At the classical, and strictly local, level, this question is addressed by the well developed
subject of BRST cohomology [18–22] (for reviews see [23–25]), exploiting properties of the
Batalin–Vilkovisky antibracket formalism [26–29] to ask simultaneously for consistent defor-
mations of linearised diffeomorphism invariance and local actions that would realise it, whilst
automatically taking into account all local reparametrisations. Under rather broad assump-
tions the answer is unique: General Relativity is the only solution [22]. (For earlier alternative
approaches, see refs. [30–39].)

What we require however is the generalisation of this question to the quantum case, appro-
priately regularised in a way that respects the Wilsonian RG properties of the operators. Thus
first we need a consistent combination of the Wilsonian RG and Batalin–Vilkovisky framework.

This has been addressed in refs. [40–48], and adapted and applied especially to QED and
Yang-Mills theory.3 However as reviewed in sec. 2.5 these formulations have drawbacks, be-
cause they either leave the Batalin–Vilkovisky measure term ∆ [26, 27] unregularised when
acting on local functionals, or destroy the locality of the BRST (and Koszul-Tate) transforma-
tions. This in turn would imply that the quantum BRST algebra cannot close on local func-
tionals. It would thus force us to work even at first order in the ‘deformation parameter’ κ,
with expansions to infinite order in derivatives.

In sec. 2.4, we show however that this is not inevitable. There exists a particularly natural
formulation that solves these problems. As we explain in sec. 2.6, at first order in κ it results
in a regularised∆ (when acting on arbitrary local functionals), but leaves the rest of the BRST
structure unmodified. It thus allows us to investigate (in sec. 7.2) its first-order closure on
local functionals, and then by extension its closure in the space of quasi-local functionals. Most
importantly as we show in sec. 2.6, it allows us to define the quantum BRST cohomology to
lie within the space spanned by the eigenoperators, appropriately extended as we explain in
sec. 5. This is therefore an especially nice formulation for the questions we want to address,
and henceforward provides the starting point for full κ-perturbative calculations in this theory
of quantum gravity.

In sec. 3, we specialise to quantum gravity to prepare the ground for these studies, first
in gauge invariant basis in sec. 3.1 and then in gauge fixed basis in sec. 3.2. At this stage we
work in d dimensions, and in a general gauge. In sec. 3.4 we explain why the conformal mode
instability is a physical effect, how it compares with the treatment in ref. [5], and how it is
affected by choice of gauge. We discuss the changes needed to treat the fluctuation field as a
density, or as in unimodular gravity, and explain carefully why the conformal mode instability
is different from the common (mal)practice of treating the auxiliary field bµ with wrong sign
bilinear term. In sec. 3.5 we derive the propagators, first in general gauge α. Although we
expect all the physical results to be gauge independent, from here on we specialise to α = 2
for which the propagators are particularly simple, in particular the traceless mode hµν and
conformal factor do not then propagate into each other.

Sec. 4 is devoted to deriving the eigenoperators, culminating in the general form (4.28)
which now includes the ghosts, auxiliary fields and antifields. This allows us to derive the
Hilbert space of bare interactions in sec. 5 and discuss its interpretation and compatibility with
BRST invariance. The BRST cohomology needs however to be defined for the renormalized
interactions. For the sake of clarity, we specialise to d = 4 spacetime dimensions, from here

2 By quasi-local we mean that the vertices must have a derivative expansion, corresponding to a Taylor expansion
in dimensionless momenta pµ/Λ. This is a fundamental requirement of the Wilsonian RG in the continuum [15,16],
corresponding to the existence of a sensible Kadanoff blocking [17]. It should be distinguished from (strictly) local
(a.k.a. ultra-local [15,16]) vertices which are a finite sum of local monomials which thus have a maximum number
of spacetime derivatives.

3For other related approaches see refs. [49–53].
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on. Adapting ref. [5], we show how the infinite towers of relevant eigenoperators organise
into coefficient functions and derive and discuss the properties of the renormalized coefficient
functions, in particular the emergence and significance of the amplitude decay scale, to the
extent that it is required in this paper. (Other aspects are discussed in refs. [5,8].) In sec. 6.1
we furnish some examples, which will prove important in sec. 7.3.

Finally in sec. 7 we are able to turn to BRST cohomology, the main raison d’être for the
paper. We start by recalling the classical BRST cohomology [22]. Then in sec. 7.2, we turn
to the quantum BRST cohomology. We start by emphasising why it is important to define the
space of functionals in which this is to be studied. Then we show how the classical cohomology
is altered if we define the quantum cohomology in the Wilsonian framework as a perturbation
series in ħh where we take the space to be spanned by polynomials in the fields i.e. following
the standard quantisation. In the new quantisation, despite having at our disposal Wilsonian
effective interactions with arbitrarily high powers of space-time derivatives, and despite having
enlarged the algebra with a properly regularised version of the measure term ∆, we will see
that no BRST non-trivial interactions can be introduced while lieing strictly inside L. On the
other hand, we show in sec. 7.3 that we can modify any standard parametrisation of the
interactions so that they are an expansion only over (marginally) relevant operators in L, for
all finite values of amplitude suppression scale Λσ. Then we show that by taking the limit
Λσ → ∞, full BRST invariance can be recovered. This is already sufficient to ensure that
diffeomorphism invariance is correctly incorporated at first order in κ. We show that at higher
orders the procedure has sufficient flexibility a priori to allow an order by order solution of the
Quantum Master Equation (QME). In sec. 8 we discuss what further insights can be gained so
far, and highlight some of the open issues. In sec. 9 we summarise and draw our conclusions.

2 Combining the QME, BRST cohomology and the Wilsonian RG

As sketched in the Introduction, we need to ask how diffeomorphism invariance is imple-
mented directly at the quantum level while respecting the fact that the form of the interactions
is dictated by the Wilsonian RG. The operators (1.2) depend for their existence on quadratic
divergences. They are not well defined in dimensional regularisation [5]. Therefore to dis-
cuss renormalizability, employing a cutoff that breaks the gauge invariance seems so far to be
essential [5].

2.1 Quantum Master Equation

Renormalizability in the presence of non-Abelian local symmetries can still be assured if we can
show that the Zinn-Justin equation [54] for the Legendre effective action, can be satisfied. This
takes into account the fact that the gauge invariance is realised at the quantum level through
requiring a BRST invariance [11–14] and is flexible enough to accommodate its deformation
under regularisation and renormalization. At the level that we will need it here, it is more
elegant to work directly with the quantum fields where the modified BRST transformations
can be written as

δΦA = εQΦA (2.1)

(ε a Grassmann number). The ΦA are the quantum fields, including ghost fields – and auxiliary
fields to realise BRST invariance off-shell. For a non-Abelian symmetry, the BRST charge Q
depends on the fields themselves. We define this Grassmann odd derivation to act from the
left. To renormalize, we need to supplement the bare action S[Φ] with source terms Φ∗A for
these BRST transformations, so that the total action is

S = S[Φ]− (QΦA)Φ∗A . (2.2)
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The partition function is then simply

Z[Φ∗] =
∫

DΦe−S . (2.3)

The Φ∗A have opposite statistics to the ΦA and are called antifields. We are using the compact
Dewitt notation. Up to some choices of convention, we follow Batalin and Vilkovisky [26,27],
except that we implement gauge fixing by working in the gauge fixed basis [29, 55–59], and
also retain the antifields. This is explained in sec. 2.7.

The gauge symmetry is successfully incorporated if the functional integral is invariant un-
der (2.1), and this is true if and only if the QME is satisfied, namely A = 0, where the QMF
(Quantum Master Functional) is:4

A[S] = 1
2(S, S)−∆S . (2.4)

Here, we are introducing the antibracket ( · , · ) and the measure operator∆, which on arbitrary
functionals X and Y take the form:

(X , Y ) =
∂r X
∂ΦA

∂l Y
∂Φ∗A

−
∂r X
∂Φ∗A

∂l Y
∂ΦA

and ∆X = (−)A
∂l

∂ΦA

∂l

∂Φ∗A
X , (2.5)

where by A in the exponent we mean A= 0 (1) if ΦA is bosonic (fermionic), Einstein summation
being understood as operating when there are matching subscript and superscript pairs. On a
bosonic functional such as the action itself one can alternatively write

∆S =
∂r

∂ΦA

∂l

∂Φ∗A
S . (2.6)

The measure operator is the quantum part of the QME (as is clear if we restore ħh). Without
regularisation it is not well defined. However we will see that the Wilsonian RG provides the
regularisation needed in such a way that the relations we review in this and the next subsection
are unchanged but then also properly defined.

The QME follows straightforwardly from the observation that
∫

DΦAe−S =

∫

DΦ∆e−S = 0 , (2.7)

where vanishing follows since the second expression is an integral of a total Φ derivative.5 In-
herited from its fermionic nature and its Poisson structure, the QME, antibracket and measure
operator, satisfy many nice identities, cf. [26,27,29] and appendix A, which we will use in the
following.

2.2 BRST cohomology

We will be interested in particular in starting from a solution of the QME (namely the free
graviton action) and then perturbing it so that S + εO is still a solution (where ε is a small
parameter, and O is a quasi-local operator integrated over spacetime). This deforms the BRST
algebra, allowing us to explore the space of interacting theories whose gauge invariance is
smoothly connected to that of the free one. Substituting the perturbed action into the QME
we have that the operator must be BRST invariant:

sO = 0 , (2.8)
4We write QMF when properties are independent of it being required also to vanish, i.e. to satisfy the QME.
5In refs. [26,27] there is an extra step because the antifields are eliminated in the gauge fixing process. We do

not need this step because we work in gauge fixed basis and keep the antifields.
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where the (full quantum) BRST transformation is:

sO = (S,O)−∆O . (2.9)

This equation is also valid for fermionic operators (we just choose ε to be fermionic). We dis-
tinguish the full BRST transformation from the previously introduced BRST transformation:6

QΦA = (S,ΦA) . (2.10)

(It is straightforward to see that this is consistent with (2.5) and (2.2). Henneaux et al call Q
the longitudinal transformation, and s the BRST operator.) We will similarly need the action
of the (fermionic) Kozsul–Tate differential [60–62] on the antifields [18–25]:

Q−Φ∗A = (S,Φ∗A) , (2.11)

which we thus define also to act from the left. Note that sΦA =QΦA and sΦ∗A =Q−Φ∗A since the
quantum part (∆) automatically vanishes in these cases. Adding these pieces we thus have

(Q+Q−)O = (S,O) . (2.12)

If S was the classical action Scl , which satisfies the ħh= 0 case of the QME, namely the Classical
Master Equation:

(Scl , Scl) = 0 , (2.13)

then the above would be the full classical BRST transformation, the starting point for classical
BRST cohomology [18–25] (see also sec. 2.7). Note however that our charges differ from
their classical counterparts because S 6= Scl .

The full BRST transformation is nilpotent provided the Master Equation is satisfied. Indeed
we have in general (cf. [29,63] and appendix A):

s2 O = (A,O) . (2.14)

Therefore if the QME is satisfied by S, operators that are s-exact, i.e. can be written as

O = s K = (S, K)−∆K , (2.15)

are automatically closed under s, i.e. satisfy (2.8). However it is evident from the definition
of the antibracket and s, that such operators just correspond to infinitesimal field and source
redefinitions:

δΦA =
∂l K
∂Φ∗A

, δΦ∗A = −
∂l K
∂ΦA

, (2.16)

with −∆K corresponding to the Jacobian of the change of variables in the partition function
(2.3). Indeed if O1, · · · ,On are BRST invariant operators, O is s-exact, and these operators
have disjoint spacetime support, then their correlator vanishes:

〈OO1 · · ·On〉= 〈sK O1 · · ·On〉= 〈s (KO1 · · ·On)〉= −
1
Z

∫

DΦ∆ (KO1 · · ·On)e
−S = 0 .

(2.17)
Thus if K generates a legitimate change of variables (in particular in our case is quasi-local)
then we have to discard this solution as uninteresting. We are therefore interested in operators
O that are closed under s but not exact, i.e. in the quantum BRST cohomology.

6With a loose index, the ΦA should be understood in the DeWitt sense as part of an integrated operator.
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2.3 Wilsonian renormalization group

However operating on local functionals, ∆ in (2.5) is not yet well defined: it needs regulari-
sation. The regularisation that we must use is already dictated by the Wilsonian RG, indeed
the bare action without antifields S ≡ Stot,Λ[Φ] [5], already carries this regularisation. This is
the Wilsonian effective action, which is constructed to give the same partition function after
integrating out modes with energy scales greater than Λ. Like the QME, its RG flow is also
defined through an integral of a total derivative identity [15,64,65]:

∂t e−S =
∂r

∂ΦA

�

Ψ̂A e−S
�

, (2.18)

where RG ‘time’ t = ln(µ/Λ), µ some fixed energy scale. For sensible Ψ̂A and setting Φ∗A = 0,
this defines a valid changed action S which however clearly leaves (2.3) invariant as required.
Choosing the field reparametrisation (blocking functional) to be

Ψ̂A =
1
2
(4̇Λ)AB ∂rΣ

∂ΦB
, (2.19)

where Σ= S−2Ŝ,˙≡ ∂t , and∆Λ are regularised propagators defined below, gives the RG flow
equation:

Ṡ =
1
2
∂rS
∂ΦA
(4̇Λ)AB ∂lΣ

∂ΦB
−

1
2
(4̇Λ)AB ∂l

∂ΦB

∂l

∂ΦA
Σ . (2.20)

If the seed action Ŝ is chosen to coincide with the Gaussian fixed point action:

S0 =
1
2 Φ

A(4Λ)−1
ABΦ

B , (2.21)

then (2.20) is the Wilson/Polchinski equation [66, 67]. It is convenient to summarise (2.20)
in the notation [68]:

Ṡ = a0[S,Σ]− a1[Σ] , (2.22)

where the classical piece, a0, is thus symmetric bilinear in its arguments, and the quantum
piece, a1, is linear in its arguments. First order perturbations of S are thus operators O (inte-
grated over spacetime) whose RG flow is governed by

Ȯ = 2a0[O, S−Ŝ]− a1[O] . (2.23)

In particular if S is a fixed point action, solving this equation by separation of variables, gives
the eigenoperators.

The Gaussian fixed point corresponds to a regulated massless free field theory. Its propa-
gators (which exist since we are working in the gauge fixed basis),

4AB = (−)A4BA = (−)B4BA , (2.24)

are regularised by multiplying by an ultraviolet cutoff function CΛ(p)≡ C(p2/Λ2), so that7

(4Λ)AB = CΛ(p)4AB , (2.25)

Thus in (2.21), the inverse propagators ∆−1
AB carry a factor of 1/CΛ(p). Qualitatively, for

|p| < Λ, CΛ(p) ≈ 1 and mostly leaves the modes unaffected, while for |p| > Λ its rôle is
to suppress modes. We require that C(p2/Λ2) is a smooth monotonically decreasing function
of its argument, that CΛ(p)→ 1 for |p|/Λ→ 0, and for |p|/Λ→∞we require that CΛ(p)→ 0
sufficiently fast to ensure that all momentum integrals are regulated in the ultraviolet. S = S0
is a solution of the RG flow equation (2.20) (after throwing away a field independent term),
i.e. satisfies Ṡ0 = −a0[S0,S0]. If we had scaled to dimensionless variables by using Λ, it would
indeed be unchanged (a fixed point) as further modes are integrated out.

7The propagators are diagonal in the momentum p. Here and similarly later, we trust the reader understands
our slight abuse of notation.
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2.4 Combining the concepts

In order to combine these concepts, we need them to match in particular at the Gaussian fixed
point and for first order perturbations away from this fixed point. We will see that this fixes
uniquely how antifield dependence is to be introduced into the Wilsonian RG. We also need
the QME to be respected by the RG flow, i.e. we require

A[S] = 0 =⇒ ∂t A[S] = 0 , (2.26)

so that if the QME is satisfied at some scale Λ, it remains satisfied on further RG evolution. We
will see that this fixes uniquely how the parts of the QMF, (2.5), are to be regularised.

Since the Gaussian fixed point corresponds to the free action, we have there only the free
BRST transformations generated by Q0, where by

Q0Φ
A = RA

BΦ
B , (2.27)

we mean furthermore the classical (unregularised) transformations. Since the free BRST sym-
metry is Abelian and diagonal in momentum space, it is not difficult to regularise it consistently
by inserting some momentum cutoff function dependence between the bilinear terms in the
action and between the functional derivatives in (2.5). Thus from (2.2) we now write

S0 = S0 +S∗0 , (2.28)

where
S∗0 = −(Q0Φ

A)BΛΦ∗A , (2.29)

and BΛ(p) is some cutoff function dependence to be determined. For this to make sense under
the RG, S0 must also be a solution of the flow equation. By converting to dimensionless vari-
ables it will then be a fixed point action, now with antifields included. Plugging S = S0 into
the flow equation (2.22) gives:

Ṡ0 + Ṡ∗0 = −a0[S0,S0] + a0[S∗0 ,S∗0] . (2.30)

At first sight the structure (2.28) cannot be preserved since a priori the last term above gener-
ates terms bilinear in the antifields. In fact up to a multiplicative factor (containing the cutoff
functions) a0[S∗0 ,S∗0] computes




Q0Φ
A Q0Φ

B
�

=



Q0

�

ΦA Q0Φ
B
��

= 0 , (2.31)

which vanishes by BRST invariance. Thus the flow equation reduces to Ṡ∗0 = 0, which would
tell us without loss of generality to set BΛ ≡ 1.

However first order perturbations will lead us to a better solution. Expanding in the gauge
coupling, let us call it κ, as:

S = S0 +κS1 +
1
2κ

2S2 + · · · , (2.32)

we have from (2.23) that first order perturbations satisfy

Ṡ1 = 2a0[S1, S0 − Ŝ]− a1[S1] . (2.33)

We see that even the original S1 = O[Φ] eigenoperators, i.e. for gravity those given in (1.4),
must now inherit antifield dependence as dictated by the first term on the right hand side,
unless we insist (as we now do) that the seed action is also modified so as to maintain equality
with the Gaussian fixed point action (2.28), i.e.

Ŝ = S0 +S∗0 . (2.34)
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Checking again that S0 satisfies the flow equation we now have

Ṡ0 + Ṡ∗0 = −a0[S0,S0]− 2a0[S0,S∗0] , (2.35)

and thus find that actually in (2.29) we should set BΛ(p) = 1/CΛ(p). We conclude that the free
action (2.28) and seed action (2.34) are equal, and regularised by inserting 1/CΛ(p) inside
all bilinear terms.

To find out how the QME is to be regularised, we insist on (2.26). Inserting some cutoff
function dependence (to be determined) between the functional derivatives in ∆, and writing
µ= e−S , we have

∂t (Aµ) = ∆̇µ+∆µ̇

= ∆̇µ+
1
2
∂r

∂ΦA

§

(4̇Λ)AB ∂r∆S
∂ΦB

µ+ (4̇Λ)BA ∂rΣ

∂ΦB
∆µ+ (4̇Λ)BA

�

∂rΣ

∂ΦB
,µ
�ª

= ∆̇µ−
∂r

∂ΦA
(4̇Λ)BA

�

∂r Ŝ
∂ΦB

,µ

�

+
1
2
∂r

∂ΦA

§

(4̇Λ)BA ∂rΣ

∂ΦB
Aµ− (4̇Λ)AB ∂rA

∂ΦB
µ

ª

,

(2.36)

where in the first line we use the first equality in (2.7) and recognise that ∆ now has RG
time dependence, in the second line we insert (2.20), use (A.4), and for prettiness (2.24), and
recognise that Ŝ is only bilinear. In the final line we use (A.6).

We see that the consistency relation (2.26) will be satisfied only if we can get rid of the
first two terms in the last line. Substituting (2.34) in the second term and expanding, the S∗0
part gives

−
1
2

�

RC
B(4̇

Λ)BA+ RA
B(4̇

Λ)BC
	 ∂ 2

l µ

∂ΦA∂ΦC
. (2.37)

The term in braces vanishes by linearised BRST invariance, as shown in (A.8). That leaves
the S0 part, which one quickly finds cancels the first term if and only if ∆ is regularised by
inserting CΛ(p) between its functional derivatives. We set this to be true from now on.

Pulling out µ as an overall factor, and cancelling terms using (2.20), (2.36) then becomes

Ȧ= 2a0[A, S−Ŝ]− a1[A] , (2.38)

i.e. the QMF, A, simply satisfies the operator flow equation (2.23), and thus clearly also (2.26).
The framework we have derived has nice properties, as we explain in sec. 2.6.

2.5 Comparison with earlier work

Before doing so, it is helpful to compare our framework to earlier work. Had we stuck with
the solution BΛ = 1 in (2.29), as we found below (2.31), we would still require the QME to
be consistent with the RG flow. This gives us the same equation as (2.36). Although in this
BΛ = 1 solution, Ŝ has no Φ∗ dependence, we just saw that consistency is independent of that
part, since (2.37) vanishes. Thus we learn again that the QMF is to be regularised by inserting
CΛ.

This BΛ = 1 formulation coincides with those of refs. [40–42, 47, 48], and as we will see
shortly is actually related to our formulation by a change of variables. It has however the
unpleasant feature that from (2.10) already at the free level, the regularised BRST transfor-
mations

Q0Φ
A|reg =

�

S0,ΦA
�

= CΛ(p)RA
BΦ

B (2.39)

are no longer local but are now only quasi-local (cf. footnote 2) and similarly from (2.11) also
the free Koszul–Tate differential is now only quasi-local:

Q−0Φ
∗
A|reg =

�

S0,Φ∗A
�

= CΛ(p)Q−0Φ
∗
A . (2.40)
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This causes difficulties particularly in understanding the quantum BRST cohomology, since
this means that it cannot close on local terms. As we note in sec. 2.6 this problem is absent
from our formulation.

Motivated by the wish to preserve the canonical structure

(ΦA,Φ∗B) = δ
A
B , (2.41)

which will then also remove the above issue, the authors in refs. [43,47] also changed variables

Φ∗(p) 7→ CΛ(p)Φ∗(p) . (2.42)

Even though this is just a change of variables, it obscures RG properties since the partition
function (2.3) now depends on Λ. Thus the flow equation no longer takes the form (2.18).
Most importantly, it obscures how∆ is to be regularised since it removes the cutoff dependence
from here also. Thus in this parametrisation it is no longer true that ∆ is well defined when
acting on local functionals.

From sec. 2.4, we already know that another feature of both of the above formulations is
that they lead to extra antifield dependence, even for the original S1 = O[Φ] eigenoperators.
Working with their first formulation, i.e. without (2.42), and using the fact that S0 − Ŝ = S∗0
with BΛ = 1, (2.33) tells us (e.g. by adapting the method of characteristics) that the general
solution is given by an S1 ≡ S1[Φ̌,Φ∗] which satisfies the eigenoperator equation without the
antifield correction (just as it does in our formulation):

Ṡ1[Φ̌,Φ∗] = −a1[S1] , (2.43)

its effect being carried by:
Φ̌A = ΦA+4AB

Λ RC
BΦ
∗
C . (2.44)

The requirement of quasi-locality fixes the t-integration constant to give the infrared regulated
propagator [5]

4AB
Λ = CΛ(p)4AB where CΛ(p) = 1− CΛ(p) . (2.45)

These Φ̌A coincide with the shifted fields found in [44,45,47].
However if we take the hint from the mathematics, and fully transform the equations to

shifted variables, we get back to our formulation. Firstly, we can show that (2.44) is a finite
quantum canonical transformation, i.e. leaves invariant the QMF. This follows because it can
be written as:

Φ̌A =
∂l

∂ Φ̌∗A
K[Φ, Φ̌∗] , Φ∗A =

∂r

∂ΦA
K[Φ, Φ̌∗] , (2.46)

where
K = Φ̌∗AΦ

A+Ψ∗[Φ̌∗] , and Ψ∗[Φ̌∗] = 1
2 Φ̌
∗
A4

AB
Λ RC

BΦ̌
∗
C . (2.47)

cf. appendix A for more details and e.g. ref. [29]. Secondly, substituting the transformation
(2.44) into (2.28), and noting that the (Φ∗)2 terms vanish for the same reasons as in (2.31),
one finds that S0[Φ̌,Φ∗] takes again the same form, but with BΛ = 1 replaced by BΛ = 1/CΛ

in (2.29). Similarly the seed action, which was just (2.21), becomes Ŝ = S0 − (Q0Φ̌
A)Φ∗A.

Substituting the transformation (2.44) into the flow equation (2.22), we see that this second
piece of Ŝ is cancelled by the change from ∂t |Φ to ∂t |Φ̌, just as happened for the operators in
the passage from (2.33) to (2.43). Thus the net result is we get back our flow equation i.e.
with the seed action and Gaussian action now set equal and regulated by inserting 1/CΛ in all
terms.
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2.6 Summary and further properties

To summarise our formulation, the free action (2.28) (equal to the seed action) is regularised
by inserting 1/CΛ(p) inside all bilinear terms:

S0 = Ŝ = S0 +S∗0 =
1
2 Φ

A(4Λ)−1
ABΦ

B − (Q0Φ
A)
�

CΛ
�−1
Φ∗A . (2.48)

The QMF (2.4) is regularised by inserting CΛ(p) between the functional derivatives in (2.5):

(X , Y ) =
∂r X
∂ΦA

CΛ
∂l Y
∂Φ∗A

−
∂r X
∂Φ∗A

CΛ
∂l Y
∂ΦA

and ∆X = (−)A
∂l

∂ΦA
CΛ

∂l

∂Φ∗A
X , (2.49)

Note that this means the canonical structure (2.41) is not preserved. Since the same regu-
larisation must be applied to the antibracket and the measure term, so that the identity (2.7)
remains satisfied, some sort of deformation of (2.41) is a necessary consequence if ∆ is to be
well defined when acting on arbitrary local functionals. This is related to the observation [26]
that∆ quantifies the extent to which the volume of phase space is not preserved by a canonical
transformation.

This is not a problem however because what matters are the BRST transformations them-
selves. Using the definition (2.10), factors of cutoff and its inverse actually cancel each other
in the free BRST transformation

Q0Φ
A =

�

S0,ΦA
�

, (2.50)

so that it is left unaltered by the regularisation. Clearly this is also true of the free Kozsul–Tate
differential where, by (2.11),

Q−0Φ
∗
A =

�

S0,Φ∗A
�

. (2.51)

Thus only the quantum part of the free BRST cohomology, ∆, depends on the cutoff, and
in a way which is well defined (i.e. regularised) when acting on arbitrary local functionals,
provided we use a suitably fast decaying CΛ e.g. exponential as we already used in refs. [5,8].
Since all the relations that we need from the QME follow from (2.7) and from symmetry and
statistics, in particular the BRST cohomology relations in sec. 2.2, it straightforward to see
that all these are left undisturbed by the regularisation. Since ∆ also maps local functionals
to local functionals, this means that in this formulation the free quantum BRST cohomology
is now well defined on local functionals.

Substituting the perturbative expansion of S, (2.32), into the full BRST differential (2.9)
gives its perturbative expansion s = s0 + κs1 +

1
2κ

2s2 + · · · . Non-trivial solutions of the free
quantum BRST cohomology define all possible perturbative interactions to first order through
the relation:

s0S1 = 0 . (2.52)

We have just seen that this can be studied in the space of local functionals. Provided that there
are no obstructions, the higher orders can be iteratively constructed by substituting (2.32) into
the QME (2.4) (the measure operator appears only through s0 on the left hand side):

s0S2 = −
1
2(S1, S1) , s0S3 = −(S1, S2) , · · · . (2.53)

The ambiguities in the solution of the higher order pieces are therefore again elements of the
free BRST cohomology. However note that if S1 is local, the particular solutions for the Sn>1
will be only quasi-local, because of the presence of CΛ in the definition of the antibracket on
the right hand sides.

Note that it is the free action together with its antifield dependence, i.e. (2.28), that is the
Gaussian fixed point. The part with no antifields, (2.21), is no longer separately a solution of
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the flow equation. Since Ŝ = S0 is maintained after introducing antifields, general first order
perturbations S1 (with or without antifields) continue to satisfy the simple equation:

Ṡ1 = −a1[S1] . (2.54)

This just tells us that S1 must be a linear combination of eigen-operators with constant coef-
ficients (the couplings). As we show in ensuing sections, if we insist that the eigen-operators
span a space of interactions closed under the Wilsonian RG, this in turn means that S1 is an
element of the Hilbert space L, defined by (1.3) and (1.4) but extended to include the ghost,
auxiliary, and anti-ghost fields.

The full action S satisfies the flow equation (2.20), or in short-hand (2.22). Suppose that
we shift S infinitesimally to a new solution S + εK . It is straightforward to confirm that also
if ε is fermionic, K satisfies the operator flow equation (2.23). On the other hand the QMF
also satisfies the operator flow equation, as we saw in (2.38). Under the infinitesimal shift,
the QMF becomes A − ε sK , as follows from (2.4) and (2.9), and therefore also sK satisfies
(2.23). We have thus shown that if K satisfies the operator flow equation, so does sK . In
particular around the Gaussian fixed point S = S0, the operator flow equation is just (2.54).
Therefore we have shown that if K is a linear combination of eigenoperators with constant
coefficients (the couplings), then the cohomologically trivial operator O = s0 K , cf. (2.15), is
also a linear combination of eigenoperators with constant coefficients. Since, as we will see,
the eigen-operators are also local functionals, we see that the free quantum BRST cohomology
can be defined within the Hilbert space L spanned by these eigen-operators with their constant
couplings.

Clearly this is precisely what we need to understand when searching for non-trivial con-
tinuum limits that incorporate diffeomorphism invariance. We have thus arrived at the ideal
framework for developing the quantum BRST cohomology, and as close to ideal as possible
more generally for quantum calculations where power law divergences need to be kept under
rigorous control.

Finally we note that since we still have Ŝ = S0, the general flow equation for the action and
operators is more simply expressed in terms of the interactions only. Substituting S = S0+Sint

into the flow equation (2.22), and discarding the field independent piece, turns (2.20) into
recognisably the usual form for the Polchinski flow equation [66]:

Ṡint = a0[S
int, Sint]− a1[S

int] =
1
2
∂rS

int

∂ΦA
(4̇Λ)AB ∂lS

int

∂ΦB
−

1
2
(4̇Λ)AB ∂l

∂ΦB

∂l

∂ΦA
Sint , (2.55)

while from (2.23), we have
Ȯ = 2a0[O, Sint]− a1[O] . (2.56)

2.7 Gauge invariant basis

Up until now we have tacitly been working in the gauge fixed basis [29,55–59]where propaga-
tors are well defined, while also keeping the anti-fields as sources for the BRST variations. This
is the starting point for analysis of renormalizability when gauge invariance is involved [54].

Expressions are simpler in the gauge invariant basis however, i.e. the system before any
gauge fixing is applied. Anti-fields are still included to encode the action of the BRST complex,
i.e. including also the Kozsul-Tate operator and at the quantum level the measure operator ∆.
At the classical level and working over the space of strictly local operators, this is the starting
point for the study of classical BRST cohomology [18–22,24,25].

The two bases are in fact related by a quantum canonical transformation. If we let the
gauge invariant basis fields be {Φ̌A, Φ̌∗A}, then the quantum canonical transformation again
takes the same form (2.46), however in this case

K = Φ̌∗AΦ
A+Ψ[Φ] , (2.57)
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where Ψ is the so-called gauge fixing fermion [26,27]. Since Ψ[Φ] depends only on the fields
and not the antifields, a straightforward adaptation of the arguments in appendix A establishes
that K indeed generates a quantum canonical transformation.

This leads to a slightly subtle point. It means that results, even at the quantum level, are
equivalent when calculated in either basis. This does not mean however that it furnishes a
way to compute general quantum corrections without gauge fixing. In this framework, the
general rules for calculating quantum corrections have to be derived in a given gauge fixed
basis, so that propagators exist. By the canonical transformation, this implies a set of rules for
computation in the gauge invariant basis, which will however still be tied to the chosen gauge
fixing; for example the propagators are still the ones derived in the chosen gauge fixed basis.
Although the QMF is invariant under the transformation to the gauge invariant basis, the flow
equation (2.20) is not. Since its form in the gauge invariant basis is unilluminating, we do not
display it.

On the other hand the form of the quantum-corrected BRST transformations follow from
the QME. For this we need only the regularised measure operator ∆. We do not need the
propagators. Thus to study the quantum BRST cohomology, we are free to use the gauge
invariant basis. Evidently this leads to simplifications. In fact it will allow us to work in the
minimal basis [26, 27]. This also has the advantage that the properties we derive will clearly
continue to hold whatever legitimate gauge fixing we then implement for computing the actual
quantum corrections from the Wilsonian RG.

3 Quantum Gravity

We now specialise the general structure we have derived in the previous section to that of
quantum gravity, and take the opportunity to review and extend the analysis in ref. [5], in
particular to the ghost and auxiliary fields. We also generalise it to d dimensions, in case this
will prove useful in future, and begin by working in a more general gauge. Our purpose in
these sections is not only to prepare for the quantum BRST cohomology study in sec. 7.2,
but also to prepare the ground for future calculations in this renormalizable quantum gravity
theory.

We start with the BRST algebra in gauge invariant basis. As we discuss at the end of sec.
3.2, by comparison with the algebra in (a convenient) gauge fixed basis, it is significantly
simpler. Since the two bases are equivalent under a canonical transformation, it makes sense
to study the BRST algebra exclusively in the gauge invariant basis. Then as we already pointed
out in sec. 2.7, also the BRST cohomology is clearly independent of the gauge choice. We note
that for the BRST cohomology, we can also choose to work within the minimal basis, which
then leads to yet further simplifications.

3.1 Quantum gravity BRST algebra in gauge invariant basis

To make sense of the Wilsonian RG for quantum gravity, we need to work in Euclidean signa-
ture and around flat Rd [5]. Then the action for free graviton fields Hµν is:

S0 =

∫

dd x L0 , where L0[H] =
1
2

�

∂λHµν
�2−2 (∂λϕ)

2−
�

∂ µHµν
�2
+2∂ αϕ∂ βHαβ . (3.1)

We have written the trace as ϕ = 1
2 Hµµ, and contraction is with the flat metric δµν. Since

raising an index thus makes no difference we will usually leave all indices as subscripts. Given
that the action is normalised, bilinear, and quadratic in derivatives, it is determined uniquely
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by linearised diffeomorphism invariance, or in BRST language:

Q0Hµν = ∂µcν + ∂νcµ , (3.2)

where cµ are the ghost fields.
The free system, i.e. the action (3.1) and invariance (3.2), follow from the Einstein-Hilbert

Lagrangian
LEH = −2

p
gR/κ2 , (3.3)

if one writes the metric to O(κ), as

gµν = δµν +κHµν (3.4)

(and to get κ powers correct, regard κcµ as the small diffeomorphism). However one of
the main points of the paper, and in particular sec. 7.2, is to determine the constraints on
alternative quantum deformations of the free system, thus extending to the quantum domain
the questions asked of classical BRST cohomology. Therefore consistent interactions need not
a priori correspond to those that arise from LEH .

Recall from the previous section that the free action is regulated by inserting 1/CΛ(p)
between the two fields in all terms, cf. (2.48). Therefore we now write

L0 =
1
2 Hµν (4Λ)−1

µν,αβ Hαβ , (3.5)

where4−1
Hµν Hαβ

=4−1
µν,αβ is the differential operator we get from (3.1) by integrating by parts,

and (4Λ)−1
µν,αβ = 4

−1
µν,αβ/C

Λ. To encode the BRST complex and its deformations, we add
to the action the antifield source terms. At this stage we only need the fermionic symmetric
tensor H∗µν(x):

S0 =

∫

dd x L0 , where L0 = L0 − 2∂µcν
�

CΛ
�−1

H∗µν , (3.6)

where the structure follows (2.2). This is the action at O(κ0) in the minimal gauge invariant
basis. This basis encodes all the properties of the gauge invariant action and the gauge trans-
formations. The antighost c∗µ is conjugate to the commutator of gauge transformations. Since
at the free level, these transformations (3.2) are Abelian, c∗µ does not appear. This will change
when we introduce interactions, as for example in the standard realisation of diffeomorphism
invariance reviewed in sec. 7.1.

To get the non-minimal gauge invariant basis we introduce the bosonic auxiliary field bµ
and the bosonic anti-ghost anti-field c̄∗µ and write:

L0 = L0 +
1

2α
bµ
�

CΛ
�−1

bµ − 2∂µcν
�

CΛ
�−1

H∗µν − i bµ
�

CΛ
�−1

c̄∗µ , (3.7)

where α will become our gauge fixing parameter. As we will see in the next section, only after
mapping to gauge fixed basis will we get dependence on c̄µ at the free level.

Recall that we also insert CΛ(p) between the pairs in the antibracket, as in (2.49). Thus
using the general formula (2.50), we verify (3.2), and confirm that it is the only non-vanishing
free BRST transformation in minimal basis (i.e. Q0 cµ = 0). We also read off the one further
non-vanishing free BRST transformation that appears in the non-minimal basis:

Q0 c̄µ = i bµ . (3.8)

Similarly from (2.51), we read off the non-vanishing free Kozsul-Tate differentials (both of
which are already present in the minimal basis):

Q−0 H∗µν = −2G(1)µν , Q−0 c∗ν = −2∂µH∗µν , (3.9)
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where G(1)µν is the linearised Einstein tensor:

G(1)µν = −R(1)µν +
1
2R(1)δµν =

1
2 �Hµν −δµν�ϕ + ∂ 2

µνϕ +
1
2δµν∂

2
αβHαβ − ∂(µ∂ αHν)α , (3.10)

the linearised curvatures being8

R(1)
µανβ

= −2∂[µ|∂[νHβ] |α] , R(1)µν = −∂
2
µνϕ + ∂(µ∂

αHν)α −
1
2 �Hµν , R(1) = ∂ 2

αβHαβ − 2�ϕ .
(3.11)

As we noted in sec. 2.6, the above transformations are unaltered by the regularisation, in
particular G(1)µν is free of regularisation.

As well as ghost number, and statistics, the system carries another natural grading [18,23]
which can be thought of, depending on the field, as the antifield number or the antighost
number. Assigning S zero ghost number, cµ unit ghost number, and H∗µν unit antifield number,
consistent assignments for all other fields and operators demands the values given in table 1,
where we also display the Grassmann grading and their engineering dimension. (We do not
list the antifield b∗µ because this never appears in the action.)

Table 1: The various Abelian charges (a.k.a. gradings) carried by the fields and oper-
ators. ε is the Grassmann grading, being 1(0) if the object is fermionic (bosonic). gh
# is the ghost number, ag # the antighost/antifield number, pure gh # = gh # + ag
#, and dimension is the engineering dimension. The first two rows are the minimi-
mal set of fields, the next two make it up to the non-minimal set, then the ensuing
two rows are the minimal set of antifields, and c̄∗µ is needed for the non-minimal set.
Finally, the charges are determined in order to ensure that Q and Q− can also be
assigned definite charges.

ε gh # ag # pure gh # dimension

Hµν 0 0 0 0 (d − 2)/2
cµ 1 1 0 1 (d − 2)/2
c̄µ 1 -1 1 0 (d − 2)/2
bµ 0 0 1 1 d/2

H∗µν 1 -1 1 0 d/2
c∗µ 0 -2 2 0 d/2

c̄∗µ 0 0 0 0 d/2

Q 1 1 0 1 1
Q− 1 1 -1 0 0

According to the assignments in table 1, one also sees that (X , Y ) adds one to the sum of the
dimensions of X and Y , and adds one to the sum of the ghost numbers of X and Y . Therefore
both charges Q and Q− increase the ghost number and dimension by one. Similarly∆ increases
ghost number and dimension by one. Finally we note that a canonical transformation K as in
(2.46), must thus be fermionic and have ghost number −1.

Although the action S has definite ghost number, namely vanishing ghost number, it does
not have definite anti-field number. Following refs. [18–25], we can therefore split a BRST
cohomology problem into parts depending on the anti-field number, labelling the parts with a
superscript indicating the anti-field/anti-ghost number: S =

∑

n=0 Sn .

8defining symmetrisation as: t(µν) =
1
2 (tµν + tνµ), and antisymmetrisation as t[µν] =

1
2 (tµν − tνµ).
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Since the BRST charge leaves the antighost number undisturbed we write it as Q ≡Q0. On
the other hand the Kozsul-Tate charge decreases antighost number by one, which is why we
label it as Q−, i.e. with a minus in the superscript. The measure operator ∆ = ∆− +∆= can
also be divided into parts of definite antighost number:

∆− =
∂

∂ Hµν
CΛ

∂l

∂ H∗µν
−
∂l

∂ c̄µ
CΛ

∂

∂ c̄∗µ
, ∆= = −

∂l

∂ cµ
CΛ

∂

∂ c∗µ
. (3.12)

Thus ∆− lowers the antighost number by one, and ∆= lowers it by two. (On the minimal set,
only the first piece of ∆− is active.) The full quantum BRST charge can now be written as

s =Q+Q− −∆− −∆= . (3.13)

Splitting the cohomology problem sO = 0 by antighost number, this becomes the statement
that for n≥ 0 the following equations must be satisfied:

QOn + (Q−−∆−)On+1 −∆=On+2 = 0 . (3.14)

Since we require the QME, cf. sec. 2.2, we want the solutions modulo the trivial (exact) ones,
O = sK . Grading K also by antighost number, these trivial solutions take the form:

On =Q Kn + (Q−−∆−)Kn+1 −∆= Kn+2 , (3.15)

such that the Kn are fermionic and have ghost number −1. Grading s2 by antighost number it
is almost immediate to see that:

Q2 = 0 , (Q−)2 = 0 , (∆−)2 = 0 , (∆=)2 = 0 ,

{Q,Q−}= 0 , {Q,∆−}= 0 , {Q−,∆=}= 0 , {∆−,∆=}= 0 ,

{Q−,∆−}+{Q,∆=}= 0 . (3.16)

Thus Q2 is the only piece that leaves antighost number unchanged and therefore the quantum
BRST charge Q must be nilpotent on its own. The anticommutators involving only ∆ must
vanish because functional derivatives (anti)commute and∆ is overall odd. Then the anticom-
mutator {Q−,∆=} must vanish since it is the only remaining operator that lowers antighost
number by three. The piece that lowers antighost number by one must vanish on its own:

{Q,Q−} − {Q,∆−}= 0 . (3.17)

Again since the operators are odd, each anticommutator can only be non-vanishing if a func-
tional derivative is used up by acting on the other operator. Then the first anticommutator
contains precisely one free functional derivative, and the second contains precisely two. As an
operator identity, they must therefore vanish separately. The remaining pieces lower antighost
number by two:

(Q−)2 − {Q−,∆−} − {Q,∆=}= 0 . (3.18)

By the same argument we see that (Q−)2 = 0. The final two pieces do not vanish separately.
Indeed by explicit computation even at the free level the result is non-vanishing:

{Q0,∆=}= −{Q−0 ,∆−}= 2
∂

∂ c∗ν
CΛ∂µ

∂

∂ Hµν
. (3.19)
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3.2 Quantum gravity BRST algebra in a gauge fixed basis

Gauge fixing is implemented by a suitable gauge fixing fermion Ψ of ghost number −1. We set

Ψ = c̄µFµ , (3.20)

where Fµ[H] is the usual gauge fixing function. We choose it to implement De Donder gauge
fixing:

Fµ = ∂νHνµ − ∂µϕ . (3.21)

Under the canonical transformation (2.57), cf. (2.46), which takes us from the non-minimal
gauge invariant basis to the gauge fixed basis (or vice versa), we thus only change c̄∗µ and H∗µν.
Explicitly we have:9

c̄∗µ |gf = c̄∗µ |gi + Fµ , (3.22)

H∗µν |gf = H∗µν |gi − ∂(µ c̄ν) +
1
2 δµν ∂ · c̄ .

Applying this to (3.7), we get S0 in gauge fixed basis:

L0 =
1
2

Hµν (4Λ)−1
µν,αβ Hαβ − c̄µ�Λ cµ − i bµ

�

CΛ
�−1

Fµ +
1

2α
bµ
�

CΛ
�−1

bµ

− 2∂µcν
�

CΛ
�−1

H∗µν − i bµ
�

CΛ
�−1

c̄∗µ , (3.23)

where �Λ = �/CΛ. This is of the required form (2.48).
In this basis, we can read off the BRST transformation from (2.50) and the Kozsul–Tate

differential from (2.51). However recalling that we label these fermionic differentials by their
antighost number, we need to recognise that the Kozsul-Tate differential now splits into a
piece, Q, that leaves the antighost number unchanged and the piece, Q−, that lowers it by one.
Therefore we now write (2.51) as:

(Q0 +Q−0 )Φ
∗
A =

�

S0,Φ∗A
�

. (3.24)

Although we label the (free) antighost neutral piece by Q0 there is no confusion with the
BRST transformation Q0Φ

A because the latter acts only on fields, not antifields. Thus we find
the following non-vanishing transformations:

Q0 Hµν = 2∂(µcν) , Q0 c̄µ = i bµ , Q0 H∗µν = i ∂(µbν) −
i
2
δµν ∂ ·b , Q0 c̄∗µ = −� cµ ,

Q−0 H∗µν = −2G0
µν , Q−0 c∗µ = −� c̄µ − 2∂νH∗νµ , (3.25)

where only the first two are BRST transformations, and the rest are Kozsul–Tate differentials.
We already know from (A.11), that the measure operators ∆− and ∆= keep the same form
(3.12). Since the map to gauge fixed basis is a quantum canonical transformation, the full
BRST charge s0 is still nilpotent, and since we continue to consistently label the pieces by their
antighost number, the same arguments as before establish that the charges (3.25) also satisfy
the individual nilpotency relations (3.16). On the other hand, by explicit computation we see
that the non-vanishing anticommutators (3.19) grow an extra piece:

{Q0,∆=}= −{Q−0 ,∆−}= 2
∂

∂ c∗ν
CΛ∂µ

∂

∂ Hµν
+
∂

∂ c∗µ
CΛ�

∂

∂ c̄∗µ
. (3.26)

9defining vector contraction as u·v = uµvµ.
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3.3 Comparing the two

Although by the map (3.22), any results derived in this gauge fixed basis are equivalent to
any results derived in the gauge invariant basis, we see as advertised that it is simpler when
dealing with just the algebra, to work in the gauge invariant basis. Indeed in gauge invariant
basis we had only the four non-vanishing transformations (3.2), (3.8), (3.9), whereas in the
gauge fixed basis we have the six non-vanishing transformations (3.25), and furthermore the
non-vanishing anticommutators (3.26) are more complicated.

When dealing with the BRST cohomology in the gauge invariant basis, we can furthermore
specialise to the minimal basis. This means we can drop c̄µ and bµ and thus (3.8), leading to
only three non-vanishing transformations, and also drop c̄∗µ, leading to a simpler form for ∆−

in (3.12).
To see this we note that we want to find the non-trivial solutions for s0S1 = 0, as in (2.52).

If we assume that S1 does not contain c̄µ, we are not forced to include it, since it does not
appear in the S0 given in (3.7), and the QMF, (2.49), contains only field differentials. There is
no b∗µ. Altogether, this means that through the QMF, we never get a modification containing

∂ S1

∂ c̄∗µ
or

∂ S1

∂ bµ
, (3.27)

and therefore it does not help in finding non-trivial solutions to include dependence on c̄∗µ or
bµ in S1. Dropping the dependence on c̄µ, c̄∗µ and bµ, gives us the minimal basis (3.6). As we
stated in sec. 2.7 and will illustrate in sec. 7.1, this already contains all the information on
how diffeomorphism invariance is realised through the BRST cohomology.

For orders beyond first order, the flow equation will force dependence on the non-minimal
fields. However solutions for S1 containing these fields are linearly independent of the solu-
tions in the minimal basis.

3.4 Comments on the conformal mode instability and other signs

The central observation that leads to the new quantisation is that the gravitational action
(3.3) is unbounded from below. This is a gauge invariant statement: the unboundedness
is caused by the fact that the functional integral will explore arbitrarily high scalar curvature,
with positive scalar curvature being the problematic case. In sec. 7 we will instead be exploring
a more general space of interactions built on the free graviton action (3.1). However the free
graviton action also has these problems. Indeed, splitting the graviton field Hµν into its SO(d)
irreducible parts:

Hµν = hµν +
2
d
ϕδµν (3.28)

(thus h µµ = 0 is traceless), and considering purely traceful perturbationsϕ (i.e. setting hµν = 0)
we see that the action is unbounded below for these modes (for d > 8/5).

The situation is obscured by linearised gauge invariance. Using (3.11), the gauge invariant
statement is that the action is unbounded below in the following direction

2ϕ −
∂ 2
αβ

�
Hαβ = 2

�

1−
1
d

�

ϕ −
∂ 2
αβ

�
hαβ =

1
−�

R(1) . (3.29)

Using different gauge choices we can shift the instability to different modes, but we cannot
remove it. Indeed in the Landau gauge limit of the De Donder gauge (3.21), where we insist
that Fµ = 0 identically, the conformal mode coincides with this (linearised) gauge invariant
quantity:

ϕ =
1
−�

R(1) . (3.30)
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Completing the square for the bµ auxiliary field and integrating it out, gives for just the
graviton part, the gauge fixed Lagrangian L0 = L̄0, where

L̄0 =
1
2

Hµν (4Λ)−1
µν,αβ Hαβ +

α

2
Fµ
�

CΛ
�−1

Fµ . (3.31)

Again splitting the graviton field Hµν into its SO(d) irreducible parts, and choosing α = 2
gauge and d = 4 dimensions, gives the action that was used to derive the eigenoperators (1.4)
in ref. [5]:

L̄0 = −
1
2 hµν�Λ hµν +

1
2 ϕ�

Λϕ . (3.32)

It has the advantage that at the free level, the instability is then isolated in the ϕ sector. We
will not integrate out bµ however since that would leave us only with on-shell BRST. Instead
we will keep the auxiliary field and thus ensure that the nilpotency relations (3.16) remain
valid off shell.

It is possible to consider slightly more general linearised transformations than (3.2). In-
deed in quantising the Einsten-Hilbert action one can choose to treat not the metric but the
density

|g|w/2 gµν = δµν +κHµν , (3.33)

where use of the determinant |g| means that the left hand side is a tensor density of weight
−w. This implies that Hµν transforms at the free level with an extra piece:

Q0Hµν = ∂µcν + ∂νcµ +wδµν ∂ ·c . (3.34)

Clearly this leaves the transformation of hµν alone, affecting only the scalar component:

Q0ϕ =
�

1+
d
2

w
�

∂ ·c . (3.35)

In fact taking the determinant of (3.33) we have to order κ

|g|= 1+
4κ

2+wd
ϕ , (3.36)

so at the free level the change of variables amounts to simply rescaling ϕ, and for this reason
we will not consider it further.

However we do need to comment on the exceptional case, w = −2/d. In this case, taking
the determinant of (3.33) shows that ϕ vanishes identically. This is unimodular gravity [69,
70], where the metric ĝµν is constrained to have unit determinant. It can be treated by writing
ĝµν = gµν/|g|1/d [71,72], which is precisely the left hand side of (3.33) in this case. It is still
the case that the Euclidean signature Einstein-Hilbert action (3.3) is unbounded below to
arbitrarily large positive curvature, but the problem is now confined to the interactions. We
expect that this must still leave its mark on the Wilsonian RG, but clearly the analysis is now
much more involved. Similar comments also apply to the variants of first order formalism
where the connection (or spin connection in Cartan formalism) is treated as fundamental.
Again the instability to large positive curvature is still present but its consequences for the
Wilsonian RG are not so straightforward to analyse.

As we have just seen (and see also sec. 3.5), it is not possible to get rid of the instability,
except by the expedient of rotating to complex metrics.10 Nevertheless since the new quanti-
sation all hangs on a sign, it behoves us to be more than usually careful with signs elsewhere.
Following [26] it is common to be careless with signs when auxiliary fields, here bµ, are in-
troduced. This is harmless since in standard treatments the auxiliary field only ever appears

10In fact a purely imaginary ϕ 7→ iϕ [7] cannot be maintained if diffeomorphism invariance, δϕ =∇·ξ, is also
to be respected.
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in the action up to quadratic level, and indeed can be integrated out as we have just seen.
Then following [26], in preference to introducing i into the action (3.7) one can work without
the explicit i, by rotating bµ 7→ −i bµ, at the expense of having the wrong sign for the ∼ b2

µ

term in (3.7). Note that after this rotation the action is still not real however, unless one goes
the extra step and formally treats the Grassmann even pair {c∗µ, c̄∗µ}, and Grassmann odd pair
{cµ, c̄µ}, as real variables.

In fact the i is there for good reasons. To see this most clearly we follow refs. [26, 27],
i.e. set CΛ = 1 and replace the antifields by ∂rΨ/∂Φ

A. The latter can be done here simply by
setting the antifields to zero in gauge fixed basis. Then in the Landau gauge limit, α→∞, we
see from (3.23) that the functional integral over bµ is a functional Fourier transform expressing
the fact that we have inserted into the partition function (2.3) the functional delta function
δ[Fµ], as it should be. If we had not put the i into (3.7) we would at this point have to do so,
e.g. by rotating bµ 7→ i bµ, in order to turn an otherwise divergent integral over exp bµFµ, into
the Fourier transform.

3.5 Propagators

In order to find the eigenoperators, we need to solve the equation (2.54) by separation of
variables. As we can see in (2.22), (2.20), this requires knowing the propagators. Although
4−1

Hµν Hαβ
is not itself invertible, as part of the larger matrix 4−1

AB defined via (3.23), it is. As

discussed in the previous section, it is clear however that 4−1
AB is not positive definite (for any

choice of α). Indeed setting all fields to zero except again Hµν =
2
d ϕδµν, the Lagrangian

(3.23) is unbounded from below.
The matrix 4−1

AB in Hµν, bµ space, can be inverted by e.g. using a transverse traceless de-
composition:

hµν = 2∂(µξ
T
ν) + 2

�

∂ 2
µνξ−

1
d
δµν�ξ

�

+ hT
µν , bµ = bT

µ + ∂µb , (3.37)

where hT
µµ = 0, the generator of linearised diffeomorphisms is split into transverse and longi-

tudinal parts ξµ = ξT
µ+∂µξ, similarly bµ = bT

µ+∂µb, and the transverse fields satisfy ∂µhT
µν = 0

etc. It is also helpful to absorb �ξ into ϕ by defining ϕ′ = ϕ −�ξ in (3.28). Anyway, noting
that

4AB = 〈ΦAΦB〉 , (3.38)

and writing

ΦA(x) =

∫

dd p
(2π)d

e−ip·x ΦA(p) , (3.39)

we find the following propagators:

〈Hµν(p)Hαβ(−p)〉=
δµ(αδβ)ν

p2
+
�

4
α
− 2

� p(µδν)(αpβ)
p4

−
1

d − 2

δµνδαβ

p2
, (3.40)

〈bµ(p)Hαβ(−p)〉= −〈Hαβ(p) bµ(−p)〉= 2δµ(αpβ)/p
2 , (3.41)

〈bµ(p) bν(−p)〉= 0 , (3.42)

〈cµ(p) c̄ν(−p)〉= −〈c̄µ(p) cν(−p)〉= δµν/p2 . (3.43)

Note that the bµ does not actually propagate into itself. Projecting the top line into its irre-
ducible representations gives:

〈hµν(p)hαβ(−p)〉=
δµ(αδβ)ν

p2
+
�

4
α
− 2

� p(µδν)(αpβ)
p4

+
1
d2

�

4
α
− d − 2

� δµνδαβ

p2

+
2
d

�

1−
2
α

� δαβ pµpν + pαpβδµν
p4

, (3.44)
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and

〈hµν(p)ϕ(−p)〉= 〈ϕ(p)hµν(−p)〉=
�

1−
2
α

�

�

δµν

d
−

pµpν
p2

�

1
p2

, (3.45)

〈ϕ(p)ϕ(−p)〉=
�

1
α
−

d − 1
d − 2

�

1
p2

. (3.46)

For future calculations in this theory, it will undoubtedly be helpful to confirm that physical
results are independent of the choice of gauge parameterα. However just as we saw in sec. 3.4,
the choice α = 2 leads to simplifications. Indeed in this case hµν and ϕ propagate separately.
In this paper we will from here on specialise to α= 2. Now in the Hµν sector we have:

〈Hµν(p)Hαβ(−p)〉=
δµ(αδβ)ν

p2
−

1
d − 2

δµνδαβ

p2
, (3.47)

〈hµν(p)hαβ(−p)〉=
δµ(αδβ)ν −

1
dδµνδαβ

p2
, (3.48)

〈hµν(p)ϕ(−p)〉= 〈ϕ(p)hµν(−p)〉= 0 , (3.49)

〈ϕ(p)ϕ(−p)〉= −
d

2(d − 2)
1
p2

. (3.50)

We note that hµν propagates with the right sign, and that the numerator is just the projector
onto traceless tensors. We note that ϕ propagates with wrong sign for all d > 2.

4 Eigenoperators

As in ref. [5], the Hilbert space L of bare interactions is constructed from those eigenopera-
tors that form an orthonormal basis about the Gaussian fixed point, using the natural measure.
This measure is the Sturm-Liouville weight function for the corresponding eigenoperator equa-
tion. As shown in ref. [5], the eigenoperators follow from those derived for the non-derivative
interactions. Therefore we derive these first.

The eigenoperator equation follows from (2.54), where the tadpole integral a1 is defined
in (2.22) and (2.20). Recognising that

∂

∂ Hαβ
=
∂ hµν
∂ Hαβ

∂

∂ hµν
+
∂ ϕ

∂ Hαβ

∂

∂ ϕ
=

∂

∂ hαβ
+

1
2
δαβ

∂

∂ ϕ
, (4.1)

and using the propagators in the last subsection, we can write out (2.54) in full:

Ṡ1 =−
1
2

∫

dd p
(2π)d

ĊΛ(p)
p2

¦ δ2

δhµν(p)δhµν(−p)
−

d
2(d − 2)

δ2

δϕ(p)δϕ(−p)

+ 2pµ
δ2

δHµν(p)δbν(−p)
− 2

δl

δc̄µ(p)
δr

δcµ(−p)

©

S1 . (4.2)

From here on in this subsection we abandon DeWitt notation. The reader will note that we
split Hαβ into its irreducible representations only where it is illuminating to do so. The choice
of left and right derivative is made for the ghosts to make explicit the minus sign that one gets
for a ghost closed loop.
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4.1 Non-derivative eigenoperators

To get the eigenoperator equation for non-derivative interactions we set:

S1 =

∫

dd x V (Φ,Φ∗,Λ) , (4.3)

for some ‘potential’ V , work in dimensionless variables {Φ̃, Φ̃∗} constructed using their engi-
neering dimensions (listed in table 1, this being the scaling dimension at the Gaussian fixed
point), write similarly V = Λd Ṽ , and separate variables:

ṼΛ(Φ̃, Φ̃∗) = eλt Ṽ (Φ̃, Φ̃∗) . (4.4)

Notice that the H–b cross-term vanishes for non-derivative interactions, and thus neither bµ
nor the antifields enter explicitly in the eigenoperator equation. Their presence will just be
felt via their dimensions, as we show later. Dropping these variables for the moment we see
therefore that the eigenoperator equation further separates into parts, one for each hµν, for ϕ,
and for each pair {c̄µ, cµ}.

4.1.1 Conformal factor eigenoperators

We start with ϕ since this will set our conventions when d 6= 4. The double-functional deriva-
tive in (4.2) just computes the tadpole integral already introduced in (1.1):

ΩΛ = |〈ϕ(x)ϕ(x)〉|=
d

2(d − 2)

∫

dd p
(2π)d

CΛ(p)
p2

. (4.5)

Recalling that CΛ(p) = C(p2/Λ2) for some function C , we have that ΩΛ = Λd−2/(2a2), where
the non-universal constant a > 0 is thus given by

1
a2
=

d
d − 2

∫

dd p̃
(2π)d

C(p̃2)
p̃2

. (4.6)

These definitions coincide with those in ref. [5] when d = 4. The eigenoperator equation is
then:

−λ Ṽ (ϕ̃)−
�

d − 2
2

�

ϕ̃ Ṽ ′ + d Ṽ =
�

d − 2
4a2

�

Ṽ ′′ , (4.7)

where prime is differentiation with respect to the argument. Multiplying through by 2/(d−2),
we see that it then coincides the d = 4 equation:

−λ4Ṽ (ϕ̃)− ϕ̃ Ṽ ′ + 4Ṽ =
Ṽ ′′

2a2
, (4.8)

if we also redefine λ:

λ4 =
2

d − 2
(λ+ d − 4) . (4.9)

It is therefore the same Sturm-Liouville eigenfunction equation analysed in detail in ref. [5],
and we can read off its properties from there. In particular its weight function is still given by
(1.1), which in scaled variables is simply

e+a2ϕ̃2
. (4.10)

Functions that are square integrable under this measure form the Hilbert space L−. The eigen-
operators

δn(ϕ̃) =
a
p
π

∂ n

∂ ϕ̃n
e−a2ϕ̃2

, (4.11)
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(integer n≥ 0) are orthonormal under this weight:

∫ ∞

−∞
dϕ̃ ea2ϕ̃2

δn(ϕ̃)δm(ϕ̃) =
a
p
π

�

2a2
�n

n!δnm , (4.12)

and span the space. From λ4 = 5+ n, we have λ = 3d
2 − 1+

� d−2
2

�

n, and thus their scaling
dimension is

[δn] = d −λ= −
�

d − 2
2

�

(n+ 1) . (4.13)

In dimensionful terms they are the operators listed in (1.2), where we see that their scaling
dimension continues to be also their engineering dimension.

Interactions that lie in L− are characterised by having a decay for large amplitude faster
than e−a2ϕ̃2/2. In ref. [5], it was shown that small perturbations in L−, stay in L− under the RG
flow as Λ is increased. We will review this in sec. 6. This is why we interpret restricting to L−
as a quantisation condition on the bare interactions. General interactions outside L− can also
be mooted, but then there is no natural sense in which these are related to an expansion over
some set of distinguished operators. Without this, the RG itself breaks down, since then it is no
longer clear how to split an arbitrary perturbation into its relevant and irrelevant parts. Note
that bare operators that are excluded by this quantisation condition include any polynomial
interaction, and in particular the unit operator. When we embed this structure into the full
theory, this will force all bare operators to depend on ϕ [5].

4.1.2 Traceless mode eigenoperators

Next we choose a µ and a ν and consider a potential made from the one component, h≡ hµν.
Of course this means abandoning SO(d) invariance but we do so only temporarily. If we define

1

a2
h

= 2χ

∫

dd p̃
(2π)d

C(p̃2)
p̃2

, (4.14)

where χ = 2/(1+ δµν) takes into account that hµ 6=ν appears twice on the right hand side of
(4.2), then by comparison with ϕ̃ we see that we obtain the following eigenequation:

−λ Ṽ (h̃)−
�

d − 2
2

�

h̃ Ṽ ′ + d Ṽ = −
�

d − 2

4a2
h

�

Ṽ ′′ . (4.15)

Multiplying through by 2/(d − 2) this coincides with the eigenoperator equation for a scalar
field in four dimensions with the correct sign for its kinetic term:

−λ4Ṽ (h̃)− h̃ Ṽ ′ + 4Ṽ = −
Ṽ ′′

2a2
h

, (4.16)

where λ4 is again (4.9). The change of sign on the right hand side is crucial. Again reading
off from ref. [5] (see also [73–75]), the Sturm-Liouville weight is now e−a2

h h̃2
. Perturbations

that are square integrable under this weight form a Hilbert space L+. The eigenoperators

On(h̃) = Hn(ahh̃)/(2ah)
n = h̃n − n(n− 1)h̃n−2/4a2

h + · · · , (4.17)

with λ4 = 4 − n and n a non-negative integer, and Hn the nth Hermite polynomial, form a
complete orthornormal basis for this space. The scaling dimension for these operators

[On] = d −λ=
�

d − 2
2

�

n , (4.18)
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is just the engineering dimension [hn] of the highest power in (4.17). This reflects the fact
that the quantum part of (4.15) (the right hand side) does not contribute to the highest power,
but simply adds the tadpole corrections, which are the lower powers appearing in (4.17).

From (4.2), a non-derivative eigenoperator Ṽ (h̃µν), now considering all the hµν compo-
nents together, is thus given by a sum over products

∑

j

a j

∏

k

Onk
j
(h̃µk

j ν
k
j
) , (4.19)

with Λ independent coefficients a j , such that the highest power
∑

k nk
j = n is the same in each

product.
We will shortly consider these operators as parts of a larger operator. As such, the non-

derivative part which we are now studying, need not be Lorentz invariant on its own, but
will need to be Lorentz covariant. Since we started with an SO(d) invariant equation (4.2),
we are guaranteed that by suitable choice of the a j we can recover the correct Lorentz co-
variant structure. In fact we have just seen that the right hand side of (4.2) only generates
tadpole corrections, so we know already that these eigenoperators are given by the indepen-
dent monomials hn

µν with the right covariance, together with lower powers generated by the
tadpole correction on the right hand side of (4.2). Since for fixed n, such operators span a
finite dimensional space we can furthermore use Gram-Schmidt orthogonalisation to choose
them to be orthonormal under the combined Sturm-Liouville weight:

exp−

¨

∑

µ

a2
hh̃2
µµ +

∑

µ<ν

a2
hh̃2
µν

«

= exp−
d a2

2(d − 2)
h̃2
µν (4.20)

where on the right hand side we compare (4.14) and (4.6), recall that χ = 2 for µ 6= ν, and
reinstate Einstein summation convention.

However we will not insist that they are orthogonal. The properties we need are that the
pure hµν non-derivative eigenoperators are polynomials whose scaling dimension is given by
the engineering dimension of their highest power, and that these operators span the space of
functions square integrable under (4.20).

4.1.3 Ghost eigenoperators

Now consider a ‘potential’ for just the ghosts. In order to keep the notation readable, we will
drop the tildes: all quantities will however be scaled. Using (4.6), we get from (4.2) the
eigenoperator equation:

−λV (c̄, c)−
d − 2

2

�

c̄µ
∂l

∂ c̄µ
+ cµ

∂l

∂ cµ

�

V + d V =
(d − 2)2

d a2

∂l

∂ c̄µ

∂r

∂ cµ
V . (4.21)

Since the ghosts are Grassmann, V can only be a polynomial. The right hand side cannot
contribute to a top term (the highest power of cµ or c̄µ in this polynomial), which must thus
satisfy the left hand side alone. Let the top term of an eigenoperator solution O(c̄, c) contain
n factors of c and n̄ factors of c̄. Then λ = d − (n+ n̄)(d − 2)/2. Thus we see that the scaling
dimension for the operator, d −λ= (n+ n̄)(d −2)/2, is just the engineering dimension of this
top term, just like for hµν. We can cast (4.21) in Sturm-Liouville form and thus show that the
Sturm-Liouville weight function is

exp

�

−
d a2

d − 2
c̄µcµ

�

, (4.22)

under which the eigenoperators are orthogonal in the following sense.
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We now choose a µ and consider the operators made from just the two components c̄ ≡ c̄µ
and c ≡ cµ. The entire set is

O0 = 1 , O1 = c , O1̄ = c̄ , and O2 = c̄c +
d − 2
da2

, (4.23)

since higher powers vanish by the Grassmann property. These are orthonormal under (4.22)
in the sense that

∫

dc̄ dc e
d a2
d−2 cc̄ OaOb = ηab , (4.24)

where ηab = 0 for all combinations apart from

η00 =
d a2

d − 2
, η11̄ = −η1̄1 = 1 , and η22 = −

d − 2
d a2

. (4.25)

Again we will consider these operators as parts of a larger operator, so they only need to be
Lorentz covariant. Again, since (4.21) is Lorentz invariant we are guaranteed to be able to
build these operators, and they are just given by starting with a top term of the right Lorentz
covariance.

4.1.4 Auxiliary field and/or antifield eigenoperators

Since non-derivative operators containing only bµ and/or the Φ∗A are not affected by the right
hand side of (4.2), in scaled variables the eigenoperator equation is just (using table 1):

−λṼ (b̃, Φ̃∗)−
d
2

�

b̃µ
∂

∂ b̃µ
+ Φ̃∗A

∂l

∂ Φ̃∗A

�

Ṽ + dṼ = 0 , (4.26)

which just says that d − λ is the engineering dimension of this combination. Remembering
that we require only Lorentz covariance, if we consider purely b interactions, the only sensible
choice is thus a Lorentz covariant monomial. Including also the Φ∗A, the non-derivative eigen-
operators are just the linearly independent Lorentz covariant monomials, and their scaling
dimensions are just their engineering dimensions. On the other hand (4.26) is not of Sturm-
Liouville type: there are no natural orthonormality or Hilbert space properties inherited for
parts of interactions depending on these fields. Instead they must be specified as we have just
done. For each specification, the rest of the non-derivative operator, namely the eigenoperator
parts in Hµν and the ghosts, do form a Hilbert space of interactions as we have seen.

4.2 General eigenoperators

Since the eigenoperator equation (4.2) for a non-derivative eigenoperator, separates into the
parts we have just considered, we know that the general non-derivative eigenoperator just
corresponds to the linearly independent Lorentz invariant sums of products of these eigenop-
erators with the same overall scaling dimension. The overall scaling dimension is given by the
sum of its parts, namely the engineering dimension for the δ(n)

Λ
(ϕ) operators (4.13), the engi-

neering dimension (4.18) for the top term in the hµν polynomials, the engineering dimension
for the top term in the ghost polynomials, and the engineering dimension for bµ and Φ∗A pieces.

Now consider what happens when we include also derivative interactions in the eigenop-
erator. The behaviour is similar to the h and ghost polynomial solutions above, because if the
tadpole operator, i.e. the right hand side of (4.2), hits a field that has spacetime derivatives,
the result is an interaction where this piece is eliminated. For example a piece ∂ηhαβ ∂λhµν
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can be eliminated by the h functional derivatives, being replaced by a coefficient proportional
to

δηλ

�

δµ(αδβ)ν −
1
d
δµνδαβ

�

∫

dd p
(2π)d

ĊΛ(p) . (4.27)

The result is thus a top term plus tadpole corrections containing less components. Similarly the
H–b cross-term in the tadpole operator can create tadpole corrections by eliminating for exam-
ple a ∂µbν piece together with an hαβ , or together with a ϕ-differential of the non-derivative
ϕ dependence.

The RG eigenvalue therefore involves the tadpole operator only when both ϕ derivatives
hit the coefficient function fΛ(ϕ). We thus find that the non-derivative part is made up of
the eigenoperators for each field that we have already discussed. The left hand side of the
eigenoperator equation (4.2), when written in scaled variables, continues to count the total
engineering dimension of the top term. In particular the dimension of the space-time deriva-
tives enters via the consistent assignment of engineering dimension for f . (For an example
worked out in detail, namely for K(ϕ)(∂ ϕ)2, see ref. [5].) We thus see that the general eigen-
operator can be written in the form:

δ
(n)
Λ
(ϕ)σ(∂ ,∂ ϕ, h, c̄, c, b,Φ∗) + · · · . (4.28)

We have displayed the ‘top term’. σ is a Lorentz invariant monomial involving some or all
of the components indicated, in particular the arguments ∂ ϕ, h, c̄, c, b,Φ∗ can appear as they
are, or differentiated any number of times. The tadpole operator then in particular generates
tadpole corrections involving less fields inσ. These are the terms we indicate with the ellipses.
Let dσ = [σ] be the engineering dimension of the monomial σ, then the scaling dimension
d − λ of the corresponding eigenoperator is just the engineering dimension Dσ = dσ + [δn],
where [δn] was defined in eqn. (4.13).

Note that the result (4.28) is the appropriate generalisation of the result (1.4) found in
ref. [5], to the case where the quantum realisation of diffeomorphism invariance can now be
addressed. In particular the scaling dimension Dσ is given by the same formula mentioned in
the Introduction.

5 The Hilbert space of bare interactions

For a given choice of monomial for the differentiated fields and undifferentiated bµ and Φ∗A,
the remaining parts of the eigenoperator thus factorise into pieces that have orthonormality
properties under the appropriate measure, namely (4.10), (4.20), or (4.22). Bringing together
these factors, the undifferentiated ghost and Hµν parts form coefficient-eigenoperators which
span L, the Hilbert space of bare non-derivative interactions in these fields that are square
integrable under the combined amplitude measure:

µ= exp
1

2ΩΛ

�

ϕ2 −
d

2(d − 2)
h2
µν −

d
d − 2

c̄µcµ

�

(5.1)

(now writing the measure in dimensionful terms). Note that this formula is the appropriate
generalisation of the one found in ref. [5], quoted in (1.3), to general dimension d and to the
case where quantum realisations of diffeomorphism invariance can be studied. One should
really think of the interactions as furnishing many realisations of L, one for each choice of
monomial of bµ, Φ∗A, and the differentiated fields. There is no sense in which eigenoperators
with different dependence on bµ, Φ∗A, and the differentiated fields, can be directly compared
by using the Hilbert space inner product. A related comment is the following. Recall that
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these are integrated operators. By integration by parts, we can change the form of the co-
efficient function. For example we have that δn(ϕ̃) �̃ϕ̃ and −(∂̃µϕ̃)2δn+1(ϕ̃) are equivalent
representations of the same operator. This is not in conflict with the fact that δn and δn+1
are orthogonal, since they belong to different realisations of L−. Although we can change the
realisation of L this way, it is not possible to map out of L by integration by parts. Finally note
that one should of course choose a basis of top terms that are independent under integration
by parts [5].

We have derived the amplitude measure in gauge fixed basis. However the map to gauge
invariant basis (3.22), only changes the dependence on differentiated Hαβ and c̄α fields. It
therefore leaves the measure (5.1) alone and does not change the orthonormality properties of
the eigenoperators. The measure is compatible with BRST invariance in the following sense.
The BRST transformations (3.2), (3.8), (3.9), in the gauge invariant basis, or (3.25) in the
gauge fixed basis, only map to bµ or derivative terms. Thus the action of BRST is to move the
operator to a different realisation of L, in the sense explained above.

As already mentioned and reviewed below, the requirement that the bare interactions lie in
L amounts to a quantisation condition. As in ref. [5], we note that it is preserved term by term
when we consider quantum corrections. Thus this will involve differentiating the operators
with respect to the field amplitudes, but since this clearly maps polynomials to polynomials,
and from (1.2), ∂ϕδ

(n)
Λ
(ϕ) = δ(n+1)

Λ
(ϕ), this leaves these operators in L. Similarly multiplying

the eigenoperators by field amplitudes produces an operator that is still in L, since clearly this
again maps polynomials to polynomials, while for ϕ we have [5]:

ϕδ
(n)
Λ
(ϕ) = −nδ(n−1)

Λ
(ϕ) − ΩΛδ

(n+1)
Λ
(ϕ) . (5.2)

Finally products of the eigenoperators, produce operators that are still in L. In particular we
have [5]:

δm(ϕ̃)δn(ϕ̃) =
∞
∑

j=0

�c j
mnδ j(ϕ̃) , (5.3)

where

�c j
mn =

2s− ja2s−2 j

2π2 j!
Γ (s− j)Γ (s−m)Γ (s− n)δ j+m+n=even , and 2s = j +m+ n+ 1 . (5.4)

There is one subtlety we have to address however when considering in what sense op-
erators are considered trivial in the BRST cohomology. Recall that such operators sK give
vanishing correlators (2.17). If K is quasi-local this is just a change of variables that does not
change the physics, and we must discard it. Consider the free cohomology and a candidate
interaction in S with a maximum antighost number part On in (3.14). Such a piece should
be closed under Q0. We now choose some monomial σ that is, without utilising integration
by parts, closed under Q0 but not exact. For concreteness (and later), let us spell out what
this looks like. In this case σ must be made up only of the invariants (3.11) and antifields,
differentiated as many times as we wish, and factors of cα and ∂[µcν] [22] (that are not further
differentiated). To see this, note that the symmetrized derivative ∂(αcβ) is Q0-exact by (3.2),
and a ghost differentiated more than once is also Q0-exact:

∂ 2
µν cα =Q0 Γ

(1)α
µν

, (5.5)

where we have introduced the linearised version of the usual connection:

Γ
(1)α
µν
= 1

2

�

∂µHαν + ∂νHαµ − ∂αHµν
�

. (5.6)
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We thus write this σ as:
σ(cα,∂[µcν],∂ ,Φ∗, R(1)) . (5.7)

Now a piece

δ
(0)
Λ
(ϕ) ∂ ·c σ(cα,∂[µcν],∂ ,Φ∗, R(1)) =Q0 δ

(−1)
Λ
(ϕ)σ(cα,∂[µcν],∂ ,Φ∗, R(1)) , (5.8)

should be discarded since it is still a local reparametrisation, even though it is a non-trivial
element of the Q0-cohomology when restricted to the Hilbert space L. This latter property
follows because

δ
(−1)
Λ
(ϕ) =

∫

dϕδ(0)
Λ
(ϕ) (5.9)

is not in L− (there is no choice of integration constant for which it is square integrable under
(1.1)). In computing the cohomology, the same effect will arise more generally from discard-
ing total derivative terms (with spacetime derivatives possibly applied multiple times). We
see then that when dealing with cohomological descendants from the (interaction part of the)
action S, we must allow in general for eigenoperators δ(n)

Λ
(ϕ) where n is also a negative in-

teger, defined formally through (1.2) or (4.11), and in practice by repeated ϕ integrations.
Nevertheless the interactions in S itself must still lie in L to preserve the Wilsonian RG struc-
ture [5,76], as explained at the end of sec. 4.1.1 and further discussed in the Conclusions.

6 Renormalized interactions to first order

The scaling dimension of the couplings gσn , conjugate to the eigenoperators (4.28), is just given
by their engineering dimension [gσn ] = d − Dσ (as expected since we are expanding around
the Gaussian fixed point). Although we could continue to keep d general, we would do so
from here on at the price of less clarity. So from here on we specialise to d = 4. Then

[gσn ] = 5+ n− dσ . (6.1)

As mentioned already in the Introduction, and discussed in ref. [5], in the continuum limit
we must retain only the (marginally) relevant couplings [gσn ] ≥ 0. The more field factors
and/or derivatives included in σ(∂ ,∂ ϕ, h, c̄, c, b,Φ∗), the larger is its engineering dimension
dσ. But since we can take n as large as we please, there is always an infinite tower of the
eigenoperators (4.28) that are relevant. We are thus led to study the operator

f σΛ (ϕ)σ(∂ ,∂ ϕ, h, c̄, c, b,Φ∗) + · · · , (6.2)

where again we display only the top term, the tadpole corrections being determined by this
and indicated by the ellipses. The couplings have been subsumed in a ‘coefficient function’

f σΛ (ϕ) =
∞
∑

n=nσ

gσn δ
(n)
Λ
(ϕ) , (6.3)

and nσ = 0 if dσ ≤ 5, otherwise nσ = dσ − 5. Thus for dσ ≥ 5, we are including a marginal
coupling [gσnσ] = 0. Since we will fully develop the theory only to first order in this paper,
we treat it as though it is exactly marginal and include it. To decide whether it is actually
marginally relevant (and thus kept) or marginally irrelevant (and thus discarded), we need to
develop the theory to higher order in these couplings.

The diffeomorphism BRST invariance is successfully incorporated, if the renormalized in-
teractions satisfy the appropriate Ward identity, which at first order is simply given by (2.52).
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So far we have been discussing the bare interactions. We must now therefore derive the renor-
malized interactions.11 Actually since we only consider the interactions to first order, the cou-
plings gσn do not run and therefore at first sight there should be no difference in the structure
from considering them to be bare or renormalized at this order. There is a difference however,
because an infinite sum of terms (6.3) can have different properties from each term individu-
ally. This is in fact generically the case at sufficiently low scales Λ [5].

From (4.2) and (4.5), the flow equation for f σΛ is

ḟ σΛ (ϕ) =
1
2 Ω̇Λ f σ ′′Λ (ϕ) . (6.4)

First we note that we can regard Λ not as the ultraviolet cutoff for the Wilsonian effective
action, but as the infrared cutoff for a Legendre effective action [10, 67, 77], without any
changes at this first order in the couplings. The physical operator

f σ(ϕ)σ(∂ ,∂ ϕ, h, c̄, c, b,Φ∗) (6.5)

is then given by choosing a finite solution at finite Λ (a.k.a. the renormalized operator) and
removing the cutoff:

f σ(ϕ) = lim
Λ→0

f σΛ (ϕ) . (6.6)

Note that at this stage the tadpole corrections in (6.2), have disappeared, since they are all
proportional to powers of Λ (the regularised tadpole integrals).12 Since (6.2) is a sum over
eigenoperators, it is a solution of the flow equation provided that the gσn are independent of
Λ. It is a finite solution provided that the gσn are finite and that certain convergence criteria
are met. As we will review, these in turn determine properties of the physical operator.

For Λ large, say Λ = Λ0, the operator must be square integrable under (5.1). This is the
quantisation condition. This means that f σΛ (ϕ) must be square integrable under (1.1). Using
the orthonormality relations (4.12), we see that

∫ ∞

−∞
dϕ̃ ea2ϕ̃2 �

f̃ σΛ (ϕ̃)
�2
=

a
p
π
Λ2dσ−10

∞
∑

n=nσ

n!
�

gσn
�2
�

2a2

Λ2

�n

. (6.7)

Since we require that the sum converges for Λ = Λ0, we see that the sum will then converge
for all Λ≥ Λ0. On the other hand, the right hand side will have a radius of convergence deter-
mined by the gσn , which we choose to label as the point Λ = aΛσ. Evidently, 0 ≤ Λσ < Λ0/a
(with Λσ = 0 being an infinite radius of convergence). We call it the amplitude suppression
scale, for reasons that will be clear in a moment.

For Λ< aΛσ the coefficient function is no longer in L−. As shown in ref. [5], there are two
reasons why this can happen. Either the function f σΛ (ϕ) develops singularities, after which
the flow towards the IR fails to exist, or it does so because f σΛ fails to decay fast enough at
large ϕ. We need to choose the gσn so that the flow all the way to Λ→ 0 does exist. Then we
know that asymptotically for large ϕ:

f σaΛσ(ϕ)∼ exp

�

−
a2ϕ2

2a2Λ2
σ

�

= exp

�

−
ϕ2

2Λ2
σ

�

. (6.8)

The solution to the flow equation (6.4) can be written in terms a Fourier transform over the
conjugate momentum π:

f σΛ (ϕ) =

∫ ∞

−∞

dπ
2π

fσ(π)e−
π2
2 ΩΛ+iπϕ , (6.9)

11In the essay [6] we deliberately glossed over this point.
12 As explained in ref. [5], they are there to cancel the remaining quantum corrections, thus resulting in an

operator that is form invariant under lowering Λ.
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where fσ is the Fourier transform of the physical f σ, as is clear since ΩΛ vanishes as Λ→ 0.
From (6.8) and (6.9) we see that the large ϕ behaviour at Λ= aΛσ, is reproduced by

fσ(π)∼ e−π
2Λ2
σ/4 . (6.10)

Setting Λ = 0 in (6.9), we thus see that the physical operator is characterised by the large ϕ
behaviour:

f σ(ϕ)∼ e−ϕ
2/Λ2

σ . (6.11)

Taylor expanding fσ(π) in (6.9), and performing the π integrals, reproduces the representation
of f σΛ as a sum over eigenoperators (1.2). Comparing to (6.3), we thus see that

fσ(π) =
∞
∑

n=nσ

gσn (iπ)
n . (6.12)

Since the gσn yield the series (6.7), which converges for Λ> aΛσ, we see that the above series
has an infinite radius of convergence. Therefore fσ is an entire function.

To summarise, we have shown that the physical operator (6.5) is characterised by having
a coefficient function f σ whose large amplitude behaviour (6.11) is exponentially suppressed
by an amplitude suppression scale 0 ≤ Λσ < Λ0/a, and such that its Fourier transform fσ is
an entire function, whose Taylor expansion (6.12) gives the couplings, and which has large
π behaviour given by (6.10). Using fσ we can then reconstruct the finite solution at finite Λ
from (6.9), and thus the renormalized operator (6.2).

6.1 Examples

It will be useful to consider some examples. Let σ(∂ ,∂ ϕ, h, c̄, c, b,Φ∗) be a dimension five
operator. Dimension five is what we get for the S1 operators obtained in standard quantisation
of gravity, cf. sec. 7.1, which in turn leads to the associated coupling [κ] = −1 being irrelevant
(non-renormalizable). In the new quantisation the monomials must be accompanied by the
coefficient function (6.3) and for dσ = 5, all the couplings are perturbatively renormalizable,
with gσ0 being marginal and the rest (gσn>0) relevant. For f σΛ (ϕ) we can lift the example given
in ref. [5]. We set the physical coefficient function, (6.6), to

f σ(ϕ) = κe−ϕ
2/Λ2

σ , (6.13)

so that at ϕ = 0, one recovers Newton’s coupling κ. Taking the Fourier transform, we read off
from (6.12) that the odd-n couplings vanish and the even-n ones are given by (m≥ 0 integer):

gσ2m =
p
π

m!4m
κΛ2m+1

σ . (6.14)

Performing the integral in (6.9) gives the coefficient function at finite Λ:

f σΛ (ϕ) =
κaΛσ

Æ

Λ2 + a2Λ2
σ

exp

�

−
a2ϕ2

Λ2 + a2Λ2
σ

�

. (6.15)

We see explicitly that f σΛ (ϕ) exits L− as Λ falls below aΛσ, through failure of the integral (6.7)
to converge at large ϕ.

Recall that an undifferentiated ϕ is excluded from σ(∂ ,∂ ϕ, h, c̄, c, b,Φ∗), the reason being
that this ϕ dependence must be described through the sum over the eigenoperators (6.3).
At first sight we can relax this, and let σ have undifferentiated ϕ, since such factors can be
exchanged for eigenoperators using (5.2). But using this relation results in new couplings gσn
that depend on Λ through ΩΛ = Λ2/2a2, which then does not solve the flow equation (6.4)
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since it requires that the gσn to be constant. Factors of ϕ can be incorporated but one needs
to put them in the physical coefficient function, and then work backwards using (6.9) to the
coefficient function at finite Λ. (Recall that the natural RG flow for ϕ is from the IR to the
UV [5].) For example let us take

f σ
′
(ϕ) = κϕ e−ϕ

2/Λ2
σ′ , (6.16)

where the remaining monomial σ′ now has dimension four. By considering the Fourier trans-
form, or indeed formally from (5.2) at Λ = 0, we can relate this to the above example to see
that the couplings are now

gσ
′

2m+1 = −(2m+ 2) gσ2m+2|σ=σ′ = −
1
2

p
π

m!4m
κΛ2m+3

σ′ (m≥ 0) , (6.17)

(with the even index couplings vanishing). Evaluating (6.9) at finite Λ gives:

f σ
′

Λ (ϕ) =
κ a3Λ3

σ′

�

Λ2 + a2Λ2
σ′

�3/2
ϕ exp

�

−
a2ϕ2

Λ2 + a2Λ2
σ′

�

. (6.18)

Suppose now that σ has dimension dσ = 6. In this case the sum over eigenoperators (6.3)
starts at nσ = 1 so as to include only the marginal and relevant couplings, and exclude the
irrelevant [gσ0 ] = −1. One way to construct a solution is to adapt the one above by subtracting
the n = 0 piece. Thus (6.15) becomes (multiplying also by κ to match dimensions, as would
appear classically)

f σΛ (ϕ) =
κ2aΛσ

Æ

Λ2 + a2Λ2
σ

exp

�

−
a2ϕ2

Λ2 + a2Λ2
σ

�

−κ2Λσ
p
πδ
(0)
Λ
(ϕ) , (6.19)

so that the physical coefficient function, and non-vanishing couplings, are

f σ(ϕ) = κ2 e−ϕ
2/Λ2

σ − κ2Λσ
p
πδ(ϕ) , gσ2m =

p
π

m!4m
κ2Λ2m+1

σ (m≥ 1) . (6.20)

This amounts to taking a linear combination of two coefficient functions, one with finite
amplitude decay scale Λσ, and the other with vanishing amplitude decay scale. More interest-
ing for our purposes is to keep both amplitude decay scales non-vanishing and thus choose:

f σ(ϕ) =
κ2

γ− 1

�

γe
− ϕ

2

Λ2
σ − e

− ϕ2

Λ2
σγ

2

�

, (6.21)

where γ > 1 (without loss of generality) is the ratio of the two amplitude decay scales, and
we still normalise to f σ(0) = κ2. Then

f σΛ (ϕ) =
γaΛσκ

2

γ− 1

�

1
Æ

Λ2 + a2Λ2
σ

exp

�

−
a2ϕ2

Λ2 + a2Λ2
σ

�

−
1

Æ

Λ2 + a2γ2Λ2
σ

exp

�

−
a2ϕ2

Λ2 + a2γ2Λ2
σ

�

�

(6.22)

and the couplings are (integer m≥ 0)

gσ2m =
p
π

m!4m

γ

γ− 1
(1− γ2m)κ2Λ2m+1

σ , (6.23)

where the ratio in (6.21) was chosen to ensure that gσ0 = 0.
Finally consider a linear combination of such terms f σΛ =

∑N
k=1 ak f k

Λ , each with their own
amplitude decay scale γkΛσ. Clearly by appropriate choice of the ak, we can set to zero in this
way any finite number of couplings gσn , while normalising to the natural scale f σ(0) = κdσ−4.
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7 BRST cohomology

7.1 Classical BRST cohomology

We briefly recall the standard case where the classical action Scl is developed perturbatively
in κ, which then has the form of (2.32), after which quantum corrections are to be computed
order by order in ħh. We thus start with the Pauli-Fierz action for a single massless spin-2
field (3.1) and the free diffeomorphism algebra (3.2), and ask at the classical level how non-
trivial interactions can be consistently incorporated into each of these. The apotheosis of these
investigations was reached in ref. [22]. With some weak restrictions, it can be rigorously shown
that there is only one solution, modulo field reparametrisations, namely the one implied by the
Einstein-Hilbert action (3.3). Although that paper deals with multi-graviton theories, when
restricted to the case of a single massless spin-2 field it recovers and somewhat generalises
previous results [30–39].

The analysis proceeds in minimal gauge invariant basis. The first order perturbation S1
satisfies (2.52). However since we work at the classical level, we set ħh= 0 in the QME, which
just amounts to setting the measure operator ∆ = 0, and thus work with the Classical Master
Equation (2.13). As follows from (3.13), or (2.12), we thus have s0 = Q0 +Q−0 , where from
(3.16) we have

Q2
0 = 0 , (Q−0 )

2 = 0 , {Q0,Q−0 }= 0 . (7.1)

Grading S1 by antighost number, S1 =
∑

n Sn
1 , we have

Q0Sn
1 +Q−0 Sn+1

1 = 0 , (7.2)

analogous to (3.14).
The first assumption is that action functionals are local, in particular S1 therefore has only

a finite number of spacetime derivatives. When we say that S1 is s0-exact we mean that it can
be written as S1 = s0K , such that K is also a local functional. It also means that for these
purposes, we throw away boundary terms that are generated by integration by parts. Then
it can be proven that all solutions to (7.2) for n > 2, are also cohomologically trivial in the
space [21, 22]. By reparametrisation, the Sn>2

1 can therefore be set to zero. We are left with
finding non-trivial solutions to13

Q0S2
1 = 0 , Q0S1

1 +Q−0 S2
1 = 0 , Q0S1 +Q−0 S1

1 = 0 . (7.3)

Furthermore, it can be proven that in order to have a chance of satisfying the second equation,
S2

1 must have a single antifield and otherwise only ghost terms. Since these ghost terms must
appear as in (5.7), ghost number and Lorentz invariance then determine S2

1 uniquely

S2
1 =

∫

d4 x L2
1 , where L2

1 = ∂[αcβ] cαc∗β , (7.4)

(the normalisation being absorbed into κ). Note that this is derived under the sole assumption
that the action functionals are local (i.e. in particular have a finite number of derivatives) [22].

A major part of the power of this approach is that it handles infinitely many parametri-
sations simultaneously, in particular S2

1 is defined only modulo the addition of Q0K2. Any
K2 induced reparametrisation trivially solves the cohomology equations (7.3): we only need
to add Q−0 K2 to S1

1 . By adding different exact pieces, for example we can treat Hµν as con-
travariant in either or both indices, and/or as the first order in the expansion of the inverse

13Since S0 has no fields with negative ghost number (cf. table 1) it coincides with the gauge invariant action
S[H].
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gµν, similarly cµ can be treated as contravariant or covariant, and with trivial changes, we
can couch this in Cartan formulation. Beyond first order we can handle simultaneously an
expansion of the fields in terms of any series in Hµν, the ghosts etc. For the present purposes
a nice choice is to set K2 = −1

2 Hαβ cαc∗
β

, and thus choose instead

L2
1 = cα∂β cα c∗β . (7.5)

Operating with Q−0 , and integrating by parts, the result is seen to be Q0-exact, and thus

L1
1 = 2cαΓ

(1)α
βγ

H∗βγ (7.6)

up to the addition of a piece that is non-trivial in the Q0 cohomology. By (anti)ghost number,
this latter piece must be linear in H∗µν and in cα or ∂[µcν]. But then, by Lorentz invariance it
must contain at least one curvature (3.11), since ∂[µcν]H

∗
µν vanishes. That makes the interac-

tion contain at least three derivatives, which Boulanger et al exclude. Even if one allows for
such interactions, the constraints provided by the last equation in (7.3), make it unlikely that
there are any solutions [22].

Substituting (7.6) into the last equation in (7.3), and using (3.9), one finds a non-trivial so-
lution which can be written as thirteen linearly independent terms. Up to of course integration
by parts, this is L1 = L1 cl , where

L1 cl =2ϕ∂βHβα∂αϕ − 2ϕ(∂αϕ)
2 − 2Hαβ∂γHγα∂βϕ + 2Hαβ∂αϕ∂βϕ − 2Hβγ∂γHαβ∂αϕ

+ 1
2ϕ(∂γHαβ)

2 − 1
2 Hγδ∂γHαβ∂δHαβ −Hβµ∂γHαβ∂γHαµ + 2Hµα∂γHαβ∂µHβγ

+Hβµ∂γHαβ∂αHγµ −ϕ∂γHαβ∂αHγβ −Hαβ∂γHαβ∂µHµγ + 2Hαβ∂γHαβ∂γϕ . (7.7)

Again this solution is unique only up to addition of a piece that is non-trivial in the Q0 coho-
mology. Since S1 can only depend on H, we mean equivalently that it is unique up to addition
of terms invariant under linearised diffeomorphisms. If we insist that interactions with more
than two derivatives are excluded, then there is only one new possibility:

δL1 = λϕ , (7.8)

where λ is a new coupling. We recognise that this is the linearised cosmological constant
term. The invariant piece with two derivatives is a copy of the free graviton action (3.1),
and thus can be absorbed by reparametrisation. If we relax the restriction on derivatives then
powers of the curvatures (3.11) and their derivatives can be used, however this would take us
down the route to higher derivative gravity, with its attendant problems [78].

To interpret what we have found, it is helpful momentarily to switch off the regularisation
in (3.6). In fact we have no need of the regularisation here, since the analysis is and has been
purely classical. Adding (7.6) to (3.6), and comparing to (2.2), we see that

(Q0 +κQ1)Hµν = 2∇(1)(µ c
ν) , (7.9)

where ∇(1)µ is a covariant derivative, evaluated to first order in κ. If we regard Hµν and cν, as
covariant tensors, it has the standard form. Thus we recognise that our choice of representa-
tives of the BRST cohomology results in these assignments. We similarly read off from (7.5)
that

(Q0 +κQ1)cβ = −κ cα∂β cα . (7.10)

The fact that Qcβ is now non-vanishing, expresses the fact that diffeomorphisms do not com-
mute beyond the linearised level. If κcµ is treated as a vector field,14 this would just be half
the Lie bracket:

Q′cµ =
κ

2
Lcc

µ = κ cν∂νcµ . (7.11)

14See the comment on powers of κ below (3.4).
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From this we find, using (3.4):

Qcµ =Q′(cµ +κHµνcν) = κ
�

cν∂νcµ + 2∂(µcν)c
ν
�

+O(κ2) = −κ cν∂µcν +O(κ2) , (7.12)

in agreement with (7.10). Finally (7.7) coincides with the triple graviton vertex one gets from
the Einstein-Hilbert action (3.3), after expanding the metric using (3.4).

7.2 Quantum BRST cohomology

Locality is an important physical requirement, but it is also necessary for a non-trivial BRST
cohomology. If we allow K to be non-local then we can always write an s0-closed S1 as S1 = s0K
[20,21], and a non-Abelian BRST algebra can be rewritten as an Abelian one [28]. (In the first
case, an example can be found in [21] involving a further integral over time, and in second
case one uses the ghost propagator.) It is therefore of the utmost importance to define the
space of functionals over which the BRST cohomology is to be studied. In the usual framework,
quantum corrections are inherently non-local. (Furthermore the measure operator∆ is usually
ill-defined without further regularisation [23,29].) It is then unclear how to define a quantum
BRST cohomology without further restriction.

As we have just reviewed, the standard procedure is to define it by requiring that it can
be couched as a perturbation series in ħh, starting from the classical case. In our formulation,
we have a different route, one which is non-perturbative in ħh as we require. Locality is not
abandoned but relaxed to quasi-locality (cf. footnote 2), provided by the effective action at
finite cutoff Λ. Most importantly, as explained below (2.54) at first order the space of func-
tionals is spanned by the eigen-operators (4.28) with constant coefficients (the couplings), and
these eigenoperators are local. Phrasing the cohomology for renormalized operators, means
we should instead use sums over (6.2), which again are local operators to be added together
with constant coefficients. As we will see shortly, this is so constraining, it forces us to recover
essentially the classical result.

Let us first assume the standard quantisation, where we take as eigenoperators polynomials
in ϕ also (ignoring the fact that these do not span the space of perturbations unless we rotate
to imaginary ϕ [5, 76]). Then in our framework, the non-trivial solution (7.5) – (7.7) is not
quite correct, because the triple graviton vertex is not an eigenoperator. It receives tadpole
corrections from the flow equation (4.2), similar to that discussed in (4.27). Note that tadpole
corrections are to be computed after first shifting to gauge fixed basis using (3.22), after which
we map back to the gauge invariant basis (although in this case it is easy to see that these maps
do not change the result). Then the only change is a graviton tadpole correction resulting in

L1 = L1 cl +
3
2

bΛ4ϕ , (7.13)

where b is the non-universal number [5]

b =

∫

d4 p̃
(2π)4

C(p̃2) . (7.14)

The correction is Q0-closed as required, being a copy of (7.8). As per footnote 12, it is there
to absorb the remaining quantum corrections. The physical operator is obtained in the Λ→ 0
limit, which sends us back to (7.7).

Our central thesis is that we should not be dealing with polynomial interactions for ϕ but
the (marginally) relevant eigenoperators that, together with the irrelevant ones, span a Hilbert
space of interactions, as uniquely determined by the wrong-sign kinetic term and the Wilsonian
RG. We want solutions to s0S1 = 0 modulo the exact solutions S1 = s0K , where K itself is built
from linear combinations of the eigenoperators with constant coefficients. Now from (3.13),
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s0 =Q0+Q−0 −∆
−−∆=, where the measure operators are defined in (3.12). We see that if the

measure operators give a non-vanishing contribution, they do so by eliminating fields together
with their space-time derivatives, replacing them with a regularised tadpole integral. Since we
know that s0 maps back into the space of eigen-operators with constant coefficients (cf. sec.
2.6), we see that the measure operators can only serve to reproduce the tadpole corrections
that must have already been specified by the top terms (4.28) of the eigenoperators. These
top terms are determined solely by the action of Q0 +Q−0 .

A simple example will illustrate the point. We use the formulae in sec. 3.1. Let

Kex = K2
ex = −

∫

d4 x c∗·cδ(n)
Λ
(ϕ) . (7.15)

We will soon need to be more general, using a coefficient function (6.3), but for this illustration
it is clearer to focus on just one of the terms, or equivalently specialising to the case where
gσn = 1 and all other couplings to zero. Mapping to gauge fixed basis via (3.22) has no effect,
and no tadpole terms are generated by (4.2).15 Therefore Kex is an eigenoperator as it stands
(with dimension 2−n). Operating with s0, we get from (3.15) (using also (1.2), in this example
∆− has no effect):

L2
ex = c∗·c ∂ ·cδ(n+1)

Λ
(ϕ) , L1

ex = 2∂µH∗µν cνδ
(n)
Λ
(ϕ) , and Lex = −4bΛ4δ

(n)
Λ
(ϕ) , (7.16)

where b was defined above. Mapping these to gauge fixed basis, only changes L1
ex , which

becomes:
L1

ex |gf = 2∂µH∗µν cνδ
(n)
Λ
(ϕ) + �c̄νcνδ

(n)
Λ
(ϕ) . (7.17)

We see that in this example the eigenoperator equation (2.54) exclusively generates tadpole
corrections from this new piece. Computing it, we see that the eigenoperator is actually
L1

ex |gf + Lex . Mapping back to gauge invariant basis, we see that s0 maps the eigenopera-
tor K2

ex to the sum of two eigenoperators with the same eigenvalue (engineering dimension),
namely L2

ex and L1
ex +Lex . These eigenoperators are determined by their top terms, namely

L2
ex and L1

ex , and the top terms follow from the action of Q0 and Q−0 alone.
Retaining only the top terms, we are left with T n ∈ Sn

1 and to solve the cohomology of the
equations16

Q0T n +Q−0 T n+1 = 0 , (7.18)

for all n ≥ 0. These are of the form of the classical cohomology equations. We would now
be able to apply ref. [22] directly, and recover the results of sec. 7.1, save for two points.
Ref. [22] assumes that there are a finite number of derivatives, whereas the T n span a space
that is only quasi-local and thus can have a derivatives to arbitrarily high order. On the other
hand we know from sec. 6, that each monomial σ in the T n must be accompanied by a
coefficient function f σΛ (ϕ) that cannot be constant in ϕ at finite overall cutoff, since its large
field behaviour is constrained by the amplitude decay scale Λσ < Λ0/a.

Since the T n are quasi-local, we can however split (grade) them according to the number
of spacetime derivatives in each piece T n =

∑

m=0 T n
∂ m . If the action of Q0 is non-vanishing it

raises the number of derivatives by one by acting on Hµν, similarly Q−0 =Q−
∂
+Q−

∂ 2 raises them
by one via its action on c∗, or two via its action on H∗, respectively. Therefore we have:

Q0T n
∂ m +Q−∂ T n+1

∂ m +Q−
∂ 2 T n+1

∂ m−1 = 0 . (7.19)

15Recall that the ϕ piece of (4.2) is used in (4.7), equivalently (6.4), to derive the functional form of δ(n)
Λ
(ϕ).

16Apparently one could simply take the Λ → 0 limit, forcing the vanishing of the measure operator, and then
solving directly for the cohomology of the physical operators (6.5). However in this limit, the free action (3.6)
diverges, the QME degenerates beyond first order cf. (2.53), and the action itself becomes non-local, cf. also com-
ments in sec. 6.
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Since the ghosts are Grassmann, cµ1
cµ2

cµ3
cµ4

cµ5
= 0, and thus the T n≥5

∂ 0 necessarily vanish.
Then (7.19) tells us that

Q0T4
∂ 0 = 0 . (7.20)

Since
Q0 f σΛ (ϕ) = ∂ ·c f σ ′Λ (ϕ) , (7.21)

is non-vanishing, the only way for T4
∂ 0 to solve (7.20) is for it to vanish. Then (7.19) tells us

that Q0T3
∂ 0 = 0. The same argument shows that T3

∂ 0 must also therefore vanish. Iterating we
thus show that T n

∂ 0 vanishes for all n.
We will eliminate iteratively the higher derivative terms, in a closely similar way. We will

need to characterise non-trivial solutions to Q0T n
∂ m = 0 for general m and n. Extending the

definition of L for the descendents as in sec. 5, we can use directly the result of appendix A1
of ref. [22]: by discarding reparametrisations (trivial terms) any non-trivial T n

∂ m can be made
to satisfy this equation without integration by parts. This result relies on Theorem 3.1 of that
paper: that the cohomology of the exterior derivative in the space of invariant polynomials, is
trivial if the antifield number n> 0. However it is easy to see that the non-constant coefficient
function f σΛ (ϕ) plays the same rôle here and that therefore for us Theorem 3.1 holds also for
vanishing antifield number.

Now assume that we have eliminated all derivative terms, up to and including ∂ m−1. Since
the cµ are Grassmann, there is a maximum antighost number T n

∂ m . Since there are no ∂ m−1

pieces, (7.19) tells us that Q0T n
∂ m = 0. We just saw that a non-trivial solution can be taken to

solve this without integration by parts. But such a solution must in its entirety be of the form
(5.7). Since from sec. 6, each monomial must however have an f σΛ (ϕ) as a factor, which is
not constant in ϕ, that is not possible unless in fact T n

∂ m vanishes. Now (7.19) tells us that
Q0T n−1

∂ m = 0. Thus by iteration we establish that there is no non-trivial T n
∂ m for all n, and

thus by iteration this also true for all m. We have therefore shown that there is only a trivial
quantum BRST cohomology so long as each monomial σ has a non-constant f σΛ (ϕ) as a factor.

7.3 Recovering diffeomorphism invariance

Therefore the only way we can recover a non-trivial quantum BRST cohomology, and thus
incorporate beyond the free level a sensible notion of diffeomorphism invariance, is for the
f σΛ (ϕ) to become independent of ϕ. Fortunately this is in fact possible for the renormalised
coefficient functions, by taking the limit in which all amplitude decay scales are sent to infinity.

Recall that the amplitude decay scales must satisfy 0 ≤ Λσ < Λ0/a. Therefore the Λσ
must start out finite. Indeed as we saw in sec. 6, the amplitude decay scale is set by the
renormalized couplings which themselves must be finite. In constructing the theory we must
include all the (marginally) relevant bare couplings at values induced by requiring finite cou-
plings at physical scales. We then send Λ0 →∞ to form the continuum limit. At this point
we have a perturbatively renormalizable interacting theory, although with an infinite number
of couplings gσn and no diffeomorphism invariance.

We can now however send the Λσ → ∞. For S1 for example, we can take the positive
antifield number pieces (7.5) and (7.6), and multiply them by coefficient functions of the
form (6.15). Then it is easy to see that they are valid renormalized operators in the new
quantisation, i.e. of form (6.2), in particular without tadpole corrections. For any finite Λ and
finite ϕ, we have

lim
Λσ→∞

f σΛ (ϕ)/κ→ 1 . (7.22)

Thus in this limit S2
1 and S1

1 become the standard non-trivial solutions for the first two equations
in (7.3). For S1 we have to use the different form (6.18) of coefficient function for the pieces
which contain an undifferentiated ϕ, and we also have to recognise that it is not yet a linear
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combination of eigenoperators. Extracting the undifferentiated ϕ pieces from (7.7) by using
(3.28), we thus find the full operator is made up of twelve top terms and a tadpole contribution:

L1 =
�1

4
hαβ∂αϕ∂βϕ − hαβ∂γhγα∂βϕ −

1
2

hγδ∂γhαβ∂δhαβ − hβµ∂γhαβ∂γhαµ

+ 2hµα∂γhαβ∂µhβγ + hβµ∂γhαβ∂αhγµ − hαβ∂γhαβ∂µhµγ +
1
2

hαβ∂γhαβ∂γϕ
�

f σΛ (ϕ)

+
�

3
8
(∂αϕ)

2 −
1
2
∂βhβα∂αϕ −

1
4
(∂γhαβ)

2 +
1
2
∂γhαβ∂αhγβ

�

f σ
′

Λ (ϕ) +
3
2

bΛ4 f σ
′

Λ (ϕ) . (7.23)

The tadpole contribution arises in the same way as it did in the standard quantisation, cf. the
beginning of sec. 7.2. Indeed it is easy to see that the first eight terms above cannot contribute
because their tadpoles are proportional to hαα = 0, while the three of the remaining four terms
that do contribute, give precisely the same contribution as they did in (7.13). In here we could
have chosen to use a different f σΛ (ϕ) for each of the first eight terms, and similarly a different
f σ
′

Λ (ϕ) for each of the last four terms. In future when we consider quantum corrections at
O(κ2) and higher, we will have to (see also sec. 8). The main point is that since

lim
Λσ′→∞

f σ
′

Λ (ϕ)/κ→ ϕ , (7.24)

in the limit of infinite amplitude decay scales (7.22) and (7.24), we recover also the standard
non-trivial quantum form for S1 and thus the full non-trivial solution to (7.3).

Clearly then we can recover the standard non-trivial BRST cohomology, for any of the
parametrisations discussed in sec. 7.1. Although the coefficient functions do not diverge
in this limit, for fixed κ, the couplings themselves (6.14), (6.17), do diverge in this limit.
However we can treat them perturbatively. At one level this is akin to the usual artifice of
perturbative renormalization by subtracting divergent counterterms. We can ensure that the
couplings do remain small however, by requiring κ to vanish faster than any power of Λσ (for
example as κ ∝ e−Λσ/µ), forming ratios such as in (7.22) to extract the coefficients of the
perturbative series in κ. (As in standard cases, we would expect this series to converge only
in the asymptotic sense.)

For S1 this is the complete analysis. The infinite number of couplings {gσn , gσ
′

n } that we
have at the bare level, get traded for the single coupling κ at the renormalized level, and we
recover exactly the standard description.

The higher order parts Sn need to be treated beyond the linearised level used in this paper,
but let us put that aside for the moment to understand what we can so far in these cases. At
the linearised level the bare couplings are the same as the physical (Λ = 0) couplings. The
latter can be extracted from the physical coefficient function by computing [5]

gσn =
(−)n

n!

∫ ∞

−∞
dϕϕn f σ(ϕ) . (7.25)

The Sn would have successively higher dimension monomials σ. For example local terms in S2
will have monomials of dimension dσ = 6. Then their gσ0 is irrelevant and in the continuum
limit, needs to vanish at the bare level. From (7.25) that would require having a coefficient
function whose integral vanishes. It is still possible to have such a thing and have it tend to
a constant pointwise for finite ϕ and Λ. Indeed we provided an example in (6.21) – (6.23).
It is straightforward to see that (6.21) integrated over ϕ, does indeed vanish. This coefficient
function has the characteristic that for large Λσ and finite ϕ and γ, it satisfies f σ(ϕ) = κ2 to
exponential accuracy. But for ϕ ¦ Λσ it gently changes sign and then decays away exponen-
tially.
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We saw in general in sec. 6 that for some monomial σ, it is possible to zero any finite
number of couplings by choosing linear combinations, where clearly again as Λσ →∞ the
coefficient function tends to a constant (κdσ−4 in this case). More generally, we see from
(7.25) that we need only choose a coefficient function such that f σ(ϕ) tends to a constant
pointwise in ϕ, but such that the corresponding moments vanish, this vanishing being enabled
by behaviour at large (and eventually infinite) ϕ.

8 Discussion

The above observations serve to emphasise some important points. The (bare) couplings are
not directly related to the physical interactions, in a sense which is much more extreme than
in a normal quantum field theory. Even at the linearised level where there is no difference
between bare and physical couplings, the connection to the physical interactions is rather
indirect. We see from (7.25) that the effect of each coupling is distributed non-locally through
the (physical) coefficient function, so that its influence cannot be determined by considering
only finite ϕ. Recovering diffeomorphism invariance involves infinitely many couplings in S1
being traded at the renormalized level for a single effective coupling κ. At higher orders they
would be traded for an effective coupling proportional to appropriate powers of κ. In this
process, any finite number of renormalized gσn can set to zero without changing this effective
coupling.

Therefore it seems meaningless to try to count the number of independent bare couplings.
Instead we should ask how many free parameters remain in the renormalized theory. This has
to be one of the next most important questions to answer. However to do so requires going
beyond the linearised level to the higher order parts Sn. Then we will encounter new issues,
some of which were already touched on in ref. [5].

We should make one comment on the phenomenology. Since recovering diffeomorphism
invariance involves sending amplitude decay scales Λσ →∞, it would seem to rule out all
but infinite inhomogeneity protection effects (“cosmic censorship”) [5,8], although since this
involves a limit in which also divergences are involved it may be that qualitatively similar
physical effects survive, for example through logarithmic effects.

By appropriate choice of coefficient function, we can make a renormalizable interaction
out of any monomial σ no matter how large its dimension. For example we can use (6.22) for

�

R(1)µν
�2

f σΛ (ϕ) , (8.1)

since dσ = [σ] = 6 and thus the non-renormalizable coupling gσ0 must vanish, as discussed
at the end of sec. 7.3. Since we are dealing with a perturbatively renormalizable theory, we
know that we never have to introduce this bare gσ0 , and therefore it can remain zero to all
orders in perturbation theory. The monomial in (8.1) is one of the dangerous operators that
has to be introduced in the standard quantisation. If it were to be given a separate existence at
the bare level, then it would be part of higher derivative gravity [78], allowing the theory to be
perturbatively renormalizable but at the expense of unitarity (in flat space). The operator (8.1)
does not challenge unitarity here, because there must also be the non-trivial function f σΛ (ϕ),
and therefore it is not a contribution to the bilinear kinetic term for Hµν. If the operator (8.1)
has to be introduced there is no reason to expect f σΛ to tend to a constant at the bare level (see
also below). In fact, until we go beyond linearised order, we do not know whether we will be
forced to include (8.1) and similar terms at the bare level. Given the remarks above, nor do
we know what influence they would leave on the renormalized action, even if they have to be
introduced. Fortunately already a computation at O(κ2) will clarify these issues.
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Once we go to higher order, the couplings in S1 will no longer be constants, but will run
with the cutoff scale: gσn = gσn (Λ) [5]. Indeed by inspection of (7.23) and considering the
form of the O(κ2) quantum corrections that can be made out of these, it can be seen that each
coefficient function will already run at O(κ2) and differently for each monomial. We see that
we need to be careful to distinguish between renormalized couplings associated to different
monomials, and also between these and the corresponding couplings at the bare scale Λ0. In
particular it is the bare scale irrelevant couplings that need to be sent to zero in the continuum
limit Λ0→∞.

The irrelevant couplings at physical scales will then not vanish but take on values deter-
mined by the rest of the theory, through satisfying the flow equation (2.55) in tandem with
the QME (2.4). In order to compute these pieces, we expand the action S in κ as in (2.32),
where these powers of κ are now to be viewed as an overall factor in the couplings gσn , as in
the examples in sec. 6.1.

Unlike in the standard quantisation, diffeomorphism invariance at the non-linear level,
does not exist independently of the quantum corrections, but arises simultaneously, as envi-
sioned in ref. [5]. We have seen in secs. 7.2 and 7.3, that to O(κ) it must be the same as the
classical realisation (sec. 7.1). But we do not know what the O(κn≥2) pieces will look like until
the Sn≥2 are determined. These have to satisfy the consistency equations (2.53) (although at
this stage it will be better rephrase all this in terms of the infrared cutoff Legendre effective
action ΓΛ, so that the physical correlators can be accessed directly [5]). As noted at the be-
ginning of sec. 7.3, we have to take the limits in a prescribed order. We have to construct
the continuum theory first, where the QME will not be satisfied, and then take a limit to a
point where the QME will be satisfied at least as Λ → 0. We have seen at linearised order
that this can be done for any gauge invariant operator, without violating renormalizability.
Even though this shows that there is enough parametric degrees of freedom beyond linearised
order, we do not know yet whether in practice one can satisfy the QME using this freedom.
For example one has to face the fact that as a consequence of (5.3), the flow of the product of
two non-trivial coefficient functions is not given by multiplying the two f σΛ (ϕ) together, even
at the linearised level [5]. Again how these effects are incorporated into the QME, will be
clarified by the O(κ2) computation.

All of these effects provide reasons to expect a quantum gravity with different phenomeno-
logical properties compared to that obtained by the usual route. Clearly however, there are
still many issues to be understood, many of which we expect will be clarified at O(κ2).

9 Conclusions

There are still many questions to be answered, nevertheless this structure offers a new way
of quantising gravity. What we find most persuasive about it, is that the structure is not in-
troduced Deus ex machina but is demanded by the theory itself if one insists on applying the
Wilsonian RG directly to General Relativity without further modification. Most significant is
that in this way we realise quantum gravity as a genuine continuum quantum field theory.
It is well appreciated that the Wilsonian RG provides the framework to construct continuum
quantum field theory. The starting point is flat Euclidean R4, an ultraviolet fixed point, and
the infinite set of eigenoperator perturbations about this. What seems less well appreciated, is
that in order for the Wilsonian RG to make sense, already at this level, it must be possible to
write arbitrary linear perturbations within some suitably defined space, as a convergent sum
over these eigenoperators. (For counter examples see refs. [5, 76].) This basic requirement
is needed so that the flow of this perturbation then follows from the flow of the underlying
couplings, as determined for example by their relevancy or irrelevancy. Such a structure does
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not need to be imposed from outside. It is already provided by theory. The eigenoperator
equations for the ghosts cµ and the fluctuation fields hµν and ϕ, are of Sturm-Liouville type.
The resulting space, L, is the Hilbert space defined by these Sturm-Liouville measures.

It so happens that in normal quantum field theories (ones with the right sign kinetic term)
this property tells us that around the Gaussian fixed point (free field theory), the polynomial
interactions that are widely used, do have the correct convergence properties, forming the
Hilbert space L+. But for the conformal factor part of the metric, ϕ, as a consequence of its
wrong sign kinetic term, the space of such bare interactions has to be L−: one in which the
interactions are exponentially damped at large amplitude, more precisely, square integrable
under (1.1).

This is the crucial condition that defines the new quantisation, one that is moreover pre-
served by the quantum corrections, as we verified in sec. 5. The full measure is the one given in
(5.1), and the eigenoperators that span the Hilbert space are those in (4.28). Diffeomorphism
invariance tells us that already at the classical level, there are interactions of arbitrarily high
power in the fluctuation field. In the usual perturbative quantisation these are all irrelevant,
i.e. non-renormalizable, and it is this property that forbids the construction of a non-trivial
continuum limit about the Gaussian fixed point.17 This should be contrasted with the new
quantisation where infinitely many of the eigenoperators are relevant. As we have seen, in
the new quantisation, by taking a limit to the boundary of L, these interactions can then be
constructed at the linearised level, in such a way that they contain only (marginally) relevant
operators, i.e. such that the theory remains renormalizable.

The Hilbert space structure L−, and the corresponding operators δ(n)
Λ
(ϕ), were discovered

in ref. [5]. The consequences of this structure, and also L+, were developed logically step
by step, in ref. [5], see also ref. [8]. But the application to gravity was treated only heuristi-
cally: in particular it was treated at the classical level where the problem can be reduced to
parametrisation of the metric gµν. The eigenoperators (4.28) are however non-perturbative
in ħh so, as acknowledged in ref. [5], such a classical limit does not exist. Instead the theory
must be constructed non-perturbatively in ħh. Since it is constructed around the Gaussian fixed
point, one can however develop it perturbatively in κ.

In this paper we have completed some major goals in this development, again proceeding
step by step to develop the structure that is inherent in the theory. A crucial question left unan-
swered in ref. [5] was how diffeomorphism invariance is to be incorporated. In this paper we
have fully answered that question to first order in κ. This requires constructing a well-defined
action of the quantum BRST transformations (the QME), in a way that is consistent with the
Wilsonian RG structure, the eigenoperators and L. A priori, this structure could have allowed
a very different realisation of the quantum BRST cohomology, from the one implied by the
normal quantisation. However we found in sec. 7.2 that only a trivial quantum BRST coho-
mology exists while remaining strictly inside L. To recover a non-trivial BRST cohomology,
one must take a limit so that the renormalized coefficient functions become independent of
ϕ. In sec. 7.3, we showed that this follows from diverging amplitude decay scale Λσ, a limit
which is allowed after first taking the continuum limit Λ0 → ∞. In this way, the standard
non-trivial BRST cohomology for diffeomorphism invariance is recovered without disturbing
the renormalizability properties.

Thus the construction of perturbatively renormalizable quantum gravity is achieved only
by breaking the gauge invariance at intermediate stages, not only through the use of a cutoff
that makes visible the quadratic divergences which are central to the definition of the theory
through (1.1), but through the fact that this leads to non-trivial coefficient functions f σΛ (ϕ)
which are required to be present in every interaction, in order to define the continuum limit.
Only after this is done, can we finally remove this structure at the renormalized level and

17One would also have to analytically continue the ϕ integral [7] in particular to recover convergence [76].
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regain diffeomorphism invariance.
The first step that has to be taken in order to derive the results above, is to combine the

Wilsonian RG and the QME in such a way that a well-defined quantum BRST cohomology
results, namely one for which the full free BRST charge s0 (in particular the measure operator
∆) is well defined when acting on arbitrary local functionals, and furthermore such that the
cohomology can be restricted to the space spanned by the eigenoperators with constant cou-
plings. This synthesis was achieved in sec. 2.4, in particular if K is a linear combination of
eigenoperators with constant couplings, then the cohomologically trivial operator s0K is also
a linear combination of eigenoperators with constant coefficients (see sec. 2.6). In sec. 5,
we extended this definition so that cohomologically trivial interactions coincide with (BRST
closed) physically trivial interactions (i.e. ones that satisfy the QME but are just generated by
quasi-local reparametrisations of the free theory). As we saw in sec. 2.7, to study the quantum
BRST cohomology, we are free to use the minimal gauge invariant basis, where the results are
clearly independent of gauge fixing choices.

Specialising to quantum gravity, we saw that the quantum BRST cohomology can be graded
by antighost number, leading almost immediately to the nine anticommutation identities (3.16),
where furthermore at the free level one has the non-vanishing anticommutation relations
(3.19) or (3.26) in gauge invariant or gauge fixed basis respectively.

On the other hand the eigenoperators themselves are defined in the gauge fixed basis.
These are derived in sec. 4, culminating in the expression (4.28) for a general eigenoperator.
At the same time, this yields the Hilbert space L of bare interactions, as discussed in sec. 5. The
BRST cohomology we are interested in is however the one that pertains to the renormalized
interactions. As explained in sec. 6, developing further ref. [5], the renormalized interactions
have different properties. This is so, even though we are working at the linearised level, so
that the couplings gσn do not run with scale. For each monomialσ, we have a tower of relevant
operators together with their couplings, which thus form a coefficient function f σΛ (ϕ). While
the series defining f σΛ (ϕ) converges at the bare level, it typically fails to converge at some
finite scale. This leads to the emergence of an amplitude decay scale Λσ. These properties
are further explored in particular in sec. 6.1. The general form of the renormalized operator
is given by (6.2) and the BRST cohomology is to be defined on the space which is a linear
combination of such terms, suitably extended as described in sec. 5.

In sec. 7.2, we turn finally to the quantum BRST cohomology. A crucial observation is
that the measure operators ∆− and ∆= can only contribute terms proportional to powers of
Λ, and thus can contribute only to the tadpole corrections and not to the top terms in (6.2).
The top terms must thus satisfy a free BRST cohomology of their own, (7.18), involving only
the BRST charge Q0 and the Kozsul-Tate differential Q−0 . Then by grading these top terms by
the number of spacetime derivatives, we can borrow from refs. [21, 22] to show that only a
trivial quantum BRST cohomology exists so long as each monomial has a factor f σΛ (ϕ) that is
non-constant in ϕ.

As already reviewed, we show how the limit of diverging amplitude decay scale allows us
to remove this last restriction whilst remaining renormalizable, and thus recover the standard
non-trivial BRST cohomology, i.e. correctly incorporate diffeomorphism invariance at first or-
der in κ, furthermore in a way that reproduces standard realisations. In secs. 7.3 and 8 we
highlighted that any diffeomorphism invariant operator can in this way be recovered at first
order in κ, in particular no matter how high the dimension dσ of the monomial. Continuing to
work at first order, we also saw that the map from the couplings gσn to the effective coupling
κ is not unique. In particular any finite number of gσn can be set to zero without changing
this effective coupling. Many open questions remain, in particular it is not yet clear how many
free parameters are required in the renormalized theory. However as explained in sec. 8, we
expect the structure of the theory to become much clearer when perturbative corrections at
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O(κ2) are computed.
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A More details on combining the QME and Wilsonian RG

The antibracket and measure operator satisfy many nice identities, some of which can be
found in refs. [26,27,29]. Here we list some that we use. It is important to recognise that these
identities hold true with the regularisation in sec. 2.6. We also give some identities that follow
from linearised BRST invariance, and some further details on the canonical transformations
encountered in this paper.

For functionals X and Y , we use the symmetry property

(X , Y ) = −(−)(X+1)(Y+1)(Y, X ) , (A.1)

in deriving (2.9). By a functional X in the exponent we mean 0 (1) if X is bosonic (fermionic).
The nilpotency relation (2.9) follows from (Z another functional)

(X , Y Z) = (X , Y )Z + (−)Y (X+1)Y (X , Z) , (A.2)

∆2 = 0 and
∆(X , Y ) = (∆X , Y )− (−)X (X ,∆Y ) . (A.3)

Inspecting the above equations, it is useful to note that the functionals X , Y , etc. behave with
opposite grading when they are inside antibrackets. To derive (2.36), we use

∆(X Y ) = (∆X )Y + (−)X X∆Y + (−)X (X , Y ) . (A.4)

Note that this is different from the equation quoted in ref. [29] because we defined ∆ in
(2.5) via left-derivatives. Differentiating the antibracket with respect to a field Z , we have for
example

∂r

∂ Z
(X , Y ) =

�

X ,
∂r Y
∂ Z

�

+ (−)Z(1+Y )
�

∂r X
∂ Z

, Y
�

, (A.5)

which in particular implies
∂r

∂ΦB
(S, S) = 2

�

∂rS
∂ΦB

, S
�

. (A.6)

Note that the (linearised) BRST invariance of S0 implies by (2.21) and (2.27):

RD
B4

−1
DE + RD

E4
−1
DB = 0 (A.7)

where in symmetrising we note that B and E have the opposite statistics. We also note that
these symmetry statements are unaffected by multiplying through by cutoff functions, so we
drop the cutoffs for now. In gauge fixed basis, we can multiply through by 4BA4EC ,and thus
the free propagators satisfy

RC
B4

BA+ RA
B4

BC = 0 . (A.8)
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These BRST invariance relations can be cast as symmetry relations. For example transposing
the propagators in (A.8) by using (2.24), and noting again that the free indices have opposite
statistics

4ABRC
B =4

CBRA
B . (A.9)

We see that Ψ∗ in eqn. (2.47) is already written in symmetric form. We also note that it is
overall fermionic as it should be.

For K in (2.46) to be a finite quantum canonical transformation, it must leave the QMF
(2.4) invariant. Since it is written in the form of a finite classical canonical transformation, for
the antibracket this is already clear [28]. Since it implies that

Φ̌∗A = Φ
∗
A , and Φ̌A = ΦA+

∂l

∂Φ∗A
Ψ∗[Φ∗] , (A.10)

the measure operator is also invariant because (where ∆̌ is the operator for transformed fields):

∆S = ∆̌S +
∂ 2

l Ψ
∗

∂Φ∗A∂Φ
∗
B

∂ 2
l S

∂ Φ̌A∂ Φ̌B
(A.11)

and the last term vanishes by the opposite statistics of Φ̌A and Φ∗A.
Alternatively one can start from the general form of a finite quantum canonical transfor-

mation which takes the general form of a finite classical canonical transformation, i.e. (2.46),
but also takes into account the Berezinian J , the super-Jacobian of the change to new vari-
ables [28,29,79]:

S[Φ̌, Φ̌∗] = S[Φ,Φ∗]− 1
2 ln J . (A.12)

Then it is straightforward to see that for (A.10), J = 1, and thus the canonical transformation
in this case has vanishing quantum part.
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