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Abstract

We consider the thermoelectric response of chaotic or disordered quantum dots in the
limit of phase-coherent transport, statistically described by random matrix theory. We
calculate the full distribution of the thermoelectric coefficients (Seebeck S and PeltierΠ),
and the thermoelectric figure of merit Z T , for large open dots at arbitrary temperature
and external magnetic field, when the number of modes in the left and right leads (NL and
NR) are large. Our results show that the thermoelectric coefficients and Z T are maximal
when the temperature is half the Thouless energy, and the magnetic field is negligible.
They remain small, even at their maximum, but they exhibit a type of universality at all
temperatures, in which they do not depend on the asymmetry between the left and right
leads (NL − NR), even though they depend on (NL + NR).
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1 Introduction

There has long been interest in the thermal and thermoelectric response of nanostructures
[1–5]. However, research in this field was restricted by the absence of good thermometry tech-
niques at the nanoscale, which made it extremely hard to quantify heat flows. In recent years,
numerous such thermometry techniques have been developed, leading to a renewed interest
in thermal transport and thermoelectric effects at the nanoscale, see for example Refs. [6, 7]
and references therein.

In many cases, the objective is to maximize the thermoelectric response for applications,
such as efficient new power sources or refrigerators, or for the recovery of useful power from
waste heat. However, at a more fundamental level, the measurement of a thermoelectric
response is a very interesting probe of nanostructures. It always gives us different information
from the measurement of the nanostructure’s electrical conductance. At a hand waving level,
one can say that the thermoelectric response tells us about the difference between the dynamics
of charge carriers above and below the chemical potential, when the electrical conductance
only tell us about the sum of the two [6]. It is important to develop good quantitative models
of the thermoelectric response of all kinds of nanostructures, to help us use the thermoelectric
response as a quantitative probe of a nanostructures. In this context, we should maintain our
interest in modelling nanoscale systems whose thermoelectric response is small, as well as in
modelling those whose response is large. Large quantum dots are systems with a small but
interesting thermoelectric response, which we study here.

Disordered or chaotic quantum dots have random properties whose statistics are described
by random matrix theory. In particular, such dots have a spread of Seebeck coefficients, S,
centred on zero, which means the average of the Seebeck coefficient over realizations of the
disorder or the chaos, 〈S〉, is zero. The Peltier coefficient in such a two-terminal dot is Π= T S
for arbitrary external magnetic field [3]1, so it is also zero on average. However, in such
a situation, if one takes a single typical dot, it will have Seebeck and Peltier coefficients of
random sign but of non-zero magnitude. The typical value of such coefficients will be

Stypical ' ±
Ç




S2
�

with Πtypical = TStypical. (1)

The dimensionless figure of merit Z T which measures the system’s efficiency as a thermoelec-
tric heat engine (see table 1 in Ref. [6]), or its efficiency as a refrigerator, is

Z T =
GS2T

K
, (2)

1The Onsager relation for a two terminal system is Π(B) = T S(−B), where B is the external magnetic field.
However, Ref. [3] pointed out that a phase coherent nanostructure (in which electrons undergo no inelastic scat-
tering or Andreev reflection) must have S(B) = S(−B); so then Π(B) = T S(B) for all B.
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Figure 1: The systems we consider in this work are those described by random
matrix theory, this could be (a) a disordered system or (b) a chaotic system (such
as a Sinai billiard). In both cases, the system is coupled to two reservoirs (left and
right) through leads with NL and NR modes respectively. The number of lead modes
Ni for a lead of width Wi is given above Eq. (12b). We define N = NL + NR, and
consider the properties of the ensemble of such systems for N � 1, as modelled by
an ensemble of random matrices. In the case of the disordered system, this ensemble
corresponds to the ensemble of systems with the disorder in different positions. In
the case of chaotic systems, this ensemble corresponds to an ensemble of shapes of
the potential; for the Sinai billiard, such an ensemble can be found by varying the
radius R over a range much larger than the particle wavelength but much smaller
than the system size.

for temperature T , electrical conductivity G and thermal conductivity K . Since this contains
S2, and we know both G and K must be positive, we see that this will not average to zero.
It would be useful to know both Stypical and 〈Z T 〉 as a function of system parameters and
temperature. Even better would be to have the full distribution of Z T , so one could answer
questions such as, what percentage of samples will have a Z T greater than a given value.

This work treats such a problem in the simplest case, spinless electrons flowing through
a large open quantum dots, where the dot is coupled to many reservoir modes, N � 1. This
implies that the level broadening in the dot is of order N times the dot’s level spacing, so the
transmission though the dot is only weakly energy dependent. Since high efficiencies rely on
good energy filtering, it should be no surprise that this limit has a Z T much less than one.

The seminal work on this subject was that of van Langen, Silvestrov, and Beenakker [8],
which contains a plethora of results on the Seebeck coefficient in coherent transport through
disorder wires and dots. Here, we revisit their result for large N , stated in the conclusions of
Ref. [8], which says that the typical magnitude of the Seebeck coefficient Stypical is small (in
units of kB/e) but grows with increasing temperature. It is clear that the result was only for the
low temperature limit (temperature much smaller than the Thouless energy), and it is not hard
to guess that Stypical will not continue to grow with temperature for larger temperatures. How-
ever, it raises the question; what value of temperature maximizes the thermoelectric response,
and how big is this thermoelectric response?

This work answers this question, making the following modest but four-fold contribution
to the subject.

(i) We extend the result in Ref. [8] to arbitrary temperatures and arbitrary magnetic fields
(although as we only treat spinless electrons, spin-orbit coupling is not present). This
shows that the thermoelectric coefficients (Seebeck and Peltier effects) are maximized
when kBT is very close to half the Thouless energy, ETh, and the external magnetic field is
negligible. At this peak, the thermoelectric coefficients scale like N−2 for large N , which
is very different from the scaling like N−4 found at low temperatures in Refs. [8,11].
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Figure 2: A sketch of the transmission of a a typical disordered or chaotic dot for
large N . The transmission (blue curve) is of order N on average, but with fluctuations
of order one, that is to say of order N0. The factor of − f ′(E) (red curve) is that given
in Eq. (5). The transport properties are related to the product of these two functions,
so that they are dominated by the transmission in an energy window of order kBT
around the Fermi energy.

(ii) This maximum in the Seebeck coefficient also corresponds to the maximal thermoelectric
figure of merit, Z T . Not unexpectedly, it remains much smaller than one even at its
maximum, see section 1.1 below.

(iii) We recover Ref. [8]’s result that the distribution of S is Gaussian, and show that this
implies that the distribution of Z T is an exponentially decaying function of Z T , with a
square-root divergence at small Z T .

(iv) We show that both S and Z T have a type of universality, in the sense that they do not
depend on the asymmetry in the number of modes in the left and right leads (even
though they depend on the total number of lead modes, N). For example, S and Z T
have exactly the same average value and exactly the same distribution for a dot with
highly asymmetric leads with NL = 100 and NR = 300, as for a dot with symmetric leads
with NL = NR = 200.

In all cases, we explain how to derive these results (the results in Ref. [8] were mainly stated
without derivation) using a diagrammatic method that works for chaotic or disordered systems
that obey random matrix theory.

1.1 Why small thermoelectric coefficients and small Z T?

In non-interacting systems the only way to have a thermoelectric effect is to have very different
dynamics of particles above and below the Fermi energy. The best thermoelectric is thus a
system that acts as an energy filter, letting particles flow between hot and cold at certain
energies, and blocking their flow at other energies [6].

In contrast, the systems considered here (with N � 1) let particles flow at all energies, so
one can guess their thermoelectric response will be small. This can be understood intuitively
by thinking of the dot’s discrete spectrum of randomly placed levels with a mean level spacing
of ∆. The coupling to the leads broadens these levels2 on the scale of ETh ∼ N∆. This means
that for N � 1, the broadening is much greater than the spacing between levels, so the dot’s
density of states is rather flat, with small fluctuations on the scale of ETh. This implies the
transmission as a function of energy is also rather flat, with small fluctuations on the scale of
ETh, see Fig. 2. Temperature determines a window of energies, kBT , on which transmission
contributes to S2 and Z T . If this window is much less than ETh, then the transmission is

2Of course, this is only a hand waving argument to see the energy scales. In reality, adding large leads to a
isolated quantum system so strongly perturbs the system that there is no clear relation between the energy levels
of the isolated system and the density of states of the the system with leads.
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almost energy independent, and Z T vanishes. If this window is much more than ETh, then
the transmission’s oscillations are on a much smaller scale than the window; They thus tend
to cancel each other, which again means that S2 and Z T vanishes. If this window is of order
ETh, then the transport is at its most sensitive to the fluctuations in transmission, so both S2

and Z T will be maximal.
Quantitative studies of conductance fluctuations have shown that these fluctuations in

transmission have a magnitude of order one (when the average transmission is of order N),
and do indeed fluctuate on the scale of ETh, see Fig. 2. Given this information, readers already
familiar with the scattering theory for thermoelectric effects will probably be able to guess that
our calculations will show that the Seebeck coefficient at its peak is typically of order 1/N in
units of e/h, and Z T of order 1/N2. However, as the position of these fluctuations are random,
some samples will have small positive Seebeck coefficient (i.e. slightly higher transmission for
particles above the Fermi surface than below the Fermi surface), while others will have have
a small negative Seebeck coefficient (i.e. transmitting particles below the Fermi energy a bit
more than those above). Hence, 〈S〉 = 0, while 〈S2〉 is finite but small, where small means
〈S2〉 ∼ (kB/e)2N−2 for large N . By the same arguments, the dimensionless figure of merit is
small, with 〈Z T 〉 ∼ N−2 for large N .

The remaining questions are all quantitative ones; what is the exact temperature depen-
dence of S and Z T . Where exactly in the peak, how big is it, how does it depend on magnetic
field, etc?

1.2 Works on similar systems in different regimes

Ref. [8] discussed the low temperature limit for both the limit of large N and small N , with
Refs. [9,10] going further with small N . Ref. [11] extended these low temperature results to
systems with decoherence and relaxation, as modelled by a voltage probe. Ref. [12] is another
interesting recent work for small N , which considers the band-edge of a system described
by a random matrix, where the levels are very sparse, so can be modelled by just two such
levels, and considers the limit where the thermal conductance is dominated by phonons, so
Z T = GS2T/Kphonon, and the statistics of Z T are entirely determined by the statistics of GS2.
Another work which considered open quantum dots (in the large N limit) is Ref. [13], however
this mainly considers the non-zero value of 〈S〉 that is induced by a superconducting loop
threaded by a flux.

While it is not the subject of this work, it is worth mentioning a significant activity on the
thermoelectric response of disordered one-dimensional wires, both in the coherent transport
regime [8,14–16], and the variable range hopping regime [15,17–20].

This work concentrates on large open quantum dots, which have small thermoelectric
response for the reasons outlined above, however there are many works on smaller more
closed nanostructures, which exhibit strong thermoelectric responses. Examples include a
quantum point-contact or a quantum dot with weak tunnel-coupling to the reservoirs, for a
review see sections 4-6 of Ref. [6]. Similar nanoscale systems with interactions were reviewed
in section 7-9 of Ref. [6]. For the large open systems considered here, we neglect interactions;
however there has long been evidence that a thermoelectric response can be slightly modified
by interactions, see e.g. [21,22]. We do not consider such interaction effects here.

2 Thermoelectric coefficients and figure of merit

We consider systems of the types shown in Fig. 1 in the linear response regime. Refs [1–3,5]
showed that the thermoelectric transport through such systems can be written in terms of
integrals over the transmission function T(E) via the Landauer scattering theory [23,24]; for
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a review see Chapters 4 and 5 of Ref. [6]. One can write the electrical conductance G, thermal
conductance K . Seebeck coefficient S, and Peltier coefficient Π in terms of coefficients of the
Onsager matrix, which can then be written in term of integrals over the transmission function
(see e.g. section 5.2 of Ref. [6]). Then

G = e2 I0 , K =
1
T

�

I2 −
I2
1

I0

�

, (3)

S =
1

eT
I1

I0
, Π =

1
e

I1

I0
, (4)

with the integral

In ≡
∫ ∞

−∞

dE
h
(E −µ)n T(E, B)

�

− f ′(E)
�

, (5a)

where µ is the chemical potential, and f ′(E) is the derivation of the Fermi function with respect
to energy, so

f ′(E) = −
1

4kBT cosh2
�

E
�

(2kBT )
� . (5b)

The Seebeck coefficient of such a dot is zero on average because its sign is random, however
a typical system will have a Seebeck coefficient of order ±

p

〈S2〉. Ref. [8] already gave a result
for 〈S2〉 in the large N limit (see the Conclusions at the end of Ref. [8]), which grows like
(kBT/ETh)2. It is natural to guess that this result can only hold for small T , and the quadratic
growth must stop at some value of T . Here we ask, what is the T -dependence at larger T ,
and how big can the typical Seebeck coefficient become? At the same time, we ask what is
the average value of the figure of merit Z T as a function of temperature? For Z T , combining
Eqs. (2-4), one finds that

Z T =
I2
1

I2 I0 − I2
1

. (6)

One immediately sees from Eqs. (4,6) that to average S2 or Z T over realizations of the chaos
or disorder, one is required to take averages of products and ratios of integrals containing
transmission functions. In general, this is a highly difficult technical problem. However, in the
limit of N � 1, the situation is greatly simplified by the fact that I0 and I2 have fluctuations
much smaller than their average. Writing I0 = 〈I0〉 + δI0 and I2 = 〈I2〉 + δI2, and counting
powers of N in the manner described later in this article (or in Ref. [25]), one finds that
〈I0〉 ∼ 〈I2〉 ∼ N while I1 ∼ δI0 ∼ δI2 ∼ 1 3. Thus

〈S2〉 =
1

e2T2

〈I2
1 〉
〈I0〉2

�

1+O(1/N)
�

, (7)

〈Z T 〉 =




I2
1

�

〈I2〉 〈I0〉
�

1+O(1/N)
�

. (8)

2.1 Evaluating the averages in Eqs. (7,8)

We will treat the problem of finding averages of I0, I1 and I2 in the limit of N � 1 using
the diagrammatic rules, which were derived from a semiclassical treatment of trajectories in a
chaotic cavity, and shown to coincide exactly with the results of random matrix theory [26–28].

3This argument also allows one to arrive at the well known results that the conductances, G and K , are well
approximated by their average values, 〈G〉 and 〈K〉 for large N , see section 2.2.
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This work will use two results of this diagrammatic method derived in Refs. [28–33]. The first
result, whose derivation we outline in Section 5.2 is




T(E)
�

=
NLNR

N

�

1+O(1/N)
�

, (9)

where N = NL+NR is the total number of lead modes. Defining the deviation of the transmis-
sion from its average value as,

δT(E) = T(E)− 〈T(E)〉 , (10)

the second result of the diagrammatic method in Section 5.2 is




δT(E1)δT(E2)
�

=
N2

L N2
R

N4

¨

�

1+
B2

B2
c
+
∆E2

E2
Th

�−1

+

�

1+
∆E2

E2
Th

�−1«�

1+O

�

1
N

��

, (11)

where for compactness we define ∆E = E2 − E1. The two parameters in



δT(E1)δT(E2)
�

are
the Thouless energy, ETh, and the crossover field, Bc. The Thouless energy is

ETh = ħh/τD , (12a)

with τD being the average time a particle spends in the dot. For a d-dimensional dot of typical
volume Ld , and with lead i having width Wi and so carrying Ni ∼ (pFWi/h)d−1 modes, one
has

ETh ∼
ħhvF

Ld

�

W d−1
L +W d−1

R

�

∼
ħhvFN

L

�

h
pF L

�d−1

, (12b)

where vF = pF/m is the Fermi velocity and we drop many factors of order one. This Thouless
energy can be thought of as the broadening of dot levels due to the finite probability of escape
into the leads; it is of order N times the dot level-spacing. Thus for large N , the dot has a
smooth and almost constant density of state, which means that the dot’s transmission function
is also smooth and almost constant (see Fig. 2). The crossover field, Bc, is the external magnetic
field which induces the crossover from the time-reversal symmetric system to the one with
broken time-reversal symmetry. Physically, B = Bc corresponds to the field where a typical
trajectory through the system encloses one flux quantum. For a system of area A∼ L2, which
an electron with velocity vF crosses in a time τ0 ∼ L/vF, one has

Bc ∼ (h/eA)(τ0/τD)
1/2, (13)

see e.g. Section VE of Ref. [34] or Section IIB4 of Ref. [25].
Since 〈T(E)〉 is energy independent, the integrals of it over E are known for n = 0, 1,2.

Hence,

〈In〉 =
1
h

NLNR

N
×







1 for n= 0 ,
0 for n= 1 ,

π2k2
BT2/3 for n= 2 ,

(14)

at leading order in 1/N . Next, we note that

〈I2
1 〉 =

∫

dE1dE2
(E1 −µ)(E2 −µ)

h2




T(E1)T(E2)
�

f ′(E1) f
′(E2) , (15)
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Figure 3: (a) A plot of F(x , b) given by the integral in Eq. (16b), for various b (we
are only interested in b ≥ 1). The function goes like x2 for small x (on a scale almost
too small to see here), while it goes like 1/x for large x . (b) A plot of F(x , 1)+F(x , b)
which appears in 〈S2〉 in Eq. (23) and 〈Z T 〉 in Eq. (27), with the vertical dash marking
the maximum, this maximum is at x ' 0.48 for b = 1 and b =∞, but at slightly
larger x for intermediate values of b.

so using Eq. (11) and defining yi = (Ei −µ)
�

(kBT ), we find that

〈I2
1 〉 =

N2
L N2

R

N4

k2
BT2

h2

�

F
�

kBT
ETh

, 1
�

+ F

�

kBT
ETh

, 1+
B2

B2
c

��

,

(16a)

where to lowest order in 1/N ,

F(x , b) =
1
16

∫

d y1d y2 y1 y2

b+ (y1 − y2)2 x2

1

cosh2[y1/2] cosh2[y2/2]
.

(16b)

This function is plotted in Fig. 3a, it is non-monotonic with a maximum when b = 1 and
x = 0.48 · · · (given that we are only interested in b ≥ 1). This tells us that the maximum 〈I2

1 〉
occurs when kBT/ETh ' 0.48 and B� Bc.

To get the small x behaviour of F(x , b) analytically, we expand
[b + (y1 − y2)2 x2]−1 = 1/b − (y1 − y2)2 x2/b2 + · · · in the integrand. The leading order
in F(x , b) is then F(0, b) = 0, because the integrand is an odd function of y1 and y2, hence
the integral is dominated by the order x2 term at small x . Evaluating the integral over y1, y2
in the x2 term, we find for small x that

F(x , b) =
2π4 x2

9 b2
×
�

1+O
�

x2/b
��

. (17)

To get the large x behaviour of F(x , b), one can use the hand-waving argument that the in-
tegrand is of order y1 y2 in a rectangle given by −2< (y1+ y2)< 2 and −1/x < y1− y2 < 1/x ,
and is small enough to neglect outside this rectangle. One then goes to coordinates z± = y1±y2,

so y1 y2 ∼ z2
+ − z2

−, for which the integral takes the form
∫ 2
−2 dz+

∫ 1/x
−1/x dz−

�

z2
+ − z2

−

�

∼ 1/x
(dropping all prefactors of order one).

2.2 Conductances and the Wiedemann-Franz ratio

Before addressing thermoelectric effects we mention the electrical conductance, G, and ther-
mal conductances, K . Given Eqs. (3,14), we immediately arrive at the well-known result for
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the average conductance

〈G〉 = e2〈I0〉=
e2

h
NLNR

N
, (18)

at leading order in 1/N . Using the same arguments as given above Eq. (7), we see that the
second term in K in Eq. (3) does not contribute to 〈K〉 at leading order in 1/N . Hence

〈K〉 =
1
T
〈I2〉=

π2k2
BT

h
NLNR

N
, (19)

at leading order in 1/N . Furthermore, the arguments given above Eq. (7) convince us that
any such system will only have small deviations in its conductances from this average value, so
G = 〈G〉

�

1+O(1/N)
�

and K = 〈K〉
�

1+O(1/N)
�

. Hence the system satisfies the Wiedemann-
Franz law [5],

K
G
=
〈K〉
〈G〉
=

1
e2T
〈I2〉
〈I0〉

= LT , (20)

to leading order in 1/N , where L is the Lorenz number

L=
π2k2

B

3e2
. (21)

Ref. [5] points out that while this holds to leading order in 1/N , there are mesoscopic fluctu-
ations which violate the Wiedemann-Franz law at the next order.

When Eq. (20) holds, we see immediately that Z T and S are directly related via

Z T = S2
�

L . (22)

Hence this holds for the systems considered here to leading order in 1/N .

2.3 Typical magnitude of the thermoelectric effects

The Seebeck coefficient of such a dot is zero on average because its sign is random, however
a typical dot will have a Seebeck coefficient given in Eq. (1). Ref. [8] already gave a result
for 〈S2〉 in the large N limit (see the Conclusions at the end of Ref. [8]), which grows like
(kBT/ETh)2. It is natural to guess that this result can only hold for small T , and the quadratic
growth must stop at some value of T . Here we ask, what is the T -dependence for arbitrary T ,
and how big can the typical Seebeck coefficient become?

Substituting the averages in Section 2.1 into Eq. (7), we find that

〈S2〉 =
k2

B

e2

1
N2

�

F
�

kBT
ETh

, 1
�

+ F

�

kBT
ETh

, 1+
B2

B2
c

��

, (23)

to leading order in 1/N . Of course, as Π = TS in these systems, the average of the square of
the Peltier coefficient is simply

〈Π2〉 = T2〈S2〉. (24)

Thus, the typical quantum dot will have a non-zero Seebeck and Peltier coefficients given by
substituting Eq. (23) into Eqs. (1).

In the small temperature limit, this result coincides with that in the conclusions of Ref. [8].
To see this, one use Eq. (17) and take the fact that ETh ∼ N∆ as mentioned below Eq. (12b),
so

〈S2〉 =
k2

B

e2

k2
BT2

N4∆2
for kBT � N∆ (25)
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as in Refs. [8, 11], for a level spacing of ∆. An attentive reader will note that the numerical
value of the constant of proportionality is a little different here from in Refs. [8,11], because
of an ambiguity of order one in the choice of definition of ETh, see our Eq. (12b).

The crucial points are that the quadratic growth of 〈S2〉 with T is only for extremely small
T (so small it is barely visible in the plot in Fig. 3b), and that there is a peak in 〈S2〉 at
kBT/ETh ' 0.48 and B� BC. The maximum value, given by this peak, is

〈S2〉max ' 0.88×
�

1
N

kB

e

�2

. (26)

The full non-linear dependence on kBT/ETh shown in Fig. 3b, combined with the fact that
ETh ∼ N∆, means that the dependence of 〈S2〉 on both T and N is non-linear. Broadly speaking
there are four regimes of behaviour, in order of increasing temperature,

• At very small T [8,11], we have 〈S2〉 ∼ N−4T2. This regime with T2 behaviour is almost
too small to see in the plot in Fig. 3b.

• There is a regime of approximately linear T -dependence visible in Fig. 3b, created by
the cross-over from the quadratic small T -dependence to the peak at kBT ∼ ETh/2. In
this regime4, 〈S2〉 goes like N−3T .

• The regime of the peak (kBT ∼ ETh/2) has 〈S2〉 going like N−2.

• The regime where kBT � ETh/2, has 〈S2〉 which decays with increasing T , going like
1/(N T ).

The different dependences on N in these four different temperature regimes should be observ-
able in those experiments where one can easily vary the lead width with split gates.

For large magnetic fields, B� Bc, the value of 〈S2〉 at any T is half that with B = 0 at the
same T .

2.4 Average figure of merit

To get the average of the dimensionless figure of merit, Z T , we can substitute the averages in
Section 2.1 into Eq. (8), or we can simply substitute Eq. (23) into Eq. (22). In either case we
find that

〈Z T 〉 =
3

π2N2

�

F
�

kBT
ETh

, 1
�

+ F

�

kBT
ETh

, 1+
B2

B2
c

��

. (27)

The conditions that maximize 〈Z T 〉 are the same as those that maximize 〈S2〉 (from the curves
in Fig. 3, we see this requires kBT/ETh ' 0.48 and B� Bc), and its maximum value is

〈Z T 〉max ' 0.27×
1

N2
, (28)

while it will be much smaller for kBT � ETh or kBT � ETh. For large magnetic fields, B� Bc,
the value of 〈Z T 〉 at any T is half that with B = 0 at the same T .

4We thank the anonymous referee for pointing out that this linear T regime has a N−3 dependence, which led
us to discuss all four regimes in this manner.
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3 Universality of the Seebeck coefficient and figure of merit

Mesoscopic conductance fluctuations are well-known to have a “universal” magnitude, and
are hence referred to as universal conductance fluctuations. This magnitude is given by the
square-root of the variance which goes like N2

L N2
R

�

N4, where N = NL + NR. Hence, they are
“universal” in the sense that they do not change if one multiplies the width of all leads by the
same amount. To be more precise, if we define an asymmetry parameter

nasym =
NL − NR

N
, (29)

then the variance of the conductance fluctuations can be written as

var[G] =

�

e2

h

�

1− n2
asym

�

�2

×
�

dimensionless function
of kBT/ETh & B/Bc

�

,

which is universal in the sense that it does not depend on N . Actually, this is only true when
var[G] does not depend on ETh (i.e. at low enough temperature that kBT � ETh), because ETh
in Eq. (12) changes when one changes N (by rescaling the lead widths), whether or not one
rescales the system size by the same amount as the lead widths.

Both the average figure of merit 〈Z T 〉 in Eq. (27), and the typical magnitude of the Seebeck
coefficient

p

〈S2〉 in Eq. (23) depend on N = NL+NR, and so are not universal in the same way
as the universal conductance fluctuations. However, they are universal in the sense that they
are independent of the asymmetry parameter nasym. For example, the value of 〈Z T 〉 or 〈S2〉 is
the same for a system with highly asymmetric leads with NL = 100 and NR = 300, as it is for
a system with symmetric leads with NL = NR = 200. Unlike the universality of conductance
fluctuations, this universality of 〈Z T 〉 and 〈S2〉 holds for all T , since ETh in Eq. (12) depends
on N but not on nasym.

4 Full probability distributions

To calculate the full probability distribution of the thermoelectric coefficients, S and Π, or the
figure of merit, Z T , we calculate all moments of these quantities. For large N , we can use the
same logic as above Eqs. (7) to write these moments as




S2m
�

=




I2m
1

�

〈I0〉
2m

�

1+O[1/N]
�

, (30)




(Z T )m
�

=




I2m
1

�

〈I2〉
m 〈I0〉

m

�

1+O[1/N]
�

(31)

for integer m. It is also important to note that



S2m
�

goes like N−2, while



S2m+1
�

goes like
N−3. Thus to leading order in 1/N we can take the odd moments of S to be zero. Of course, the
moments of the Peltier coefficients are simply given by the moments of the Seebeck coefficient
via




Πm
�

= T m



Sm
�

for even and odd m.
Thus to calculate




S2m
�

or



(Z T )m
�

, we need the average of I2m
1 which contains the product

of 2m transmission functions. This means that we need to calculate the average of arbitrary
products of transmission functions. For this, it is convenient to use Eq. (10) to define δT(E)
as the fluctuations of the transmission away from its average value,




T(E)
�

. As



T(Ei)
�

is
independent of Ei , see Eq. (9), nothing changes if one replaces T(E) by δT(Ei) in the integrand
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of I1. Thus




I2m
1

�

=

∫

dE1dE2 · · · dE2m

hm
E1 f ′(E1) E2 f ′(E2)

�

· · · E2m f ′(E2m)

×



δT(E1)δT(E2) · · ·δT(E2m)
�

, (32)

where, without loss of generality, we have measured all energies from the electrochemical
potential.

Then, the diagrammatics performed in section 5.3 gives us the averages of transmission
functions in Eq. (32). For example, the average for m= 4 to leading order in 1/N is




δT(E1)δT(E2)δT(E3)δT(E4)
�

=



δT(E1)δT(E2)
� 


δT(E3)δT(E4)
�

+



δT(E1)δT(E3)
� 


δT(E2)δT(E4)
�

+



δT(E1)δT(E4)
� 


δT(E2)δT(E3)
�

, (33)

where the three terms contain all possible pairwise combinations of of E1, E2, E3, E4. Turning
now to arbitrary m, the diagrammatic rules tell us that




δT(E1)δT(E2) · · ·δT(E2m)
�

(to leading
order in 1/N) is a sum with (2m)!/(2mm!) terms, in which each term contains the product of
pairwise averages, and the sum is over all pairwise combinations of E1, E2, · · · E2m (with the
ordering in each pair being irrelevant).

In the context of



I2m
1

�

in Eq. (32), these sums over pairwise combination of energies
are greatly simplified by the fact that we integrate over all energies. As a result each of the
(2m)!/(2mm!) terms in the sum gives the same integral, each of which equals m products of
the integral in




I2
1

�

. Thus




I2m
1

�

=
(2m)!
2mm!




I2
1

�m
, (34)

for any integer m. For what follows, we also note that the same rules easily give



I2m−1
1

�

= 0
for integer m (to leading order in 1/N). Substituting Eq (34) into Eq. (30) then gives




S2m
�

=
(2m)!
2mm!




S2
�m

,



S2m+1
�

= 0, (35)

to leading order in 1/N . Similarly, using Eq. (31), we see that the moments of the figure of
merit are




(Z T )m
�

=
(2m)!
2mm!




Z T
�m

, (36)

to leading order in 1/N .
Since these results give all moments of the probability distributions, one can find the prob-

ability distribution itself using the results in Appendix A. Then one sees that the probability
distribution of I1 is a Gaussian;

P(I1) =

√

√

√

1

2π



I2
1

� exp

�

−
I2
1

2



I2
1

�

�

. (37)

4.1 Full distribution of the thermoelectric coefficients

Given Eqs. (4,37) we see that the Seebeck coefficient, S, has a Gaussian probability distribu-
tion,

P(S) =

√

√

√

1

2π



S2
� exp

�

−
S2

2



S2
�

�

. (38)
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This Gaussian at large N was predicted from general arguments in Refs. [8, 9], without giv-
ing the form of




S2
�

outside the limit of small T . Our Eq. (23) gives



S2
�

for arbitrary T
and B, and hence completely determines the distribution of S for large N . Turning to the
Peltier coefficient, the fact that Π = TS in these systems directly means that
P(Π) = (2π




Π2
�

)−1/2 exp
�

−Π2
�

2



Π2
��

.
One can compare the Gaussian distribution of S at large N , with the distributions at small

N in Refs. [8, 9], they show discontinuities at small S which are absent in the distribution at
large N .

4.2 Full distribution of the figure of merit

Since I1 follows a Gaussian distribution and Z T goes like I2
1 , it only takes one line of algebra

(see appendix A), to see that the distribution of Z T is

P(Z T > 0) =

√

√

√

1

2π



Z T
�

Z T
exp

�

−
Z T

2



Z T
�

�

, (39)

while P(Z T < 0) = 0. This probability distribution is full determined by its average,



Z T
�

,
given in Eq. (27).

This distribution tells us that the probability a sample has a value of Z T which is more
than α times the average, is given by 1 − erf(

p

α/2), where erf(x) is an error function. It
tells us that 2.5% of samples will have a value of Z T which is more than 5 times bigger than
the average, but only in 0.16% of samples will have a value of Z T which is more than 10
times bigger than the average. The square-root divergence at small Z T means there is a high
probability of samples having smaller Z T than average, for example there is a 25% chance
that a sample has Z T less than one tenth of the average.

5 Diagrammatics for open chaotic or disordered dots

This work uses the diagrammatic method developed in Refs. [28–33,35,36] for correlations in
transport, both quantum noise effects and conductance fluctuations, which built on the earlier
work on mesoscopic corrections [37–42]. These works showed that open quantum chaotic
systems obey random matrix theory, as was already shown for closed systems in Refs. [26,27,
43], however in the process they developed simple diagrammatic rules to calculate averages
of transmission functions which work for both random matrices and the semiclassical limit of
quantum chaotic systems.

To draw the diagrams, one notes that the transmission function T(E) =
∑

i j t i j(E)t∗i j(E),
where j is summed over all modes of the left lead, and i is summed over all modes of the
right lead. Here t i j(E) is the i jth element of the part of the system’s scattering matrix which
corresponds to particles going from the left reservoir the the right reservoir. Each factor
of t i j(E) or t∗i j(E) can be represented as a sum over all trajectories from left to right, so
T(E1)T(E2) =

∑

i1 j1

∑

i2, j2
t i1 j1(E1)t∗i1 j1

(E1)t i2 j2(E2)t∗i2 j2
(E2), corresponds to four trajectories

from left to right. It is convenient to draw the trajectories associated with factors of t(E)
as solid lines and the trajectories associated with factors of t∗(E) as dashed line, and to use
different colours for different energies. See the example in Fig. 4. Any solid trajectory that
is not paired with a dashed trajectory (and vice-versa) at every moment will average to zero.
Broadly speaking, this is because each trajectory’s contribution to t i j(E) is proportional to a
factor whose phase is that trajectory’s action in units of ħh. If a trajectory is unpaired, its phase
will be statistically independent of the phase of the other trajectories, and averaging over the
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R
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ir
 R

Encounter
touching lead L

Encounter 
inside dot

(a) Example of physical trajectories (b) Equivalent diagram 

Encounter
touching lead L

Encounter 
inside dot

Figure 4: This sketch indicates how to go from (a) physical trajectories in an disor-
dered open dot to (b) the slightly more abstract diagrams used to calculate the trans-
port properties, such as the diagrams in Figs. 5 and 6. The equivalent for chaotic
systems are trajectories which bounce back and forth inside the dot, but when un-
folded look similar to the diagrams in (b), with paths diverging and converging from
each other. In (b) we use a triangle to indicate an encounter that touches a lead, and
a rectangle to indicate an encounter inside the system; this notation is carried over
into Figs. 5 and 6.

ensemble will correspond to averaging over large fluctuations in the phase, which means the
average will be zero. The simplest trajectory pairing is to pair the two trajectories with the
same energy. This gives




T(E1)T(E2)
�

=



T(E1)
� 


T(E2)
�

. Given Eq. (10), such pairings give
no contribution to




δT(E1)δT(E2)
�

, which means that the contributions to



δT(E1)δT(E2)
�

come from more complicated pairings. Such more complicated pairings involve a solid trajec-
tory paired with a given dashed trajectory for part of the time, but pairs meet at “encounters”
where the pairings swap, for examples see Figs. 4-6. There are many such contributions, and
only the ones at leading order in 1/N are discussed here.

The diagrammatic rules are derived in sections VI and VII of Ref. [28], and are summarized
in Ref. [44] (although Ref. [44] also includes rules for superconducting reservoirs). The rules
relevant here are as follows.

1. A trajectory-pair consisting of one solid trajectory with energy Ei and one dashed trajec-
tory with energy E j gives a factor of

1
N

1
1 − i(Ei − E j)/ETh + χ (B/Bc)2

, (40)

with χ = 1 for time-reversed trajectories (marked with TR in Fig. 6) and with χ = 0
otherwise.

2. A trajectory-pair that ends at lead i while not in an encounter, gives a factor of Ni . In
Figs. 5 and 6, these are marked by the small circles on the left of the diagram for lead
L, and small circles on the right for lead R.

3. An encounter touching lead i gives a factor of Ni , irrespective of how many trajectory-
pairs meet at the encounter, and thereby end at the lead. In Fig. 5 these are marked
by the triangles on the left of the diagram for lead L and triangles on the right of the
diagram for lead R (there are no such contributions in Figs. 6). This rule is not general,
but applies to all the encounters touching leads that occur in the diagrams shown in this
work.

4. An encounter inside the dot gives a factor of −N × (1+ κ). In Figs. 5 and 6, these are
marked by the rectangular boxes. The factor of (−N) is there for any encounter, no
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Figure 5: The leading order in 1/N contributions to



δT(E1)δT(E2)
�

without time-
reversed trajectory-pairs; in other words, the trajectories in these contributions all go
in the same direction in all trajectory pairs. These contributions are hence indepen-
dent of the external B-field. The physical meaning of such contributions is indicated
in Fig. 4. The solid black trajectory correspond to a contribution to t(E1), and the
dashed black trajectory corresponds to contribution to t∗(E1). The solid red trajec-
tory correspond to a contribution to t(E2), and the dashed red one to contribution to
t∗(E2). Triangles indicating encounters that touch the leads, and rectangles indicat-
ing encounters inside the system. Note that contributions II and III are only different
because of how they couple to the leads. Contribution II has the four paths together
in an encounter at lead L, while they are in two pairs at lead R. In contrast, contri-
bution III has the paths in two pairs at lead l, while the encounter is at lead R. One
must have both these contributions.

matter how many trajectories meet at the encounter. The N -independent factor of κ
contains the encounter’s dependence on energy differences and B field, and depends on
details of the encounter in the manner shown in Fig. 7. Note that κ= 0 for any encounter
in the limit where all energies are equal (E1 = E2, etc) and there is no external magnetic
field (B = 0).

5.1 Diagrams for



T (E)
�

At leading order in 1/N there is only one diagram for



T (E)
�

, it is one in which the trajectories
form a single pair from lead L to lead R. Thus there is one trajectory-pair and it is not time-
reversed, thus its weight is given by rule 1 in the above list, with Ei = E j = E and χ = 0. One
end of the trajectory pair is on lead L and the other on lead R, with weights given by rule 2 in
the above list. There are no encounters, so the other rules in the above list are not necessary.
Thus we conclude that




T (E)
�

to leading order in 1/N is given by the result in Eq. (9).
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Figure 6: Leading order in 1/N contributions to



δT(E1)δT(E2)
�

which contain some
time-reversed (TR) trajectory-pairs (some of the trajectory pairs consist of trajectories
going in opposite directions). These time-reversed trajectory-pairs are marked with
“TR”, such trajectory-pairs are cooperons in the language of disordered systems. Each
diagram here corresponds on one in Fig. 5, but with the red trajectories passing
though the encounters in the opposite way. However, this is not possible for the
contributions in Fig. 5 with encounters at the leads (contributions II, III, and IV),
meaning there are only the above three diagrams containing TR trajectory-pairs.

5.2 Diagrams for



δT(E1)δT(E2)
�

To calculate the typical magnitude of the thermoelectric coefficients or the average figure of
merit in the large N limit, we need to evaluate all the leading-order diagrams that contribute to



δT(E1)δT(E2)
�

to arrive at Eq. (11). These were discussed in Ref. [28,33], and are shown in
Fig. 5. Using the diagrammatic rules, one can convince oneself that these are the only diagrams
that are order zero in N , and that all others (such as those including weak-localization loops)
are higher order in 1/N . Thus, for large N , we only need to consider the diagrams in Figs. 5
and 6.

Giving weights to these diagrams following the above rules, we see that contribution I in
Fig 5 has two encounters with κ= 0, so its total weight is

WI =
N2

L N2
R

N4

�

1+
(E2 − E1)2

E2
Th

�−1

. (41)

The weights of contributions II, III and IV are

WII = −
NLN2

R

N3

�

1+
(E2 − E1)2

E2
Th

�−1

, (42)

WIII = −
N2

L NR

N3

�

1+
(E2 − E1)2

E2
Th

�−1

, (43)

WIV =
NLNR

N2

�

1+
(E2 − E1)2

E2
Th

�−1

, (44)

which means that they sum to zero; WII +WIII +WIV = 0.
Contributions V and VI have more complicated encounters with non-zero κ. Contribu-

tion V has two encounters, with trajectories pairs contributing the same as in WI, however
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Figure 7: An encounter’s contribution is −N × [1+ κ], where κ’s dependence on
energies and the magnetic field is different for different encounters. The value of
κ for various encounters is given here. Sections VI and VII of Ref. [28] explain the
origin of these contributions.

one encounter has κ = i(E2 − E1)/ETh, and the other has κ = −i(E2 − E1)/ETh. Hence, the
contribution’s weight is

WV =
N2

L N2
R

N4
, (45)

where the energy dependence that came from the encounters exactly cancelled the energy
dependence that came from the trajectory-pairs. The contribution VI has an encounter with
κ= i(E2 − E1)/ETh, hence the contribution’s weight is

WVI = −
N2

L N2
R

N4
, (46)

where again there is exact cancellation between the energy dependence that came from the
encounter and that which came from the trajectory-pair. Hence, these two contributions also
sum to zero; WV +WVI = 0.
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Now we turn to the contributions which involve some time-reversed trajectory-pairs, which
are shown in Fig. 6. The contribution I-TR has encounters with the same weight as contribu-
tion I, but with the trajectory-pairs marked with “TR" have extra factors of (B/Bc)2 in the
denominator, hence its weight is

WI−TR =
N2

L N2
R

N4

�

1+
(E2 − E1)2

E2
Th

+
B2

B2
c

�−1

. (47)

The contributions V-TR and VI-TR are similar to those of V and VI, but both the encounters
and the trajectory pairs have extra factors of (B/Bc)2. Remarkably, these factors are arranged
in such a manner that they all cancel, and the contributions are B-independent. Thus

WV−TR = −WIV−TR =
N2

L N2
R

N4
, (48)

so again these two contributions sum to zero. Note that it would be very odd if contributions
V-TR and VI-TR did not sum to zero, since one expects on general grounds that the correlations
decay with increasing B, so non-cancelling B-independent contributions should not exist.

Thus, in conclusion, the sum of all contributions to



δT(E1)δT(E2)
�

is equal to the sum
of the weights of contributions I and I-TR, and this is what is given in Eq. (11). All the above
cancellations between contributions makes one wonder if there is a deeper principle at play
here, however we see no such principle at the level of the sums over semiclassical trajectories
considered here.

5.3 Diagrams for higher order correlators

The objective of this section is to argue that the diagrammatic rules tell us that an M th or-
der transmission correlators of the form




δT(E1)δT(E2) · · ·δT(EM )
�

, is given by all possible
pairwise groupings of the transmission coefficients, see in and below Eq. (33).

The M th order transmission correlators of the form



δT(E1)δT(E2) · · ·δT(EM )
�

, consists
of 2M trajectories from lead L to lead R, as sketched on the left in Fig. 8. Such contributions
average to zero unless all the trajectories they contain are paired up at all time (switching
pairing at encounters). In addition, because of the definition in Eq. (10), a contribution is also
zero if any trajectory is only paired with its partner of the same energy.

We will see that for large N , the leading order contributions to this correlation are of order
N0, with corrections going like 1/N . With this in mind, our objective is to find all ways of
pairing the 2M trajectories in manners that give a contribution at order N0.

We start by taking the first pair of trajectories (those with energy E1) and connecting them
with the ith pair of trajectories (those with energy Ei), such that they meet at encounters and
exchange pairings. This connection can be via any of the diagrams in Figs. 5-6, all of which are
order N0. If we now take the jth pair of trajectories (those with energy E j , and try to connect
them (via encounters) with trajectories of pair 1 or pair i, we find we always get a diagram
which is of order 1/N or smaller. Thus to get a contribution of order N0, we must connect the
jth pair with another pair which has not yet been involved in any encounters (i.e. the pair with
energy Ek for k 6= 1, i, j). Trajectories that are not connected are statistically independent, and
so can be averaged separately. Thus order N0 contributions are those where each trajectory
pair with exactly one other, all other contributions are smaller, and so can be neglected. The
result is that for M = 4, we get Eq. (33), and for even M (so M = 2m with integer m) we get
the result outlined below Eq. (33). In contrast for odd M , there is an odd number of trajectory
pairs, and so one cannot connect each pair with one other (there will always be a pair left
over). Thus




δT(E1)δT(E2) · · ·δT(EM )
�

is of order 1/N for odd M , which means we can take
it to be zero when working at order N0.
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Zeroth order in 1/N

First order in 1/N

Zeroth order in 1/N

(small enough to ignore 
in this work)

Trajectories for 
a 7th order 
correlator

(before pairings)

SOME POSSIBLE PAIRINGS

Figure 8: Contributions to



δT(E1)δT(E2) · · ·δT(EM )
�

for M = 7. On the left, each
δT(Ei) is represented by two trajectories of the same colour joined at beginning and
end. Only contributions where the trajectories are connected contribute to the aver-
age. On the right, we show one possible way of connecting them. All trajectories are
in pairs, but they swap pairings at the encounters (black rectangles). If any colour is
paired with itself alone, then its contribution is zero. The full contribution is the prod-
uct of the individual connected contributions. The connected contributions involving
only two pairs of trajectories (such as black-green or red-blue here) are zeroth order
in 1/N , Those involving three or more pairs of trajectories are higher order in 1/N ;
for example the connected contribution involving three colours (orange-purple-cyan)
is of order /N . Thus the product over all connected contributions will be of order N0,
if all connected contributions involve only two pairs of trajectories (i.e. two colours).
See section 5.3 for more details.

6 Conclusions

Here, we have provided a quantitative theory for the thermoelectric response and the figure
of merit of large open quantum dots. The dots may be disordered or chaotic, and are coupled
to two leads, left (L) and right (R), which carry a large number of modes, N � 1. Such sys-
tems have long been known to have a rather weak thermoelectric response, however to the
best of our knowledge no quantitative results existed outside the regime of very low tempera-
tures. Quantitative theories such as this are necessary, if one wishes to use the thermoelectric
response as a probe nanostructures.

We show that the thermoelectric response of such systems is always small, but is peaked
when the temperature is very close to half the Thouless energy (kBT/ETh ' 0.48), and when
the external magnetic flux through the dot is zero. This condition maximises both the typical
Seebeck and Peltier coefficients , Stypical and Πtypical„ and the average thermoelectric figure of
merit, 〈Z T 〉. These quantities are also found to exhibits a type of universality, in the sense that
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it does not depend on the asymmetry between the number of modes in lead L and R (NL−NR),
but only on the sum of the two, N = (NL + NR).
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A From moments to probability distribution

In section 4, we have a probability distribution, P(y), whose moments obey




y2m−1
�

= 0, and



y2m
�

=
(2m)!
2mm!




y2
�m

, (49)

for integer m, where 〈· · · 〉=
∫

d yP(y)(· · · ). For a Gaussian probability distribution,

P(y) =
s

α

π
exp

�

−αy2
�

, (50)

with α= 1
� �

2



y2
��

, one can calculate the moments, and see that they obey Eq. (49).
If one wishes to prove this in a deductive manner, rather than via the above observation,

one can start by defining the generating function

F(t) ≡



ei y t
�

=
∞
∑

n=0

i t



yn
�

n!
. (51)

This means that F(t) =
∫

d y ei y t P(y), and hence the probability distribution, P(y), can be
found from F(t) via the Fourier transform,

P(y) =

∫

d t
2π

e−i y t F(t). (52)

Thus, once one has F(t), one can find P(y).
In the case of interest here, substituting Eq. (49) into Eq. (51), we define n= 2m, and find

that

F(t) =
∞
∑

m=0

�

−t2



y2
��m

2m m!
= exp

�

−1
2




y2
�

t2
�

. (53)

Thus, the Fourier transform gives

P(y) =

√

√

√

1

2π



y2
� exp

�

−
y2

2



y2
�

�

. (54)

Next we wish to consider the probability distribution P(z), whose moments obey




zm
�

=
(2m)!
2mm!




z
�m

. (55)
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By comparison with Eq. (49) we see that it is the same with z = y2, and we can use this fact
to get P(z) from Eq. (54). We have P(z)dz = 2P(y)d y , where the factor of two is due to
contributions to P(z) from both positive and negative y , hence

P(z) = 2P(y)
�

�

�

y=
p

z

d
dz
p

z =

√

√

√

1

2π



z
�

z
exp

�

−
z

2



z
�

�

, (56)

which is an exponential decay with square-root divergence at small z.
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