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Abstract

Theories where a fermionic dark matter candidate interacts with the Standard Model
through a vector mediator are often studied using minimal models, which are not neces-
sarily anomaly-free. In fact, minimal anomaly-free simplified models are usually strongly
constrained by either direct detection experiments or collider searches for dilepton reso-
nances. In this paper, we study the phenomenology of models with a fermionic dark mat-
ter candidate that couples axially to a leptophobic vector mediator. Canceling anomalies
in these models requires considerably enlarging their field content. For an example
minimal scenario we show that the additional fields lead to a potentially much richer
phenomenology than the one predicted by the original simplified model. In particular
collider searches for pair-produced neutralinos and charginos can be more sensitive than
traditional monojet searches in thermally motivated parts of the parameter space where
the mediator is outside the reach of current searches.
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1 Introduction

Dark matter phenomenology has often been studied using so-called Simplified Models [1–8]
which aim to consider only the minimal Lagrangian and particle content relevant for relic
density calculations, direct and indirect detection, and collider searches. Such models can be
understood as a bottom-up approach to dark matter model building, to be contrasted with the
top-down approach focusing on plausible dark matter scenarios in UV-complete theories such as
Supersymmetry. However, the requirement for minimality and the focus on phenomenology
has also resulted in many of these models failing basic theoretical self-consistency require-
ments. Models with a new heavy gauge boson, notably, often obfuscate how the masses of the
mediator and dark matter are generated in a gauge-invariant manner. Furthermore, models
with new fermions that are charged under the Standard Model or under a new gauge group
are often plagued by anomalies. Fixing this often requires the introduction of further interac-
tions and fields that will lead to a much richer phenomenology than predicted by the original
simplified model [9–19]. It is worth stressing that these problems mean that the models can
not be consistently quantised and only provide predictions at tree level, which makes it clear
that they are not models of nature in any meaningful sense but rather just benchmarks for spe-
cific experimental signatures. Studies of the phenomenology of anomaly-free U(1) extensions
in various contexts can be found in [20–42].

Perfect illustrations of this consistency issue are the so-called gauge portal models, involv-
ing a fermionic dark matter candidate that is charged under a new dark U(1)′ gauge group
associated with a massive gauge boson Z ′. While generating a mass for Z ′ only requires in-
troducing a new Higgs field, cancelling the anomalies associated with the dark fermion can
prove particularly cumbersome. Since these models typically introduce family-independent
couplings for the leptons and quarks, they often correspond to U(1)B and U(1)L models of
gauged baryon and lepton numbers, which were originally discussed in [43–45] with the dark
matter phenomenology studied in [46–48]. While simple anomaly-free gauge portal solutions
based on this family of models have been discussed in [16], they involve either a large vector-
like coupling between the dark matter and the Z ′, or a sizable coupling between the Z ′ and the
Standard Model (SM) leptons. Both features are somewhat undesirable from a dark matter
perspective, as they respectively imply large direct detection cross-sections or a clear dilepton
resonance signal at the LHC for large parts of the thermally motivated values of the param-
eters. Given the current sensitivities for these types of signals [49, 50], it is well-motivated
to also investigate anomaly-free models for which the Z ′ is leptophobic and couples primarily
axially to the DM. As outlined in [16, 43] however, anomaly cancellation for these models is
non-trivial and requires dramatically increasing the model’s particle content. In particular, it
is not clear that the mono-X searches which typically are benchmarked with these models at
the LHC are the most sensitive once mediator searches are avoided due to the new signatures
which are introduced.

In this paper we derive a minimal field content and charge assignment which cancels all
gauge anomalies for a model with a fermionic dark matter candidate a vector mediator from
a new broken U(1)Y ′ gauge group. As outlined above, in order to avoid the current direct
detection and collider constraints, we require that the mediator is strictly leptophobic, with a
purely axial coupling to at least one fermionic interaction eigenstate. We then use this scenario
as a benchmark example to illustrate that, in the region of parameter space outside the reach
of the dijet searches, anomaly-free gauge portal models will often be more sensitive to searches
for new heavy states with electroweak charges at the LHC than to monojet searches. Requiring
theoretical consistency for simplified models thus uncovers a particularly intriguing interplay
between dark matter searches and the wider BSM programme of the LHC which inspired the
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title of this work1: constructing a consistent model which avoids the strongest constraints
currently set on simplified models predicts new signatures which can allow other searches to
exclude the model. This also suggests the usefulness of the Simplified Model as a benchmark
for monojet searches is rather questionable. This model was recently independently derived
and studied in [19] in the limit where all anomaly-cancelling fermions are decoupled from the
dark matter and collider phenomenology, we will here instead focus on the phenomenological
consequences of keeping the masses of these new fermions at the same scale as the dark matter
fermion.

The structure of the paper is as follows: in Section 2 we derive and discuss the model,
with a discussion of the mass mixing scenario we will employ in Section 2.1 and the effect of
kinetic mixing of the U(1)s in Section 2.2. This is followed by a study of the dark matter phe-
nomenology in Section 3.1 and a study of the LHC phenomenology for a selection of thermal
and non-thermal benchmark parameter points in Section 3.2. We conclude in Section 4.

2 Model details

We start from a minimal gauge-portal model, with a new Dirac fermion χ that is charged under
a new U(1)Y ′ gauge group associated with a massive gauge boson Z ′. The corresponding new
physics Lagrangian is

L= −1
4

B
′µνB′µν −

ε

4
BµνB′µν + χ̄( /∂ −m)χ − χ̄(gV + gAγ5)γ

µχZ ′µ , (1)

where Bµν and B′µν are the field strengths for the SM hypercharge and the new U(1)Y ′ group
respectively. In the rest of our study, we set the kinetic mixing ε to zero, briefly discussing this
choice in section 2.2. The relative values of the vector and axial couplings gV,A depend on the
dark hypercharges of the left and right-handed components of χ, that is, χL and χR.

This basic scenario has been widely used to derive constraints from relic density, direct
detection, and collider searches for gauge portal models. When the coupling between χ and
Z ′ is axial, however, which is the configuration with the loosest direct detection constraints,
this model has non-zero U(1)Y ′ anomalies. In what follows, we present an example model
with an extended dark sector that allows to cancel these anomalies while keeping the DM-Z ′

coupling mostly axial and the Z ′ leptophobic. This corresponds to a specific implementation
of the general gauged baryon and lepton-number motivated models derived in [9, 45]. We
stress that, although our chosen model has a particularly large number of fields, it is among
the most minimal models that can be built with our requirements. A more detailed discussion
of the construction of these models is presented by the authors of [16]. In the rest of our study,
we will use SARAH [51–56] throughout in order to implement the model and derive relevant
quantities.

In order to have an anomaly-free gauge portal model that satisfies the existing experimen-
tal constraints, we need to introduce additional fields which transform non-trivially under
U(1)Y × SU(2)L [16, 43]. A minimal solution is to add 6 new Weyl fermions in the following
U(1)Y × SU(2)L × SU(3)C × U(1)Y ′ representations2:

• χL ∼ (0,1,1, Y ′χ) ,

• χR ∼ (0,1,1,−Y ′χ) ,

1Whac-a-mole is a classic arcade game in which new moles appear when previous ones have been pushed back
into their holes.

2An alternative solution with fewer new fields using both SU(2)L doublets and triplets was derived in [47] and
its dark matter phenomenology was studied in [57].
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• θL ∼ (Yθ ,1,1, Y ′
θL
) ,

• θR ∼ (Yθ ,1,1, Y ′
θR
) ,

• φL ∼ (Yφ ,2,1, Y ′
φL
) ,

• φR ∼ (Yφ ,2,1, Y ′
φR
) .

Here we have already made θ and φ vectorlike under the Standard Model gauge group
to avoid having to consider anomaly equations for products of gauge groups not involving
U(1)Y ′ . The relevant anomaly equations assuming Y ′l,e = 0 (which requires Y ′q = Y ′u,d to keep
the Standard Model Yukawa terms gauge invariant) are then:

9Y ′q + Y ′φL
− Y ′φR

= 0 SU(2)2L × U(1)Y ′ , (2)

−18Y ′q + 2Y ′φL
Y 2
φ − 2Y ′φR

Y 2
φ + Y ′θL

Y 2
θ − Y ′θR

Y 2
θ = 0 U(1)2Y × U(1)Y ′ , (3)

2Y ′2φL
Yφ − 2Y ′2φR

Yφ + Y ′2θL
Yθ − Y ′2θR

Yθ = 0 U(1)Y × U(1)2Y ′ , (4)

2Y ′3χ + Y ′3θL
− Y ′3θR

+ 2Y ′3φL
− 2Y ′3φR

= 0 U(1)3Y ′ , (5)

2Y ′χ + Y ′θL
− Y ′θR

+ 2Y ′φL
− 2Y ′φR

= 0 U(1)Y ′ . (6)

In order to avoid having charged dark matter candidates we require Yφ = m+ 1
2 and Yθ = n

where m, n ∈ Z, so that the lightest charged state can decay into the lightest neutral state by
emitting a Standard Model particle. Restricting ourselves to configurations with |Q| ∈ {0, 1}
for all new fields we find the solution

Yθ = ±1 , (7)

Yφ = ±
1
2

, (8)

Y ′q = −
2
9

Y ′φL
, (9)

Y ′χ = −Y ′φL
, (10)

Y ′θL
= −Y ′φL

, (11)

Y ′θR
= Y ′φL

, (12)

Y ′φR
= −Y ′φL

. (13)

For simplicity we take Y ′
φL
= 1 and Yθ , Yφ = 1, 1

2 for the rest of the paper3.
Due to the gauge invariance of the SM lepton Yukawa interaction term mentioned above,

the Standard Model Higgs doublet H must be a singlet under U(1)Y ′ . Therefore in order to
break U(1)Y ′ and give masses to all of the new fields we have to add a new complex scalar
which is a Standard Model singlet:

• S̃ ∼ (0,1,1, 2)

This scalar gets a vev vS:

3While writing up this paper a similar study appeared in [19] which directly connected the model to U(1)B and
hence chose to normalise such that Y ′q =

1
3 , however the models are otherwise identical. We will take a different

approach to studying the phenomenology for the remainder of this paper.
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S̃ =
1
p

2
(vS + S + ia) , (14)

which generates a mass for the Z ′ gauge boson of U(1)Y ′

m2
Z ′ = 4g2

Y ′ v
2
S . (15)

The allowed mass and interaction terms in the Lagrangian are then as follows:

L ⊃−µ2
H H†H −µ2

S S̃2 −λH |H†H|2 −λH,SH†HS̃2 −λS S̃4 (16)

− yd Hd̄q− yeHēl − yu eHūq+ h.c. (17)

− yφL ,θR
eHφLθR − yφL ,χR

HφLχR − yχL ,φR
eHχLφR − yθL ,φR

HθLφR + h.c. (18)

− yχ S̃χLχR − yθ S̃θLθR − yφ S̃†φLφR − yχL
S̃χLχ

c
L − yχR

S̃†χRχ
c
R + h.c. , (19)

where eH = iσ2H∗.

2.1 From interactions to mass eigenstates

In the broken phase we get the following Majorana mass matrix for the neutral states after

expanding the SU(2) doublets as φL/R =

�

φL/R,1
φL/R,2

�

:

�

χL φc
R,2 χ c

R φL,2

�











p
2vS yχL

0
vS yχp

2

vH yχL ,φRp
2

0 0
vH yφL ,χRp

2

vS yφp
2vS yχp

2

vH yφL ,χRp
2

p
2vS yχR

0
vH yχL ,φRp

2

vS yφp
2

0 0



















χ c
L

φR,2
χR
φc

L,2









. (20)

Turning off the Majorana terms yχL
and yχR

allows us to describe the propagating degrees
of freedom as two Dirac fermions χ1/2 where χ1 will generically denote the lightest fermion
a.k.a. the DM candidate, and that we will always take as mostly χ to avoid direct detection
constraints. Keeping them turned on but small splits the two Dirac pairs into four Majorana
fermions [58, 59], which will naturally suppress the diagonal vectorlike couplings of the Ma-
jorana dark matter fermion.

The terms mixing the Standard Model singlets with the neutral components of the SU(2)
doublets, yχR

and yχL
, also introduce couplings to the Z for χ1 which again rule the model

out through direct detection unless these terms are very small: yχR
, yχL

vH � 10−2 yχ vS for
yφ = 1.1yχ . We keep track of this effect and note that this is a somewhat unfortunate con-
sequence of this particular charge assignment as it requires some fine-tuning to achieve the
stated goal of avoiding direct detection constraints. Other anomaly-cancelling solutions such
as models involving a SU(2)L triplet with Y = 0 could avoid this hurdle as the neutral fermions
would not couple to the Z . We present an analysis of the direct detection sensitivity of non-zero
yχR

, yχL
in Section 3.1 to give an estimate of the degree of fine-tuning involved. We note that

turning on the Majorana terms in the Lagrangian would also suppress the spin-independent
direct detection cross section due to the absence of diagonal vectorlike interactions among the
Majorana fermions, and the parameter space and phenomenology would also be more com-
plex due to the presence of four Majorana fermions and a Dirac fermion in the spectrum in the
limit where the doublet Yukawa is not much larger than that of the singlet. However this limit
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Figure 1: Two representative model spectra which give the correct relic density. The
left spectrum shows a scenario with large mixing in both the neutral and charged
fermion sectors, and is ruled out by direct detection constraints. The right spectrum
is allowed by direct detection and dijet constraints and will be used as benchmark
point [3] in Section 3.2.

will share many qualitative features with the same limit in the Dirac case which we explore
here4.

Although the yχR
and yχL

couplings should be small in order to avoid direct detection
constraints, they should also not be identically zero in order to avoid having the neutral com-
ponent of the doublet φ —which always couples to the Z— being stable, and thus a dark
matter candidate. In what follows, we therefore always choose small non-zero values for
these couplings in our benchmark models. Note that the existence of these couplings allows
χ1 and χ2 to coannihilate if they are close enough in mass (so yχ ∼ yφ) by ensuring that
the two particles remain in equilibrium in the early Universe. We emphasize that studies that
involve relic density constraints need to take this possibility into account.

The mass matrix for the charged fermions is:

�

θL φL,1

�

� vS yθp
2

vH yθL ,φRp
2vH yφL ,θRp

2

vS yφp
2

�

�

θR
φR,1

�

. (21)

We denote the two mass eigenstates by χ±1/2. If the off-diagonal elements are small and
yθ � yφ , χ±1 is the charged component of the doublet φ, mχ±1 ∼ mχ2

and χ±1 can also be-
come a coannihilation partner of the dark matter. We will study this maximal coannihilation
scenario in Section 3.1.

For completeness we also include the mixing in the scalar sector in the Appendix A. This
mixing has no incidence on the DM phenomenology as long as the contribution of the scalar
portal interactions to the DM relic density remain negligible. We will therefore assumeλH,S = 0
such that the mixing completely vanishes and H is completely Standard Model-like, with the
caveat that our results only apply as long as the approximation that any such effects are negligi-
ble holds. Including higher order corrections will still induce effective interactions between the
dark matter and light quarks through the 125 GeV state, which will in general be constrained

4In this sense the Dirac scenario provides a good way to study the phenomenology with a smaller parameter
space with the understanding that in particular the fine-tuning in the neutral fermion sector mass-mixing would
be alleviated by turning on small Majorana terms.
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by the spin-independent direct detection cross section, however the yHχχ interaction is only
constrained to have y ® 0.1 by Xenon1T [49] so this mixing is not as fine-tuned as that in the
neutral fermion sector.

An interesting question in a model with such a rich particle content is whether there is
a decoupling limit for the new anomaly-cancelling fermion states. One possible decoupling
direction would be to take the vS →∞ limit while requiring yχ to be much small than the
other Yukawa couplings. We observe, however, that vS controls not only the fermion masses,
but also the mass of the new gauge boson Z ′ that mediates the dark matter annihilation rate.
Notably, in the mχ1

> mZ ′ limit where the additional fermions are heavy, most of the dark
matter annihilation occurs through the Z ′, and yχ is chosen to maximise this annihilation
channel, the associated velocity-averaged cross-section in the s-wave verifies

〈σv〉®
g2

Y ′

6 v2
S

.

The observed relic density is achieved for 〈σv〉 ≈ 10−8 GeV, which implies that vS cannot be
much larger than 10 TeV for gY ′ ≈ 1. Since, for gauge portal dark matter models, perturbative
unitarity sets order one bounds on Yukawa couplings [60], the new fermionic states cannot be
made heavier than a few tens of TeV in this limit. In the ’on-shell’ region 2mχ1

< mZ ′ where
collider searches are particularly sensitive, it is typically possible to make the anomaly can-
celling fermions heavier than the Z ′ since mZ ′ = 2vS , mχ2

/mχ±1 ∼ yφ/
p

2vS which will heavily
suppress their pair production cross section. The simplified model framework for gauge-portal
dark matter therefore proves mostly consistent for LHC studies, however as we will show coan-
nihilation effects are well-motivated from a relic density perspective in the on-shell region and
does predict clear new LHC signatures.

A potential worry for our model is that since U(1)Y ′ ∼ U(1)B at low energies, breaking
U(1)Y ′ might induce proton decay or neutron-antineutron oscillations. The general form of
the corresponding operator is:

O∝ q3p`qS̃r , (22)

with p, q, r ∈ N. Since Y ′q = 2/9 and Y ′
S̃
= 2, the minimal gauge invariant realization is

given by:

O∝ (q9vS)` , (23)

with |∆B| = 3 and mass dimension 16. As such we are not sensitive to proton decay
bounds or searches for neutron-antineutron oscillations [61], and any other effect is highly
suppressed at Q ∼ ΛQC D by 12 powers of the scale where U(1)Y ′ is broken. The general
insensitivity of searches for baryon number violation to electroweak scales of U(1)B breaking
when it is gauged has been previously pointed out in e.g. [43,62,63].

2.2 The effect of kinetic mixing

In general a kinetic mixing term between U(1)Y and U(1)Y ′ is allowed by all symmetries:

−
ε

4
BµνB′µν . (24)

If we remain agnostic about the UV completion of the theory, we can in theory set ε = 0 at
any scale we wish. However a motivated completion scenario of this model would have the
gauge groups unify at some high scale Λ which would set ε = 0 at that scale, and since the
quarks are charged under both U(1)Y and U(1)Y ′ and do not have orthogonal charges, this
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term would nevertheless run to a non-zero value at the weak scale. The effect on electroweak
precision observables for models similar to ours has been studied in [18,19,64] which found
the resulting constraints to be rather weak. However this mixing will also introduce couplings
of the Z ′ to leptons, as after rotating the kinetic mixing away the general form of the covariant
derivative becomes:

Dµη=

�

∂µ − i
∑

x ,y

Qx
ηgx y V y

µ

�

η , (25)

where the sum over x , y = Y, Y ′ denotes the two U(1)s. When ε= 0, gY Y ′ = gY ′Y = 0. A non-
zero kinetic mixing will therefore not affect the coupling structure of the dark matter to the Z ′

but it could make our model dramatically sensitive to LHC searches for dilepton resonances.
In order to show that the effect of the kinetic mixing remains small in most of our param-

eter space, we have estimated the running of gY and gY Y ′ using gY ′(100 GeV) = 0.2,1 and
gY (mZ) = 0.358 when ε = 0 at Λ = 10 TeV. The one-loop renormalisation group equations of
these parameters, derived using SARAH [65] (assuming gY Y ′ , gY ′Y � gY , gY ′ and that all new
fermions have masses < mZ ′), are given by:

µ
d gY

dµ
=

53g3
Y

160π2
, µ

d gY ′

dµ
=

53g3
Y ′

108π2
, (26)

µ
d gY Y ′

dµ
= −

g2
Y gY ′

6
p

15π2
, µ

d gY ′Y

dµ
= −

gY g2
Y ′

6
p

15π2
. (27)

The evolution of the mixing couplings as a function of the energy scale µ is shown in Figure 2.
Calculating di-lepton constraints requires the branching ratio to leptons to be correctly eval-
uated taking into account Z ′ → χχ decays, after which the model-independent cross section
limits for narrow resonances in [66] can be recasted after taking into account the production
cross section, and the branching fraction into e+e− and µ+µ−. The ultimate sensitivity there-
fore depends on the value of gY ′ , so ultimately a combination of gY ′ and Λ will be constrained
as demonstrated in Figure 2. The constraint gets weaker for larger values of mZ ′ . According
to [19] dilepton constraints become relevant again for thermally motivated values of gY ′ for
mZ ′ ∼ Λ/100, but this conclusion only applies when gY ′ is fixed by the relic density assuming
no coannihilation. In fact, in the coannihilation region, relic density requirements typically
point to smaller values of gY ′ , that lead to a slower running of gY Y ′ . In this region, dilepton
constraints will therefore be negligible even for smaller values of mZ ′/Λ. Since it is in general
always possible to choose Λ such that dilepton constraints are negligible we will not consider
these when determining the benchmark points which we take as not constrained by dijet con-
straints in Section 3.2, but a full study of the parameter space should of course specify the
assumptions made on Λ. An interesting study we leave for future work would be to derive a
model where Tr(Y Y ′) = 0 and the kinetic mixing would not run above the scale where all of
the new fermions are dynamical, which would allow the gauge unification scale to be pushed
arbitrarily high.

In the following section, we derive the constraints associated with the model described at
the beginning of this section. We notably derive the relic density and direct detection con-
straints for well-motived choices of parameters, and derive and discuss the impact of the cur-
rent 13 TeV LHC searches for selected benchmark points.

3 Phenomenology

This section explores the constraints on our example model from relic density requirements
(for benchmark parameter points we require the relic density to have the value measured by
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gYY' (gY '=1)

gY 'Y (gY '=1)

gYY' (gY '=0.2)

gY 'Y (gY '=0.2)

1 2 3 4
log10(μ) [GeV]

0.001

0.002

0.003

0.004

0.005

0.006

Figure 2: Running of the effective mixing between U(1)Y and U(1)Y ′ using the no-
tation introduced in Equation 25 for Λ = 10 TeV. The gY Y ′ coupling determines the
coupling of the mostly U(1)Y ′ mass eigenstate to leptons.

PLANCK [67]), direct detection, and LHC searches. In order to evaluate these constraints we
have implemented our model in SARAH and exported it to the UFO format [68]. The mixing
parameters as well as the masses of the different eigenstates are derived from the Yukawa
couplings and the vevs using a separate Python code, and directly inputed into the parameter
card of the model. We use MG5_AMC@NLO [69] to numerically evaluate the widths of χ2 and
χ±1/2 [70] which typically decay into a three-body final state in the coannihilation region. The
widths of Z ′ and h2 are evaluated analytically at tree-level assuming vanishing mixing in the
neutral and charged scalar sectors using the general forms given in [6]. Finally, we evaluate
the 13 TeV LHC constraints using CHECKMATE 2 [71–83].

3.1 Dark Matter Observables

We use MADDM 3.0 [69, 84–86] to calculate the relic density and the direct detection cross-
section for our model. We begin by investigating the sensitivity to direct detection experiments
induced by the mixing of the DM candidate χ1 with the neutral components of the new SU(2)L
doublet φ as discussed above. We find the limits on the spin-independent cross-section with
nucleons from Xenon1T [49] to always be the most constraining5 and plot the resulting con-
straints as a function of (yχR

, yχL
)/yχ for vS = vH in Figure 3a. In general these couplings

have to verify yχR
, yχL

vH � 10−2 yχ vS for the induced coupling to the Z not to generate a
too large cross section when yχ = 1.1yφ , however this constraint significantly relaxes if there
is a hierarchy between yχ and yφ or vH and vS . For diagonal Yukawa couplings which are
roughly equal, the resulting upper bounds on the mixing between χ1 and χ2 still allow for
prompt decays of the heavy dark sector particles in the coannihilation region as long as the
mass difference is greater than 10 GeV.

Another source of direct detection constraints come from recent constraints on the O13
momentum-dependent operator which appears when integrating out the Z ′ set by PandaX-
II [89]. These constrain a combination of mZ ′ and gY ′ and are stronger than dijet constraints
for low mZ ′ . We plot the constraint and the value for some selected parameter points in our
model in Figure 3b.

To check thatχ2 and χ±1 can be interconverted with χ1 efficiently enough for coannihilation
to occur we have followed the procedure in [90,91]. Namely, we compute the rate Γ associated

5The other experimental constraints we make use of are the spin-dependent proton interaction limits set by
PICO-60 [87] and the spin-dependent neutron interaction limits set by LUX [88].
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with the t-channel χ1 q ↔ (χ2,χ±1 )q
′ scattering, that is the dominant χ1–χ2,χ±1 conversion

process in our model since the quarks are light. Neglecting the quark masses, the average rate
can be expressed as a function of the scattering cross-section σscatt as

〈Γ 〉=
∫ ∞

Emin

σscatt
2× 4π
(2π)3

p2
q,rest dpq,rest

epq,rest/T + 1
, (28)

where pq,rest is the momentum of the incoming quark in the rest frame of the heavy initial
state fermion. The minimal energy of this incoming quark, Emin, is defined by

Emin =max

¨

0,
m2

f −m2
i

2mi

«

(29)

for initial and final states of masses mi and m f respectively. We notably find that for mχ1
= 150

GeV, mχ2
= 165 GeV —a relative mass splitting of order 10%— the qχ1→ q′χ2 average rate is

still many orders of magnitude larger than the Hubble rate at freeze-out for a singlet-doublet
mixing approaching the direct detection limit. An example diagram of the process is shown
in Figure 4. We therefore consider dark matter masses as low as 150 GeV to be safe when
selecting parameter points later in the study, however we display results for mχ1

below this
value in the relic density plots in Figure 5.

(a) (b)

Figure 3: The impact of direct detection constraints on (a) the mixing between χL,R
and the neutral components of the doublets φL,R where we have used the shorthand
yZ = yχR

, yχL
in the legend to indicate that these arise from the coupling to the Z .

We have set vS = vH here, and (b) the mass of the Z ′ and and gY ′ arising from con-
straints on the O13 operator (here in the form used in [89], where the dimensionless
coupling is defined as the squared dimensionless Wilson coefficient when setting the
suppression scale to the electroweak vev).

We now compute the DM relic density as a function of mχ1
and mZ ′ for a few representative

scenarios, showing the results in Figure 5. On one hand we considered a non-coannihilating
case, where there is a sizable mass hierarchy between χ1 and χ2/χ

±
1 and the mixing between

the two states does not contribute significantly to the final relic density. This scenario corre-
sponds to that found in typical axial-vector Simplified Models with the addition of diagrams
involving S, drawn in the top row of Figure 4. On the other hand, we considered two coanni-
hilating scenarios where the χ1 −χ2 and χ1 −χ±1 relative mass splittings, defined by

∆m=
mχ2/χ

±
1
−mχ1

mχ1

(30)
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are fixed to 10% and 2%, and the χ1 −χ2 mixing, albeit small, is sufficient to ensure thermal
and chemical equilibrium between the two particles in the early Universe for these values of
∆ (example diagrams of the relevant processes are drawn in the bottom row of Figure 4).
We present our results for these three configurations in figure 5. In the non-coannihilating
scenario the relic density observed by PLANCK [67] can generically be obtained for perturbative
values of all couplings for DM masses around the TeV scale. Setting the DM relic density to its
Planck value also allows to uniquely determine the coupling gY ′ after mχ1

, mZ ′ , and mS are
fixed. This interesting feature however does not hold when mS and ∆m are small enough for
coannihilation effects to be significant.

χ1

χ̄1

S
Z ′

Z ′

χ1

χ1

Z ′

χ̄1 S

χ1

χ1

S

χ̄1 S

χ1

χ2

Z

χ̄2 Z

χ2

χ2

Z

χ̄2 Z

χ+1

χ2

W

χ−1
W

χ1

q

Z

χ2

q

χ1

χ2

Z

Z χ2

χ1

χ2

Z

W χ±1

Figure 4: Top row: new diagrams for χ1χ̄1 annihilation involving S absent in a Sim-
plified Model where the Z ′ gets its mass using the Stückelberg mechanism. Middle
row: example diagrams which contribute to the co-annihilation cross section into
weak bosons. Bottom row: example diagrams which allow the conversion processes
χ1ψ → χ2ψ ans χ1ψ → χ±1 ψ (where ψ is any Standard Model particle) to occur,
which are suppressed by one factor of the singlet-doublet mixing. The first process
on this row strongly dominates the interconversion rates in the dark sector due to
the low quark masses.

Besides the Z ′ and S funnel regions, where resonance DM annihilation significantly loosens
the relic density constraints, we note that the mχ1

/2 � mZ ′ region always overcloses in the
non-coannihilating scenario. Conversely, in the mχ1

¦ 2mZ ′ region, the DM relic density de-
creases when the DM mass increases. This rather counter-intuitive behaviour is due to the
fact that this mass is proportional to vS and yχ . For a fixed value of mZ ′ and gY ′ , with hence
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Figure 5: The relic density after freeze-out for gY ′ = 0.4 as a function of mZ ′ and
mχ1

for mS = 1500 GeV, yθ = 1.5yχ . Results are presented as a function of mχ1
and

mZ ′ for yφ � yχ (no coannihilation, top left), ∆m = 10% (top right), ∆m = 2%
(bottom left), and as a function of mχ1

for vS = 1000 and gY ′ = 0.4,1.0 for these
scenarios (bottom right). In the 2D plots the red dashed line shows the contour with
the correct relic density for gY ′ = 0.4, whereas the black dashed line shows the same
contour for gY ′ = 1.0 for comparison.

fixed vS , increasing this mass automatically implies increasing the associated Yukawa coupling,
which in turn leads to higher DM annihilation rates through S interactions. We therefore ex-
pect perturbativity constraints to set upper limits on the masses of the particles in the dark
sector. This is demonstrated in the bottom right plot in Figure 5 where we show the value
of yχ as a function of mχ1

for fixed gY ′ , vS , mZ ′ as a red line. In the coannihilating models
with ∆m = 2, 10 %, the shapes of the funnel and mχ1

¦ 2mZ ′ regions are mostly unchanged
although the relic density constraints significantly relax at low∆m. Part of the mχ1

® 2mZ ′ re-
gion, however, is now allowed and the relic density constraints in this area now translate into
an upper bound on mχ1

that does not depend on mZ ′ . This behaviour is due to the fact that the
new coannihilation processes that lower the DM relic density in this region are annihilations
of dark sector fermions into SM gauge bosons and thus do not involve the Z ′. These observa-
tions are confirmed by the one-dimensional profile of Ωh2 on the bottom-right plot of figure 5.
For the non-coannihilating scenario, the relic density is much larger than its Planck value and
overall decreases when the DM mass increases. When coannihilation is significant, on the
other hand, the relic density first increases with the DM mass before decreasing again after
the Z ′ funnel. Note also the appearance of the W and Z funnels for coannihilating scenarios
where SM electroweak processes dominate at low mχ1

.
Finally, note that indirect detection experiments will also place competitive constraints on
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the model, especially in the high-mZ ′ region (see [11] for a comparative study for a model
similar to ours in the limit where all additional fermions are heavy enough to decouple). We
will focus on the impact on direct detection, relic density, and LHC constraints from not de-
coupling the additional fermions in the model here, and leave a detailed study of indirect
detection constraints to future work.

3.2 LHC Searches

For models that evade the direct detection bounds on the χ1–χ2 mixing discussed in sec-
tion 3.1, the leading experimental constraints are set by colliders, and notably by the 13 TeV
LHC searches. Dijet resonance searches are particularly sensitive in the off-shell region where
mχ1

> mZ ′/2 where the Z ′ branching ratio to jets is always 100 % [17–19], but only down
to mZ ′ ∼ 450 GeV, which is the minimal Z ′ mass probed by j j searches at the LHC, while
lower values are probed by j j + ISR searches at the LHC [92–95]6. Other particularly sen-
sitive probes are direct searches for pair-produced e+e− → χ±1 χ

±
1 charged fermions decaying

to a lighter stable neutral fermion χ1 by emitting a W at LEP. In the MSSM, LEP results rule
out charginos lighter than 92.4 GeV in the case where the two charged and neutral fermions
are pure doublet Higgsino components [96]. This limit can not be directly translated to our
model but suggests that the Z and W funnels that can occur in the co-annihilating case are
firmly ruled out.

A third source of collider constraints are monojet searches for pp → χ1χ1 j production
where the additional jet comes from ISR. These searches will be competitive at mZ ′ < 450
GeV and mχ2/χ

±
1
> 100 GeV where the dijet constraints are weaker and there are no LEP

constraints. When the additional fermions in the model are close in mass to χ1 there are
additional pp→ χ2χ2 j. . . processes that also will contribute significantly to the monojet cross
section (since the additional decay products of the heavier fermions in the dark sector might
be too soft to be picked up by the detector, or invisible in the case of χ2→ νν̄χ1) and have to
be taken into account.

An additional sensitive channel that has so far been neglected for gauge-portal models is
direct searches for pair production of χ2,χ±1 at the LHC. In the coannihilation region these
particles will often decay to χ1 promptly by emitting a Z or a W and will therefore have
SUSY-like signatures with leptons and jets plus missing transverse energy. The usefulness of
searches for these signatures for U(1)′ extensions of the MSSM was recently studied in detail
in [97]. In general the pair-production cross sections for χ2 and χ±1 do not depend on gY ′ when
this coupling is small since SM gauge interactions dominate, which generates a signal which
can compete in sensitivity with monojet searches even when the couplings to the Z ′ are very
weak. Note that constraints from these searches can be expected to be most significant when
these additional particles are not too heavy. This feature suggests a kind of complementarity
between these searches and the relic density constraints since the latter can often be alleviated
by bringing the masses of the dark fermions down to the mχ2/χ

±
1
∼ mχ1

coannihilation region.
To demonstrate the importance of these electroweakino searches and compare them to the

monojet searches we use CHECKMATE 2.0.26 to scan all of the implemented 13 TeV searches
for the following processes:

• pp→ χmχn j ,

• pp→ χmχn ,

where χm/n is summed over all neutral and charged fermions in the dark sector, and the
jet is required to have a pT > 200 GeV in order to fill the phase space where monojet searches

6We use the combination of all of these searches derived in [18] with gY ′q =
2
9 gY ′ in our model to assess these

constraints.
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q

Z/Z ′

χ̄1

H

q̄

Z ′ χ2
χ1

χ̄2

q

W

χ̄1

W

q̄

Z ′
χ+1

χ1

χ−1

Figure 6: Example pair production processes which contribute to the constraints
derived from LHC analyses. Note that the decays of the heavier fermions are three-
body if the mass difference to χ1 is � mZ/mZ ′/mW . The branching ratios of the
heavier fermions for our benchmark points are given in Tables 1-2.

are sensitive. Some example diagrams contributing to these processes are presented in Fig-
ure 6. In general the collider phenomenology is somewhat similar to the Dirac bino – Higgsino
limit of the MSSM, with the addition of the Z ′ which allows for much more efficient s-channel
pair production than through the Z/W when mχ1

� mZ . The electroweakino mono-X phe-
nomenology of the MSSM and NMSSM was recently studied in detail in [98] and shares many
features with our model.

Due to the computational cost of performing a sensitivity analysis over all the phase space
of our model we leave a parameter scan taking all constraints into account to future work
and focus on a few benchmark points where we generate 5 × 105 events per process with
minimal phase space cuts. Since many processes often contribute to the same signal region it
is necessary to include them all and add up the contributions to derive the strongest constraints
possible. Depending on mχ1

and ∆m the visible decay products can be either hard —allowing
to reconstruct the W/Z masses— or soft, and some three-body decays can be phase-space
suppressed and soft compared to others. If the mass splitting is large but pairs of χ2,χ±1
still have non-negligible production cross sections there can be new decay channels opening
up, such as χ2 → hχ1 which can be sensitive to unexpected searches for new signatures like
opposite-sign (OS) tau pairs and missing energy. The lifetimes of χ2 and χ±1 for the points
we consider are shorter than for b mesons in order to be able to consider these prompt. In
general smaller mass splitting will further increase the lifetime of the heavier fermions. In
this nearly degenerate region where long-lived searches can be expected to be highly sensitive
to χ±1 , higher order mass corrections need to be taken into account properly. We leave the
analysis of this region to future work, but note that this again suggests the model is sensitive
to the wider search program at the LHC for well-motivated parameter choices and that the full
mixing scenario needs to be taken into consideration to evaluate these. Here we choose six
representative benchmark points that all approximately give the correct relic density within
20% and are summarised in Tables 1,2. These points all escape current collider constraints
and show how collider searches provide complementary information in the coannihilation
region, however the points in Table 2 are in tension with the latest PandaX-II constraints on the
momentum-suppressed spin-independent operator for direct detection. We include them here
as examples of possible collider signatures in the model when the direct detection constraints
are lifted slightly.

We present the results using the conservative r value for the most sensitive signal regions
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Table 1: Summary of benchmark points for scan of LHC searches which can explain
the relic density while avoiding all other constraints. In the branching ratios q de-
notes light quarks and l an electron or muon. The mixing in the neutral fermion
sector is set to be small enough to avoid direct detection constraints, which will in
general mean it’s small enough to be phenomenologically negligible for all other ob-
servables except for the lifetimes of the heavier fermions. As an example of these
lifetimes, the smallest 10 GeV splitting between χ2 and χ1 and ∆m = 5% with a
mixing within direct detection bounds of points [1], [3] give a χ2 lifetime of the
same order of magnitude as b-mesons (∼ 1.5 picosecond) and is therefore approach-
ing the limit for where we can ignore searches for long-lived particles, especially for
smaller masses where the boosts can be significant.

Benchmark point [1] [2] [3]

gY ′ 0.6 0.3 0.2
mZ ′ 3000 GeV 1500 GeV 1000 GeV
mS 1500 GeV 1500 GeV 1500 GeV
mχ1

200 GeV 300 GeV 200 GeV
mχ2

210 GeV 312 GeV 210 GeV
mχ±1 210 GeV 312 GeV 210 GeV

dχ2
( |p|m = 1) 3.8 × 10−4 m 8.1 × 10−5 m 3.8 × 10−4 m

dχ±1 ( |p|m = 1) 1.4 × 10−4 m 3.0 × 10−5 m 1.4 × 10−4 m
Br(χ2→ χ1qq̄) 63% 61.5% 63%
Br(χ2→ χ1 bb̄) 0% 4.4% 0%
Br(χ2→ χ1l+l−) 8.2% 7.9% 8.2%
Br(χ2→ χ1τ

+τ−) 3.3% 3.4% 3.3%
Br(χ2→ χ1νν̄) 23.9% 22.8% 23.9%
Br(χ±1 → χ1qq̄) 67.0 % 66.8% 67.0%
Br(χ±1 → χ1lν̄l) 23.0% 22.9% 23.0%
Br(χ±1 → χ1τν̄τ) 10.0% 10.3% 10.0%

defined by CHECKMATE,

r =
S − 1.64∆S

S95
, (31)

where S is the predicted number of signal events,∆S is the uncertainty on the signal prediction,
and S95 is the reported 95% C.L. limit on the BSM cross section in the signal region. Here, we
take ∆S to be solely the statistical uncertainty due to insufficient simulated events and do not
consider any theoretical systematic uncertainties or K-factors. A point is therefore considered
excluded at 95 % C.L. if r > 1. Note that since we are only considering models that are
allowed by dijet resonance bounds, searches giving r > 1 will be the leading collider probe for
the corresponding benchmark point.

The results for the four selected parameter points are summarised in Tables 6–8. Points
[1] and [3], which achieve the correct relic density through coannihilation processes, are out
of the reach of the monojet searches implemented in CHECKMATE but is excluded by searches
for opposite-sign (OS) soft lepton pairs and MET [100, 102, 103]. Point [2] which does not
have coannihilation is allowed by the LHC searches studied here but is also more sensitive to
searches for multiple leptons and MET [108, 109] than to monojet searches. Only point [4]
with its large mass splitting between the DM and the other fermions is most sensitive to the
monojet search, and even still shows almost comparable sensitivity to a search for opposite-
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Table 2: Summary of non-thermal benchmark points for scan of LHC searches. For
point [6] we write out the decay modes contributing to the final branching ratio for
an experimental signature to demonstrate that larger mass hierarchies in the dark
sector means these can no longer be described by (phase-space suppressed) W/Z
branching ratios but rather can include cascade decays into Z ′ and h with modified
kinematics, introducing new signatures.

Benchmark point [4] [5] [6]

gY ′ 0.2 0.5 0.8
mZ ′ 400 GeV 380 GeV 240 GeV
mS 1500 GeV 1500 GeV 1000 GeV
mχ1

150 GeV 150 GeV 60 GeV
mχ2

165 GeV 250 GeV 600 GeV
mχ±1 165 GeV 250 GeV 600 GeV

dχ2
( |p|m = 1) 7.7 × 10−6 m 2.1 × 10−9 m 1.9 × 10−11 m

dχ±1 ( |p|m = 1) 3.0 × 10−6 m 3.6 × 10−10 m 4.3 × 10−11 m

Br(χ2→ χ1qq̄) 59.8 % Br(Z → qq̄) Br(Z ′→qq̄)
1.72 + Br(Z→qq̄)

4.76 + Br(h→qq̄)
5.0

Br(χ2→ χ1 bb̄) 7.8 % Br(Z → bb̄) Br(Z ′→bb̄)
1.72 + Br(Z→bb̄)

4.76 + Br(h→bb̄)
5.0

Br(χ2→ χ1l+l−) 7.4 % Br(Z → l+l−) Br(Z→l+ l−)
4.76 + Br(h→l+ l−)

5.0

Br(χ2→ χ1τ
+τ−) 3.4 % Br(Z → τ+τ−) Br(Z→τ+τ−)

4.76 + Br(h→τ+τ−)
5.0

Br(χ2→ χ1νν̄) 21.6 % Br(Z → νν̄) Br(Z→νν̄)
4.76

†

Br(χ±1 → χ1qq̄) 67.0 % Br(W → qq̄) 0.98× Br(W → qq̄)††

Br(χ±1 → χ1lν̄l) 22.5 % Br(W → lν̄l) 0.98× Br(W → lν̄l)††

Br(χ±1 → χ1τν̄τ) 10.5 % Br(W → τν̄τ) 0.98× Br(W → τν̄τ)††

†: there is also an invisible Br(Z ′→ χ1χ1) contribution which is experimentally indistinguish-
able.
††: the total branching ratios are slightly rescaled due to rare χ±1 → χ1 t b̄,χ1hW,χ1ZW,χ1Z ′W
three-body decays.

Table 3: Summary of constraints on benchmark point [1] from the most sensitive
13 TeV searches implemented in CHECKMATE at the LHC. The two last results where
a similar analysis with less data is more sensitive can be explained by differences
in the base selection criteria. All the signal regions shown here require at least
/ET ¦ 100 GeV. SRI-MLL-10 is inclusive in lepton flavor and select lepton pairs with
invariant mass m`` ∈ [1,20] GeV. EM2 simply requires /ET ∈ [300,350] GeV. Finally,
the last region targets relatively compressed spectra and cuts on the leading lepton
pT .

Analysis Constraint on [1]

ATLAS 36.1 fb−1 jets + MET [99] r = 0.08, 2j-2100
ATLAS 36.1 fb−1 soft OS lepton pair + MET [100] r = 0.33, SRI-MLL-10
ATLAS 36.1 fb−1 j + MET [101] r = 0.12, EM10
CMS 12.9 fb−1 soft OS lepton pair + MET [102] r = 0.061, stop low MET low pT,l1
CMS 35.9 fb−1 soft OS lepton pair + MET [103] r = 0.049, weakino low MET high ml l
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Table 4: Summary of constraints on benchmark point [2] from the most sensitive
13 TeV searches implemented in CHECKMATE at the LHC. The EM2 region is the
same as the one shown in Table 6. SR3−body

W -SF is originally designed for stops with
∆m(et,χ) ∼ mW and hence imposes a b-quark veto and cuts on a “super-Razor”
variable MR

∆, that reaches an endpoint near the stop-neutralino mass splitting. 3LI
simply imposes a moderate missing ET cut and a tight requirement on the pT of the
third lepton. Finally, SR A25 imposes a harder /ET cut as well as a transverse mass
cut, and tags Z bosons.

Analysis Constraint on [2]

ATLAS 36.1 fb−1 soft OS lepton pair + MET [100] r = 0.66, SRI-MLL-20
ATLAS 14.8 fb−1 isolated lepton + jets + MET [104] r = 0.12, GG2J
ATLAS 36.1 fb−1 j + MET [101] r = 0.45, EM10
CMS 12.9 fb−1 soft OS lepton pair + MET [102] r = 0.21, stop low MET low pT,l1
CMS 35.9 fb−1 soft OS lepton pair + MET [103] r = 0.18, stop medium MET high pT,l1

Table 5: Summary of constraints on benchmark point [3] from the most sensitive
13 TeV searches implemented in CHECKMATE at the LHC. SRI1, EM2, and the stop
low MET low pT,`1

regions are already described in Table 6. 2j-1200 imposes a high
MET cut , requires at least two hard jets with invariant mass larger than 1.2 TeV.
SRI-MLL-10 is inclusive in lepton flavour and select lepton pairs with invariant mass
m`` ∈ [1, 10] GeV. GG2j is similar to the regions used in monojet searches but also
requires leptons. Finally, the weakino high MET low pT,`1

region requires a same-
flavour opposite sign lepton pair and cuts on its invariant mass.

Analysis Constraint on [3]

ATLAS 36.1 fb−1 γ + MET [105] r = 0.010, SRI1
ATLAS 36.1 fb−1 jets + MET [99] r = 0.024, 2j-1200
ATLAS 36.1 fb−1 soft OS lepton pair + MET [100] r = 1.3, SRI-MLL-10
ATLAS 14.8 fb−1 iso lepton + jets + MET [104] r = 0.033, GG2J
ATLAS 36.1 fb−1 j + MET [101] r = 0.24, EM2
CMS 12.9 fb−1 soft OS lepton pair + MET [102] r = 0.17, stop low MET low pT,l1
CMS 35.9 fb−1 soft OS lepton pair + MET [103] r = 0.15, weakino high MET low pT,l1

sign τs + MET in the high mττ signal region (mττ > 110 GeV) [106], which can be traced
back to the 20% branching fraction of χ2→ hχ1.

These results demonstrate that monojet searches often do not provide the only or most sen-
sitive collider constraints on anomaly-free gauge portal models which do not couple to leptons
in the part of parameter space where dijet constraints are not applicable. Viable coannihilation
scenarios, for example, are often particularly sensitive to searches for compressed SUSY spec-
tra. These scenarios, with their compressed topologies and relaxed relic density constraints
are expected to gain importance as collider and direct detection constraints become even more
stringent in the rest of the parameter space7. Even in scenarios without coannihilation it is
possible to find interesting new signatures due to the heavier fermions if they are not com-
pletely decoupled, which often is necessary to avoid nonperturbative Yukawas after fixing the
other masses in the model. Thus, even seemingly simple scenarios such as portal models are

7Of course direct detection constraints can also eventually push the allowed mixing in the fermion sector to be
too small for coannihilation to occur.
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Table 6: Summary of constraints on benchmark point [4] from the most sensitive
13 TeV searches implemented in CHECKMATE at the LHC. The two last results where
a similar analysis with less data is more sensitive can be explained by differences
in the base selection criteria. All the signal regions shown here require at least
/ET ¦ 100 GeV. The SRI1 signal region selects events with no more than two jets
and a hard photon. The SR2 highmass region is designed for events with two hard
taus, with large invariant mass and mT2. SRI-MLL-30 is inclusive in lepton flavor
and select lepton pairs with invariant mass m`` ∈ [1,30] GeV. EM2 simply requires
/ET ∈ [300,350] GeV. Finally, the last region targets relatively compressed spectra
and cuts on the leading lepton pT .

Analysis Constraint on [4]

ATLAS 36.1 fb−1 γ + MET [105] r = 0.021, SRI1
ATLAS 36.1 fb−1 OS τ pair + MET [106] r = 0.058, SR2 highmass
ATLAS 36.1 fb−1 soft OS lepton pair + MET [100] r = 1.2, SRI-MLL-30
ATLAS 36.1 fb−1 j + MET [101] r = 0.12, EM2
CMS 12.9 fb−1 soft OS lepton pair + MET [102] r = 3.3, stop low MET low pT,l1
CMS 35.9 fb−1 soft OS lepton pair + MET [103] r = 1.1, stop low MET low pT,l1

Table 7: Summary of constraints on benchmark point [5] from the most sensitive
13 TeV searches implemented in CHECKMATE at the LHC. The EM2 region is the
same as the one shown in Table 6. SR3−body

W -SF is originally designed for stops with
∆m(et,χ) ∼ mW and hence imposes a b-quark veto and cuts on a “super-Razor”
variable MR

∆, that reaches an endpoint near the stop-neutralino mass splitting. 3LI
simply imposes a moderate missing ET cut and a tight requirement on the pT of the
third lepton. Finally, SR A25 imposes a harder /ET cut as well as a transverse mass
cut, and tags Z bosons.

Analysis Constraint on [5]

ATLAS 13.3 fb−1 2 OS leptons + 2 bs + MET [107] r = 0.10, SR3-body
W -SF

ATLAS 13.3 fb−1 2,3 leptons + MET [108] r = 0.15, 3LI
ATLAS 36.1 fb−1 j + MET [101] r = 0.046, EM2
CMS 35.9 fb−1 2,3 leptons + MET [109] r = 0.14, SR A25

Table 8: Summary of constraints on benchmark point [6] from the most sensitive 13
TeV searches implemented in CHECKMATE at the LHC. The SR2 highmass and EM2
regions have been described in Table 6. The 4j-1400 region imposes a hard cut on
missing ET , requires at least four hard jets with invariant mass larger than 1.4 TeV.

Analysis Constraint on [6]

ATLAS 36.1 fb−1 OS τ pair + MET [106] r = 0.31, SR2 highmass
ATLAS 36.1 fb−1 jets + MET [99] r = 0.18, 4j-1400
ATLAS 36.1 fb−1 j + MET [101] r = 0.49, EM2

in fact associated with a wide variety of collider searches and a full study of these models re-
quires the scan of as many published analyses and signal regions as possible, which mirrors the
situation in for example the pMSSM. Finally, we note that aside from SUSY searches, studying
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constraints from Standard Model measurements using CONTUR could also lead to meaningful
constraints on this class of models [110].

Finally, let us point out that if we loosen the relic density constraint to also allow relic
densities which are smaller than the measured one, we will in general require larger gY ′ , which
suggests even more sensitivity to LHC searches (assuming the direct detection constraint on
the momentum-suppressed spin-independent operator still is avoided).

4 Conclusions

Simplified dark matter models where a fermion annihilates into SM particles via a vector me-
diator are popular benchmark scenarios. In order to avoid very strong direct detection and
dilepton resonance constraints in these models it is convenient to keep the coupling of the
vector boson to the DM candidate axial and make it leptophobic. This choice of parameters,
however, introduces gauge anomalies when the vector is the gauge boson of a new broken
U(1) gauge group. We have demonstrated that the phenomenological consequences of avoid-
ing such anomalies by enlarging the field content of the model can be wide-reaching even for
the simplest possible solution. The additional particles allow for much richer scenarios than
in simplified models, due to the presence of new weakly charged fermions and the possibility
of coannihilation. It follows that constraints on simplified dark matter models which assume
leptophobia and an axial DM–Z ′ coupling should be understood as applying only to a specific
corner of the full parameter space of the minimal realistic model. We have in effect played a
game of Whac-A-Mole with experimental constraints, avoiding some but in the process intro-
duced several new ones. In particular it is humorous that constructing a leptophobic model
to avoid dilepton resonance constraints predicts new signatures for searches for opposite-sign
lepton pairs. Notably, regions of the parameter space of the anomaly free theory can be better
constrained using LHC searches for electroweakinos rather than monojet searches. These re-
sults further highlight the value of the full width of the BSM program at the LHC from a dark
matter perspective.

Finally, we note that the anomaly-free model studied here is only one example of how to
extend gauge portal simplified models to make them theoretically consistent. A wider study of
how to cancel anomalies in Z ′ models without running into direct detection or LHC dilepton
resonance constraints and the typical additional constraints that one should expect would
be particularly useful. Additionally, an in-depth study of some of the more exotic signatures
associated with our scenario such as long-lived particles would be of prime importance to fully
understand this class of models.

Although simplified models proved incredibly useful tools for exploring new physics model
at colliders and dark matter experiments, it is crucial to keep their limitations in mind and
question their minimality. The example of anomaly cancellation illustrates that even enforc-
ing basic consistency requirements on these models can considerably enlarge the associated
phenomenology, with a wide palette of new signatures to explore.

A Appendix

The scalar mass matrix is:

�

h s
�

 

3λH v2
H +

λH,S v2
S

2 +µ2
H λH,S vH vS

λH,S vH vS
λH,S v2

H
2 + 3λS v2

S +µ
2
S

!

�

h
s

�

. (32)
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The tadpole equations are:

µ2
H vH +λH v3

H +
1
2
λH,S vH v2

S =0 , (33)

µ2
S vS +

1
2
λH,S v2

H vS +λS v3
S =0 . (34)

Using these we get the following physical masses for the two scalar mass eigenstates h1/2
(where we will use h1 as the 125 GeV state):

m2
h1/2
=
n

λH v2
H +λS v2

S ±
Ç

λ2
H v4

H +λ
2
H,S v2

H v2
S − 2λHλS v2

H v2
S +λ

2
S v4

S

o

. (35)

The pseudoscalar mass mixing matrix is:

�

G0 a
�













µ2
H+λH v2

H+
λH,S v2

S
2

+ 1
4 g2

2 v2
H cos2 θW RZ

ξ
+ 1

2 g1 g2v2
H cosθW RZ

ξ
sinθW

+ 1
4 g2

1 v2
H RZ

ξ
sin2 θW

0

0 4g2
Y ′ v

2
S RZ′
ξ
+
λH,S v2

H
2

+λS v2
S+µ

2
S













�

G0

a

�

. (36)

The absence of mixing is due to our scalars H and S breaking U(1)Y × SU(2)L and U(1)Y ′
separately. We can use the tadpole equations to determine the masses of the pseudoscalars
A1/2 (which of course are eaten by Z and Z ′ in unitary gauge) as above:

m2
A1/2
=
§

1
4

v2
HRZ

ξ(g2 cosθW + g1 sinθW )
2, 4g2

Y ′ v
2
S RZ ′
ξ

ª

. (37)
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