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Abstract

Based on a generalized free energy we derive exact thermodynamic Bethe ansatz formu-
las for the expectation value of the spin current, the spin current-charge, charge-charge
correlators, and consequently the Drude weight. These formulas agree with recent con-
jectures within the generalized hydrodynamics formalism. They follow, however, directly
from a proper treatment of the operator expression of the spin current. The result for
the Drude weight is identical to the one obtained 20 years ago based on the Kohn for-
mula and TBA. We numerically evaluate the Drude weight for anisotropies ∆ = cos(γ)
with γ = πn/m, n ≤ m integer and coprime. We prove, furthermore, that the high-
temperature asymptotics for general γ = πn/m—obtained by analysis of the quantum
transfer matrix eigenvalues—agrees with the bound which has been obtained by the
construction of quasi-local charges.
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1 Introduction

The Hamiltonian of the XXZ chain is given by

H = J
N
∑

l=1

�

σx
l σ

x
l+1 +σ

y
l σ

y
l+1 +∆σ

z
lσ

z
l+1

�

− 2h
N
∑

l=1

σz
l , (1)

where σx ,y,z are Pauli matrices, ∆ = cos(γ) is the anisotropy, h the applied magnetic field,
and we use periodic boundary conditions. The XXZ chain is a Bethe ansatz (BA) integrable
model and a family of commuting transfer matrices, [T (θ ), T (θ ′)] = 0, exists with θ being
the spectral parameter. The logarithm of the transfer matrix is the generating function for an
infinite set of conserved charges

Qn =
dn

dθ n
ln T (θ )

�

�

�

�

θ=0
. (2)

In particular, Q1 ∝ H and Q2 ∝ JE for zero magnetic field, where JE is the energy current
operator. Based on the infinite number of conservation laws, one might expect that the XXZ
chain shows purely ballistic transport. This is indeed the case for thermal transport because the
energy current JE is itself a conserved charge, i.e. [JE , H] = 0. Based on a generalized Gibbs
ensemble (GGE), which includes the higher conserved charges, the temperature dependence
of the thermal conductivity can thus be calculated straightforwardly [1,2].

The spin current operator J0, on the other hand, is not conserved. Whether the spin Drude
weight is finite at finite temperatures and, if so, how to calculate it analytically has been
the subject of a number of studies in the last 20 years [3–15]. Based on a field theoretical
treatment, a coexistence of a Drude weight with a diffusive part was predicted for small finite
temperatures [7]. In frequency space, this corresponds to a Drude peak which sits on top of
a narrow Lorentzian. Further evidence for this picture was recently obtained in a generalized
hydrodynamics equation where a diffusive term was considered as next leading correction
[16]. In this paper we will not study the diffusive part of the current and will instead be
exclusively concerned with the calculation of the ballistic part, i.e. the finite-temperature Drude
weight.

The spin current density is defined by the discrete continuity equation

∂tσ
z
l = −i[σz

l , H] = −( jl − jl−1), (3)

from which one obtains
jl = 4iJ

�

σ+l σ
−
l+1 −σ

−
l σ
+
l+1

�

, (4)

with σ± = (σx ± iσ y)/2. The total spin current operator is given by J0 =
∑

l jl . The spin
Drude weight D(β) at inverse temperature β = 1/T (we set kB = 1) can then be defined in
the following two equivalent ways. On the one hand, one can consider the Kubo formula for
the spin conductivity as a function of frequency ω

σ(ω) =
i
ω

�〈Hkin〉
N

+ 〈J0 ; J0〉ret(ω)
�

, (5)
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where Hkin is the kinetic energy operator, i.e. the transversal exchange terms of H, and 〈 ; 〉ret
is the retarded correlation function. The real part of the conductivity is given by

σ′(ω) = 2πD(β)δ(ω) +σreg(β ,ω). (6)

A finite Drude weight, D(β) > 0, thus implies an infinite dc conductivity. Another way to
define the Drude weight is to consider the current-current correlator directly in time t,

D(β) = lim
t→∞

lim
N→∞

β〈J0(0)J0(t)〉
2N

= lim
N→∞

β

2N

∑

k

|〈J0Qk〉|2

〈Q†
kQk〉

. (7)

In the last step, we have projected onto a complete set of commuting conserved charges which
are orthogonal, 〈Q†

kQ l〉= 〈Q
†
kQk〉δkl where 〈. . . 〉 denotes the thermal average at inverse tem-

perature β . If the set of charges is not complete then the r.h.s. provides a lower bound for
D(β), the so-called Mazur bound [3,17,18]. According to this equivalent definition, the Drude
weight is the part of the current which does not decay in time because it is protected by a fi-
nite overlap with some of the conserved charges. The question of whether or not the XXZ
chain always has a finite Drude weight at finite temperatures is an intriguing one because
〈J0Qk〉 = 0 for all the charges defined in Eq. (2) if the magnetic field vanishes. This follows
from simple symmetry considerations: While the spin current (4) is odd under the spin-flip
symmetry σz → −σz , all the charges in Eq. (2) are even in this case. This puzzle was solved
by realizing that for the open XXZ chain, additional operators exist which are conserved up
to boundary terms and are odd under the spin-flip operation [8, 9]. Later it was shown that
fully conserved odd charges with finite overlap with the current operator can be constructed
for periodic boundary conditions [10,11]. In the following, we concentrate exclusively on the
Drude weight for vanishing magnetic field, h=0.

Using the Bethe ansatz there are three different approaches which have been used so far to
compute the Drude weight: (1) Starting from the spectral representation of the Kubo formula
(5) and comparing this with the change of the eigenenergies εn of the Hamiltonian (1) when
threading a static magnetic flux Φ through an XXZ ring one finds

D =
1

2N Z

∑

n

e−βεn
∂ 2εn(Φ)
∂Φ2

�

�

�

�

Φ=0
, (8)

with Z the partition function. This is a generalization of the Kohn formula [19] to finite
temperatures [20]. For zero temperature, in particular, the Drude weight can be obtained
simply from the ground state energy of the system with an added flux [21] leading to

lim
β→∞

D(β) = Dβ→∞ = J
π sinγ

2γ(π− γ)
. (9)

For finite inverse temperatures, the formula (8) has been used in Ref. [4] to calculate D(β)
for anisotropies γ = π/m on the basis of the thermodynamic Bethe ansatz (TBA). The high-
and low-temperature limits have then been analyzed in Ref. [5]. (2) A completely different
approach is based on constructing a set of charges that have finite overlap with the current
operator and to evaluate the r.h.s. of Eq. (7), see Refs. [8–11]. A major difficulty in this
approach is the evaluation of the correlators at finite temperatures. So far, only the high-
temperature limit has been analyzed analytically [9] resulting in

lim
β→0

4
β

D = J2 sin2(πn/m)
sin2(π/m)

�

1−
m
2π

sin(2π/m)
�

. (10)

Here the equal sign is only correct if the set of conserved charges used is complete which is a
point which is difficult to prove. For anisotropies γ = π/m it has been shown that the above
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result agrees with the high-temperature limit of the TBA result obtained using the Kohn for-
mula. In the following we will prove that this is also true for general anisotropies γ = πn/m.
Note that the Drude weight in the high-temperature limit has a fractal character according to
Eq. (10) while Dβ→∞ depends smoothly on anisotropy, see Eq. (9). Finally (3), a third ap-
proach has recently been proposed based on a generalized hydrodynamics (GHD) formulation
where it is conjectured that the continuity equation

∂t〈q`〉+ ∂x〈 j`〉= 0 (11)

takes the form of an Euler equation1 for the `-th quasi-particle density ρ` [12–15]

∂tρ`(θ ) + ∂x (v`(θ )ρ`(θ )) = 0, (12)

with effective velocity v`(θ ), where we have suppressed the time and space dependence. It
should also be noted that both the particle density and effective velocity depend on position
and time. The expectation value of an extensive charge 〈Qm〉 in a local stationary state de-
scribed by the distribution ρ` is given by

〈ρ|Qm|ρ〉/N =
∑

`

∫

dθ qm
` (θ )ρ`(θ ), (13)

with the subscript referring to an `-string in the BA solution and with the superscript denoting
the m–th bare charge eigenvalue. If one assumes that a system which is not in equilibrium is
composed of cells which are locally described by the distribution ρ`(θ ) then Eq. (12) allows to
compute the time evolution of the system along every ray ξ= x/t. For the Lieb-Liniger model
in the linear response regime, in particular, this formalism has been used to obtain formulas
for the expectation values of 〈Jn〉, 〈JnQm〉, and 〈QnQm〉 [15]. Formally, these results can be
straightforwardly generalized to the XXZ chain by summing over all possible string types. An
obvious question then is if the TBA formulas for the current and current-charge expectation
values obtained in this way are exact.

To answer this question we will present in this paper a fourth approach where we derive
current and current-charge correlators exactly starting from a generalized free energy and the
operator expression for the spin current, without using the GHD conjecture. Based on Eq. (7)
we will then use these correlators to derive a formula for the Drude weight and show that it
is identical to the GHD result and to the TBA result obtained from the Kohn formula. Our
paper is organized as follows: In Sec. 2 we derive exact results for 〈J0〉 and 〈J0 Qn〉. In Sec. 3
we obtain the Drude weight and analyze analytically the high- and low-temperature limits for
anisotropies γ = πn/m. A numerical evaluation of the Drude weight for these anisotropies
and arbitrary temperatures is presented in Sec. 4. A brief summary and conclusions are given
in Sec. 5.

2 The spin current, current-charge and charge-charge correlators

The basic object we want to consider is the reduced n-site density matrix D(n) obtained from
the full thermal density matrix ρ = exp(−βH)/Z by taking a partial trace over the other
N − n sites, D(n) = tr1,··· ,N−n ρ. Note that the Hamiltonian (1) is translationally invariant.
The reduced density matrix is thus only a function of the length of the segment. The ele-
ments of the n-site reduced density matrix can always be expressed through a combination
of n-site spin correlators. For the 1-site reduced DM, for example, we have 1 = D1

1 + D2
2 ,

1This equation is often referred to as the Bethe-Boltzmann equation.
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〈σz〉 = tr(D(1)σz) = D1
1 − D2

2 , 〈σ+〉 = D2
1 , and 〈σ−〉 = D1

2 which allows to rewrite the matrix

elements Dβα in terms of the expectation values of σz,+,−. Similarly, for the 2-site reduced
DM we find D21

12 = 〈σ
+
l σ
−
l+1〉. Knowing the elements of the 2-site density matrix thus allows

to determine the expectation value of the spin current operator defined in Eq. (4). Using
the Yang-Baxter algebra, the following relation for an inhomogeneous generalization of the
reduced density matrix has already been obtained previously [22]

D21
12 (2;ξ1,ξ2)− D12

21 (2;ξ2,ξ1) =
D1

1 (1;ξ1)− D1
1 (1;ξ2)

i(ξ1 − ξ2)
. (14)

Here ξi are spectral parameters which are put on the vertical lines of the corresponding vertex
model. Identifying the matrix elements by the spin correlators as above we find from (14) the
relation

〈 jl〉= 2∂ξ〈σz
l 〉
�

�

ξ=0 ; 〈J0〉/N = 〈 jl〉= −∂ξ∂βh fξ({β})
�

�

ξ,h=0. (15)

Here fξ({β}) is the generalized free energy density with spectral parameter ξ and generalized
inverse temperatures {β} = {β0,β1, . . . }. It is related to the leading eigenvalue Λ(ξ) of the
quantum transfer matrix by

fξ({β}) = − lnΛ(ξ). (16)

We want to stress once more that we discuss here only the transport properties of the XXZ
chain at zero magnetic field. In TBA we can write this free energy density as

fξ({β}) = −
1

2π

∑

`

∫

dθ p′`(ξ− θ )σ` ln[1+η−1
` (θ )]. (17)

Here p`(θ ) is the momentum distribution and the variables σ` = sign(g`) are the signs of
auxiliary rational numbers associated to string solutions as defined in [23]. For the simplest
case of anisotropy γ= π/m the g` have a particularly simple relation to string length n`

g` = m− n`, n` = ` for `= 1, . . . , m− 1 and gm = −1, nm = 1. (18)

The function η` = ρh
`
/ρ` is defined by the ratio of hole density ρh

`
and particle density ρ` of

the `-th particle (string). It fulfills the TBA equations

lnη`(θ ) =
∑

n

βnqn
` (θ ) +

∑

κ

∫

dµK`κ(θ −µ)σκ ln(1+η−1
κ (µ))

≡
∑

n

βnqn
` +

�

K ∗σ ln(1+η−1)
�

`
, (19)

with charges qn
`
, Lagrange multipliers (generalized temperatures) βn, an integration kernel K ,

and ’∗’ denoting a convolution and sum over Bethe strings. For the first few charges we have,
in particular, β0 = βh, q0

`
= n`, and β1 = β , γ(4J sinγ)−1ε` = ∂θ p` = p′

`
. In the following, we

rescale the energy γ(4J sinγ)−1ε`→ ε` = q1
`

to absorb the scaling factor. Furthermore, we use
the shorthand notation ∂n ≡ ∂βn

. Dressed charges eqn
`

are defined by the integral relation

eqn
` = qn

` − [K ∗σϑeq
n]` , (20)

where we have defined the Fermi factor ϑ` = 1/(1+η`) = ρ`/(ρ`+ρh
`
). It is also very useful

to realize the following simple relation of the dressed charges to logarithmic derivatives of the
η-functions

∂n logη`(θ ) = eq
n
` (θ ) . (21)
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In order to calculate the expectation value of the current 〈J0〉 we note that

∂0 ln(1+η−1
` ) = −

∂0 lnη`
1+η`

= −ϑ`eq0
` , (22)

leading to

〈J0〉/N = −∂ξ∂0 fξ({β})
�

�

ξ=0 =
1

2π

∑

`

∫

dθ σ`ε
′
`(θ )ϑ`(θ )q̃

0
` (θ ) , (23)

where we have used that p′′(θ ) = ε′(θ ). There are various ways to rewrite this equation. Here
we want to bring it into a form similar to the one conjectured within the GHD approach. The
basic identity we want to make use of is

∑

`

∫

dθ
�

K ∗σ∂n ln(1+η−1)
�

`
σ`∂m ln(1+η−1

` )

=
∑

`

∫

dθ
�

K ∗σ∂m ln(1+η−1)
�

`
σ`∂n ln(1+η−1

` ).
(24)

Using Eq. (19) we can express K ∗ σ`∂0 ln(1 + η−1
`
) = ∂0 lnη` − q0

`
and

K ∗σ`∂2 ln(1+η−1
`
) = ∂2 lnη` − q2

`
. In this case the identity (24) yields

∑

`

∫

dθ q0
`σ` ∂2 ln(1+η−1

` )
︸ ︷︷ ︸

−ϑ`eq2
`

=
∑

`

∫

dθ q2
l σ` ∂0 ln(1+η−1

` )
︸ ︷︷ ︸

−ϑ`eq0
`

. (25)

The expectation value of the current operator (23) can thus also be written as

〈J0〉/N =
1

2π

∑

`

∫

dθ σ`ϑ` eq
2
`

︸︷︷︸

=ß∂θ ε`

q0
`

︸︷︷︸

=n`

=
∑

`

∫

dθ v`(θ )ρ`(θ )q
0
` (θ ), (26)

where the rapidity density g∂θ p` = 2πσ`(ρ` + ρh
`
) and effective velocity v` ≡g∂θε`/

g∂θ p` are
defined by the dressed derivatives with respect to the spectral parameter of the energy and the
momentum. This formula agrees with the conjectured general current formula used in GHD
and appearing in Ref. [12,13].

The correlator 〈J0Qn〉/N can also be computed from the free energy fξ({β}) defined in
Eq. (17) via derivatives with respect to the appropriate Lagrange multiplier β j , see Eq. (21).
We find in particular,

〈J0Qn〉/N = −∂ξ∂0∂n fξ({β}) = −
1

2π

∑

`

∫

dθ (∂θε`)σ`∂0∂n ln(1+η−1
` ). (27)

In order to simplify this result we use the following relation

∑

`

∫

dθ qk
`σ`∂m∂n ln(1+η−1

` ) =
∑

`

∫

dθ σ`ϑ`(1− ϑ`)eqk
`eq

m
` eq

n
` , (28)

which is proven in Appendix A. Using this relation for the charge-current correlator (27) leads
to our final result

〈J0Qn〉/N = −
∑

`

∫

dθ
2π
g∂θε`σ`ϑ`(1− ϑ`)eq

0
l eq

n
` = −

∑

`

∫

dθ v`ρ`(1− ϑ`)eq0
`eq

n
` , (29)
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where we have once more made use of the rapidity density and effective velocity relations.
As above, this result is consistent with a generalization of the formula in Ref. [15] from the
Lieb-Liniger model to the case of multiple particle species. Analogously, the charge-charge
correlator is given by

〈QnQm〉/N = −∂n∂m fξ=0({βn}) =
1

2π

∑

`

∫

dθ (∂θ p`)σ`∂n∂m ln(1+η−1
` ),

=
1

2π

∑

`

∫

dθ σ`ϑ`(1− ϑ`)g∂θ p`eq
n
`eq

m
` ,

=
∑

`

∫

dθ ρ`(1− ϑ`)eqn
`eq

m
` , (30)

where we have used again the relation (28) in the second step. For the special case
Qn = Qm = Q2 = JE this reproduces the formula needed to calculate the thermal Drude
weight by TBA first derived in [2]. If we only take a single derivative, then we obtain a TBA
formula for the energy current

〈JE〉= −∂2 fξ=0({β}) =
1

2π

∑

`

∫

dθ p′`σ`ϑ`q̃
2
` =

∑

`

∫

dθ ρ`q
2
` =

∑

`

∫

dθ v`ρ`q
1
` . (31)

This result agrees with Eq. (13) and also with Eq. (26) provided we replace q0
`

with q1
`
.

3 The Drude weight

Using the expressions for the spin-charge and charge-charge correlators in Eq. (29) and
Eq. (30) of the previous section, the Drude weight (7) can be determined from

D = lim
N→∞

β

2N

∑

n

〈J0Qn〉2

〈Q2
n〉
=
β

2

∑

n

�∑

`

∫

dθ v`ρ`(1− ϑ`)eq0
`
eqn
`

�2

∑

`

∫

dθρ`(1− ϑ`)eqn
l eq

n
`

. (32)

In order to simplify Eq. (32) we follow the original argument by Mazur [17] and define a
quantity Z = J0 −

∑

n cnQn with 〈Z2〉 ≥ 0, and the set Qn being the complete set of conserved
charges. This leads to the relation2

〈J0J0〉 ≥ 2
∑

n

cn〈J0Qn〉 −
∑

n,m

cncm〈QnQm〉 . (33)

Maximizing the right hand side with respect to the vector ~c leads to the condition
∑

n

cn〈QnQm〉= 〈J0Qm〉. (34)

Using the expressions (29) and (30) after bringing the overall constants to the LHS

∑

n,`

cn

∫

dθρ`(θ )(1− ϑ`(θ ))eqn
` (θ )eq

m
` (θ ) = −

∑

`

∫

dθ v`(θ )ρ`(θ )(1− ϑ`(θ ))eq0
`eq

m
` (θ )

⇔
∑

`

∫

dθρ`(θ )(1− ϑ`(θ ))
�

∑

n

cneq
n
` (θ ) + v`(θ )eq

0
`

�

eqm
` (θ ) = 0 . (35)

2Taking 〈J0J0〉 as shorthand for limt→∞〈J0(0)J0(t)〉.
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Next, we use that {qn} is a complete set of conserved charges with non-vanishing overlap
with the spin current. This set comprises of the quasi-local charges [9] and additional charges
Q1,Q2, · · · . The exact form of these additional charges does not matter as long as they make
the set complete. If this is the case, then the Mazur argument can be applied. We will see in
the following that the additional charges drop out in the final result. We further also assume
completeness in the sense that the vanishing of the sum-integral of Eq. (35) for any charge
automatically implies the vanishing of the integrand,

∑

n

cneq
n
` (θ ) = −v`(θ )eq

0
` . (36)

Under these assumptions, the bound obtained should be exhaustive and we find the following
expression for the conserved part of the spin current

2Dβ−1 = 〈J0J0〉/N =
∑

n

cn〈J0Qn〉/N −
∑

n,m

cncm〈QnQm〉/N =
∑

n

cn〈J0Qn〉/N

= −
∑

`

∫

dθ
∑

n

cnρ`(θ )(1− ϑ`(θ ))eqn
` (θ ) v`(θ )eq

0
` (θ )

=
∑

`

∫

dθρ`(θ )(1− ϑ`(θ ))
�

v`(θ )eq
0
` (θ )

�2
. (37)

The last part of our derivation is based on the same assumptions used in [15]. Importantly
however, the expressions for current and current-charge expectation values are derived from
first principles.

3.1 Equivalence with the Drude weight formula by Zotos

Starting from (37) it is now straightforward to show that our result is identical to the one
obtained 20 years ago based on the Kohn formula and using the TBA to calculate the curvature
of energy levels [4,5]. Rewriting the particle density and filling fraction in terms of η-functions
we obtain

D =
β

2

∑

`

∫

dθ
ρ` +ρh

`

(1+η`)(1+η−1
`
)

�

g∂θε/g∂θ p
�2
(eq0
` )

2

=
β

4π

∑

`

∫

dθ σ`
(eq2
`
)2(eq0

`
)2

eq1
`
(1+η`)(1+η−1

`
)
. (38)

Now we can use the relation ∂θ lnη` = βg∂θε` = βeq
2
`

to obtain—up to a normalization factor—
the well-known result [5]

D =
1

4πβ

∑

`

∫

dθ σ`
(∂θ lnη`)2(∂0 lnη`)2

(∂1 lnη`)(1+η`)(1+η−1
`
)

. (39)

Note that by restoring the scaling factor 4J sin(γ)/γ the result in (39) agrees with [5].
Here we have thus provided an alternative derivation of the Drude formula which makes

use of an (exhaustive) Mazur bound and first principles derivations of current correlators in-
stead of the Kohn formula. Note, however, that both approaches use the TBA formalism so the
rederivation presented here should not be understood as being completely independent.
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3.2 Low-temperature limit

The low-temperature asymptotics of Eq. (39) have already been determined in [21, 24, 25]
with

Dβ→∞ = J
π sinγ

2γ(π− γ)
, (40)

consistent with the known zero temperature result (9). Our numerical data discussed in more
detail in Sec. 4 also agree with this low-temperature formula, up to the point where the nu-
merics breaks down, see Fig. 3.

We note, furthermore, that this formula also follows directly from the alternative expres-
sion (37) by observing that the particle/ hole densities vanish around the origin. So only
regions with constant effective velocity v± = ±2Jπ sin(γ)/γ have non-zero particle/ hole den-
sity. Then taking into account that (29) reduces to (v±)2 multiplied by 1/2 times the zero
field susceptibility, χ0 =

1
4Jπ(π−γ)

γ
sinγ , Eq. (40) follows provided that one also reintroduces the

rescaling factor 4J sin(γ)/γ.

3.3 High-temperature limit

The high temperature asymptotics of the Drude weight (10) has been obtained by constructing
families of quasi-local charges [9]. Numerics based on the GHD approach agree with this
bound [28] and analytical GHD calculations for certain density and current profiles reproduce
it [26]. A proof for (10) directly from the quantum transfer matrix approach is known only
for γ = π

m [5]. We generalize this transfer matrix result to anisotropies γ = nπ
m making use of

the Y-system decomposition in [27], and the usual unscaled temperatures appearing therein.
A rational π/γ can be written as a continued fraction of length α determined by integers ν j .
There are L =

∑α
j=1 ν j functional equations for η` terms. Importantly the final two ‘boundary’

η are given by

ηL−1(x) = eβhm/2K(x) , ηL(x) = eβhm/2 1
K(x)

. (41)

These boundary η are the only terms with magnetization appearing in odd powers, meaning
that

∂βhηL−1

�

�

h=0 = ∂βhηL

�

�

h=0 =
m
2

, and ∂βhη j

�

�

h=0 = 0, for 1≤ j ≤ L − 2 . (42)

Thus only the final two η terms contribute to the Drude weight at vanishing field. We denote
the boundary string pair as a particle (ηL−1)/ hole (ηL) pair with string lengths µ := nL−1
and µ̄ := nL respectively. From Eq. (41), this pair is determined by K(x), with these K(x)
expressible in terms of transfer matrices Tr−1(x),

K(x) =
Tµ−1(x + ip0w0)

Tµ̄−1(x + i(m+ p0w0))
, (43)

with w0p0 = (−1)α+1pL + p0 − 2µ̄, where α is the length of our continued fraction, p0 = π/γ,
and pL = π/(γm). By abuse of notation we express the eigenvalues of Tr−1 as

Q(x) =
M
∏

j=1

sinh
�γ

2
(x −ω j)

�

, (44)

φ±(x) =
n

sinh
�γ

2
(x ± iu)

�o
N
2

, where u= −
4Jβ sin(γ)
γN

, (45)

Tr−1(x) =Q(x + ir)Q(x − ir)
r
∑

j=1

φ−[x + i(2 j − 2− r)]φ+[x + i(2 j − r)]
Q[x + i(2 j − 2− r)]Q[x + i(2 j − r)]

. (46)
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By use of both the functional relation, which is valid for rational values of π/γ,

Tµ+2µ̄−1(x) = Tµ−1(x) + 2Tµ̄−1(x + i(µ+ µ̄)) , (47)

and periodicity conditions of Q(x) andφ(x) the sums of Eq. (46) inserted into Eq. (43) simplify
to

K(x) + 1= m

 

n̄
∑

j=1

φ−[x + i(p0w0 + 2 j − 2)]φ+[x + i(p0w0 + 2 j)]
Q[x + i(p0w0 + 2 j − 2)]Q[x + i(p0w0 + 2 j)]

!−1

. (48)

In this form the Trotter limit at infinite temperature β → 0 can be used to determine the
first order temperature effect, by noting that in this limit the Bethe roots can be identified
identically with zero. For brevity take ξ j(x) = coth

�γx
2 + iγ j

�

and the first order in β yields
(with x ′ = x + iw0p0)

φ−[x ′ + i(2 j − 2)]φ+[x ′ + i(2 j)]
Q[x ′ + i(2 j − 2)]Q[x ′ + i(2 j)]

=
�

1+ iJ sinγβ
�

ξ j−1(x
′)− ξ j(x

′)
��

. (49)

From this expansion it is straightforward to complete the sum in the denominator of Eq. (48).
Expanding again in β leads to the first order correction

K(x) + 1=
m
µ̄

�

1−
iJ sinγ
µ̄

β
�

ξ0(x + iw0p0)− ξµ̄(x + iw0p0)
�

�

+O(β2) . (50)

This result can then be inserted into the Drude weight formula Eq. (39), which reduces to
the integral

Dβ→0 = −
iβJ2 sin2(γ)

8π
m

∫

dθ

�

(∂θξ0(2θ/γ+ iw0p0)− ∂θξµ̄(2θ/γ+ iw0p0))2

ξ0(2θ/γ+ iw0p0)− ξµ̄(2θ/γ+ iw0p0)

�

. (51)

This can then be integrated to obtain the leading order corrections of the high temperature
result

4β−1Dβ→0 = J2 sin2(γ)
sin2(γpα)

�γpαm
π
−

m
2π

sin(2γpα)
�

+O(β2), (52)

where the O(β) term is found to vanish. This is exactly the Prosen bound (10) as found via
the construction of quasi-local charges in [10, 11] provided pα = π/(γm), which is proven in
Appendix B by induction.

4 Numerical evaluation of D(β) for arbitrary temperatures

In order to obtain the Drude weight, two numerical schemes were used. The first was used as a
check and involves the preparation of two spin chains at thermal equilibrium with some small
magnetic field difference between the two, which are then joined at the origin. The system is
evolved via the Euler relations (12), which permit a linear response calculation of the Drude
weight. This first method has been applied to this problem previously in Refs. [14, 28]. The
second method involves the explicit evaluation of (37), which can be computed much more
quickly and was analytically shown in [15] to be equivalent to the first method.

Both methods involved determining the Fermi-weights ϑ`(θ ) =
1

1+η`(θ )
via the Yang-Yang

method by obtaining the hole/ particle density ratio η`(θ ) via Eq. (19). With an initial guess
function M`(θ ) the calculation was carried out by simple half step updates until it reached the
desired convergence. Explicitly this was carried out by the following steps
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Figure 1: Drude weight coefficient β−1D(γ,β) for various anisotropies γ= πn/m and
temperatures. Note that the high temperature results (β = 0.4, 0.1,0.03) are partly
on top of each other on this scale and agree with the analytical infinite temperature
result (solid line). D(β) is a nowhere continuous function except for at β−1 = 0.
Note that the change of β−1D with decreasing temperature is not uniform: the data
for β = 0.4 and β = 1.58 show a crossover at cos(γ) =∆≈ 0.59.

• Use ηN
`
(θ ) to compute the set of M N

`
(θ ) = log

�

1+ 1
ηN
`
(θ )

�

.

• Take the Fast Fourier Transform (FFT) of M N
`
(θ ).

• Solve the transformed form of Eq. (19) for the dressed energy, FFT(eεtemp
`
(θ )).

• Invert the FFT and update ηN+1
`
= (ηtemp

`
+ηN

`
)/2.

• Return to the first step with the updated guess M N+1
`

.

Once the functions η`(θ ) have converged, the dressed charges can be obtained using the
relation (21). The dressed spin is known in the zero field limit to be eq0

`
= 0 for ` = 1 . . . L − 2

and eq0
L−1 = eq

0
L = m/2 with γ= nπ

m . Note that the n appearing in the anisotropy is not connected
to the string length n` = q0

`
. This provides a first check on the validity of the solution.

A first question we want to address numerically is how the nowhere continuous bound for
the Drude weight (10) evolves into the zero temperature Drude weight (9) which is a smooth
function of anisotropy. From Fig. 1 it becomes clear that D(β) is in fact a fractal for any finite
temperature. Once the part of the current which is not protected by conservation laws starts
to relax due to finite-temperature Umklapp scattering, the structure of the conserved charges
odd under spin-flip symmetry—which strongly depends on the anisotropy ∆ = cos(πn/m)—
becomes visible in the remaining Drude weight. The β−1 = 0 case is special because Umklapp
scattering is an irrelevant operator. There is no mechanism for current relaxation in a com-
pletely clean system at zero temperature and the integrable structure of the model, which is
responsible for the discontinuous D(β > 0) as a function of anisotropy, plays no role.

Next, we want to consider the high-temperature limit in more detail. In Fig. 2 the difference
between β−1D(β) and the bound (10) is shown. We note first that for both sets of anisotropies,
γ= π/m and γ= 7π/m, the numerical data show a power-law decay in temperature towards
the high-temperature bound. Interestingly, the Drude weights at a given temperature order
differently as a function of anisotropy in the case γ= π/m for temperatures above and below
β−1 ≈ 0.5.
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Figure 2: Absolute difference between the Prosen bound β−1Dβ→0 of (10) and the
Drude weight coefficient β−1D demonstrating convergence to the Prosen bound.
Note the crossover between curves for different anisotropies at β−1 ≈ 0.5 in the left
panel. A power-law scaling consistent with |D(β)−Dβ→0| ∼ β3 at high temperatures
is observed, agreeing with the TBA result see Eq. (52).
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Figure 3: The numerical data at low temperatures show a power-law scaling consis-
tent with Dβ→∞ − D(β)∼ β2γ/(γ−π).

Finally, we also want to consider the low-temperature limit for general anisotropies
γ = πn/m. In Ref. [4] it was observed that the Drude weight at low temperatures scales as
D(β)∼ Dβ→∞−αβ2/(1−m) for anisotropies γ= π/m with some constant α. If this scaling does
hold for all commensurate anisotropies then one would expect D(β) ∼ Dβ→∞ − αβ2γ/(γ−π).
In Fig. 3 we show exemplarily for anisotropies γ = 3π/m that this expectation is consistent
with our numerical data.

5 Conclusions

The main purpose of this paper was to provide a first principles derivation for the expectation
value of the spin current as well as current-charge and charge-charge expectation values in
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steady states described by given particle and hole distributions within the TBA approach. The
main ingredient to derive exact formulas for these quantities was to relate the spin current
with a matrix element of the two-site reduced density matrix. We then used the fact that this
matrix element can be obtained from a generalized free energy by taking a derivative with
respect to a spectral parameter while the charges were generated by taking derivatives with
respect to the Lagrange parameters (generalized temperatures) βn. We showed that the results
derived in this way are consistent with a multi-particle generalization of known Lieb-Liniger
results as conjectured in [15] and hence with the formula in [4]. Using the Mazur bound
and assuming that it becomes exhausted if one considers the full TBA particle content we also
derived a closed-form expression for the spin Drude weight. Straightforward manipulations
showed that our result is identical to the TBA result obtained 20 years ago based on calculating
the curvature of energy levels and using the finite-temperature Kohn formula. While consistent
results for the Drude weight have now been obtained by the Kohn formula, by constructing the
quasi-local charges protecting the Drude weight, and by the approach presented in this paper
we would like to stress that all of these results are limited to the commensurate anisotropies
γ= πn/m and make use of the TBA formalism. While the construction of quasi-local charges
has provided a definitive finite lower bound for anisotropies |∆| < 1 it is, in our view, still
not completely excluded that parts of the Drude weight are missed in these approaches. In
particular, it seems to us that we are not at the point yet where we can claim that a fractal
structure of D(β > 0) has been fully proven.

Putting such fundamental questions aside and taking the TBA result D(β) as given, we have
extended the analysis of the high-temperature asymptotics from the case γ= π/m to all com-
mensurate anisotropies γ= πn/m. Our analytical result in the high-temperature limit is iden-
tical to the bound obtained previously by considering the contribution of all known quasi-local
charges. Finally, we have also presented a numerical evaluation of D(β) for all temperatures
showing that the TBA Drude weight has fractal character for all finite temperatures and that
the low-temperature scaling follows a power law with exponent Dβ→∞ − D(β)∼ β2γ/(γ−π).
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A Proof of identity (28)

The identity (28), which we want to prove here, can also be written as
∫

dθ σqk∂m∂n ln(1+η−1) =

∫

dθ σ
eqk
eqm
eqn

(1+η)(1+η−1)
, (53)

where the subscript ` is omitted, implicitly understanding the summation over it. We first use
the fundamental BA equation (19) obtaining

∂k lnη= qk + K ∗σ∂k ln(1+η−1) , ∂m∂n lnη= K ∗σ∂m∂n ln(1+η−1), (54)

and therefore
∫

dθ ( ∂k lnη− qk
︸ ︷︷ ︸

K∗σ∂k ln(1+η−1)

)σ∂m∂n ln(1+η−1) =

∫

dθ ∂k ln(1+η−1)∂m∂n lnη . (55)
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For the l.h.s. of Eq. (53) we thus find

(A.1)l.h.s. =

∫

dθ σ(∂k lnη)∂m∂n ln(1+η−1)−
∫

dθ σ∂k ln(1+η−1)∂m∂n lnη . (56)

Finally, we need to calculate the following derivatives

∂k ln(1+η−1) = −
∂k lnη
1+η

, ∂m∂n ln(1+η−1) = −
∂m∂n lnη

1+η
+
(∂m lnη)(∂n lnη)
(1+η)(1+η−1)

. (57)

Plugging this into Eq. (56) then leads to

(A.1)l.h.s. =

∫

dθ σ
(∂k lnη)(∂m lnη)(∂n lnη)
(1+η)(1+η−1)

=

∫

dθ σ
eqk
eqm
eqn

(1+η)(1+η−1)
, (58)

which proves the relation (28).

B Elementary Identity pL = 1/n

In order to prove this identity we need the definitions of the Takahashi-Suzuki (TS) integers
from [27], which are collected below. TS integers are defined for γ/π ∈ Q in terms of its
continued fraction, which we notate as γ/π= 1/p0 ≡ [ν1, . . . ,να] and say has length α. As an
example take γ = 4π/9 whose continued fraction will be γ/π = 1/p0 = 1/(2+ 1/4) ≡ [2,4]
with length 2. To make the notation consistent with the literature on the Bethe strings we
identify our n from γ= nπ/m with the TS integer zα and our m with yα, which coincide with
the α-th terms of Eq. (59)

z` = z`−2 + ν`z`−1, y` = y`−2 + ν` y`−1. (59)

Rational TS numbers p` are obtained in terms of the above integers by

y` = z`p0 + (−1)`p`+1, with pα+1 = 0. (60)

By induction we can show that pα = 1/zα. The initial induction step for α= 1 is trivial, as
γ= π/ν1 has p1 = 1= 1/1, which follows from the definitions.

For our induction hypothesis we take pα = 1/zα for a continued fraction {γ} ≡ [ν1, . . . ,να].
Consider a second anisotropy with continued fraction γ′/π = [ν1, . . . ,να,ν′α+1], whose inte-
gers are denoted {z′

`
, y ′
`
, p′
`
} with ` ∈ {0,1, . . . ,α+ 1}. By definition (59) we know that the γ

and γ′ TS integers {z`, y`}= {z′`, y ′
`
}`<α+1 agree for the first α values.

Then beginning from Eq. (60) with index i = α

yα = zαp′0 + (−1)αp′α+1,

y ′α+1 − yα−1 = ν
′
α+1p′0zα + (−1)αp′α+1ν

′
α+1,

y ′α+1 − zα−1 + (−1)αpα = ν
′
α+1p′0zα + (−1)αp′α+1ν

′
α+1,

y ′α+1 − zα−1p0 + (−1)αpα = (z
′
α+1 − zα−1)p

′
0 + (−1)αν′α+1p′α+1. (61)

With p′0 yα+1 = zα+1 the relation simplifies to

zα−1p′0 − zα−1p0 + (−1)αpα = (−1)αν′α+1p′α+1. (62)

From the induction hypothesis pα = 1/zα so obtain

zαzα−1p′0 − zαzα−1p0 + (−1)α = (−1)αzαν
′
α+1p′α+1. (63)

With the relation p′0zα = yα − (−1)αp′α+1 and Eq. (59) it follows that

(−1)α = (−1)αzα+1p′α+1, (64)

so conclude that p′α+1 = 1/zα+1 and the identity is proven.
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