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Abstract

Transporting quantum information is an important prerequisite for quantum computers.
We study how this can be done in Heisenberg-coupled spin networks using adiabatic con-
trol over the coupling strengths. We find that qudits can be transferred and entangled
pairs can be created between distant sites of bipartite graphs with a certain balance be-
tween the maximum spin of both parts, extending previous results that were limited to
linear chains. The transfer fidelity in a small star-shaped network is numerically anal-
ysed, and possible experimental implementations are discussed.
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1 Introduction

Reliable transport of quantum states is essential for future quantum technologies [1]. For
example, qubits stored within a quantum computer may need to be brought in close vicinity
in order to perform quantum gates, and various (parts of) independent computers may need
to be linked. If the quantum information is carried by a spin degree of freedom, then it is a
natural choice to transport the states over a network of spinful particles [2,3].

In this work, we consider such a system of spinful particles, where the spins are coupled
through anti-ferromagnetic (AFM) Heisenberg interactions. We show that, if Alice and Bob can
adiabatically change the strengths of the couplings surrounding a small subsystem of a suitable
network, then they can send each other quantum information and establish entanglement.

The protocols, as illustrated in Fig. 1, are then straightforward: to transfer a spin state,
Alice starts uncoupled from the rest of the system and initializes her site in a state ψ. The rest
of the system must be in a ground state with total spin s = 0. She then adiabatically ramps up
some coupling to connect to the system, after which Bob ramps down the couplings connecting
his site, finding ψ at his now isolated site. Likewise, Alice and Bob can establish maximally
entangled states between their sites by starting with the full network, including their sites,
in a global s = 0 ground state. They then adiabatically uncouple their sites from the system,
ending up with the unique s = 0 state shared between their sites. Such protocols have been
abundant in existing literature (see Sec. 1.1), but were mainly focused on linear chains. Our
results generalize these protocols to more general spin networks, and to more receivers in the
case of transfer, under the assumptions given below.

The intuition that inspired this work is that the Heisenberg coupling preserves the total
spin Ŝ2, and its z component Ŝz , of the whole system. If the final state has one part which is in
a total spin 0 ground state, then the rest of the system must have copied whatever the initial
spin properties were. The adiabatic theorem guarantees that, as long as couplings are changed
sufficiently slowly with respect to a nonzero energy gap, the precise details of the procedure
are unimportant. This reasoning is depicted in Fig. 1.

Our results require the following assumptions. We consider only bipartite graphs, and
define g as the difference between the maximum total spin of both parts. To transfer a spin-s
state, all parties must have g = s, and the system without either of the parties must consist
of connected components, each of which must have g = 0. For entanglement distribution,
both parties must hold a subsystem with a g of opposite sign, and the global system must start
connected and have g = 0. When the two parties are disconnected, the leftover system must
again consist of components with g = 0 each. For either protocol, the precise details of the
adiabatic path are unimportant, as long as the whole system satisfies a criterion we call spin-s
compatible at all times, which guarantees the uniqueness of the ground state. We do not prove
that these requirements are optimal, hence further generalizations may be possible.

1.1 Relation to previous work

Methods for state transfer through spin networks using unitary evolution can generally be
categorized as either quenches, adiabatic evolution, or sequences of swaps. A quench involves
a sudden change in a system’s Hamiltonian, causing former eigenstates to evolve. Various
constant interactions allow an excitation to to move between the ends of a linear chain with
high fidelity, such as in the case of Heisenberg [4], X Y or fermionic hopping interaction [2,3].
Further engineering of these couplings can make the transfer perfect in theory [5–7]. Also,
a sequence of SWAP operations between neighbouring qubits could be seen as a sequence of
quenches.

In the following, we focus on adiabatic protocols, which exploit the adiabatic theorem to
understand the evolution of the relevant eigenstate. Although these protocols are inherently
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Figure 1: A sketch of the intuition behind our results. In the state transfer protocol,
Alice initializes a spinful state while the rest of the system has zero total spin. The
whole system then exhibits the same spin properties as the initialized state. After an
appropriate adiabatic trajectory, Bob becomes disconnected. If the remainder of the
system has a spin-zero ground state, then Bob’s site must contain all spin information.
Similarly, in entanglement distribution, Alice and Bob start with a state with zero total
spin. After they disconnect, if the remainder of the system has total spin zero, then
they must also share a total spin zero state.

slower than quenches, adiabatic protocols are often easier to implement experimentally be-
cause no precise timings are required, and because they are relatively resilient to decoherence
and random or systematic errors in the control fields [8,9].

Results can be further categorized by the type of quantum system (spins, electrons) and
type of interactions under consideration. For our case, of spins with Heisenberg couplings,
it was known that protocols of our type work on linear chains. Oh et al. [10] describe the
state transfer protocol on three qubits with slightly more general XXZ interaction, and already
note that the protocol seems to work on more general spin chain geometries. Agundez et
al. [11] generalize the case of isotropic Heisenberg interactions to longer chain lengths, and
describe superadiabatic optimizations. We note the closely related work by Eckert et al. [12],
who consider a different SU(2)-symmetric interaction and give spin-conservation arguments,
which inspired this work. The entanglement distribution protocol is closely related to the work
by Campos Venuti et al. [7,13], who describe the entanglement between the endpoints of the
spin-1

2 , finding stronger entanglement when the ends are more weakly coupled. Interestingly,
the same system allows perfect quenched transport [7].

Slightly different spin models which allow similar adiabatic protocols are found in Refs.
[9,14,15]. Moreover, much work has been done in the context of transferring particles rather
than spins by adiabatically controlling hopping amplitudes [16–18], among which a broad
class of protocols named coherent tunneling by adiabatic passage (CTAP) [19], which in turn
can be applied to spin systems [20,21].

Few of the transfer protocols deviate from treating a linear chain of sites, with notable ex-
ceptions being CTAP on engineered square and triangular grids [22] or with multiple receivers
dangling along the linear chain [23], as well as spin transfer in a branched tree [24] or over
multiple paths [25].

Our results specialize to adiabatic evolution in spin networks with Heisenberg coupling
between neighbouring spins. We strengthen previous results by proving that protocols on a
chain do indeed always work in the adiabatic limit, whilst extending the applicability to much
more general network graphs. In particular, we allow different spins per site, we allow more
general adiabatic paths, and sender/receiver are not limited to sit at the ends of the system.
Moreover, we extend the state transfer protocol such that a state is not immediately transferred,
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but rather encoded in the ground state of the whole system. After any amount of time, one out
of various parties can then decide to localize the state at their site, using only local controls,
without requiring any action from the other parties.

1.2 Document structure

The remainder of this paper is laid out as follows. Section 2 contains the main technical part
of our work, as we make our intuition on the conservation of total spin more concrete, and we
prove that given our graph restrictions, there is a unique ground state. Section 3 provides more
details on our adiabatic protocols, section 4 discusses errors in real-world implementations,
and section 5 addresses possible near-term experimental implementations. We finish with a
discussion and outlook in section 6, and a conclusion in section 7.

2 Ground states of symmetry-protected subspaces

2.1 Preliminaries

Consider a network of spins, described by a graph G = (V ,E), with on each vertex (or site)
j ∈ V a spin particle with total spin s j , described by the spin operator Ŝ j = (Ŝ x

j , Ŝ y
j , Ŝz

j )
T . Note

that we allow a different value of spin s j per site. Spins which share an edge ( j, k) ∈ E interact
with isotropic, anti-ferromagnetic Heisenberg interaction of strength J jk, and we assume full
control over each of these interaction strengths. Such a system is described by the Hamiltonian

H =
∑

( j,k)∈E
J jk Ŝ j · Ŝk, (J jk > 0). (1)

Throughout this work, we denote spin operators in upper case with a hat, and scalars as
lower-case symbols without hat. We define the total spin Ŝtot =

∑

j∈V Ŝ j , such that Ŝ2
tot has

eigenvalues s(s + 1), and total z-component Ŝz
tot =

∑

j∈V Ŝz
j which has eigenvalues m, taking

on values ranging from −s up to s in integer steps. Likewise, for a subsystem α we denote the
total spin operator on sites within that subsystem as Ŝα =

∑

j∈α Ŝ j with corresponding spin
values sα and z-magnetization mα. We use the term singlet to denote a state with s = 0.

Because H, Ŝtot and Ŝz
tot mutually commute, s and m can be used to index eigenstates of

H. We let Vs,m denote the subspace with fixed values s and m. For systems with at least three
sites, Vs,m may consist of more than one state, hence we require a third quantum number
to establish a complete basis. We denote the eigenbasis of H as |s, r, m〉, where the label
r ∈ {0, 1,2, . . .} orders the states within Vs,m by increasing energy1. Fig. 2 graphically depicts
this decomposition of the total Hilbert space.

We denote the 2s + 1-dimensional spin-s representation of SU(2) as (s). It is known from
representation theory that a system consisting of two spins s1 and s2 has its Hilbert space
decomposed into irreducible representations of the total spin operator Ŝtot as

(s1)⊗ (s2) =
s1+s2
⊕

s=|s1−s2|
(s). (2)

The space of n spin particles s1, s2, . . . , s j , . . . , sn decomposes as

n
⊗

j=1

(s j) =
⊕

s
N s

s1,s2,...sn
(s), (3)

1The label r is ill-defined whenever states have degenerate energies. This should cause no ambiguities in
this work, as we consider only the ground state, which is assumed to be non-degenerate within the appropriate
subspace.
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Figure 2: The decomposition of our Hilbert space using quantum numbers s, m and
r, here depicted for the case of four spin-1

2 particles. For each total spin s = 0, 1 or
2 (vertical), the 2s + 1 possible z-magnetizations m are laid out horizontally. The
multiplicities of the spin spaces N {0,1,2}

1
2 , 1

2 , 1
2 , 1

2
are 2, 3 and 1, respectively, and states that

differ by multiplicity-label r are depicted in the depth-dimension. This way, each
square corresponds to single state. The Hamiltonian H must preserve labels s and m,
hence perturbing J jk can only excite states that differ in label r.

where the multiplicities N s
s1,s2,...sn

of spin representation (s) can be found by consecutive appli-
cation of Eq. 2.

We say that the network graph G is bipartite if the vertices V can be split into two inde-
pendent subsets V1 and V2 such that the couplings act only between the two subsets and never
within, i.e. for all edges ( j, k) ∈ E , we must have j ∈ V1 and k ∈ V2. We say that two sites j
and k are connected if there is a path of nonzero couplings between the sites, i.e. there ex-
ists a sequence (J j,a1

, Ja1,a2
, . . . Jan,k) of nonzero elements. A graph or subsystem is connected

if all pairs of vertices within that graph or subsystem are connected. If a system is not con-
nected, then we use connected components to mean the largest possible subsystems in which
all vertices are connected.

We define the spin imbalance g of a spin system on a bipartite graph as the difference
between the maximum allowed spin of each part:

g =
∑

j∈V1

s j −
∑

j∈V2

s j =max sV1
−max sV2

. (4)

Note that spin imbalances can be simply added when combining spin systems: if subsystems
have spin imbalances g1, g2, . . ., then the combined system has a spin imbalance g =

∑

g j .
A seminal result by Lieb and Mattis [26] states that each connected component with spin
imbalance g j has a unique spin-s j subspace as ground subspace, whose the total spin s j = |g j|.

Our protocols critically rely on the adiabatic theorem [27], which states that a system re-
mains in an instantaneous energy eigenstate, if the Hamiltonian is changed sufficiently slowly,
and if there is a gap between the eigenstate’s energy and the rest of the spectrum. In our case,
we use the term gap to mean the energy difference between the ground state and the first
excited state, within a symmetry-protected sector (typically Vs,m). Often, the gap may vanish
in the thermodynamic limit, but we restrict ourselves to finite-sized systems. Still, for finite
systems it is possible that the ground state becomes degenerate, in which case the gap closes
and the adiabatic theorem can not be applied.

2.2 Preservation of the ground state of Vs,m

For our adiabatic protocols, we aim to show that information can be encoded in a protected
subspace, in such a way that amplitude can not leak out of the subspace, and such that the
subspace has a gap at all times. For the state transfer protocol, we aim to encode a quantum
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state |ψ〉 ∈ C2s+1 as |ψ〉 =
∑+s

m=−sψm|s, 0, m〉, hence out of all the possible spin-s subspaces
(s) we require that one is the unique lowest energy subspace. Note that, for fixed s and r but
varying m, all states have the exact same energy under H, guaranteeing that no relative phases
occur within this subspace. Likewise, for entanglement distribution, we want to work within
the unique global ground state which must have total spin s = 0.

In this section, we show the following:

1. The subspace Vs,m is conserved under H at all times.

2. On a connected and bipartite graph with |g| ≤ s, the subspace Vs,m has a unique ground
state.

3. If a bipartite system is not connected, but consists of connected components with spin im-
balances g1, g2, . . . gl , then the subspace Vs,m has a unique ground state if
N s
|g1|,|g2|,...,|gl |

= 1.

4. If one connected component has a spin imbalance g = g0 6= 0 while all other components
have g = 0, then the full information encoded in the lowest-energy spin-g0 subspace is
accessible at the component with spin imbalance g0.

We will argue why these observations hold in the remainder of this section, leaving in-depth
discussion of our protocols for the next section. We stress that the requirements presented here
are merely sufficient requirements and by no means the most general necessary conditions
possible. By separating these conditions from the protocols, future generalizations can be
straightforwardly applied to the protocols.

1. The subspace Vs,m is conserved under H at all times. This property follows because
each individual term (Ŝ j · Ŝk) of H commutes with Ŝtot and Ŝz

tot, hence H can not change the
quantum numbers s and m, not even if the J jk are time-dependent.

2. For s ≥ |g|, Vs,m has a unique ground state. The proof of this claim follows from the
results by Lieb and Mattis in Ref. [26]. We crucially need two of their findings:

Assume the system is connected and bipartite, with spin imbalance g. Then the
following holds:

1. Within a subspace of fixed Ŝz
tot = m0, there is a unique ground state.

2. If m0 ≥ |g|, then this unique ground state has s = m0.

From these observations, it follows that if m0 ≥ |g|, the subspace Vs=m0,m=m0
has a unique

ground state. What about the other spaces? Recall that for fixed s, all values of m have the
same energy. Hence if Vm0,m0

has a unique ground state, then all Vm0,m have the same energies
and in particular also a unique ground state. We conclude that any Vs,m with s ≥ |g| has a
unique ground state, while we can not make general statements about total spins smaller than
|g|.

Let us take a step back here. With the previous two points, we have shown that in all
connected and bipartite systems with s ≥ |g|, one may adiabatically tune J jk without exciting
the ground state |s, 0, m〉 of Vs,m: The quantum numbers s and m can never be changed by
H, and the adiabatic theorem says that quantum number r = 0 is approximately conserved.
However, when the system becomes disconnected, these results no longer hold. We therefore
carefully analyze what happens upon disconnecting parts of the system, and we give sufficient
conditions that guarantee a unique ground state.

6

https://scipost.org
https://scipost.org/SciPostPhys.6.1.011


SciPost Phys. 6, 011 (2019)

3. On disconnected subsystems. First, let us define precisely what we mean with connect-
ing and disconnecting 2. We consider a system consisting of two subsystems L and R. Let the
Hamiltonian on the combined system be of the form

H ′ = HL +HR +
∑

i

εi Ŝli · Ŝri
, (5)

where HL and HR act only on subsystems L and R respectively, whilst li are sites in L and ri are
sites in R. With connecting, we mean that the all parameters εi initially start at 0, and at least
one of the εi is adiabatically increased to some positive nonzero value, such that the combined
system becomes connected. Likewise, if at least one εi is nonzero, we may disconnect L from
R by adiabatically lowering all εi down to zero.

For disconnected systems, the uniqueness of the ground state of Vs,m does not necessarily
hold any more. One might naively think that upon sending all εi → 0, the adiabatic process is
saved because of two effects: If some εi 6= 0 then there must be a unique ground state, and if
all εi = 0 the two subsystems are completely disconnected, hence we may as well look only at
the ground states in each subsystem individually. However, if the gap closes asymptotically as
εi → 0, then our adiabatic trajectory potentially traverses a region with infinitesimally small
gap, hence the adiabatic time scale blows up.

To avoid such divergences, we require that both the connected (some εi > 0) and the
disconnected (all εi = 0) configurations have a unique ground state. Then, because the eigen-
values of H ′ are continuous functions of εi , asymptotic vanishing of the gap is ruled out.

We propose the following sufficient requirement that guarantees a unique ground state of
Vs,m: all connected components, labelled by 1,2, . . . l, must have spin imbalances g1, g2, . . . , gl
such that N s

|g1|,|g2|,...|gl |
= 1. We will henceforth call this requirement spin-s compatible. We

prove its validity as follows: each component j has a unique spin-s j ground subspace with
total spin s j = |g j|. The degeneracy of these subspaces allows the combined system to con-
figure itself in various possible total spin configuration, according to Eq. 3. However, if
N s
|g1|,|g2|,...|gl |

= 1, then there is just a single way in which the global ground subspace can
configure itself that is compatible with total spin s, hence the ground state of Vs,m must be
unique. In particular, this means that we may adiabatically connect and disconnect without
disturbing the ground state of Vs,m, as long as a system is spin-s compatible both before and
after the (dis)connection.

4. If only a single component has nonzero spin imbalance, then all ground subspace
information is accessible there. Let {g0, 0, 0, . . .} be the spin imbalances of the connected
components of some system, such that the spin imbalance of the combined system is g0. In
general, it holds that N |g0|

|g0|,0,0,... = 1, which means that V|g0|,m has a unique ground state. We
know precisely what this ground state looks like: all g = 0 components are in their unique
singlet ground state, while the component with g = g0 is in the state ||g0|, 0, m〉. These states,
with m ranging from −|g0| ≤ m ≤ |g0|, span the ground subspace of the global system, and
are completely determined by the component with nonzero spin imbalance. Any operations
performed on the subsystem with g = g0 are in one-to-one correspondence with changes in
the global ground subspace, and vice-versa.

In summary, throughout this section we showed that if the system remains spin-s compatible,
then the couplings J jk of H can be changed adiabatically without affecting a quantum state’s
amplitude on the ground state of Vs,m. Moreover, by changing the couplings J jk of a system with

2Note the difference between ‘(dis)connecting’ (the procedure described here) and ‘(dis)connected’ (a property
of a graph), although our definitions are such that no ambiguities should occur for any English conjugation of these
words.
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total spin s in such a way that all components have g = 0 except for a single component which
has g = s, then the amplitudes of Vs,m for all m are locally available at the latter component.

3 Applications

We discuss two applications in the context of quantum information, which are based on the
results from the previous section: sharing a quantum state among multiple parties, and estab-
lishing entanglement between two parties. Fig. 3 shows these protocols on example graphs.
The protocols assume a network graph that is bipartite and connected, but couplings J jk could
be brought down to zero to break the connectedness. In order to check the correctness of the
protocols, one should check two aspects. Firstly, a system initialized with total spin s should
always have a unique ground state in Vs,m, which we enforce by requiring that the system
is spin-s compatible at all times. Secondly, the initial and final states should be well under-
stood such that they provide the utility that we claim. We illustrate situations in which our
requirements are not fulfilled in Fig. 4.

3.1 Sharing a quantum state between multiple parties, such that any party can
access the state

Consider a setup where ` cooperating parties p1, p2, . . . , p` hold subsystems of a graph G. In
case one party pi experiences an emergency, it needs access to the state
|ψ〉 =

∑s
m=−sψm|m〉 ∈ C2s+1, preferably without requiring any activity of the other parties.

Because cloning |ψ〉 is generally impossible, the best option is to find a way to share the state
between the parties. A protocol that offers a solution is as follows:

• Initialization: Without loss of generality, assume initially p1 holds |ψ〉 locally. The system
must be configured such that p1 is disconnected from the rest of the system, and p1 fully
determines the ground state of the full system. p1 can now initialize its subsystem in the
state |ψ′〉=

∑s
m=−sψm|s, 0, m〉.

• Forming a resource state: p1 connects to the system, and any other connections must be
made such that all parties are on the same connected component. The state |ψ′〉 is now
encoded in the spin-s ground subspace of this component.

• Finalization: To access the information, any party pi can adiabatically disconnect, in
such a way that it localizes the ground subspace information at its subsystem.

This protocol generalizes the transfer of a quantum state between two parties located at the
ends of a chain, such as considered in Refs. [10,11].

Let us discuss the requirements for graphs that allow such protocols. Firstly, to localize
the ground state information at a single subsystem, the most general requirement we found
is that any disconnected party pi should have |gi| = s while all other connected components
have g = 0. Then from this, we derive that all parties pi must have the same spin imbalance
gi (with the same sign), which follows because G/{pi} should have g = 0 for any party pi .
The same holds for the resource state, where the component containing the parties must have
spin imbalance equal to gi while the rest of the components have g = 0.

In between the initialization, the resource state configuration, and the finalization, the
only constraint is that spin-s compatibility is preserved, which is a less stringent requirement.
For example, there could be more than a single connected component with g 6= 0 as long as
N s
|g1|,|g2|,...

= 1.
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Figure 3: Example of a state transfer and entanglement distribution protocol, where
we assume each site holds a particle with spin s. For readability, we label parties
pi with capital letters. On the left, A initializes the system into a resource state
encoding its original spin state, which is later obtained at C. On the right, the system
is initialized in a global singlet, after which A and B disconnect to obtain singlet
entanglement between their sites. At various stages in these protocols, the network
must obey requirements such as (from top to bottom) all connected components
except for the disconnected parties have g = 0, all parties must be connected, and
throughout the whole protocol, the graph must remain spin-s compatible.

An interesting situation occurs when one of the parties holds a subsystem which is not
connected. In that case, transfer is still possible as long as N s

|g1|,|g2|,...
= 1 for a party whose

connected components have spin imbalances g1, g2, . . .. If there are two connected compo-
nents, this generally holds for any |g1 − g2| ≤ s ≤ g1 + g2. For three or more connected
components, this condition can only be met when

∑

i |gi| = s. Moreover, the combined spin
imbalance must match the imbalance of the other parties, hence |

∑

i gi| = s. We conclude
that for more than two components, parties may have disconnected subsystems as long as all
connected components have spin imbalances with the same sign (plus any number of g = 0
components), which properly add up to s.

3.2 Distributing maximally entangled singlet states

In this protocol, two parties p1 and p2 both hold subsystems on a graph G. The ground sub-
spaces of both parties are brought into the maximally entangled singlet state.

1. Initialization: The system must be in the unique ground state which has s = 0.

2. Finalization: Both parties are disconnected from the system, in such a way that the final
state is a singlet on G/{p1, p2}, in tensor product with a singlet on {p1, p2}.

Again, we turn to analyzing the requirements for allowed graphs. Firstly, to form a singlet
state together, the parties p1 and p2 must have |g1| = |g2|. Because also G/{p1, p2} should
have g = 0 and G must have g = 0, if follows that g1 = −g2.

In principle, the initial state allows any configuration with a unique spin-0 ground state.
However, if p1 and p2 are restricted to controlling only the couplings directly surrounding their
own subsystem, then the system must start such that the two parties are connected. For the
final state, in order to be sure that the parties are not entangled with the rest of the system, the
most general constraint we are aware of is that G/{p1, p2} must consist only of components
with g = 0.

The precise trajectory of the coupling J jk is irrelevant as long as the system remains spin-0
compatible. Also, after the protocol is finished, individual connected components that remain
can again be used as a starting stage for the same protocol. Notice that distributing entangle-
ment between more than two parties in a single step is generally more complicated, because
for multiple parties the spin-0 compatibility is easily broken.
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Entanglement distribution 
with A fails

BA

State transfer to A fails

No g=0 components A C

B

Not spin-s compatible
A B

B

A

Figure 4: Example issues that occur when graph requirements are not fulfilled. In
the top row, party A cannot be disconnected in such a way that all other components
have g = 0, eventually breaking spin-s compatibility when the dotted couplings are
set to 0. In the bottom row, the networks are such that A and B could in principle
complete both protocols successfully, but during each protocol, disconnections are
made such that spin-s compatibility is broken. In each of these cases, the ground
state of the relevant Vs,m could become degenerate.

A closely related idea for entanglement generation was presented earlier in [13], where
spins p1 and p2 sit at ends of a linear spin-1

2 chain, but p1, p2 are coupled more weakly to
their neighbours than the spins in the bulk of the chain. By making this coupling ratio more
extreme, the ground state was found to exhibit increasingly strong long-distance entanglement
between the outermost spins. A later follow-up paper Ref. [7] investigated the usefulness of
these outermost qubits in low-temperature chains for the teleportation protocol. Our results
extend these earlier findings of long-distance entanglement to more general spin networks,
and place them in a quantum control perspective.

4 Errors and scaling

So far, we dealt with the uniqueness of the ground state to prove that an adiabatic protocol
is viable at some time scale, to which we remained agnostic. Moreover, we assumed perfectly
sterile conditions: zero temperature and no interactions beyond those of Eq. 1. For real-world
implementations, the actual scaling of protocol time and error susceptibility as a function of
the number of sites N would be of great importance, yet unfortunately, we are unable to give an
in-depth and fully general characterization. Rather, this section collects known results related
to this context, and numerically analyses the timing and errors in small systems.

Adiabatic processes are typically analyzed from the perspective of the energy gap∆, where
the duration of the protocol T is taken to scale as T ∝∆−2 [8]. The Haldane conjecture states
that linear Heisenberg chains consisting of particles with half-integer spin exhibit a ∆∝ 1/N
gap, whereas integer spin particles feature a unique ground state with a constant gap [28].
However, care has to be taken that these results assume periodic boundary conditions which
are not readily compatible with our protocols. For spin-1 particles, open boundary conditions
give rise to four low-lying states separated from the rest of the spectrum by a constant gap.
These lower states live in different spaces Vs,m, and their energies grow exponentially close in
the thermodynamic limit [29].

The nature of the errors that arise during the protocol then depend on whether the sys-
tem is truly SU(2)-symmetric: if it is, then only the gaps within the relevant Vs,m are of any
importance, and a system will not leave this subspace. However, to our best knowledge, all
realistic systems described by Eq. 1 consist of spin particles whose magnetic moment interacts
with magnetic fields ~B, leading to interactions of the form H =

∑

j
~B j · Ŝ j . Such fields break

the SU(2) symmetry, such that Vs,m may no longer be conserved. However, if ~B j is a constant
function of j, then the protocols could still work, as we discuss in section 5.

10

https://scipost.org
https://scipost.org/SciPostPhys.6.1.011


SciPost Phys. 6, 011 (2019)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

p1 p2

K=2

0.0 0.2 0.4 0.6 0.8 1.0

- 10

- 5

0

5

Figure 5: For the adiabatic transfer protocol in a system of size M = 3 and K = 2,
we display the driving functions f and g and a sketch of the star-shaped system
(left), the lowest 10 energy levels (middle) and the size of the energy gap (right) as
a function of time. All units are normalized with respect to the protocol time T and
the coupling strength J .

Nonetheless, many results indicate that just the gap by itself does not necessarily reflect the
viability of adiabatic protocols [30, 31]. Therefore, explicit numerical simulations of the full
protocol appear to be the most informative. Such simulations have been performed for linear
chains of spin-1/2 particles [10, 11], and for entanglement distribution on a spin-1/2 chain
with the purpose of teleportation [7]. The latter work also calculates the gap in their system
for lengths of up to one hundred. In Refs. [9,12], closely related protocols are simulated.

Another important issue arises due to the fragility of Lieb and Mattis’ statement that the
ground state has definite total spin s = |max sV1

−max sV2
|, which is a fundamental building

block of our protocols. Inhomogeneous magnetic fields of the form B(Ŝz
V1
−Ŝz

V2
)with amplitude

B = O(1/N) can cause the ground-state to have significant amplitude spread out over various
spin sectors [32, 33]. Moreover, frustrated interactions such as Ŝ · Ŝ coupling between next-
nearest neighbours may break the result of Lieb and Mattis.

We conclude that many threats can be identified, yet a general understanding of how
these affect an adiabatic protocol is lacking. To give at least some insight in the practical
performance of our protocols, we resort to numerical simulation. We select a concrete system
that showcases our main contributions by allowing multi-party transfer and non-linear graph
layout, namely qubits on a star-shaped graph.

4.1 Numerics on star graphs

We consider systems consisting of qubits (s j =
1
2) arranged in the shape of a star, where a

center qubit is connected to M arms each consisting of a linear chain of K qubits, as depicted
in Fig. 5. The total number of qubits is KM+1. Note that such graphs reduce to a linear chain
for M = 1, 2.

In the case of state transfer, the arm length K must be even, allowing the center qubit to
qualify as sender or receiver, as well as all qubits that are an even number of sites away from
the center. We locate our sender p1 at the center, and place receiver p2 at the very end of the
first arm. All couplings J jk are set to uniform strength J , except for the couplings connected
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Figure 6: Transfer fidelity E for various choices of T and M , for systems with arm
length K = 2. For the small systems that we study, the fidelity seems to quickly
converge to errors of less than 1%, indicated by the black zig-zag line, for protocol
times just slightly larger than the intrinsic time scale 1/J of the system. On the right,
cutouts of the main plot are displayed for fixed times (top) and fixed number of arms
(bottom) on a log-log scale.

to p1 or p2, which we give time-dependent amplitudes f (t) and g(t) respectively. We choose

f (t) = J sin
�πt

2T

�

, g(t) = J cos
�πt

2T

�

, (6)

where T is the total duration of the protocol.
Having defined our time-dependent Hamiltonian, we numerically solve Schrödinger’s equa-

tion to find the unitary time-propagation UT . As initial state we choose
|ψ(t = 0)〉 = |ψ0〉p1

⊗ |0, 0,0〉V/p1
, where |0,0, 0〉 is the global ground state with proper-

ties s = 0, m = 0. The state |ψ0〉p1
is the state initialized by sender p1, the choice of which

does not influence the protocol’s fidelity at this point, thanks to global SU(2) symmetry. We
then define the transfer error as

E = 1− 〈ψ0| trV/p2

�

|ψ(T )〉〈ψ(T )|
�

|ψ0〉,

where |ψ(T )〉= UT |ψ(0)〉.

Here, trV/p2
(·) denotes the partial trace of the whole system except for site p2. Fig. 5 depicts

the driving functions f and g, and the movement of the energy levels and the gap during the
protocol.

Fig. 6 shows our results for the transfer fidelity for various protocol times T and number
of arms M , with arm length fixed to K = 2. For these small system sizes, very low error rates
of less than 1% are readily obtained without further optimization of the protocol. Still, scaling
up the system size by increasing M clearly requires longer protocol times to achieve the same
low errors. We leave the precise scaling of transfer fidelity for larger systems, possibly using
optimizations beyond the adiabatic approximation, as an open question.

4.2 A numerical example where assumptions are violated

A minimal example of a transfer protocol that does not match our requirements is displayed in
Fig. 7. The bottom-left panel shows a graph in which p1 can disconnect while leaving all other
components in g = 0, but p2 cannot. Choosing spin-1/2 particles (s j = s = 1/2) and the same
time-dependent functions f and g for the couplings incident to p1 and p2 as before (Eq. 6),
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Figure 7: An example of a transfer protocol in which our requirements are violated.
The left panel displays the graph layout and the time-dependence of the couplings
connected to p1 and p2. Because p2 is unable to disconnect while preserving spin-
s compatibility, there is a possibility that the relevant energy gap closes, which we
indeed find here. As a result, the transfer error does not asymptotically decay to 0 as
a function of T .

we calculate the energy levels over time, and the protocol error as a function of total protocol
time T . Because the spin-s compatibility is broken at the point t = T , there is no longer a
guaranteed energy gap within Vs,m, and we indeed find that relevant gap closes precisely at
time T . This has a devastating effect on the transfer error, which barely drops below 0.5, the
latter corresponding to uniformly random outcomes at p2. Importantly, the transfer error does
not asymptotically decay to 0 as a function of T , a generic indicator that adiabatic transport
fails.

5 Experimental implementations

The Heisenberg coupling of Eq. 1 can be approximated by systems forming a Fermi-Hubbard
model in a regime of half-filling and strong on-site repulsion. Experimental platforms which
have been proposed for quantum information processing in such regimes include ultracold
atoms trapped in optical potentials [34, 35] and electrons trapped in quantum dots [36, 37].
Selectively varying the coupling between ultracold atoms requires delicate control over the
trapping potential. In quantum dots, individual coupling strengths J jk are directly controlled
using electronic gate voltages [38], making them a promising candidate for experimental im-
plementation of our protocols.

Typical experiments will deal with a global magnetic field, adding a term of the form
~B ·
∑

j∈V Ŝ j to the Hamiltonian. A field ~B oriented perfectly along the z-axis commutes with

total spin operators Ŝtot and Ŝz
tot, hence it does not change our conclusions on conservation

of Vs,m and the uniqueness of the ground state within these spaces. However, a relative dy-
namical phase between subspaces that differ in m has to be accounted for. Moreover, it is no
longer guaranteed that the global ground state is in spin sector s = |g|. More problematic
could be magnetic noise which breaks the SU(2) symmetry. Minimizing the influence of such
fields would be a major experimental challenge, and would form an interesting topic of further
theoretical research.
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6 Discussion and outlook

Given a physical system described by Eq. 1, there would be multiple ways to transfer quan-
tum information, primarily through a quench [2], by a sequence of swapping operations, or
by using the adiabatic steps that we propose. Our adiabatic approach has the disadvantage
of having stringent cooling requirements and inherently slow dynamics. Moreover, it is un-
clear how the protocol time and error scale for large systems. On the other hand, adiabatic
protocols have an advantage when it comes to control requirements, being relatively robust
to decoherence and control errors [8, 9], and requiring only a small number of couplings J jk
to be adjustable as a function of time. The lower complexity of control makes such proto-
cols worthwhile candidates for experiments on near-term quantum devices. We also note that
our protocol could form a building block for an atomic swap operation that is repeated many
times, allowing a trade-off between control complexity and time complexity, as the time of
swap operations scales linearly with transfer distance.

Throughout this work, we remained agnostic with regards to the initialization of the ground
state. Preparation can in principle be done by cooling, but having a system capable of adiabat-
ically changing its couplings, it could be preferable to start from a simple initial state which
has an adiabatic connection to the required ground state. Such a protocol was addressed in
Ref. [9] for a spin-1 chain: start with a chain of sites with only the odd couplings active, such
that the ground state is formed by two-site singlets. One can then adiabatically ramp up the
even couplings to obtain the ground state of the fully coupled chain. Such initial states are
either easier to cool, because their gap does not scale with the system size, or they may be
prepared from a computational basis state using a quantum circuit of constant depth. Using
our results, this initialization protocol readily extends to more general spin networks and any
total spin s, with as only restriction that the system must remain spin-s compatible during the
process.

From a practical perspective, we note that many optimizations can be made to our pro-
tocol, most notably by reducing adiabatic errors such as discussed in Refs. [11, 18]. On the
theoretical side, we note that we have by no means exploited all the symmetries of Heisenberg
systems yet. For example, we showed that each Vs,m has a unique ground state, yet our pro-
tocols must stick to the global ground state due to our connection/disconnection procedure.
Moreover, we proved that our requirements for a unique ground state are sufficient, but not
that they are necessary; we expect that further generalizations are possible here, extending
the applicability of adiabatic protocols. In a similar spirit, one might exploit ferromagnetic
variations of the Lieb-Mattis theorem [39] if one circumvents problems arising from addition
of spin quantum numbers. We believe that further examination of these open ends could lead
to a better theoretical understanding of spin chains, and novel applications.

7 Conclusion

We extended previous work on two adiabatic quantum information protocols: one in which
a spin-s quantum state is adiabatically transferred to one out of many possible sites of a spin
network, and another in which two parties extract entanglement in the form of a shared singlet
state using a larger singlet state as resource. These protocols crucially rely on the preservation
of subspaces Vs,m, and the uniqueness of their ground states. We hope that our methods could
lead to other novel applications for manipulation of quantum information.

14

https://scipost.org
https://scipost.org/SciPostPhys.6.1.011


SciPost Phys. 6, 011 (2019)

Acknowledgements

Special thanks to Sjaak van Diepen for inspiring the ideas in this work. I would like to ex-
press my gratitude to Kareljan Schoutens and Jasper van Wezel for fruitful discussions and
comments, to Freek Witteveen and Joris Kattemölle for aid with the mathematics of spin rep-
resentations, and Bruno Nachtergaele for helpful comments on the manuscript.

Funding information This research was supported by the QM&QI grant of the University of
Amsterdam, supporting QuSoft.

References

[1] D. P. DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys.
48, 771 (2000).

[2] S. Bose, Quantum communication through spin chain dynamics: an introductory overview,
Contemp. Phys. 48, 13 (2007), doi:10.1080/00107510701342313.

[3] G. M. Nikolopoulos and I. Jex, Quantum state transfer and network engineering, Springer
Berlin Heidelberg, Berlin, Heidelberg, ISBN 9783642399367 (2014), doi:10.1007/978-
3-642-39937-4.

[4] S. Bose, Quantum communication through an unmodulated spin chain, Phys. Rev. Lett.
91, 207901 (2003), doi:10.1103/PhysRevLett.91.207901.

[5] M. Christandl, N. Datta, A. Ekert and A. J. Landahl, Perfect state transfer in quantum spin
networks, Phys. Rev. Lett. 92, 187902 (2004), doi:10.1103/PhysRevLett.92.187902.

[6] G. M. Nikolopoulos, D. Petrosyan and P. Lambropoulos, Electron wavepacket propaga-
tion in a chain of coupled quantum dots, J. Phys.: Condens. Matter 16, 4991 (2004),
doi:10.1088/0953-8984/16/28/019.

[7] L. Campos Venuti, C. Degli Esposti Boschi and M. Roncaglia, Qubit teleportation and
transfer across antiferromagnetic spin chains, Phys. Rev. Lett. 99, 060401 (2007),
doi:10.1103/PhysRevLett.99.060401.

[8] A. M. Childs, E. Farhi and J. Preskill, Robustness of adiabatic quantum computation, Phys.
Rev. A 65, 012322 (2001), doi:10.1103/PhysRevA.65.012322.

[9] U. Farooq, A. Bayat, S. Mancini and S. Bose, Adiabatic many-body state preparation
and information transfer in quantum dot arrays, Phys. Rev. B 91, 134303 (2015),
doi:10.1103/PhysRevB.91.134303.

[10] S. Oh, Y.-P. Shim, J. Fei, M. Friesen and X. Hu, Resonant adiabatic passage with three
qubits, Phys. Rev. A 87, 022332 (2013), doi:10.1103/PhysRevA.87.022332.

[11] R. R. Agundez, C. D. Hill, L. C. L. Hollenberg, S. Rogge and M. Blaauboer, Su-
peradiabatic quantum state transfer in spin chains, Phys. Rev. A 95, 012317 (2017),
doi:10.1103/PhysRevA.95.012317.

[12] K. Eckert, O. Romero-Isart and A. Sanpera, Efficient quantum state transfer in spin chains
via adiabatic passage, New J. Phys. 9, 155 (2007), doi:10.1088/1367-2630/9/5/155.

15

https://scipost.org
https://scipost.org/SciPostPhys.6.1.011
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1007/978-3-642-39937-4
http://dx.doi.org/10.1007/978-3-642-39937-4
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1088/0953-8984/16/28/019
http://dx.doi.org/10.1103/PhysRevLett.99.060401
http://dx.doi.org/10.1103/PhysRevA.65.012322
http://dx.doi.org/10.1103/PhysRevB.91.134303
http://dx.doi.org/10.1103/PhysRevA.87.022332
http://dx.doi.org/10.1103/PhysRevA.95.012317
http://dx.doi.org/10.1088/1367-2630/9/5/155


SciPost Phys. 6, 011 (2019)

[13] L. Campos Venuti, C. Degli Esposti Boschi and M. Roncaglia, Long-
distance entanglement in spin systems, Phys. Rev. Lett. 96, 247206 (2006),
doi:10.1103/PhysRevLett.96.247206.

[14] N. Chancellor and S. Haas, Using the J1− J2 quantum spin chain as an adiabatic quantum
data bus, New J. Phys. 14, 095025 (2012), doi:10.1088/1367-2630/14/9/095025.

[15] A. Gratsea, G. M. Nikolopoulos and P. Lambropoulos, Photon-assisted quantum state
transfer and entanglement generation in spin chains, Phys. Rev. A 98, 012304 (2018),
doi:10.1103/PhysRevA.98.012304.

[16] B. Chen, Q. Shen, W. Fan and Y. Xu, Long-range adiabatic quantum state transfer through
a linear array of quantum dots, Sci. China Phys. Mech. Astron. 55, 1635 (2012),
doi:10.1007/s11433-012-4841-3.

[17] B. Chen, Y.-D. Peng, Y. Li and X.-F. Qian, Robust multiple-range coherent quantum state
transfer, Sci. Rep. 6, 28886 (2016), doi:10.1038/srep28886.

[18] Y. Ban, X. Chen and G. Platero, Fast long-range charge transfer in quantum dot arrays,
Nanotechnology 29, 505201 (2018), doi:10.1088/1361-6528/aae0ce.

[19] A. D. Greentree, J. H. Cole, A. R. Hamilton and L. C. L. Hollenberg, Coherent electronic
transfer in quantum dot systems using adiabatic passage, Phys. Rev. B 70, 235317 (2004),
doi:10.1103/PhysRevB.70.235317.

[20] T. Ohshima, A. Ekert, D. K. L. Oi, D. Kaslizowski and L. C. Kwek, Robust state transfer and
rotation through a spin chain via dark passage (2007), arXiv:quant-ph/0702019.

[21] A. D. Greentree and B. Koiller, Dark-state adiabatic passage with spin-one particles, Phys.
Rev. A 90, 012319 (2014), doi:10.1103/PhysRevA.90.012319.

[22] S. Longhi, Coherent transfer by adiabatic passage in two-dimensional lattices, Ann. Phys.
348, 161 (2014), doi:10.1016/j.aop.2014.05.020.

[23] A. D. Greentree, S. J. Devitt and L. C. L. Hollenberg, Quantum-information transport to
multiple receivers, Phys. Rev. A 73, 032319 (2006), doi:10.1103/PhysRevA.73.032319.

[24] C. Batey, J. Jeske and A. D. Greentree, Dark state adiabatic passage with branched net-
works and high-spin systems: spin separation and entanglement, Front. ICT 2, 19 (2015),
doi:10.3389/fict.2015.00019.

[25] B. Chen, W. Fan, Y. Xu, Y.-D. Peng and H.-Y. Zhang, Multipath adiabatic quantum state
transfer, Phys. Rev. A 88, 022323 (2013), doi:10.1103/PhysRevA.88.022323.

[26] E. Lieb and D. Mattis, Ordering energy levels of interacting spin systems, J. Math. Phys. 3,
749 (1962), doi:10.1063/1.1724276.

[27] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Physik 51, 165 (1928),
doi:10.1007/BF01343193.

[28] I. Affleck and E. H. Lieb, A proof of part of Haldane’s conjecture on spin chains, Lett. Math.
Phys. 12, 57 (1986), doi:10.1007/BF00400304.

[29] T. Kennedy, Exact diagonalisations of open spin-1 chains, J. Phys.: Condens. Matter 2,
5737 (1990), doi:10.1088/0953-8984/2/26/010.

16

https://scipost.org
https://scipost.org/SciPostPhys.6.1.011
http://dx.doi.org/10.1103/PhysRevLett.96.247206
http://dx.doi.org/10.1088/1367-2630/14/9/095025
http://dx.doi.org/10.1103/PhysRevA.98.012304
http://dx.doi.org/10.1007/s11433-012-4841-3
http://dx.doi.org/10.1038/srep28886
http://dx.doi.org/10.1088/1361-6528/aae0ce
http://dx.doi.org/10.1103/PhysRevB.70.235317
https://arxiv.org/abs/quant-ph/0702019
http://dx.doi.org/10.1103/PhysRevA.90.012319
http://dx.doi.org/10.1016/j.aop.2014.05.020
http://dx.doi.org/10.1103/PhysRevA.73.032319
http://dx.doi.org/10.3389/fict.2015.00019
http://dx.doi.org/10.1103/PhysRevA.88.022323
http://dx.doi.org/10.1063/1.1724276
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF00400304
http://dx.doi.org/10.1088/0953-8984/2/26/010


SciPost Phys. 6, 011 (2019)

[30] A. Polkovnikov and V. Gritsev, Breakdown of the adiabatic limit in low-dimensional gapless
systems, Nat. Phys. 4, 477 (2008), doi:10.1038/nphys963.

[31] O. Lychkovskiy, O. Gamayun and V. Cheianov, Time scale for adiabaticity breakdown in
driven many-body systems and orthogonality catastrophe, Phys. Rev. Lett. 119, 200401
(2017), doi:10.1103/PhysRevLett.119.200401.

[32] C. Kaiser and I. Peschel, Ground state properties of a quantum antiferromagnet with
infinite-range interactions, J. Phys. A: Math. Gen. 22, 4257 (1989), doi:10.1088/0305-
4470/22/19/018.

[33] J. van Wezel, Quantum mechanics and the big world: order, broken symmetry and coherence
in quantum many-body systems, PhD dissertation, Leiden University Press (2007)

[34] S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M. Reimann, L. San-
tos, T. Lompe and S. Jochim, Antiferromagnetic Heisenberg spin chain of a few
cold atoms in a one-dimensional trap, Phys. Rev. Lett. 115, 215301 (2015),
doi:10.1103/PhysRevLett.115.215301.

[35] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt,
E. Demler, D. Greif and M. Greiner, A cold-atom Fermi–Hubbard antiferromagnet, Nature
545, 462 (2017), doi:10.1038/nature22362.

[36] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57,
120 (1998), doi:10.1103/PhysRevA.57.120.

[37] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha and L. M. K. Vander-
sypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007),
doi:10.1103/RevModPhys.79.1217.

[38] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das
Sarma and L. M. K. Vandersypen, Quantum simulation of a Fermi–Hubbard model using a
semiconductor quantum dot array, Nature 548, 70 (2017), doi:10.1038/nature23022.

[39] B. Nachtergaele and S. Starr, Ferromagnetic Lieb-Mattis theorem, Phys. Rev. Lett. 94,
057206 (2005), doi:10.1103/PhysRevLett.94.057206.

17

https://scipost.org
https://scipost.org/SciPostPhys.6.1.011
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1103/PhysRevLett.119.200401
http://dx.doi.org/10.1088/0305-4470/22/19/018
http://dx.doi.org/10.1088/0305-4470/22/19/018
http://dx.doi.org/10.1103/PhysRevLett.115.215301
http://dx.doi.org/10.1038/nature22362
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1038/nature23022
http://dx.doi.org/10.1103/PhysRevLett.94.057206

	Introduction
	Relation to previous work
	Document structure

	Ground states of symmetry-protected subspaces
	Preliminaries
	Preservation of the ground state of Vs,m

	Applications
	Sharing a quantum state between multiple parties, such that any party can access the state
	Distributing maximally entangled singlet states

	Errors and scaling
	Numerics on star graphs
	A numerical example where assumptions are violated

	Experimental implementations
	Discussion and outlook
	Conclusion
	References

