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Abstract

In non-relativistic quantum theories the Lieb-Robinson bound defines an effective light
cone with exponentially small tails outside of it. In this work we use it to derive a bound
for the correlation function of two local disjoint observables at different times if the ini-
tial state has a power-law decay. We show that the exponent of the power-law of the
bound is identical to the initial (equilibrium) decay. We explicitly verify this result by
studying the full dynamics of the susceptibilities and correlations in the exactly solv-
able Luttinger model after a sudden quench from the non-interacting to the interacting
model.
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1 Introduction

The rising interest in the out-of-equilibrium dynamics of physical systems has posed the ques-
tion of the propagation of information in many-body quantum systems. While relativistic mod-
els intrinsically contain the notion of a maximal speed, i.e. the speed of light, it was historically
unclear whether there is an equivalent bound in generic non-relativistic models. A milestone
in this context was achieved by Lieb and Robinson in 1972 [1]. They demonstrated that the
dynamics of a lattice system with finite-range interactions is effectively constrained inside a
region of the spatiotemporal plane, with exponentially small “leaks” outside of it. As a conse-
quence, any perturbation effect requires a finite amount of time to spread from one point of
the system to another. Mathematically, the theorem provides a bound for the operator norm
of the commutator of two local observables OA and OB defined over two disjoints sets A and B
and reads

||[OA(t), OB(0)]|| ≤ cNmin||OA||||OB||exp
�

−
L − v|t|
ξ

�

, (1)

where OA(t) (OB(t)) denotes the time-evolved observable with norm ||OA|| (||OB||),
Nmin = min(|A|, |B|) and c and ξ are additional constants that depend on the interaction,
the local Hilbert space dimension and the lattice structure. L is the distance between the
sets A and B (smallest number of vertices connecting the two regions) defined over the lat-
tice. The parameter v, which has the dimension of a velocity, is called Lieb-Robinson velocity.
The value of this important parameter is not fixed by the theorem, but depends on the lattice
structure and the interaction [2]. The previous expression which is also called “Lieb-Robinson
bound” (LR bound) tells us that the commutator between the two operators is exponentially
suppressed for L > v|t|. Keeping the distance L fixed, the value of the bound grows in time
until t = L/v where it becomes O (1). It thereby divides the full spatiotemporal plane into a
part inside and outside of a light cone which is defined by the Lieb-Robinson velocity v. Since
the “leaks” outside of the light cone practically vanish, the two observables effectively commute
in this region (also called “space-like” region in analogy to relativistic theories). Therefore, the
finite velocity v defines the fastest possible information propagation.
Historically, the theorem first only applied to translationally-invariant quantum spin lattices
with short-range interactions until some of the requirements were loosened by several im-
provements and generalizations [3–6]. In its most recent version, it does not require a finite
local Hilbert space, since it was extended to systems with an infinite local Hilbert space, for
example lattice bosons [4–8]. Moreover, it can be generalized to long-range interacting sys-
tems [2,9–12], where a faster-than-ballistic propagation, with an algebraic or even logarithmic
light cone, is allowed. However, the propagation observed in some specific models appears to
be significantly slower than the one allowed by the bounds [13–16]. Despite the interest for
the latter, we will focus in this paper on short-range interacting systems, where a ballistic light
cone is present and postpone generalizations with lesser requirements to further studies.
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In the discussion about the LR-bound it is important to notice that the commutator of two
observables as it appears in Eq. (1) is closely related to linear response theory (see for ex-
ample Ref. [17]). It measures the response of a system to a local perturbation: the system is
shaken at one spatial point and the corresponding effect is observed at some other point later
in time. Therefore, the commutator is also known as the susceptibility. In a simplistic semi-
classical argument one models the spreading of the signals to be governed by quasiparticles
that move through the system [18]. The light cone velocity, which was a non-fixed parameter
in the LR result, can then be determined by the microscopic theory to be equal to the maximal
group velocity of the excitations defined in the system. It must be noted that this concept only
holds in very basic models.
Experiments, however, do not only focus on susceptibilities, but they can also access other
quantities like correlation functions of the form |〈OA(t)OB(t0)〉|. They are directly connected
to the anticommutator {OA (t) , OB (t0)} (see section 6). Notable developments which focus
on the study of the dynamics of the correlation functions have been achieved in cold-atomic
gas experiments [19, 20]. Additionally, the spreading of correlations has been studied us-
ing several advanced numerical techniques like tDMRG [21–25], time-dependent variational
Monte-Carlo [13,26], and artificial neural network techniques [27]. Finally, exact analytic re-
sults on the dynamics in solvable models [28–35] have helped to understand the mechanisms
and to build up a physical picture where one can interpret correctly the observed phenomena.
The original LR-bound as in Eq. (1), however, does not provide information about the behavior
of such quantities which strongly depend on the initial state. Yet, few mathematical bounds
for the correlation function which rely on assumptions about the initial state have been found.
They require either an exponential [8, 36, 37] or algebraic [38] decay of initial correlations
or a spectral gap above the ground state. All these results are derived using the LR-bound in
different ways.
The main difference between the commutator and the anti-commutator, i.e. the susceptibility
and the correlation function, is the behavior outside the light cone. The correlation function in
fact exhibits "leaks" in that region, meaning that correlations are non-zero from the very begin-
ning of the time evolution. This does not contradict the main result of the LR bound, becaus
ecorrelations between two space-like separated regions do not imply superluminal propaga-
tion of information, like in the EPR-paradoxon [39]. This difference between commutator and
anticommutator has been shown explicitly in the Kondo model [17]. There, one can see a light
cone in the susceptibility (with exponentially small “leaks”), while the correlation function has
algebraic “leaks” outside of it. The extension of the LR bound to non-equal-time correlations
and its relation to the initial state are the main results we want to present.

This paper is organised as follows: In the next section we derive a bound for the non-equal-time
correlation function in the case where the initial correlation function is algebraically decaying.
We will demonstrate that also for this case the correlations have a light cone with a velocity
determined by the Lieb-Robinson velocity. This generalizes other results present in the litera-
ture for equal-time correlations [36, 38]. Moreover, we connect the leaks outside of the light
cone with the initial (equilibrium) correlation function.
Thereafter, we derive exact expressions for the dynamics of a system described by a Luttinger
liquid. We calculate and discuss the correlation buildup and decay regimes for the commu-
tator and anticommutator of the density-density correlation for both zero temperature and a
thermal initial state.
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2 Bound for the correlation decay outside the light cone

In this part we prove that the correlation decay outside of the light cone is defined by the
spatial decay of the initial (equilibrium) correlation function. Bounds for the correlation func-
tions at equal time have already been found for both exponentially [36] and algebraically [38]
decaying correlations in the initial state.

We extend these results to the non-equal time case, i. e. for |〈OA(t)OB(t0)〉c|. The
c subscript indicates that we consider the connected correlation function defined as
〈OAOB〉c := 〈OAOB〉 − 〈OA〉〈OB〉. Moreover, we show how the space-like region decay is closely
connected to the initial correlations. Physically, the theorem states that any leaks outside the
outer light cone defined by the LR velocity are bounded by the initial (equilibrium) correlations
which have been “dragged” during the time evolution, see Fig. 1.
The following results hold for all models for which the famous Lieb-Robinson (LR) theorem
in its form displayed in Eq. (1) applies. In the derivation we consider a quantum spin lattice
with short-range interaction (also called “local Hamiltonian”). As previously mentioned, it
is possible to loosen this condition to a more generic setting which anyway does not change
the main message of our result [4–6]. One example is to consider a continuous system (not
on a lattice). In section 5 we will explicitly demonstrate how the bound naturally arises in
the case of the continuous Luttinger model. For the moment, we postpone the generalization
to systems where more general LR-bounds have been found (for example for a system with
long-range interaction) to further studies.
In order to bound the correlation function we assume that the time evolution is governed by
a local Hamiltonian and that the initial state has the property that all connected correlation
functions decay with a power law (algebraically) given by

|〈OA(0)OB(0)〉c| ≤ C ini (L) :=
c̃

ãβ + Lβ
. (2)

Here, OA and OB are two normalized (||OA||, ||OB|| ≤ 1) operators which initially act on the
compact disjoint supports A and B, which are apart by the distance L. The additional parame-
ter ã defines a positive cut-off if L = 0. Following Ref. [36], we now study how fast the effective
part of the time-evolved operator OA(t) (OB(t)) grows in space. A different way to bound the
equal time correlation function using the LR bound can be found in Ref. [38]. Mathematically,
it is clear that OA(t) requires the full support over the entire system, because the unitary evo-
lution contains all powers of the Hamiltonian. Yet, we will exploit the LR-bound that tells us
that effectively it only acts on a finite region which grows linearly with time. Therefore, we
define an operator, OlA

A (t), that acts on the region A extended by lA sites in all directions like
OA(t) and outside of this region as a trivial unity. The outside region of the ball is denoted by
S. It is defined by

OlA
A (t) = (TrS(1S))

−1 TrS(OA(t))⊗1S . (3)

The normalization makes sure that the norm is given by the inside part. Additionally,
||OlA

A (t)||, ||O
lB
B (t)|| ≤ 1 for all t. One can now use the Lieb-Robinson bound to prove that

the operator norm of the difference of the full observable and the one only acting inside the
ball is bounded by

||OA(t)−OlA
A (t)|| ≤ c|A|exp

�

−
lA− v|t|
ξ

�

. (4)

4

https://scipost.org
https://scipost.org/SciPostPhys.5.5.052


SciPost Phys. 5, 052 (2018)

Figure 1: This sketch shows in red the bound (right-hand side of Eq. (8)) over the
spatiotemporal plane outside of the light cone. One notices that its scale is different
from the initial correlation depicted in blue (Eq. (2)), however, the decay exponent
is identical. The inside of the light cone is marked by the grey area and is basically
unbounded.

One notices that the difference is basically unbounded (exponentially large) if lA < vt, i. e.
inside the light cone and exponentially decreasing, if it is outside. Hence, this states that
effectively OA(t) only acts in the region A enlarged by lA in all directions (if lA is chosen appro-
priately). With this result one finds an upper limit for the connected correlation function at
different times:

|〈OA(t)OB(t0)〉c| ≤ 2c|A|exp
�

−
lA− vt
ξ

�

+ 2c|B|exp
�

−
lB − vt0

ξ

�

+ |〈OlA
A (t)O

lB
B (t0)〉c|. (5)

It is important to note that we have two light cones with an identical velocity v, but different
final times t and t0. In the next step the last term which by construction only acts inside the
two compact balls is bounded using the assumption Eq. (2). The initial support of A has grown
by lA after time t and of B by lB after time t0 in all directions. As a consequence the distance
between the two regions shrinks by lA+ lB such that one assumes that for all times

|〈OlA
A (t)O

lB
B (t0)〉c| ≤

c̃
ãβ + (L − (lA+ lB))β

. (6)

Plugging this into Eq. (5) one gets

|〈OA(t)OB(t0)〉c| ≤ 2c
�

|A|exp
�

−
lA− vt
ξ

�

+ |B|exp
�

−
lB − vt0

ξ

��

+
c̃

ãβ + (L − (lA+ lB))β
.

(7)

For t = t0, this result is the same as the one found by Kastner in Ref. [38] for algebraically
decaying initial states up to different constants. It is important to note that lA and lB need
not be constant, but must fulfill lA + lB < L. In this way the supports of OlA

A and OlB
B do not

overlap. We then hit the light cone if lA+ lB = L. Generally, it is not possible to minimize the
bound by optimizing the parameters lA and lB in Eq. (7). However, an approximated solution
which works for many models and cases with short-range interactions can be found. It relies
on certain assumptions about the behavior of the initial correlation and the range of the in-
teraction in the model. This is discussed in detail in appendix A. In short, one can show for
those systems that the exponential bound is negligible for lA ¦ vt + ξ and lB ¦ vt0 + ξ. The
derivation assumes that the constants have the same order of magnitude and that the initial
support of the observable is small which is a reasonable assumption for a local observable (cf.
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appendix A). The total bound can then be optimized, since the minimal value resides on the
boundary of the plane of possible values. The minimal bound is then found to be a power-law
where the exponent is given by the initial (equilibrium) correlation decay (at t = t0 = 0)

|〈OA(t)OB(t0)〉c|®C ini (L − v (t + t0)) =
c̃

ãβ + (L − v(t + t0))β
. (8)

A concrete and simple example is the Luttinger model, which is shown in section 5. In that
model the point-like interaction assures that the correlation length ξ is small.
The closed form of the bound allows us to study the build up of correlations in the region
away from the light-cone. Inside the light cone, where L < v(t + t0), the correlation function
is quasi-unbounded as expected from the Lieb-Robinson bound. Close to the light cone, where
L ∼ v(t+ t0), the light cone is dominated by the reciprocal cut-off value ã−β with the exponent
β defined by the equilibrium spatial decay of the correlation function (assuming ã� 1).

It is possible to formally extend the bound in Eq. (7) in a more rigorous mathematical lan-
guage where one would speak, for example, of a set of vertices that create a lattice and a
general metric. In this publication, however, we choose to stick to a simple physical picture.
In this picture the locality of the Hamiltonian means that the interaction only couples nearby
degrees of freedom which are sitting on a lattice that can be infinite. It is, of course, also
possible to apply the results to other spin systems with a more general short-range interaction.
As stated above, the requirement is that the considered model fulfills the conditions for the
Lieb-Robinson bound as given in Eq. (1).
Analogously to our derivation it is also possible to extend Brayvi et al.’s theorem which as-
sumes an exponential decay to non-equal times. This result can be found in section B in the
appendix in part B.
The result we derived here can be seen as an extension of different other results presented
elsewhere in the literature. We obtain our result using the Lieb-Robinson bound to constrain
the support of the time evolution of the operators to a region of a certain width. This width
is then fixed to give the tightest bound on the dynamics of the correlation function. The same
approach has been used by Brayvi et al. in Ref. [36] to constraint the time evolution of the
equal-time correlation function for states with exponentially decaying correlations in the initial
state. In this particular case the minimization can be achieved analytically obtaining that the
dynamics has a light-cone with exponentially decaying leaks outside it. In Sec. B we extend
the previous result to non-equal-time correlation, where again it is possible to demonstrate
that a sharp light-cone with exponentially decaying leaks is present.
The main point of our analysis is a bound for the dynamics of the correlation function on sys-
tems with correlations that are algebraically decaying in the initial state. The equal-time case
of this question has already been studied by Kastner in Ref. [38] where the bound is presented
in an implicit form. In our work we derive a bound in a different manner and also include non-
equal times. Moreover, we provide an explicit bound in the case where the interaction range is
smaller than every other length scale. The most important consequence of this analysis is that
a light-cone is still present and that the growth of the correlation function near the light-cone
is connected to the initial state. In this sense, the initial correlation decay is not completely
forgotten over the course of time, but it still influences the dynamics near and outside of the
light-cone.

3 The Luttinger model

In this section we briefly review the Luttinger model in the bosonization picture. This topic
is now standard textbook knowledge and the readers already familiar with that can skip this
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section.
An increasing interest in one-dimensional electron models has initially motivated Luttinger
to present an interacting fermion model in 1963 [40]. This model resembled the one that
Tomonaga had studied 13 years before and which featured the splitting into left- and right-
moving excitations for the first time [41]. However, Luttinger assumed a simpler interaction
among the fermions and treated the Dirac sea as being infinite [42]. This was corrected two
years later by Mattis and Lieb who presented an exact solution for a generalized model by
introducing bosonic field operators [43]. They also demonstrated the breakdown of the Fermi
liquid theory in one dimension. Further important contributions contained the calculation of
one- and two-particle correlation functions [44] and the emergence of a nonuniversal power-
law decay. Also, Haldane’s studies improved the understanding of this model, most notably
that the low-energy behavior implies that the Luttinger model belongs to the newly defined
"Tomonaga-Luttinger universality class" [45–47].
In the past decade the interest in the Luttinger model has revived in the context of non-
equilibrium dynamics induced by quantum quenches. Cazalilla, for example, has studied the
behavior of the model after different quenches [48–50], while Dora and Moessner investigated
the out-of-time-ordered density correlators [51].
This work aims at extending the findings of Cazalilla in his extensive study of correlation
functions. We focus on investigating the correlation buildup and their behavior in the full
space-time plane.

The initial Hamiltonian of interest describes a one-dimensional system with interacting (spin-
less) electrons and is given in terms of fermion creation and annihilation operators. Since only
the low-energy excitations are considered in the following, one assumes that the dispersion
relation takes on a linear form. To be able to apply the bosonization machinery, two addi-
tional requirements are needed [52]. First, one needs a discrete momentum number k which
is achieved by imposing antiperiodic boundary conditions. Second, one extends the dispersion
relation to infinity by adding “positron states” which do not have a physical interpretation. In
the low-energy regime these states, however, do not contribute. After a complete bosonization
procedure the Tomonaga-Luttinger model can be written in terms of bosonic collective excita-
tions which represent a particle-hole pair given by the density operator ρα. Hereby, α = L, R
denotes the left- and right-moving excitations with opposing sign sL/R = ∓1, respectively. Our
system of length L is initially prepared as a thermal state with respect to the free theory which
only contains a kinetic part

Hkin =

∫ L/2

−L/2

dx
2π

vF

2
:
�

ρ2
L(x) +ρ

2
R(x)

�

, (9)

with vF the Fermi velocity. The double dots denote fermionic normal-ordering with respect to
a reference state which is chosen to be the Fermi sea [47]. The thermal state is set by a bath at
inverse temperature β (β =∞ describes the ground state). At time t = 0 the bath is removed
and an interaction quench is performed, i. e. we turn on the interaction parameters g2 and g4
adding the interaction part Hint to the previous Hamiltonian. It is given by

Hint =

∫ L/2

−L/2

dx
2π

:
h

g2ρL(x)ρR(x) +
g4

2

�

ρ2
L(x) +ρ

2
R(x)

�

i

. (10)

The interaction is entirely point-like and describes scattering processes within one branch (g4)
and the forward scattering between the two branches (g2). Transforming the full Hamiltonian
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into momentum space using

ρα(x) =
Nα
L
+ isα

√

√ 1
2πL

∑

q>0

e−a|q|/2pq
�

eisαqx bsαq − e−isαqx b†
sαq

�

(11)

yields

H =
∑

q 6=0

|q|
2

�

(vF + g4)
�

b†
q bq +

1
2

�

+ g2(b
†
q b†
−q + bq b−q)

�

, (12)

where several constants which do not affect the dynamics were omitted. To be able to sum
over all q we introduced a regularization exp(−a|q|/2) which is discussed in the next sec-
tion. One remark to the choice of interactions is necessary: The simplified model with only
point-like repulsion bears implications which, however, become irrelevant in the low-energy
regime (long-wavelength or q ∼ 0) [50]. The bosonic operators b†

q (bq) create (annihilate) a
particle-hole excitation with momentum q. This Hamiltonian can now be diagonalized with a
Bogoliubov rotation given by

�

bq

b†
−q

�

=

�

cosh(φ) − sinh(φ)
− sinh(φ) cosh(φ)

��

Bq

B†
−q

�

, (13)

with Bq denoting the new bosonic operators in the diagonal basis. The Bogoliubov angle φ is
given by tanh(2φ) = g2/(vF + g4). The diagonalized Hamiltonian defines the dispersion rela-
tion ω(q) = ν|q| with the renormalized velocity ν = ((vF + g4)2 + g2

2)
1/2. In the diagonalized

form the time-dependence is trivial such that one finds a resulting transformation
�

bq(t)
b†
−q(t)

�

=

�

f (q, t) g∗(q, t)
g(q, t) f ∗(q, t)

��

bq

b†
−q

�

, (14)

with f (q, t) = cos(ν|q|t)− i sin(ν|q|t) cosh(2φ) and g(q, t) = i sin(ν|q|t) sinh(2φ).

4 Density-density correlation function

In the following we study the density-density correlation function 〈n(x , t)n(0, t0)〉 where the
expectation value is taken with respect to an initial thermal state (at T = 0 the ground state).
Separating the density operator in left and right movers n(x , t) = ρL(x , t) +ρR(x , t), the full
density-density operator contains the four contributions

〈n(x , t)n(0, t0)〉=〈ρL(x , t)ρL(0, t0)〉+ 〈ρR(x , t)ρR(0, t0)〉
+ 〈ρL(x , t)ρR(0, t0)〉+ 〈ρR(x , t)ρL(0, t0)〉, (15)

where we omitted terms that oscillate fast with x . This corresponds to averaging over
∆x ∼ (2kF )−1 [53]. This averaging procedure erases any non-universal power-law decay
that is non-Fermi liquid like. Similar quantities like Eq. (15) have already been studied in the
literature, however the full calculation at non-equal time has not been done to give a closed-
form expression [49–51]. In Ref. [50] the authors discussed the sum which appears in the
calculation in the infinite-time limit without performing it.
The calculation of the full density-density correlation function requires plugging Eq. (11) and
(14) in (15) which results in four terms. In order to be able to sum over q, a regularization
exp(−|q|a/2) defined by the "effective bandwidth" a−1 is introduced [46]. One usually consid-
ers the case where a→ 0+, however a small but finite value is closer to the real world, since
it constrains possible scattering events. It will become clear in the following that this basically
only affects the region around the light cone, where a finite a limits the peak height. Away
from it one can safely let a→ 0+.
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4.1 Zero temperature

One finds at T = 0 for a finite system size L that

〈n(x , t)n(0, t0)〉T=0 =
1

4π2

�

(γ
Æ

1+ γ2 − γ2 − 1)
�

U(x + ν(t − t0), a) + U(x − ν(t − t0), a)
�

− (γ
Æ

1+ γ2 − γ2)
�

U(x + ν(t + t0), a) + U(x − ν(t + t0), a)
�

− i(
Æ

1+ γ2 − γ)
�

V (x + ν(t − t0), a)− V (x − ν(t − t0), a)
�

�

,

(16)

with

U(τ, a) =
2π2

L2

1− cosh
�2π

L a
�

cos
�2π

L τ
�

�

cosh
�2π

L a
�

− cos
�2π

L τ
��2 (17)

V (τ, a) =
2π2

L2

sinh
�2π

L a
�

sin
�2π

L τ
�

�

cosh
�2π

L a
�

− cos
�2π

L τ
��2 . (18)

γ= g2/ν denotes the quench parameter which causes the time-dependence (since the g4 term
commutes with the non-interacting Hamiltonian). We will now sometimes use the notation τ
for any combination of x ± ν(t ± t0).
To discuss the functions U(τ, a) and V (τ, a) we naively let a → 0+. This limiting produce
gives the known result where U(τ) = d(τ|L)−2, where d(τ|L) = L sin(πx/L)/π is the confor-
mal distance which becomes d(τ) = τ in the thermodynamic limit [49]. The imaginary part of
Eq. (16) converges to a sum of derivatives of δ-distributions on the left- and right-moving light
cone (where τ= 0), because V (τ) = −π∂τδ(τ) and consequently only contributes there.
However, considering a to be very small, but non-zero, changes the behavior close to the
light cone. In this case one needs to approximate U(τ, a) and V (τ, a) for small τ and a
and finds U(τ ≈ 0) ≈ (τ2 − a2)/(τ2 + a2)2 with U(τ = 0, a) = −1/a2 on the light cone
and V (τ ≈ 0) ≈ 2aτ/(τ2 + a2)2 with S(τ = 0, a) = 0. The arising divergences create two
light cones in both directions (we will consider x > 0 from now on): an outer light cone at
x − ν(t + t0) = 0 and an inner light cone at x − ν(t − t0) = 0. The first thing to note is that
the behavior close to a light cone is independent of the system size (it is identical to the re-
sult in the thermodynamic limit). While U(τ, a) is symmetrically algebraically peaked with a
maximum value −1/a2, the width of the V (τ, a)-double peak depends strongly on a. From its
functional form one can see that V (τ, a) is pointsymmetric with respect to τ= 0: Considering
the peak around a right-moving light cone (τ = x − ν(t + t0) = 0) the time-like region is
defined by x < ν(t + t0) or τ < 0, while the space-like region is given by τ > 0. Thus, it has a
negative peak inside the light cone, while the outside peak is positive. For a left-moving light
cone it is τ > 0 (τ < 0) for the time-like (space-like) region, but the negative sign in front
of the corresponding function V (x +ν(t + t0)) assures the same behavior holds for both light
cones (see also Ref. [51]).
Finally, one can recover the result by Cazalilla [49], if one considers only the right-moving
density-density correlation at equal times (t = t0). This requires neglecting the terms propor-
tional to γ

p

1+ γ2, since these terms derive from L − R and R− L contributions. Moreover,
one needs an additional factor of 1/2, since both the L− L and R−R are identical in this case.

The function that describes the initial correlations can be found by setting t = t0 = 0 in
Eq. (16). These correlations are those that were present before the time-evolution. They are
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given by

〈n(x , 0)n(0, 0)〉ini
T=0 =−

1
2π2

x2 − a2

(x2 + a2)2
. (19)

For x � a it is approximately 〈n(x , 0)n(0,0)〉ini
T=0 ≈ −1/(2π2 x2). Generally, we call the corre-

lations that are not γ-dependent pre-quench correlations (also indicated by “pq”). For equal-
time correlators (t = t0) these contributions are identical to the initial correlations, however,
if t 6= t0 the different measurement times change the correlation function. In the space-like
region (outside of the light cone) where x � ν(t+ t0)> ν(t− t0)� a, however, the difference
is negligible, because

〈n(x , t)n(0, t0)〉
pq
T=0 = −

1
2π2 x2

�

1+ 3
�

ν(t − t0)
x

�2�

≈ −
1

2π2 x2
. (20)

The third part of Eq. (16) are the quench-induced contributions (indicated by “qi”) which de-
pend on γ. They are thoroughly discussed in section 6.

4.2 Non-zero temperature

In the following we extend the previous results to non-zero temperature where the initial
state is a thermal state at inverse temperature β . At T = 0 (β = ∞) the contractions
〈bq b†

q〉 = 1+ 〈b†
q bq〉 = 1, because the Bose-Einstein distribution 〈b†

q bq〉 = 1/(exp(β vF |q|)− 1)
vanishes. At T > 0 additional terms add to the zero temperature result. The full result for a
finite system of size L can be found in the appendix in section D. We now focus on the result
in the thermodynamic limit, where one can execute the infinite sum and gets:

〈n(x , t)n(0, t0)〉therm = 〈n(x , t)n(0, t0)〉T=0 −
γ
p

1+ γ2 − γ2 − 1
(2πβ vF )2

×
�

DiG1

�

1+
a
β vF
−

i
β vF
(x + ν(t − t0))

�

+DiG1

�

1+
a
β vF

+
i
β vF
(x + ν(t − t0))

�

+DiG1

�

1+
a
β vF
−

i
β vF
(x − ν(t − t0))

�

+DiG1

�

1+
a
β vF

+
i
β vF
(x − ν(t − t0))

��

+
γ
p

1+ γ2 − γ2

(2πβ vF )2

×
�

DiG1

�

1+
a
β vF
−

i
β vF
(x + ν(t + t0))

�

+DiG1

�

1+
a
β vF

+
i
β vF
(x + ν(t + t0))

�

+DiG1

�

1+
a
β vF
−

i
β vF
(x − ν(t + t0))

�

+DiG1

�

1+
a
β vF

+
i
β vF
(x − ν(t + t0))

��

,

(21)

with the derivative of the DiGamma-function DiG1(z) =
d
dz ln Γ (z). This general result is new

and has not been calculated before. The behavior close to the light cone is dominated by the
sharp peaks of the T = 0 case, since the DiGamma-functions only give a constant contribution
there (2 DiG1(1) = π2/3).

In the space-like region from the light cone the limit a → 0+

can be taken and the additional terms can be summarized to
DiG1(1 − iτ/(β vF )) + DiG1(1 + iτ/(β vF )) = (β vF )2/τ2 − π2 sinh−2(πτ/(β vF )). The
algebraic decay terms now exactly cancel the T = 0 terms such that it finally becomes
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〈n(x , t)n(0, t0)〉therm =
1

4π2ξ2
(γ
Æ

1+ γ2 − γ2 − 1)
�

sinh−2
�

x + ν(t − t0)
ξ

�

+ sinh−2
�

x − ν(t − t0)
ξ

��

−
1

4π2ξ2
(γ
Æ

1+ γ2 − γ2)
�

sinh−2
�

x + ν(t + t0)
ξ

�

+ sinh−2
�

x − ν(t + t0)
ξ

��

−
i

4π
(
Æ

1+ γ2 − γ)
�

∂(x−ν(t−t0))δ(x − ν(t − t0))− ∂(x+ν(t−t0))δ(x + ν(t − t0))
�

,

(22)

where the temperature induced correlation length ξ = β vF/π has been introduced. Another
form of writing the expression above is taking the T = 0 result and substituting the conformal
distance d(τ)with the newly defined (thermal) distance d(τ,β) := ξ sinh(τ/ξ) as hinted at in
Ref. [49]. This is, of course, only true in the thermodynamic limit or if the correlation length
scale is way shorter than the system size (ξ= β vF/π� L).
The thermal correlation length ξ now separates two different regimes: if x ± ν(t ± t0) � ξ

we observe again the algebraic decay regime as in the T = 0 case which is now followed by
an exponentially decaying regime for x ±ν(t ± t0)� ξ. Both regimes will be discussed in the
form of the anticommutators in section 6.

5 Explicit bound for the Luttinger model

In this section we explicitly verify the bound presented in section 2 for the two observables
OA = n(x) and OB = n(0) at non-equal times t and t0. The compact support contains only
the spatial point B = 0 and A= x , respectively. To do this we define a function C ini(x) which
describes the absolute value of the initial correlations

C ini(x) := |〈n(x , 0)n(0,0)〉c|. (23)

At t = t0 = 0 and zero temperature we know the exact expression for the Luttinger model
from Eq. (16):

C ini(x) =
1

2π2

|x2 − a2|
(x2 + a2)2

≤
1

2π2

1
x2 + a2

. (24)

Here, we used that 〈n(x)〉= 0. As discussed earlier C ini(x) describes a power-law decay with
an exponent β = 2, while c̃ = 1/2π2. From the approximated bound in Eq. 8 we thus expect
a bound which has the same exponent.
We prove that this is indeed fulfilled by bounding the full density-density correlation function
for t > t0 > 0. Although we have calculated the exact correlation function also for the inside of
the two light cones in the previous sections, Eq. (8) states that it is quasi-unbounded inside of
the outer light cone. We therefore only focus on the decay outside of the outer light cone plus
a small offset, i. e. where x ≥ ν(t + t0)+

p
3a. The small shift by

p
3a is necessary to perform

the following estimation (for a more detailed explanation see section C in the appendix):

(x + ν(t + t0))2 − a2

((x + ν(t + t0))2 + a2)2
≤
(x + ν(t − t0))2 − a2

((x + ν(t − t0))2 + a2)2

≤
(x − ν(t − t0)))2 − a2

((x − ν(t − t0))2 + a2)2
≤
(x − ν(t + t0)))2 − a2

((x − ν(t + t0))2 + a2)2
. (25)
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The bounds are tight if t = t0 = 0. Then, noticing that all terms have the same sign, one
bounds each term via Eq. (25) and finds that

|〈n(x , t)n(0, t0)〉c|=
1

4π2

�

�

�

�

�

γ
Æ

1+ γ2 − γ2 − 1
�

×
�

(x − ν(t − t0))2 − a2

((x − ν(t − t0))2 + a2)2
+
(x + ν(t − t0))2 − a2

((x + ν(t − t0))2 + a2)2

�

−
�

γ
Æ

1+ γ2 − γ2
�

�

(x + ν(t + t0))2 − a2

((x + ν(t + t0))2 + a2)2
+
(x − ν(t + t0))2 − a2

((x − ν(t + t0))2 + a2)2

�

�

�

�

�

≤
1

4π2

�

�

�

�

�

γ
Æ

1+ γ2 − γ2 − 1
�

�

(x − ν(t + t0))2 − a2

((x − ν(t + t0))2 + a2)2
+
(x − ν(t + t0))2 − a2

((x − ν(t + t0))2 + a2)2

�

−
�

γ
Æ

1+ γ2 − γ2
�

�

(x − ν(t + t0))2 − a2

((x − ν(t + t0))2 + a2)2
+
(x − ν(t + t0))2 − a2

((x − ν(t + t0))2 + a2)2

�

�

�

�

�

=
1

4π2

�

�

�

�

(−2)
(x − ν(t + t0))2 − a2

((x − ν(t + t0))2 + a2)2

�

�

�

�

=
1

2π2

|(x − ν(t + t0))2 − a2|
((x − ν(t + t0))2 + a2)2

=C ini(x − ν(t + t0)). (26)

Analogously to the initial case, there is again the upper limit of Eq. (26) with
C ini(x − ν(t + t0)) ≤ 1/(2π2)/((x − ν(t + t0))2 + a2) that takes on the form as given in
Eq. (8).
Thus, we have explicitly demonstrated that in the Luttinger model the correlations outside of
the outer light cone can be bounded by the initial correlations shifted by the current position of
the light cone. In a physical picture one can think of the correlation as being “dragged” with
the quasiparticles which move with the light cone speed. As soon as any quasiparticle has
passed a region the correlation function is basically unbounded. In a real system the bound
does not need to be tight, but the real expression can fall off even quicker (see discussion of
the exact decay in section 6).

6 The spatiotemporal correlation build-up

In this section we want to study the dynamics of the anti-commutator and commutator of the
density-density correlation function that have been calculated in part 4 at zero and non-zero
temperatures. Hence, we define the functions

C±(x , t, t0) := 〈[n(x , t), n(0, t0)]±〉therm, (27)

where [·, ·]± denotes the anticommutator or commutator. Since the anticommutator is just
twice the real part of the density-density correlation and the commutator the corresponding
doubled imaginary part of Eqs. (16) and (21), one immediately finds the resulting expressions.
The expectation value is taken with respect to a thermal state defined by the pre-quench Hamil-
tonian at inverse temperature β via the distribution exp(−βHkin)/Z (β =∞ corresponds to
the ground state). Hereby, we consider the thermodynamic limit, since we focus on the decay
regimes and the finite size effects have been discussed elsewhere [49]. In the following, when
we study the anticommutator we often subtract the initial contributions C ini

+ (x) := C+(x , 0, 0).
This is done, because we want to study how the correlations buildup without having the back-
ground of the equilibrium (if we do include it, it is mentioned).
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6.1 Analysis of the commutator C−(x , t, t0)

As has been discussed before [50, 51], the commutator is just a complex number (indepen-
dent of the inverse temperature β) and as such it is independent of the initial state (also
compare Eq. (16) and (22)). Due to the very sharp δ-distribution form of the commutator,
it becomes clear that the only contribution results from the left- and right-moving light cones
where x ± ν(t − t0) = 0. Physically, this can be understood by regarding the Luttinger model
as being effectively a relativistic theory with a well-defined speed of light ν. The linear disper-
sion creates an identical ballistic propagation for all quasiparticles (particle-hole excitations)
with exactly this speed (no curvature in the dispersion). Therefore, there is also no signal at
equal times when t = t0. Generally, it follows that we do not observe any "leak" outside the
light cone and one sees that the LR-bounds are trivially fulfilled. Not taking the limit a→ 0+

broadens the peak to a Lorentzian form with FWHM= 2a. However, the arising contributions
outside the light cone do not violate the LR-bounds.

6.2 Analysis of the anticommutator C+(x , t, t0)

This simple behavior can, of course, not be seen when studying the anticommutator which
is not bounded by the Lieb-Robinson bounds without further restrictions (see derivation of a
bound in part 2). While the commutator is independent of the initial state (it is an operator
norm), the anticommutator strongly depends on it. In this sense, the anticommutator has to
be understood as a statistical property, since one needs to perform many weak measurements
to determine its exact shape.
The equal-time (t = t0) anticommutator has already been calculated in Ref. [49], but with
a focus on the long-time convergence to a generalized Gibbs ensemble and not on the spa-
tiotemporal correlation buildup.
The analysis starts with the T = 0 case, where the anticommutator is defined by twice the real
part of Eq. (16). Moreover, we simplify by considering a→ 0+ and taking the thermodynamic
limit L →∞. This can be done, because a finite a is only needed in the vicinity of the light
cone where τ≈ 0. If a finite a is required, we will from now on explicitly discuss the change.
In order to study the correlation buildup induced by the interaction quench we subtracted the
initial correlations (if t = t0, it is initial = pre-quench correlations) which can be found by
setting t = 0 in Eq. (16):

C ini
+,alg(x) = −

1
π2 x2

. (28)

They show the usual Fermi gas or free fermion behavior, since initially the model is non-
interacting. Having subtracted this contribution the quench-induced part of the anticommu-
tator reads

C+(x , t) = −
1

2π2
(γ
Æ

1+ γ2 − γ2)×
�

1
(x − 2νt)2

+
1

(x + 2νt)2
−

2
x2

�

=

=
�

γ
Æ

1+ γ2 − γ2
�

×
�

1
2(1− 2νt/x)2

+
1

2(1+ 2νt/x)2
− 1

�

C ini
+,alg(x). (29)

In the last expression we have expressed the anticommutator in terms of the initial correla-
tions. From now on, we will always use this description to be able to relate the quench-induced
correlations to the initial ones. The absolute value of this function |C+(x , t)| is depicted in Fig.
2a for the right-moving light cone where the initial correlations have been subtracted. In a
physical picture the figure shows the correlations which are induced by the movement of the
quasiparticles after the quench [18]. In the figure one sees that for a fixed x the anticommu-
tator is zero initially, but then growing to the sharply peaked light cone on the diagonal with
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time. This corresponds to a vertical cut through the plot. This behavior can be understood as
follows: At t = 0 particle-hole excitations get excited by the global quench which then spread
in both directions with velocity 2ν and possibly correlate all regions that they have passed.
This is called the correlation buildup. Since all quasiparticles move at the same speed, they
will continue their coherent movement forever. Thus, there is a huge correlation peak (named
light cone) that indicates that all excitations come from the same point x = 0 (at t = 0) to
which they are therefore highly correlated. In order to discuss the growth rate and the decay
regime outside of the light cone one needs to approximate Eq. (29) in the space-like region,
i. e. where x � 2νt. This results in

C sl
+(x , t) =3

�

2νt
x

�2
�

γ
Æ

1+ γ2 − γ2
�

C ini
+,alg(x). (30)

In this region, one finds that the growth of correlations is proportional to t2/x4 resulting in
algebraically increasing "leaks" outside the light cone if one considers a fixed x (vertical cut
of Fig. 2a). Closer to the light cone, x ∼ 2νt, the full algebraic growth∝ 1/(x − 2νt)2 takes
over before the light cone peaks to −1/a2 (or infinitely high if there is an infinite number of
excitations, i. e. a → 0+). While the correlation function grows with time for a fixed x , the
behavior is different outside the light cone for a fixed time t: As has been shown in section
2 the decay outside the light cone can be effectively bounded by the initial (equilibrium) de-
cay that moves with the speed of the quasiparticles. Only the amplitudes might change. In
the Luttinger liquid we notice in section 5 that the decay is only tightly bounded in the close
vicinity of the light cone. In this sense, the bound we derived in section 2 can be interpreted
as the initial correlations being “dragged” with the quasiparticles during the time evolution.
Mathematically, this is given by the simple substitution x → x − v (t + t0) in the correlation
function. In the very deep space-like region where x � 2νt, however, the correlation function
decays faster with 1/x4. This is depicted in Fig. 2b which cuts Fig. 2a horizontally for a fixed
time.
Finally, we discuss the structure that is visible inside the light cone. There we can identify a
second signal where correlations vanish (see Fig. 2b). There, the time-independent stationary,
or time-like, (x � 2νt) correlations C tl

+,alg(x) = −(γ
p

1+ γ2 − γ2)C ini
+,alg(x) cancel the term

coming from the light cone. In other words, it is exactly at x = (2νt)/
p

3 where C+(x , t) = 0.
Since the time-like decay is stationary, it is also the remaining contribution in the infinite-
time limit. Adding the initial correlation again one notices that the initial decay exponent
of the non-interacting Fermi gas prevails, but with a reduced strength −(γ

p

1+ γ2 − γ2) + 1
which is bounded by 1/2 from below. In this sense, we have an interacting Fermi liquid. This
also confirms our expectation to not see any non-universal power-law, since we averaged over
∆x ∼ (2kF )−1 [53].
There is an interesting difference to results in the literature where only the R − R density-
density correlation has been studied [49]. There, the infinite-time limit is always larger than
the initial correlations (for a repulsive interaction). However, taking the full physical fermion
density into account shows the physically expected behavior: the interaction limits the move-
ment of the quasiparticles and thus reduces the initial correlations. The exponent of the decay,
however, remains the same.

The previous results drastically change when one considers a thermal initial state. In that
case, one needs to analyze the real-part of Eq. (22) (with a→ 0+). The initial correlation de-
cay is found to be C ini

+ (x) = −1/(πξ sinh(x/ξ))2. We depict the full spatiotemporal behavior
without the initial contributions in Fig. 3a. Analyzing the defining equation one now observes
two different regimes which are governed by the temperature via the new correlation length
ξ. If x � ξ one finds the algebraic regime as in Eq. (28). Physically, in this regime we see
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(a) Spatiotemporal behavior at T = 0
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Figure 2: Spatiotemporal behavior of the equal-time anticommutator |C+(x , t)| at
T = 0 (β =∞) without the initial correlations (as given in Eq. (29)). The signal on
the diagonal is the light cone with an algebraic (power-law-like) decay. A horizontal
cut through the plot for time t/2ν = 10 is shown on the right (Fig. 2b) with the
algebraic decay of Eq. (30) indicated by the black dashed line. The grey shaded
area marks the inside of the light cone with a stationary algebraic correlation decay
starting at x = 0. Due to different signs this contribution cancels the inner decay
coming from the light cone leading to an inner structure with vanishing correlation
at xroot = t/(2ν

p
3).

length scales much shorter than the one induced by the temperature. However, for x � ξ the
decay becomes exponential with

C ini
+,exp(x) = −

4
π2ξ2

e−2x/ξ. (31)

In summary, the temperature introduces a new correlation length which separates two differ-
ent decay regimes. This behavior of the time-independent initial correlation has already been
described in Ref. [53]. We now show that it extends to the quench-induced correlations by
studying the full dynamics. We start with the correlation buildup far away from any causal
interference, i. e. the space-like region (x � 2νt) where we see that the two initial decay
regimes persist in the full spatiotemporal plane. Closer to the light cone, where |x ±2νt|< ξ,
we observe an algebraic decay region with similar expressions for the space-like and time-like
case as the ones found for T = 0. Outside of this region, however, we find an exponential de-
cay of correlations which has been observed in many other systems. The space-like expression
for this region is

C sl
+,exp(x , t) = 2

�

2νt
ξ

�2
�

γ
Æ

1+ γ2 − γ2
�

C ini
+,exp(x), (32)

where the initial correlation decay is now given by Eq. (31). It looks similar to the algebraic
version (Eq. (28)), but with a different prefactor, a different decay of the initial correlations
(exponential instead of algebraic) and ξ takes over the role of x in the buildup process which
is again proportional to t2.
In the time-like region (x � 2νt) one finds the same algebraic decay close to x = 0 as for
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Figure 3: Spatiotemporal behavior of the equal-time anticommutator |C+(x , t)| for
β = 30 as given by Eq. (22) without the intial contribution. The Fermi velocity is
chosen such that ξ = β = 30. The signal on the diagonal is the light cone with
an algebraic (power-law-like) decay for x <

p
3ξ followed by an exponential decay.

The algebraic regime is found between the white lines. A horizontal cut through the
plot for time t/2ν = 10 is shown on the right (Fig. 3b) with both decay regimes.
The black dashed line shows the algebraic regime as in the T = 0 case, whereas the
blue dashed line represents the exponential decay given by Eq. (32). The size of
the algebraic decay regimes shrinks with increasing temperature. The grey shaded
area marks the inside of the light cone with a stationary algebraic correlation decay
starting at x = 0. Due to different signs this contribution cancels the inner decay
coming from the light cone leading to an inner structure with vanishing correlation
at xroot (see text for formula).

T = 0, followed by an exponential decay rate C tl
+,exp(x , t) = −(γ

p

1+ γ2 − γ2)C ini
+,exp(x). The

point where the anticommutator vanishes is now given by

xroot = ξ cosh−1
�

1
2

Ç

1+
Æ

5+ 4cosh(4νt/ξ)
�

. (33)

In conclusion, one finds that the algebraic regime present around the peaks on the light cones
at T = 0 shrinks with increasing temperature. It is followed by a new, temperature induced
exponential decay. Both regimes reflect the initial correlations and can be seen in the log− log-
plot in Fig. 3a and 3b.

We now switch to the non-equal-time anticommutator where t 6= t0. We can write
C+(x , t, t0) = C(x , t − t0, t + t0), i. e. it only depends on the difference and sum of the two
times. We can therefore write the expressions in terms of time differences t − t0 and find
that t + t0 = t − t0 + 2t0 where t0 is fixed. Fig. 4a shows the entire spatiotemporal plane
of the anticommutator C+(x , t − t0). We show the positive time axis which corresponds to
values t > t0. Physically, this means that we quench the system at time t = 0, measure the
density of excitations after time t0 at x = 0 and again after time t > t0 at position x . The
mentioned figure shows the expected behavior: the quench creates excitations that all move
with the renormalized Fermi velocity 2ν in both directions. At the first measurement at time
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t0 they have propagated by 2νt0. Now we measure again at a different position x after an
additional time t − t0. We find two distinct signals: One describes the outer light cone at
x = ν(t+ t0) = ν(t− t0+2t0) which represents the spread of quasiparticles due to the quench
until the first measurement after t0. The other one is the light cone on the diagonal, i. e. at
x = ν(t − t0) and shows the correlation of the first measurement to the second measurement.
Since both light cones have different signs, we again see a light cone of vanishing correla-
tions in between the peaks. This double light cone structure has also been observed in other
models and appears, because the Luttinger model with its well-defined propagation speed is
effectively a relativistic theory [17]. In the following we want to express the corresponding
decay regimes in terms of the pre-quench correlation decay. The pre-quench correlations are
those that we would see without quenching (γ= 0) for x � ν(t − t0). They read

Cpq
+ (x , t, t0) =−

1
π2 x2

�

1+ 3
�

ν(t − t0)
x

�2�

= C ini
+,alg(x)

�

1+ 3
�

ν(t − t0)
x

�2�

. (34)

The leading (slowest) decay term is identical to the initial correlation decay at equal times in
Eq. (28). The next order expansion term reflects the change of the correlation due to different
times and is negligible if one considers a point far away from the light cone. Thus, we will
approximate Cpq

+ (x , t, t0) ≈ C ini
+ (x). The decay outside of the outer light cone (space-like

region) shows a behavior closely related to the equal-time correlation function. At T > 0 the
algebraic decay

C sl
+,alg(x , t, t0) =

12ν2 t t0

x2

�

γ
Æ

1+ γ2 − γ2
�

C ini
+,alg(x), (35)

which is the only decay at T = 0 is enclosed by an exponential decay

C sl
+,exp(x , t, t0) =

8ν2 t t0

ξ2

�

γ
Æ

1+ γ2 − γ2
�

C ini
+,exp(x), (36)

similar to the equal-time case. In the time-like region one finds that the quench-induced cor-
relations decay proportional to 1/t2, since

C tl
+,alg(x , t, t0) =

γ
p

1+ γ2 − γ2

π2ν2

�

1
(t − t0)2

−
1

(t + t0)2
+ 3

x2

ν2

�

1
(t − t0)4

−
1

(t + t0)4

��

. (37)

Hence, C tl
+,alg(x , t, t0) vanishes in the infinite-time limit and only the initial correlations remain.

However, for a finite time difference t− t0 Eq. (37) demonstrates that the spatial decay inside
of the light cone is independent of x in the first order approximation (see Fig. 4b).

7 Conclusions

In this paper we discussed the spreading of local observables following a quantum quench in
many-body quantum systems. In particular, we elucidated the difference between the commu-
tator and anticommutator and the influence of the initial state on the dynamics.
First, we derived a bound for the expectation value of local observables at non-equal times
for systems with algebraically decaying spatial correlations in the initial state. This result is
obtained using the Lieb-Robinson bound and generalizes the findings by Brayvi et al. [36] and
Kastner [38] to non-equal time correlations. By optimizing the bound we demonstrated that
it effectively describes a light cone which velocity is the Lieb-Robinson velocity. Outside the
light cone, correlations are non-zero but algebraically suppressed with a power law determined
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Figure 4: Spatiotemporal behavior of the non-equal-time anticommutator
|C+(x , t, t0)| for T = 0 and t0/ν = 40 without the initial contributions. The anti-
commutator takes on the form of a double light cone: the signal on the diagonal is
the stationary decay which propagates further if t > t0. A horizontal cut through the
plot for time (t − t0)/ν = 30 is shown on the right (Fig. 4b). Due to different signs
the two light cone contributions at (t− t0)ν= 30 and (t+ t0)/ν= 110 cancel exactly
in the middle of the peaks. We again see an algebraic decay regime outside of the
outer light cone. This is directly related to the initial correlations (see text).

by the equilibrium (initial) correlations. Moreover, the same power law determines the fast
buildup of correlations close to the light cone, where the maximum occurs. The dependence
on the initial state reflects the difference of the bounds: whereas the LR-bound is an upper
bound on the operator norm and thus completely independent of the initial state, the bound
for correlation functions depends non-trivially on the initial state.
In a next step, we verified the bound by studying the time evolution of an exactly solvable
model: the Luttinger liquid. We investigated the dynamics induced by a sudden switch on of
the interactions starting from different initial states: the ground state, which has algebraically
decaying correlations, and a thermal mixture, where correlations decay exponentially at long
distances.
Using bosonization techniques, we derived exact expressions for the density-density correla-
tion at different positions and times. We discussed both the commutator and the anticommu-
tator of the mentioned observables in the full spatiotemporal plane. While the commutator
gives a simple delta function on the light cone and as such trivially fulfills the LR-bound, the
anti-commutator has a much richer behavior that can be compared to the bound we derived.
First of all, it exhibits a clear light cone for both exponentially and algebraically decaying ini-
tial correlations, as expected.
In the space-like regime (large distance and small time), we find a correlation buildup which
is algebraic for the zero temperature case with a power law determined by the initial state.
This result does not saturate the bound derived in section 2 but has a slower growth. In the
case of non-zero temperature, we dicussed the appearance of the thermal correlation length
also outside of the light cone where the correlation buildup is exponential, yet again closely
related to the initial state.
The situation close to the light cone is much more interesting. We find that the correlation func-
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tion grows algebraically fast in that region independently on the initial state. The exponent
of this growth is exactly the one that controls the spatial decay of the observable in the initial
state at zero temperature. Comparing the exact calculation to the general bound we derived
before, we find that the correlation buildup in the Luttinger liquid is very close to the maximal
allowed buildup. Moreover, the connection between the initial state and the time evolution
suggested by the bound is perfectly respected in the Luttinger liquid.
Finally, in the time-like region, the bound diverges exponentially fast, meaning we cannot use
it to describe the real-time evolution. However, our exact calculations can be interpreted via
the quasiparticles approach developed by Cardy and Calabrese. The spectrum of the excita-
tions is linear and consequently they all have the same velocity. From our calculations we find
that another ballistic signal with vanishing correlations is present inside the time-like regime.
This is due to the fact that the light cone and the relaxation value (infinite-time value) of the
anti-commutator have opposite signs. This confirms that even in a model with an extremely
simple spectrum, observables can show a non-trivial behavior that cannot be guessed by more
general results like the Lieb-Robinson bound.
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A Optimization of the variables lA and lB

We start our analysis from the simple case of equal time correlation function, where it is easy
to grasp the ideas and then extend it to non-equal time. We want to find the parameter l that
minimizes the bound on the right side in Eq. (7):

|〈OA(t)OB(t)〉c| ≤ 2c (|A|+ |B|)exp
�

−
l − vt
ξ

�

+
c̃

ãβ + (L − 2l)β
. (38)

The parameters |A|, |B|, c and c̃ are assumed to have a comparable order of magnitude. The
parameter ξ depends on the range of the interactions of the Hamiltonian that drives the time
evolution. Since we want to study extremely short-range interactions, we can assume ξ to be
small, compared to the distances and times we want to observe. This allows us to rewrite the
previous equation in a more simple way, where the exponential function is some sort of wall
function going up at l = vt + ξ. This has the effect of reducing the space where we look for
the optimum of our bound to the region vt + ξ < l < L/2. Hence, we can approximate the
exponential to be zero in this range and so we need just to minimize the algebraic function
which has its minimum at the boundary, so at l = vt + ξ.
We can then plug this result in the previous equation and obtain a simple answer for the
optimized function:

|〈OA(t)OB(t)〉c| ≤
c̃

ãβ + (L − 2vt)β
, (39)

where we neglected ξ because it is a negligible contribution.
This argument can be generalized easily to the non-equal time correlation function where now
the minimization is given by two parameters lA and lB. There, the same limit for the exponen-
tials as before can be taken and it again acts as a wall function constraining the minimization

19

https://scipost.org
https://scipost.org/SciPostPhys.5.5.052


SciPost Phys. 5, 052 (2018)

region to lA > vt + ξ and lb > vt0 + ξ. The minimum of the algebraic decay is then attained
in the most far away point from the line lA + lB = L which is, where its maximum is located
so at (lA = vt + ξ, lB = vt0 + ξ). In this region the exponential is again vanishing due to the
assumption of a very small ξ parameter that results from the short interaction range. It is then
possible to write the bound as:

|〈OA (t)OB (t0)〉| ≤
c̃

ãβ + |L − v (t + t0) |β
. (40)

This result is a posteriori confirmed by the exact calculation on the Luttinger Liquid model,
which has extremely short-range interactions, namely point-like, which then confirms our pre-
dictions. Clearly, faster decays of the correlation function are possible, since the bound is an
upper limit.
In conclusion, if we consider distances much larger than the average interaction range, the
exponential decay is negligible and the optimal bound is determined just by the initial corre-
lation function. The optimal bound is finally written in a compact form involving the initial
correlation function, namely

|〈OA (t)OB (t0)〉| ≤ C ini (L − v (t + t0)) . (41)

B Generalization of the result by Brayvi et al. to non-equal times

It is possible to generalize the theorem which assumes an initial exponential decay of corre-
lations found by Brayvi et al. in Ref. [36] to non-equal times. If the initial decay is given
by

|〈OA(0)OB(0)〉c| ≤ c̃ exp(−L/χ), (42)

one can perform a derivation analogous to Brayvi’s and ours and find that

|〈OA(t)OB(t0)〉c| ≤ 2c|A|exp
�

−
lA− vt
ξ

�

+ 2c|B|exp
�

−
lB − vt0

ξ

�

+ c̃ exp
�

−
L − (lA+ lB)

χ

�

. (43)

With the optimal values lA = (ξL + v((ξ + χ)t − ξt0))/(2ξ + χ) and
lB = (ξL + v((ξ+χ)t0 − ξt))/(2ξ+χ) one finds

|〈OA(t)OB(t0)〉c| ≤ c̄(|A|+ |B|)exp
�

−
L − v(t + t0)

2ξ+χ

�

. (44)

Setting t0 = t recovers the result by Brayvi et al.. The typical length of the leaks outside of the
light cone depend on both the initial scale χ and the Lieb-Robinson scale ξ. The full derivation
is analytically exact and is explained in the following.
The expression that we want to minimize is Eq. (43). In order to do that we take the gradient
with respect to lA and lB obtaining the following two equations:

∂lA|〈OA (t)OB (t0)〉c|= −
2c|A|
ξ

exp
�

−
lA− vt
ξ

�

+
c̃
χ

exp
�

−
L − (lA+ lB)

χ

�

= 0, (45)

∂lB |〈OA (t)OB (t0)〉c|= −
2c|B|
ξ

exp
�

−
lB − vt0

ξ

�

+
c̃
χ

exp
�

−
L − (lA+ lB)

χ

�

= 0. (46)
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We have two equations and we want to use them to fix the two parameters lA and lB as functions
of L and t.
In order to minimize the gradient needs to vanish such that the difference between the two
previous equations yields

|A|exp
�

−
lA− vt
ξ

�

= |B|exp
�

−
lB − vt0

ξ

�

. (47)

This directly leads to

lB − lA = ξ ln
�

|B|
|A|

�

+ v (t0 − t) . (48)

We can then use one of the previous equations to determine the missing parameters. Multi-
plying both sides of Eq. (45) by

exp
��

1
ξ
+

1
χ

�

lA−
1
χ

lB

�

, (49)

we obtain the following equation:

exp
��

2
χ
+

1
ξ

�

lA

�

=
2cχ|A|

c̃ξ
exp

��

ξL +χvt
χξ

�

−
lB − lA
χ

�

. (50)

Together with the previous relation lA is now given as a function of the other parameters:
�

2
χ
+

1
ξ

�

lA = ln
�

2cχ|A|
c̃ξ

�

+
ξL +χvt
χξ

−
1
χ

�

ξ ln
�

|B|
|A|

�

+ v (t0 − t)
�

. (51)

Hence,

lA =
ξ

2ξ+χ

�

χ ln
�

2χ|A|c
c̃ξ

�

+ ξ ln
�

|A|
|B|

��

+
L − vt0 +

�

1+ χ
ξ

�

vt

2+ χ
ξ

. (52)

Once we got that, we can easily find the other parameter using the identity:

lB = lB − lA+ lA =
L − vt +

�

1+ χ
ξ

�

vt0

2+ χ
ξ

+
ξ

2ξ+χ

�

χ ln
�

2cχ|B|
c̃ξ

�

+ ξ ln
�

|B|
|A|

��

. (53)

One can then get lB from lA by switching t to t0 and |A| to |B| simultaneously.
These solutions are plugged into the previous expression to find:

lA− vt
ξ

=
1

2ξ+χ

�

L − v (t + t0) +χ ln
�

2cχ|A|
c̃ξ

�

+ ξ ln
�

|A|
|B|

��

=
L − v (t + t0)

2ξ+χ
+C1. (54)

The same can be done for the other coordinate:

lB − vt0

ξ
=

1
2ξ+χ

�

L − v (t + t0) +χ ln
�

2cχ|B|
c̃ξ

�

+ ξ ln
�

|B|
|A|

��

=
L − v (t + t0)

2ξ+χ
+C2. (55)

In the last step also the sum of lA and lB is calculated to be

lA+ lB =
2ξχ

2ξ+χ
ln

�

2cχ
p

|A||B|
c̃ξ

�

+
2L + χ

ξ v (t + t0)

2+ χ
ξ

, (56)

such that one finds eventually:

L − (lA+ lB)
χ

=
L − v (t + t0)

2ξ+χ
+C3, (57)
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where C3 =
2ξ

2ξ+χ ln
�

2cχ
p
|A||B|

c̃ξ

�

.

Plugging this into the previous equation yields the tightest possible bound:

|〈OA (t)OB (t0)〉| ≤
�

2c|A|e−C1 + 2c|B|e−C2 + c̃e−C3
�

exp
�

−
L − v (t + t0)

2ξ+χ

�

, (58)

which identifies a light-cone traveling at speed v with exponentially decaying leaks. Adjusting
the constants brings this form back to the form in Eq. (44).
For small times t and t0, we can see that this bound, where the optimization has been per-
formed analytically, is still growing linearly, since

|〈OA (t)OB (t0)〉| ≤
�

2c|A|e−C1 + 2c|B|e−C2 + c̃e−C3
�

exp
�

−
L

2ξ+χ

��

1+
v (t + t0)
2ξ+χ

�

. (59)

C Additional calculations for the explicit bound of the correlation
function

To explicitly bound the correlation function in the case of the Luttinger model one needs to
find a suitable estimation for the different contributions in Eq. (16). The ansatz is to bound
every term using the cascade

(x + ν(t + t0))2 − a2

((x + ν(t + t0))2 + a2)2
≤
(x + ν(t − t0))2 − a2

((x + ν(t − t0))2 + a2)2

≤
(x − ν(t − t0)))2 − a2

((x − ν(t − t0))2 + a2)2
≤
(x − ν(t + t0)))2 − a2

((x − ν(t + t0))2 + a2)2
,

for x ≥ ν(t+ t0). However, this is not always fulfilled, since for x = ν(t+ t0), for example, the
upper bound is negative, whereas the “smallest” term can be positive. One way to fix this is to
add the small offset

p
3a to the range of allowed x values, i. e. x ≥ ν(t + t0)+

p
3a. For each

estimation one can then multiply both sides with both denominators and subtract the smaller
term in the equation above. This yields, for example,

(( x̃ +
p

3a)2 − a2)(( x̃ + 2ν(t + t0) +
p

3a)2 + a2)2

− (( x̃ +
p

3a)2 + a2)2(( x̃ + 2ν(t + t0) +
p

3a)2 − a2)≥ 0,

where we introduced x̃ := x−ν(t+ t0)−
p

3a such that x̃ ∈ R+0 . Straightforward algebra then
shows that all terms are positive or zero if the bound is tight. Thereby, we have demonstrated
that it is possible to bound all terms as in Eq. (25) in the specified region.
This shift by

p
3a results from the comparison of the four different terms over the allowed

x-range in the equation above. The upper bound is maximal and larger than the other contri-
butions at x = ν(t + t0) +

p
3a.

D Correlation function at finite temperature

For T > 0 the density-density correlation function in a finite sytem of size L is given by

〈n(x , t)n(0, t0)〉th =〈n(x , t)n(0, t0)〉T=0 +
2

4π2

∞
∑

s=1

�

(γ
Æ

1+ γ2 − γ2 − 1)

×
�

V (x + ν(t − t0), a+ β vF s) + V (x − ν(t − t0), a+ β vF s)
�

−(γ
Æ

1+ γ2 − γ2)
�

V (x + ν(t + t0), a+ β vF s) + V (x − ν(t + t0), a+ β vF s)
�

�

, (60)

22

https://scipost.org
https://scipost.org/SciPostPhys.5.5.052


SciPost Phys. 5, 052 (2018)

with

V (τ, a) =
2π2

L2

1− cosh
�2π

L a
�

cos
�2π

L τ
�

�

cosh
�2π

L a
�

− cos
�2π

L τ
��2 (61)

(cf. Eq. (17)). However, the infinite sum cannot be executed in a closed form unless you
consider the thermodynamic limit L→∞ as it is done in section 4.2.
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