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Abstract

We provide a pedagogical review on the calculation of highly excited eigenstates of disor-
dered interacting quantum systems which can undergo a many-body localization (MBL)
transition, using shift-invert exact diagonalization. We also provide an example code
at https://bitbucket.org/dluitz/sinvert_mbl. Through a detailed analysis of the simu-
lational parameters of the random field Heisenberg spin chain, we provide a practical
guide on how to perform efficient computations. We present data for mid-spectrum
eigenstates of spin chains of sizes up to L = 26. This work is also geared towards read-
ers with interest in efficiency of parallel sparse linear algebra techniques that will find a
challenging application in the MBL problem.
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1 Introduction

The phenomenon of many-body localization (MBL) [1] has recently attracted a lot of attention,
as it touches several fundamental issues of the physics of generic closed quantum systems, such
as thermalization and transport. We refer to reviews [2,3] including recent ones [4–6] which
highlight the different aspects of the problem: absence of thermalization and transport, slow
propagation of quantum information, compact description of localized eigenstates, dynamical
consequences for quench experiments, etc. Crucial to the discussion below is the existence
of a many-body localized phase where the standard canonical ensemble description and the
eigenstate thermalization hypothesis do not work: each eigenstate behaves individually (e.g.
is qualitatively differently from nearby eigenstates), and thus individual eigenstates close by
in energy have to be resolved in order to study this markedly different behavior in the MBL
and thermal phases [2]. It is important to note that a mixed state of several MBL eigenstates
would smear out their individual local features.

The richness of this problem is due to the interplay between various ingredients: disor-
der, many-body interactions, out-of-equilibrium physics or high-energy phenomena. These
elements are already difficult to treat individually from a theoretical point of view, and, need-
less to say, dealing with all of them at once is a formidable challenge. Moreover, due to the
increasing number of highly-controlled cold-atom experiments on the topic (see e.g. [7–10]),
providing a comparison with and presenting theoretical unbiased predictions is highly desir-
able.

Numerical simulations thus have been and remain instrumental in understanding quanti-
tatively many aspects of the MBL problem, albeit not in a straightforward fashion. First of all,
the problem inherits the complexity of quantum many-body problems with an exponentially
growing Hilbert space in terms of system size. It is important to emphasize that the techniques
which are standard in the many-body problem to circumvent or mitigate this complexity are
usually not efficient for the MBL problem. The need to access individual eigenstates and not
mixtures of them as in a canonical ensemble prohibits the naive use of quantum Monte Carlo
techniques or high-temperature series expansions, which couple the system to a heat bath from
the start. We also emphasize the need to probe “interior” eigenstates at finite energy density,
not only at the bottom of the spectrum. Most works focus indeed on the “infinite temperature”
limit, which corresponds to eigenstates in the middle of the many-body spectrum. This for-
bids a direct application of iterative methods (e.g. Lanczos algorithm) which are only efficient
for a few extremal eigenstates, whereas deflation techniques become quickly impractical for
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more than a few thousand states at the edge of the spectrum. New methods have been pro-
posed that capture eigenstates or dynamics relatively deep in the MBL phase, based on specific
properties of eigenstates in this phase, such as low entanglement and the fact that they are
eigenstates of quasi-local conserved operators. This includes the extension of matrix-product
states methods [11–14], real space renormalization group techniques to excited states [15],
as well as unitary flow methods [16, 17] (for a bird’s eye review, see Ref. [6]). However, in
order to probe the full phase diagram (and not only the MBL phase) as well as to provide ref-
erence data for the methods described above, one needs a technique that works in all regimes
in an unbiased manner. Another important computational aspect of MBL is the requirement
to average over many disorder realizations. Thus one requires a numerical method that can
solve “large” problems, in a reasonable amount of CPU time, as it has to be repeated over at
least a few hundred realizations.

Full exact diagonalization of the Hamiltonian matrix can access arbitrary eigenstates of a
many-body Hamiltonian. It is limited to matrices of size ∼ 50,000 at most (in principle larger
matrices can be reached using parallel diagonalization, in practice the computational effort is
too large due to the average over disorder), which in the example presented below corresponds
to spin 1/2 chains of size L = 18. In this paper, we advocate the use of spectral transforms
to transform the interior eigenvalue problem into an extremal eigenvalue problem on which
iterative methods based on the Arnoldi or Lanczos algorithm can be used. Several transforms
are possible, and we focus on the one that was found to be the most efficient one for the MBL
problem, the shift-invert (SI) technique, which in its first application to MBL allowed to reach
L = 22 spins [18]. We provide in Sec. 3.1 a pedagogical introduction to this method, with
details on practical implementation in Sec. 3.2 including a code. We then present a detailed
benchmark on the scaling of SI on supercomputers in Sec. 4, and finally present results on very
large systems (up to L = 26 spins) in Sec. 5. Our simulations are performed on the prototypical
MBL Hamiltonian, the random field XXZ spin chain, which for sake of completeness we present
in the next Sec. 2.

2 Description of the problem

We briefly recall the computational properties of the spin chain model which is studied most
extensively for numerical simulations of MBL. It was studied early on, e.g. in Ref. [19–21] and
many others. This section could be useful for readers interested in the shift-invert technique
and its applications but not familiar with this quantum mechanical problem.

The Hamiltonian for the random field XXZ spin chain is given by

H=
L
∑

j=1

�

(S x
j S x

j+1 + S y
j S y

j+1 +∆Sz
j S

z
j+1)− h jS

z
j

�

, (1)

where Sα = 1/2σαi (α = x , y, z) with σαi Pauli matrices operating on lattice site i. We fix
the parameter ∆ = 1; this value corresponds to the random-field Heisenberg model, which
is a generic representative of systems with ∆ 6= 0 which have an MBL transition for disorder
h > 0. Each h j is a random number drawn uniformly from a box distribution on [−h, h],
where h denotes the strength of disorder, a parameter which will vary and strongly affect the
physical properties of the eigenstates. This means that for each value of h, we have to deal
with several instances (Nd ‘disorder realizations’, Nd ≈ 102 to 104) of H that are to be treated
independently. The features of a uniform probability distribution are not crucial here, and in
particular for the numerical methods discussed in this paper.

Each of the L spins has two possible projections in the z direction (±1/2), giving a
total number of 2L configurations. As however this Hamiltonian commutes with the to-
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tal spin in the z direction Sz =
∑L

j=1 Sz
j , it can be block-diagonalized in each Sz sector

(Sz ∈ [−L/2,−L/2 + 1, ..., L/2 − 1, L/2]). We will mostly consider chains with L even and
treat the Sz = 0 block of size N = L!

(L/2)!(L/2)! (and occasionally L odd for which the largest

Sz = 1/2 block is of size N = L!
(L/2+1)!(L/2−1)!). The actual matrix sizes N thus scale exponen-

tially with L, asymptotically as 2L/
p

L, and are given in Table 1 for the range of L studied in
this work.

To implement the Hamiltonian in practice, we use a computational basis given by product
states which are eigenstates of all Sz

i operators and labeled by a configuration of their eigen-
values. Each configuration is labeled with a set of L bits (0 and 1), with an equal number of
0 and 1 for L even (“Sz = 0" sector) and one extra 1 for L odd (“Sz = 1/2" sector). Matrix
elements are as follows:

• Off-diagonal elements Hcd are equal to 1/2 iff the configurations c and d differ by a flip
of consecutive different bits (that is ...01....↔ ...10....)

• Diagonal elements Hcc = H(1)cc +H(2)cc are the sum of two contributions:

– (1) a repulsion part: H(1)cc =∆/4(N...11... + N...00... − N...10... − N...01...) where N...bb′...
denote the number of occurrences of the pattern bb′ in consecutive bits in the
configuration c,

– (2) a random field contribution, which will differ from one disorder realization to
another: H(2)cc =

∑

j(h jδ...0 j ...− h j/2) with δ...0 j ... = 1 if there is a 0 bit in the j− th
position.

We work here with periodic boundary conditions, meaning that extremal bits are consid-
ered as consecutive in the description above.

The Hamiltonian matrix is real, symmetric and sparse: the number of non-zero off-diagonal
elements (all equal to 1/2) is on average (L+1)/2 per line, and their total number thus scales
as N log(N ). All diagonal elements are non-zero (except accidentally) and typically scale as
(∆/4 + h/2)

p
L, which means that at strong-disorder (where the MBL phase is located) the

matrix is diagonally dominated. The total number of non-zero elements is also given in Table 1.
Published simulations that obtain eigenstates are up to L = 16 with full diagonalization and
up to L = 22 with the shift-invert technique [18].

Table 1: Matrix sizes considered in this work and their number of non-zero elements
of H, for chains of size L with periodic boundary conditions. Note that even though
the matrix is symmetric, we report here the total number of non-zero elements of the
full matrix H.

Chain length L Matrix size N Number of non-zeros
16 12870 122694
18 48620 511940
20 184 756 2129 556
22 705 432 8834 696
24 2 704156 36 564892
25 5 200300 72 804200
26 10400 600 151016 712

The physical phase diagram of this model is as follows: for small values of h (and ∆ 6= 0),
the eigenstates follow the eigenstate thermalization hypothesis (ETH) [22–26] and have the
same local properties as random (Haar measure) vectors in the middle of the spectrum: this
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is the ETH or ergodic phase (corresponding to infinite temperature in the middle of the spec-
trum). At strong disorder h, the eigenstates are ‘localized’ and ‘close’ to simple product states
(in the limit of h→∞, they are just individual bit states 1001101 · · · ): this is the MBL phase.
It is widely believed that for this model these phases are separated by a single phase transi-
tion at a critical value hc [20], and that the value of hc depends on the position of eigenstates
in the spectrum [18]. This position is parametrized by ε = (E − Emin)/(Emax − Emin), with E
the eigenvalue, Emin =min[spec(H)] and Emax =max[spec(H)] the extremal eigenvalues, and
ε ∈ [0,1]. For ε= 0.5 (middle of the spectrum) and∆= 1, the critical disorder was estimated
as hc ∼ 3.7 based on finite-size analysis with L = 14 to 22 [18].

3 The shift-invert technique

3.1 Description of the method

The shift-invert method is based on a spectral transformation to access interior eigenpairs of
matrices, i.e. eigenpairs with eigenvalues in the center of the spectrum, which are of foremost
interest to study thermalization and MBL. Interior eigenvalues of H are exponentially close
to each other in terms of system size and therefore very hard to separate. By introducing
a spectral transformation, the spectrum can be transformed such that (i) the eigenvalues of
interest are situated at the edge of the transformed spectrum and (ii) the spacing to adjacent
eigenvalues increases significantly. For the transformed problem, standard methods based
on Krylov subspaces (such as the Lanczos or Arnoldi algorithms) can then be employed, and
the eigenvalue is trivially transformed back to the original problem. We will only discuss
transformations which leave the eigenvectors invariant.

Let us for concreteness assume that we are interested in a few eigenpairs closest to a target
σ inside the spectrum of the Hamiltonian matrix H: σ ∈ [Emin, Emax]. There are two obvious
choices for moving the eigenvalues E1, E2, . . . sorted by distance to the target σ to the edge of
the transformed spectrum:

• Spectral fold by the transformation

F= (H−σ)2 . (2)

This transformation moves all eigenvalues of interest to the lower edge of the trans-
formed spectrum spec(F) ⊂ [0, fmax] close to 0. Unfortunately, it also reduces the dis-
tance to adjacent eigenvalues, rendering this transformation in practice not useful, al-
though the transformation is attractive due to its simplicity.

• Shift and invert transformation

G= (H−σ)−1 . (3)

Here, eigenvalues Ei of H which are slightly smaller than σ are transformed to large
negative values at the edge of the spectrum of G, whereas eigenvalues slightly larger
than σ become large positive values at the edge of the spectrum of G. The distance
to adjacent eigenvalues is dramatically increased, which improves the performance of
iterative solvers for eigenpairs from the edges of the spectrum of G significantly. If the
target σ is accidentally equal to an eigenvalue of H, the matrix becomes singular and
the target should be moved slightly.

For the MBL problem, the shift and invert transformation is the only viable method to
obtain central eigenpairs of matrices inaccessible to full diagonalization (the spectrum folding
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Figure 1: Eigenvalues and densities of states (DoS) for the original spectrum of the
clean (h = 0) chain of length L = 14 in the Sz = 0 sector, as well as the transformed
spectra, all spectra normalized between 0 and 1.

works, but in our experience does not allow to reach larger systems than full diagonalization).
Its major bottleneck is the calculation of the inverse matrix of (H −σ). Fortunately, the full
inverse matrix is not required, since the Lanzcos/Arnoldi algorithms only rely on the repeated
product of the transformed matrixGwith vectors x. Therefore, the result y= Gx of the product
of G with a vector x can be expressed as the solution of the linear equation

(H−σ)y= x (4)

for the left hand side x. This allows for the elimination of the direct inversion of H−σ. At this
stage, one might try to solve this linear equation using iterative solvers (such as the Jacobi-
Davidson algorithm). Unfortunately, the condition number of (H−σ) is determined by the ratio
of its eigenvalues with maximal and minimal modulus: κ= |EN −σ|/|E1−σ| ∝ O (L exp(L)).
Therefore, the problem is severely ill conditioned and we can confirm that none of the iterative
solvers we tried converges in practice for large enough L. In other situations (e.g. Anderson
localization [27], see Ref. [28–33] and Sec. 6), iterative solvers can represent the most efficient
way to solve Eq. 4 (their effectiveness may depend on the density of states close to σ).

Therefore, the solution of the linear equation (4) has to be obtained with a deterministic
and numerically stable method: the full or partial pivot Gaussian elimination. For this, after
reordering with a permutation matrix P, an exact LU decomposition in lower and upper tri-
angular matrices L and U of the matrix (H−σ) = LU is calculated. As this matrix is sparse,
this can be achieved in a massively parallel way with state of the art libraries discussed in Sec.
3.2. With this decomposition, it is then very easy to calculate the solution y of the linear equa-
tion LUy= x for any vector x. The main challenge remains the decomposition and storage of
triangular factors L and U of very large, distributed sparse Hermitian matrices H.

Once the factors L and U are determined, they are used to effectively calculate the matrix
vector product (H−σ)−1 x. This is the central ingredient in iterative eigensolvers, based on the
Lanczos/Arnoldi algorithms for obtaining eigenpairs at the edges of the spectrum of very large
matrices. The convergence speed of these algorithms is enhanced if the distance to the next
eigenvalue is large, which is the case in the transformed spectrum, and hence these methods
are efficient. In practice, large numbers of exterior eigenpairs of the order of several hundreds
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or thousands can easily be calculated for large problem sizes, using deflation techniques, which
project out the already converged outermost eigenpairs (λ,x) by subtracting the component
λxxT from the matrix.

3.2 The implementation in practice

In practice, the best performances for the MBL problem Eq. (1) have been obtained by storing
the matrix H in parallel (using the library PETSc [34,35]), and applying the shift-invert inter-
face of the SLEPc library [36, 37] which allows to use several different iterative eigensolvers
(which need the application of G). The choice of using already developed libraries instead of
writing a specific dedicated code has several advantages: efficiency of implementation, porta-
bility across several platforms and ease of use through the variety of already implemented
options and interfaced external packages.

The crux of the method is to efficiently solve the linear system in Eq. (4). After looking at
several possibilities and performing different attempts, we found that only two direct paral-
lel solvers were able to reach large sizes for the MBL problem, with excellent performances:
MUMPS [38, 39] and STRUMPACK [40, 41]. From the end-user point of view, these solvers
have a lot in common: they use a multifrontal procedure to perform the LU factorization,
taking advantage of the sparsity of H. The most recent versions of both solvers use hybrid par-
allelism (shared memory with openMP and distributed memory with MPI), which we can take
advantage of. Both solvers also use reordering of matrices using efficient external (parallel)
packages, such as METIS [42] (ParMETIS)1 or SCOTCH (PT-SCOTCH)2, which can further
speed up the calculations and decrease the memory requirement for the largest problems.
Finally and quite conveniently, both solvers are interfaced with PETSc.

The main message to be conveyed here is that the bottleneck of the shift-invert strategy
with direct solvers is the need to use a very large amount of memory in the factorization
step. There are several ways by which we can address the large memory and computational
requirements of this problem, namely by using the optimal parameters for each method. We
address these questions and provide benchmarks in Sec. 4.

The appendix and the associated bitbucket repository 3 includes a simple C++ code that
allows to perform a shift-invert calculation using the PETSc/SLEPc framework as well as option
files that interface with MUMPS and STRUMPACK. This code may not be fully optimal which
can result in slight time and memory overheads (compared to the benchmarks of Sec. 4), but
should be enough to obtain interior eigenstates in the Sz = 0 sector of a L = 20 chain on a
standard workstation with sufficient memory in a reasonable computation time.

4 Benchmarks and optimal use of the shift-invert method for the
MBL problem

We present in this section benchmarks on time and memory usage of the shift-invert technique
described above. The goal here is to present the best strategy for an average practitioner who
wants to optimally use given computational resources to produce exact eigenpairs for the
MBL problem. We emphasize that the benchmarks are not meant to discuss the scaling of
the particular software libraries that we use on our problem, but rather to present the typical
time and memory usage that one should expect. The discussion will thus be restricted to sizes
L ≤ 22 (the current state-of-the-art for the method), which can be reached using reasonable

1cf. http://glaros.dtc.umn.edu/gkhome/views/metis
2cf. https://gforge.inria.fr/projects/scotch/
3cf. https://bitbucket.org/dluitz/sinvert_mbl
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computational resources. Results on even larger L that can be obtained using much larger
resources are presented in Sec. 5.

As the system size increases, one needs to use a larger number of parallel resources (using
MPI on multiple compute nodes). The larger the number of MPI processes, the faster the
factorization and solve phases are performed but, on the other hand, the larger memory per
process is needed with both MUMPS and STRUMPACK solvers, as a workspace in memory has
to be associated to each working process. On parallel supercomputers where compute nodes
have several cores sharing the node memory, an optimal strategy can be in some cases to use
less MPI processes than available cores on each node: we investigate the use of threads in
Sec. 4.1. In order to further reduce memory, we tried approximate factorization (through the
block low-rank functionality of MUMPS [43] or the hierarchically semi-separable compression
of STRUMPACK [40,41]) but this did not result in accurate enough results on large systems.

Sec. 4.2 addresses the question of whether the position in the phase diagram influences
performances of the shift-invert technique. In Sec. 4.3, we present the breakdown of the
execution time in the various steps of the calculation. We finally present in Sec. 4.4 a simple
way to reduce memory as well as computational time: the use of single precision (instead of
the usually chosen double precision).

Unless otherwise noted, we perform all computations in double precision and obtain 10
eigenpairs of the Hamiltonian (1) in the middle of the spectrum ε = 0.5, where the density
of states is close to maximal. For these benchmarks, we used the supercomputer eos (CALMIP,
University of Toulouse), whose nodes have 20 processors (2 physical CPUs - Intel Ivybridge
E5-2680 v2 at 2.80GHz - with 10 cores each, with a register shared per CPU) and 60GB of
available memory, and are interconnected through an Infiniband Full Data Rate network. We
use the Krylov-Schur algorithm [44] as implemented in SLEPc to obtain the eigenpairs once
the LU factorization is performed.

4.1 Optimal strategy and scaling of the computation

We start our analysis by determining the best division of the work between openMP threads
and MPI processes: indeed, while the rest of the computation using PETSc/SLEPc does not
make use of openMP, both factorization libraries support hybrid parallelization, and, as will be
seen in Sec. 4.3 the LU factorization is the most expensive part of the computation (both in
time and memory).

A typical MBL calculation involves repeating computations for many disorder realizations
(i.e. of the local fields hi), and we find that the optimal strategy is to use the minimal amount
of resources per realization of disorder. For chains of L = 16,18, 20, computations fit on a
single 60 GB node, while the L = 22 system requires a minimum of 6 nodes4. In all of our
calculations, we use the possibility offered in MUMPS to perform a LDLt decomposition (which
is possible since H is symmetric) rather than a LU decomposition, which impacts favorably
speed and halves the memory needed to store the factors.

Table 2 displays our benchmarks results for the typical resources required to perform shift-
invert computations, for a varying number of MPI processes and openMP threads. We present
results using two different strategies: use, per compute node, either the maximum number of
open MP threads, or the maximum number of MPI processes. Let us consider separately the
cases of systems of size L ≤ 20, which fit on a single node, and the case of L > 20, which
requires the use of multiple nodes and MPI processes. For the first case, we find that the opti-
mal parallelization strategy with respect to CPU time is to use a full shared-memory, openMP

4For the smaller systems L ≤ 18, shift-invert computations require less than 3 GB of memory, and thus fit on
a single core. The optimal production strategy for these small systems is then to run serially one realization of
disorder per core (naive parallelism with no use of MPI or openMP).
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Table 2: Typical resources for the shift-invert computation. For the two solvers
MUMPS and STRUMPACK, we report real execution time, total CPU time (sum of the
execution time over all working CPUs), factorization fill-in ratios (ratio of the num-
ber of nonzeros in the factors and in the original matrix to factorize), total memory
occupation (as reported by the operating system) and minimum number of 60 GB
compute nodes required. For sizes L ≤ 20 we show results both in the full openMP
and in the full MPI setups. For L = 22 we use the optimal setup, i.e. a single pro-
cess with the maximum number of openMP threads for MUMPS (which, for a higher
number of processes, requires more memory and thus more compute nodes), and
full MPI for STRUMPACK.

MUMPS (maximum openMP strategy)
L time (s) CPU time (s) fill-in ratio tot. memory (MB) nodes

16 2.2 41 98.4 204 1
18 10.6 209 264.4 947 1
20 98.0 1957 795.4 10131 1
22 891.6 142576 2433.8 382580 8

STRUMPACK (maximum openMP strategy)
L time (s) CPU time (s) fill-in ratio tot. memory (MB) nodes

16 1.0 18 88.5 264 1
18 5.0 98 226.2 926 1
20 75.6 1509 701.3 15928 1

MUMPS (full MPI strategy)
L time (s) CPU time (s) fill-in ratio tot. memory (MB) nodes

16 2.0 29 117.1 432 1
18 7.1 131 284.7 2807 1
20 89.2 1772 854.5 37019 1

STRUMPACK (full MPI strategy)
L time (s) CPU time (s) fill-in ratio tot. memory (MB) nodes

16 1.6 20 92.6 451 1
18 6.0 108 247.5 2512 1
20 93.8 1863 701.7 21741 1
22 607.2 72763 1978.6 243854 6

setup for STRUMPACK, while for MUMPS a full MPI setup is preferable. With respect to mem-
ory, we find that while for a full openMP setup MUMPS has a similar memory occupation as
STRUMPACK (actually slightly less due to the use of LDLt), its usage greatly increases with
the number of MPI processes; this is less the case for STRUMPACK. The results for the execu-
tion time and the total memory usage are shown in Fig. 2 as a function of the number of MPI
processes.

As we use more MPI processes (necessary in the case L > 20 where multiple nodes and
processes are required), we notice that STRUMPACK is both faster and memory efficient with
respect to MUMPS for our specific class of matrices (e.g. for a full MPI setup, STRUMPACK has
a factor of ∼ 1/2 for both memory usage and CPU time for L = 22 with respect to a MUMPS
setup with one MPI process per node). Indeed, with STRUMPACK the computation for L = 22
requires around 244GB of memory and fits on 6 nodes, while with MUMPS a minimum of 8
nodes are needed. Note that if the memory occupation was equally divided among the nodes,
the computation, e.g. with STRUMPACK, would fit on∼ 4 nodes; however we verified that, due
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Figure 2: Total CPU time (a) and total memory as reported by the operating system
(b) used for shift-invert runs for chains of size L ≤ 20, which fit on one node. We
average all results over a few disorder realizations, although, as we will show in
subsection 4.2, fluctuations in the benchmarked quantities are small.

Figure 3: Total memory reported by the operating system of two sample runs using
STRUMPACK (a) and MUMPS (b) for a L = 22 system. Thin lines correspond to the
total memory used on individual nodes, while the thick black line is the average over
all nodes.

to load imbalance between the processes, one requires roughly twice the amount of the average
memory per node (this also depends on the number of processes/threads and the specific
realization). In Fig. 3 we plot the memory usage per compute node as a function of time for
two sample runs at L = 22 for both STRUMPACK and MUMPS; the imbalance in the memory
usage per node is clearly visible. Notice the relatively flat average usage of STRUMPACK with
rapid peaks of allocated/de-allocated memory, opposed to the steadily increasing usage of
MUMPS.

During the execution of the factorization algorithm, as the matrix elements below the
diagonal are eliminated, other elements which originally were zero are filled-in. The fill-in,
defined as the number of non-zero entries generated by the factorization process, quantifies
how sparse the factors LU or LDLT are with respect to the original matrix, and is therefore
a measure of the difficulty of the factorization. We find that the fill-in ratio, that is the fill-
in divided by the number of nonzeros in the original matrix, F = nnzLU/nnzH, is high for
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Figure 4: Computation time for various disorder strengths and L = 20, using
STRUMPACK with a full MPI strategy. For each disorder strength the computation
was carried out for 22 disorder realizations, shown as individual points on the plot.
The whiskers span the whole time distribution, while the bottom (top) of the boxes
correspond to the first (third) quartile. The median value is shown as a solid line.

our class of matrices. It increases rapidly (exponentially) with system size, as can be seen in
Table 2 for L up to 22, and in Sec. 5 for larger L. Note that since MUMPS explicitly takes
advantage of the fact that H is symmetric when using the LDLt decomposition, the number of
nonzero elements that we must consider is halved (as only the upper triangular part of H is
used in the algorithm).

4.2 Dependence on the disorder strength and on the disorder realization

Since the energy levels in the MBL phase show no level repulsion (opposite to the case of the
ETH phase), in principle the problem could be harder depending on the value of the disorder
strength h. We find that the shift-invert procedure is actually not sensitive to h (at least for
a typical number of eigenvalues ranging from 10 to 1000), and is very good at separating
the eigenvalues in all cases. In Fig. 4, we show that the execution time is roughly the same
for h ranging from small values (h = 1 in the ETH phase) to very high disorder (h = 100).
From Fig. 4 we additionally see that execution times do not fluctuate much between disorder
realizations, represented by individual points in the figure. Thus, the shift-invert method is
fairly agnostic to the underlying physics that is encoded in the Hamiltonian matrix, making it
a powerful and unbiased tool.

4.3 Execution time breakdown

We show in Fig. 5 the time spent in the most demanding phases of the computation:

• The partitioning, which corresponds to the reordering of the matrix in order to partition
and distribute it with the least amount of off-block elements (for all the tests presented
here, we use the METIS package);

• The factorization done by MUMPS or STRUMPACK, which accounts for the largest share
of the total execution time;

• The solving step, which corresponds to the iterations to obtain the eigenpairs.
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Figure 5: Time per computation step (in s), for various system sizes. The execution
times are obtained for the computation of 10 eigenpairs using STRUMPACK with the
full MPI strategy, and are averaged over 5 runs.

Note that a typical computation also involves (i) constructing and assembling the Hamilto-
nian, (ii) computing the extremal eigenvalues and possibly (iii) computing observables in the
obtained eigenvectors. All these steps occupy only a very small fraction of the total execution
time: for instance < 0.5% for step (i) (around 0.15 s for L = 20 and 1.5 s for L = 22) and
® 1% depending on the realization for step (ii). We thus do not include them in the breakdown
below as they are essentially negligible.

The use of parallel reordering packages (such as ParMETIS or PT-SCOTCH) can also be
useful in the analysis phase of both solvers for very large systems, even though this phase
minimally impacts the overall running time in general.

As L is increased, the factorization takes an increasing time compared to the other compu-
tation steps. One should however note that the time spent solving depends on the number of
eigenpairs one asks for, as shown on Fig. 6. As seen on the figure, for the solving time to be
reasonable, one would typically ask for up to 100 eigenpairs.

4.4 Reliability of single precision results

A straightforward way to cut the required memory in half is to use single (32 bit) precision
instead of double (64 bit) precision for storing real numbers. This can also impact favorably
computational time. A number in single precision is precise to at least 6 significant digits
(instead of the at least 15 significant digits of a double precision floating point number). For
our specific problem, this means that we cannot distinguish anymore two eigenvalues that
are within this level of precision. Therefore, when computing physical quantities, these two
energy levels can possibly show a spurious hybridization.

In order to understand the possible side effects of performing computations in single pre-
cision, we have calculated the local magnetization over an eigenstate 〈n|Sz

i |n〉 as well as the
half-chain entanglement entropy for the same system (with the same realization of disorder)
both in single and double precision. The half-chain entanglement entropy S, specifically, is
chosen as it is very sensitive to the hybridization problems that might arise. It is defined as
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Figure 6: Time required for the computation versus number of eigenpairs requested,
for the system of size L = 20, using the full MPI strategy. The execution times are
averaged over 5 runs.

usual as S = −Trρ log(ρ) where ρ is the reduced density matrix obtained by tracing out de-
grees of freedom over half the system.

Fig. 7 compares observables computed in single and double precision, in two cases: (1) at
disorder strength h = 1, i.e. in the ETH phase, and (2) at h = 100, deep in the MBL phase.
We can see that in both cases, the local magnetization computed in single precision matches
well the magnetization computed in double precision. The entanglement entropy can also
be computed satisfactorily well in single precision at low disorder (h = 1). At high disorder
(h = 100) the entanglement entropy computed in single precision matches well the entropy
computed in double precision, for most of the eigenstates. In some very rare cases however
(last two eigenstates on the right panel of Fig. 7), the entanglement entropy in single precision
is overestimated. We argue that this happens when two eigenstates close in energy hybridize,
yielding two states of higher entanglement. Numerically, we observe that these hybridization
events occur more often as we go deeper in the MBL phase. Note that they remain quite rare
for reasonable values of h: indeed we do not observe such events for h ≤ 20 for the system
of size L = 22, and even very deep in the MBL phase, when h = 100, they occur in less
than 1% of the cases. One can detect these spurious hybridizations either by running several
times the Lanczos/Arnoldi algorithm with different starting vectors (hybridization will occur
or not, depending on the choice of the starting vector), or by rotating pairs of eigenstates
of neighboring energy in order to minimize their entropy [45]. Fig. 7 shows the corrected
entropies obtained using this last method (“rotated single" label). The agreement with double
precision data is excellent.

We conclude that one can reliably use single precision to perform the shift-invert method,
at least up to size L ® 24. By switching to single precision numbers, one halves the required
memory, which is extremely beneficial since memory is the limiting factor. We also observed
that in single precision the factorization time is approximately halved.
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Figure 7: Comparison between quantities computed in single precision (squares) or
double precision (crosses), as a function of the eigenstate label (eigenstates ordered
by increasing energy), for a system of size L = 22, and for h = 1 (in blue), and
h= 100 (in yellow). Left panel: magnetization 〈Sz

i 〉 of the spin i = L/2, right panel:
entanglement entropy at the L/2 cut. The “rotated single" label stands for entropies
in single precision corrected by a rotation of the associated pair of eigenstates [45].

5 Results for large systems

We now push the methods to its limits by considerably larger sizes, amounting to an important
increase in computational resources.

5.1 Entanglement entropy and distribution of local observables for L = 24

We find interior eigenpairs in double precision for L = 24, with typical calculations consisting
in computing around 50 eigenpairs at ε= 0.5 (middle of the spectrum), using 150 nodes (with
24 cores, model Intel Haswell E5-2680 v3 at 2.50 GHz, 128 GB of memory and a Cray Aries
interconnect) of the machine Hazel Hen (HLRS, Stuttgart). The typical fill-in ratio is ∼ 6960.
We use here the solver STRUMPACK, with a full MPI strategy, resulting in typical total execution
time of ∼ 14 minutes for each disorder realization. The factorization by itself takes about 9.5
minutes, with a total performance of 59.5 TFLOPS (as reported by STRUMPACK). We average
our results over more than 200 realizations of disorder for each value of disorder h.

We first present results for the difference in local magnetization δSz
i = 〈n|S

z
i |n〉−〈n

′|Sz
i |n
′〉

between nearby eigenstates |n〉 and |n′〉 located at the same energy density ε= 0.5. Ref. [46]
showed that the distribution of δSz

i was able to capture both the MBL phase and the ETH phase,
as well as deviations from the expected gaussian behavior in the later when approaching the
transition. We confirm these findings in Fig. 8. At large disorder (MBL phase), a trimodal
distribution emerges, which is accounted for by considering that all spins are polarized to
their maximum value 〈n|Sz

i |n〉 = ±1/2, but independently from one eigenstate to the other.
The presence of peaks at δSz

i = ±1 starts to be substantial at h ' 3.6. For lower disorder
on the other hand, the distribution is peaked around zero, with nevertheless large tails which
reveal the non gaussian nature of the distribution [46] (the dotted line in Fig. 8 is the best
gaussian fit of the distribution at h = 2). These tails are present even for the lowest disorder
h= 2.0 considered here, and have been attributed to rare regions effects [46].

In Fig.9, we present results on the entanglement entropy for a bipartition
(x = L/4, L − x = 3L/4) of the chain. It is known that MBL eigenstates exhibit an area
law scaling of the entanglement entropy, while extended eigenstates at finite energy density
show a volume law [48]. In Ref. [47], a method for determining the scaling of the entangle-
ment entropy as a function of subsystem size was introduced for single eigenstates in periodic
disordered chains. While for a single bipartition ([0,`), [`, L)), i.e. with a cut before site 0 and
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before site ` of a chain of length L, the entanglement entropy

S[0,`) = −Trρ[0,`) lnρ[0,`), with ρ[0,`) = Tr[`,L)|ψ〉〈ψ| (5)

of a wave function |ψ〉 is not a smooth function of the subsystem size x due to the effect of
disorder, it was proven in Ref. [47] that the average over all subsystems of length ` is a smooth
and concave function of the subsystem size. This cut averaged entanglement entropy (CAEE)
is defined as:

S̄(`) =
1
L

∑

x

S[x ,x+`). (6)
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Note that in this definition periodic boundary conditions are applied, i.e. all positions in the
chain are modulo L, and the trace in Eq. (5) Tr[`,L)|ψ〉〈ψ| is understood as a partial trace over
all degrees of freedom of sites of the chain in the interval [`, L).

Following the analysis of Ref. [47] and averaging over all possible cuts (obtained by trans-
lation in the periodic chain) for the entanglement entropy in the same eigenstate |ψ〉, we
obtain the cut averaged entanglement entropy S̄(`) as a function of subsystem size `. Since
we are interested in how the entanglement entropy scales as a function of subsystem size, we
consider the slope ∂ S̄(`) as a function of subsystem size

∂ S̄(`) =
∂ S̄(`)
∂ `

, (7)

which is well defined due to the smoothness properties of the CAEE. Since the entanglement
entropy as a function of subsystem size exhibits a maximum at the equal bipartition (half
chain), we consider a subsystem size close to the quarter cut ` = L/4 where ∂ S̄(`) is close
to maximal, and which is very sensitive to different scaling behaviors (area vs. volume law,
cf. Ref. [47]). We estimate the slope ∂ S̄(` = L/4) of the cut averaged entanglement entropy
(using a cubic spline to interpolate for noninteger values of L/4) for each eigenstate. As in
Ref. [47], we consider the distribution of this slope and represent in Fig. 9 the average of this
distribution for a quarter-cut (` = L/4). The new data for L = 24 confirm clearly the well-
behavedness of this approach, as different curves (for different sizes L) for the average slope
appear to cross close to the estimate of the critical point.

5.2 Examples of large wave-functions results

We also were able to obtain eigenstates of even larger systems (L = 25 and L = 26), using
single precision. These simulations are very demanding: one disorder sample for L = 25
takes ' 14 minutes on 1000 nodes with a fill-in ratio of ' 12900 (factorization takes ' 8
minutes, with a 525 TFLOPS performance), and L = 26 requires 2000 nodes of Hazel Hen
for an execution time of ∼ 45 minutes (fill-in ratio ' 23600, factorization time ' 28 minutes,
factorization performance 1.05 PFLOPS). We thus cannot realistically consider to include these
values of L in a finite-size scaling analysis of the MBL transition. However, we expect this could
be possible in the near future with higher computational resources and possible improvements
in the linear solvers.

In figure 10 we present measurements of the local expectation value 〈n|Sz
i |n〉 as a function

of position in a L = 26 chain, for three values of disorder (h = 1 in the ETH phase, h = 5
in the MBL phase and h = 3.8, close to the MBL transition) and different eigenstates |n〉 in
the middle of the spectrum. At low disorder, the local magnetizations are identical (with very
small fluctuations) and small for all eigenstates: this sample is in the ETH phase. At large
disorder h = 5.0, for a given eigenstate a majority of spins is polarized to their maximum
value |〈n|Sz

i |n〉| ' 1/2. The actual sign of polarization differs from one eigenstate to another,
in perfect agreement with this disorder strength belonging to the MBL phase. We also see
that the expectation value for some spins differ from this maximum polarization, and this for
all eigenstates, meaning that hybridization has started to take place away from the infinite
disorder limit h→∞ where all spins are polarized in all eigenstates. Qualitatively, the data
at h = 3.8 are similar to those at the larger field h = 5. Quantitatively, a smaller number of
sites and eigenstates have their absolute value of local magnetization close to 1/2. With all
precautions due to the use of a single sample and assuming that h = 3.8 is close enough to
the true transition point hc , this points towards the transition point not being thermal and not
satisfying ETH.

Since we cannot perform computations in double precision for these large sizes, we con-
sider the reliability of these single precision results by performing the rotation of nearby eigen-
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i 〉 as a function of site index i for a L = 26 chain for 10 eigenstates at
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pairs in order to minimize entanglement entropy, as discussed in Sec. 4.4. We found some
instances where a very small rotation was necessary, but this has essentially no effect on the
local magnetization values 〈Sz

i 〉 presented above.

6 Discussion and conclusion

We discussed the shift-invert method for the MBL problem, and presented an analysis of its
efficiency, pushing the method to its limits. As it stands now, it is the most efficient technique
to obtain exact, unbiased, interior eigenpairs in all the possible regimes of this many-body
problem. Data obtained on larger systems than previously available (L = 24 − 26) confirm
the presence of a critical point hc ' 3.8 (we defer a precise and complete finite-size scaling
analysis of our new data to a future work).

The shift-invert technique is used in several fields of science, and we briefly discuss now
related applications in condensed matter physics. Shift-invert is also the state of the art
method to obtain eigenstates for the closely related problem of single-particle Anderson lo-
calization [28]. Here, for a linear system size L in dimension d, the size of the matrix is Ld .
Typical state of the art calculations in d = 3 reach L ' 120 to 150 [29, 30], and L ' 1000
for related d = 2 computations of quantum Hall transitions [31, 32]. The record computa-
tion for the d = 3 Anderson problem is for a L = 250 system (matrix size 1.56 · 107, with
in total 9.4 · 107 off-diagonal elements) in Ref. [33], in the localized phase or close to the
transition point. This is slightly smaller than the largest system we studied here, L = 26 (with
Hilbert space size 107 and 1.4·109 off-diagonal elements). For the Anderson problem, the best
performances [33] are obtained not by solving directly Eq. (4) but rather by using iterative
solvers with incomplete LU factorization and advanced preconditioning techniques. A similar
strategy as the one advocated here (direct parallel LU solver) was also used successfully in
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electronic structure calculations in Ref. [49], with matrices (obtained from density-functional
based tight-binding) of size up to 512000 with ∼ 4 · 107 off-diagonal elements, albeit asking
for a much larger number of eigenpairs.

Besides scaling the computational resources and potential improvements in direct solvers,
how can we possibly reach interior eigenpairs for even larger systems? Filtering methods,
such as with Chebyshev polynomials [50] or rational functions [51, 52], offer an interesting
alternative to the shift-invert procedure described here. Large scale results have been obtained
using Chebyshev polynomials [50] on matrices larger than those presented here. However the
exponentially small energy level spacing in the middle of the spectrum for MBL might render
these methods inefficient. Another possibility could be to use incomplete LU factorization and
preconditioning in order to solve iteratively the linear system Eq. (4), as for the Anderson
problem [33]. We tested several iterative solvers with different types of preconditioning, as
available through PETSc, but did not find superior efficiency compared to the direct solvers.
It could nevertheless well be that a better pre-conditioning based on heuristics and physical
knowledge on the eigenstates can improve the situation, in particular at large disorder where
the local integral of motions picture [53–55] for eigenstates is available. Based on our experi-
ence with incomplete LU (ILU) preconditioning, we speculate that the significantly increased
(extensive) number of nonzero matrix elements per row of the Hamiltonian in the MBL prob-
lem compared to the 3d Anderson case makes low level ILU preconditioning ineffective and a
deeper level is required, at which point it becomes the full LU decomposition we use.

Finally, there are several other models besides Eq. (1) which display a MBL phase, and it
is also possible that direct or iterative solvers might allow to reach even larger matrix sizes
than for the random-field Heisenberg chain studied in this work. Also the best performing
LU solver may depend on the model, and can be determined by simulations on smaller/inter-
mediate sizes in the same spirit as we presented here. In our case, we found useful for both
efficiency tests and production runs to distinguish small problems (which fit one one node)
from intermediate to large problems requiring several nodes.

As for computational methods, we find that MBL is a hard and challenging application for
direct solvers and interior eigenvalues methods, in particular due to the large fill-in observed
in the factorization step. It would be interesting to find adapted re-ordering strategies that
could reduce the fill-in, allowing to reach larger sizes. Finding a simple, unique, successful
re-ordering strategy could turn out to be difficult as the structure of the graph generated by the
Hamiltonian is quite complex, and is size-dependent (we tried several other ad-hoc re-ordering
schemes, with at best very limited gains). The source code presented in the appendix allows
to save the matrix in the Matrix Market exchange format5 for future tests to be performed.
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Numerical libraries We use the following versions of the linear algebra libraries: PETSc
(version 3.8.2), SLEPc (version 3.8.2), MUMPS (version 5.1.2), STRUMPACK (version 2.1.0),
METIS (version 5.1.0), and the Intel C++ compiler version 17.1.0.

A Shift-invert example code

Here we briefly outline the basic structure of a C++ example code performing the shift-invert
diagonalization of the Hamiltonian (1). The source code can be found online as a git repository
under the URL https://bitbucket.org/dluitz/sinvert_mbl, licensed under the GPL v3.

A.1 Setup

In order to get the code to run, the following steps have to be performed (in order). Note that
we assume a standard Linux system here and indicate these steps only as an example. For
your system, please refer to the documentations of PETSc and SLEPc.

1. Download PETSc. The easiest way to do so is by cloning the git repository and checking
out the latest stable version (here we will use version v3.8.2).

$> mkdir petsc_dir/
$> cd petsc_dir/
$> git clone https://bitbucket.org/petsc/petsc.git .
$> git fetch --all --tags --prune
$> git checkout tags/v3.8.2

2. Next, PETSc has to be configured and compiled:

$> cd petsc_dir/
$> export PETSC_DIR=$PWD/
$> export PETSC_ARCH=linux-real-mumps
# configure petsc with mumps, scalapack and metis
$> ./configure --download-scalapack --download-metis

--download-mumps
$> make all

3. Now, SLEPc can be downloaded and installed:

$> mkdir slepc_dir/
$> cd slepc_dir/
$> git clone https://bitbucket.org/slepc/slepc .
$> git fetch --all --tags --prune
$> git checkout tags/v3.8.2
$> export SLEPC_DIR=$PWD/
$> ./configure
$> make all

4. Now, the example code can be downloaded and compiled. Note that we use a setup
file located in conf/linux.cmake, which should be modified if you use different li-
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braries/settings on your system. It is then automatically read by cmake using the
-DMACHINE=linux flag.

$> mkdir sinvert/
$> cd sinvert/
$> git clone https://bitbucket.org/dluitz/sinvert_mbl .
$> mkdir build
$> cd build
$> cmake -DMACHINE=linux ../src
$> make

5. Finally, an options file with the name slepc.options has to be created and placed in
the same path as the executable; for example, one could use the following settings:

$> cat slepc.options
-L 16
-nup 8
-Delta 1.3
-W 3.
-eps_type krylovschur
-eps_nev 20
-st_type sinvert
-st_ksp_type preonly
-st_pc_type lu
-st_pc_factor_mat_solver_package mumps

6. Now you can run the program for example using 4 MPI processes using

$> mpirun -np 4 ./sinvert

[Basis] generating basis tables for qbit chain of size
16 with nup conservation.

[Basis] the number of basis states is 12870
[Hamiltonian] created with Delta = 1.
[Hamiltonian] J = 1.
[Hamiltonian] L = 16.
[Hamiltonian] fields = 0.557068 2.06559

2.14767 2.08351 0.741382 -0.69371 -1.21479 -2.65972
-1.36406 -0.134009 1.87301 -0.120137 -0.643291
2.01647 -0.975623 0.889031

Storing matrix... done.
Assembly... done.

E1 = 11.7576
E0 = -11.1217

-----------------------------------
Central eigenpairs:
E(0) =0.31798568877554 <psi|Sz[3]|psi> =

-0.397612088244758
E(1) =0.318041919831143 <psi|Sz[3]|psi> =

0.0809825878586985
E(2) =0.3175376516457 <psi|Sz[3]|psi> =

-0.00151934755149076
E(3) =0.317295960240257 <psi|Sz[3]|psi> =

0.00825505532713932
E(4) =0.319131832142374 <psi|Sz[3]|psi> =

0.0243165969903161

20

https://scipost.org
https://scipost.org/SciPostPhys.5.5.045


SciPost Phys. 5, 045 (2018)

E(5) =0.316492528819752 <psi|Sz[3]|psi> =
0.0101557163041098

E(6) =0.320017118229579 <psi|Sz[3]|psi> =
0.097939842077515

E(7) =0.320744629655732 <psi|Sz[3]|psi> =
-0.196587758708495

E(8) =0.315040905320559 <psi|Sz[3]|psi> =
-0.152409388811942

E(9) =0.320855685192556 <psi|Sz[3]|psi> =
0.271853007185108

E(10) =0.314149256014437 <psi|Sz[3]|psi> =
0.180480868425142

E(11) =0.314102518287276 <psi|Sz[3]|psi> =
0.009500296943451

E(12) =0.313583616416597 <psi|Sz[3]|psi> =
-0.05383114372309

E(13) =0.322569170802922 <psi|Sz[3]|psi> =
-0.103092269894268

E(14) =0.323083433394346 <psi|Sz[3]|psi> =
0.0374621752963861

E(15) =0.312379224447301 <psi|Sz[3]|psi> =
0.0913555438542086

E(16) =0.323597512559935 <psi|Sz[3]|psi> =
0.0279025347789937

E(17) =0.312109535398481 <psi|Sz[3]|psi> =
0.0660436092986919

E(18) =0.32404678833222 <psi|Sz[3]|psi> =
-0.063519907123315

E(19) =0.311476024662365 <psi|Sz[3]|psi> =
0.0242486268077492

A.2 Basis generation

Since the accessible system sizes for shift-invert diagonalization are relatively modest com-
pared to ground state methods, it is sufficient to use an encoding of the computational basis of
the Hilbert space which is based on full enumeration. We use the basis where the local Sz

i op-
erators on site i are diagonal and therefore the basis states are given by product states labeled
by the eigenvalues σi =↑,↓ of the Sz

i operators. Each state can efficiently be encoded as a bit
string of L bits, where L is the length of the spin chain making the identification 0 →↓ and
1→↑. The Basis class is implemented in the source file Basis.h. We provide two implemen-
tations of the basis, one is the full basis of all possible Sz product states for size L, constructed
by Basis(size_t L), the second one is the full basis of a sector of the Hilbert space with
a fixed number of up spins n↑, which is useful for problems with conservation of magnetiza-
tion. It is constructed by Basis(size_t L, size_t nup). Here is the basic interface of
the Basis class (see source code for the full interface):

typedef std::bitset<NBITS> State; // State coded as bitstring
class Basis // bit coded basis for qbit chains of length L
{

private:
bool conserve_nup; // flag to switch on/off the conservation of the

number of up spins
size_t L; // length of the spin chain
size_t nup; // number of up spins (only used if conserved)
size_t size;
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std::vector<State> basis_states; // contains the basis states
ordered by their index

std::vector<unsigned long> state_indices; // only works for up to
64 bits! Contains indices of basis states ordered by their
binary representation for inverse lookup

public:
Basis(size_t L_, size_t nup_); // constructor for Basis with fixed

nup (sets conserv_nup to true)
Basis(size_t L_); // constructor for full basis

size_t get_index(State state);
State get_state(size_t index);

};

An instance of the basis class has to be generated before constructing the Hamiltonian
object, and handed to its constructor as a pointer. It is used to look up the index of basis states
which are generated after application of terms of the Hamiltonian.

A.3 Hamiltonian generation

The generation of the sparse Hamiltonian matrixH has to be performed in parallel for large sys-
tem sizes, in particular because the matrix is stored in a distributed fashion using the sparse ma-
trix module of PETSc. We use two steps: The first step calculate_nnz is a dry-run, counting
only the number of nonzero matrix elements generated later by calculate_sparse_rows
for an optimal memory allocation.

class XXZHamiltonian
{

private:
Basis * baseptr; // pointer to basis
size_t L; // length of the chain (inferred from Basis)
double Delta; // Sz_i Sz_{i+1} prefactor
double J; // S+_i S-_{i+1} prefactor
std::vector<double> fields; // random fields coupled to Sz_i

public:
XXZHamiltonian(Basis * baseptr__, double Delta__, double J__,

std::vector<double> fields__); // constructor
void calculate_sparse_rows(size_t begin_row_, size_t

end_row_,std::vector<int> & row_idxs_,
std::vector<int> & col_idxs_, std::vector<double> & entries_); //

calculate indices and entries of nonzero matrix elements in rows
begin_row_ to end_row_

int calculate_nnz(size_t begin_row_, size_t end_row_,
std::vector<int> & d_nnz_,

std::vector<int> & o_nnz_); // count number of block diagonal and
offdiagonal nonzero matrix elements corresponding to MPI
partition of the matrix (important for efficient PETSC matrix
assembly)

};

A.4 Shift-invert diagonalization with SLEPc

Here we show the important parts of the actual diagonalization code. The options are loaded
from the slepc.options file, the basis and the Hamiltonian matrix are generated, and finally
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the shift-invert diagonalization is performed by calling SLEPc’s EPSSolve.

SlepcInitialize(&argc, &argv, "slepc.options", help);
Basis basis(L, nup); // generate basis using nup conservation law
XXZHamiltonian hamiltonian(&basis, Delta, J, fields);
nnz = hamiltonian.calculate_nnz(Istart, Iend, d_nnz, o_nnz); //

Preparation run, analyzing number of nonzero elements
hamiltonian.calculate_sparse_rows(Istart, Iend, rows, cols, entries);
Mat H;
MatCreateAIJ(PETSC_COMM_WORLD, Iend-Istart, PETSC_DECIDE,

basis.get_size(), basis.get_size(), 0, d_nnz.data(), 0, o_nnz.data(),
&H);

MatSetUp(H);
for(size_t i=0; i<entries.size(); i++)
{

MatSetValue(H, rows[i], cols[i], entries[i], INSERT_VALUES);
}

MatAssemblyBegin(H, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(H, MAT_FINAL_ASSEMBLY);

// Shift-invert part
EPS eps_si;
EPSCreate(PETSC_COMM_WORLD, &eps_si);
EPSSetOperators(eps_si, H, NULL);
EPSSetProblemType(eps_si, EPS_HEP);
EPSSetFromOptions(eps_si);

EPSSetWhichEigenpairs(eps_si, EPS_TARGET_REAL);
EPSSetTarget(eps_si, (E0+E1)/2. );

EPSSolve(eps_si);
EPSGetConverged(eps_si, &nconv);

Vec evecreal, tmp;
MatCreateVecs(H, &evecreal, NULL);
MatCreateVecs(H, &tmp, NULL);

Operator op(&basis);

for(int i=0; i<nconv; i++)
{

EPSGetEigenpair(eps_si,i, &kr, &ki, evecreal, tmp);
VecCopy(evecreal, tmp);
size_t operator_site=3;
op.apply_Siz(operator_site, &tmp);
double Sz;
VecDot(evecreal, tmp, &Sz);

if(0==myrank) std::cout << "E("<<i<<") = " << kr << "
\t<psi|Sz["<<operator_site<<"]|psi> = " << Sz << std::endl;

}
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