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Abstract

We study 3d and 4d systems with a one-form global symmetry, explore their conse-
quences, and analyze their gauging. For simplicity, we focus on ZN one-form symme-
tries. A 3d topological quantum field theory (TQFT) T with such a symmetry has N
special lines that generate it. The braiding of these lines and their spins are character-
ized by a single integer p modulo 2N . Surprisingly, if gcd(N , p) = 1 the TQFT factorizes
T = T ′ ⊗AN ,p. Here T ′ is a decoupled TQFT, whose lines are neutral under the global
symmetry and AN ,p is a minimal TQFT with the ZN one-form symmetry of label p. The
parameter p labels the obstruction to gauging the ZN one-form symmetry; i.e. it charac-
terizes the ’t Hooft anomaly of the global symmetry. When p = 0 mod 2N , the symmetry
can be gauged. Otherwise, it cannot be gauged unless we couple the system to a 4d bulk
with gauge fields extended to the bulk. This understanding allows us to consider SU(N)
and PSU(N) 4d gauge theories. Their dynamics is gapped and it is associated with con-
finement and oblique confinement – probe quarks are confined. In the PSU(N) theory
the low-energy theory can include a discrete gauge theory. We will study the behavior
of the theory with a space-dependent θ -parameter, which leads to interfaces. Typically,
the theory on the interface is not confining. Furthermore, the liberated probe quarks
are anyons on the interface. The PSU(N) theory is obtained by gauging the ZN one-form
symmetry of the SU(N) theory. Our understanding of the symmetries in 3d TQFTs allows
us to describe the interface in the PSU(N) theory.
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1 Introduction and Summary

1.1 One-form symmetries

Point operators can be charged under an ordinary internal global symmetry. Extended oper-
ators can be charged under a higher-form global symmetry [1]. One-form symmetries char-
acterize line operators, two-form symmetries characterize surface operators, etc. One of the
points of [1] is that many of the standard properties of ordinary global symmetries are present
also in the case of their higher-form generalizations.

• The symmetries might or might not be spontaneously broken. If they are unbroken,
the spectrum includes charged states. For example, when a one-form global symmetry
is unbroken the spectrum includes charged strings. If they are broken, the low-energy
dynamics reflects the broken symmetry. For example, if the global symmetry is discrete
and the spectrum is gapped, the low-energy theory includes a TQFT.
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• As with ordinary symmetries, higher-form symmetries can have ’t Hooft anomalies. Such
anomalies obstruct their gauging. These anomalies can be used, just like ’t Hooft anomaly
matching of ordinary global symmetries, to constrain the IR behavior of a theory and to
check duality between distinct theories. Also, such an anomaly in a higher-form sym-
metry can flow from a bulk to a defect in the bulk.

Unlike ordinary global symmetries, higher-form symmetries must be Abelian. In this note
we will focus mostly on ZN one-form global symmetries in 3 and 4 dimensions. Typical exam-
ples in 3d are U(1)N or SU(N)k Chern-Simons (CS) theory. They have a spontaneously broken
ZN one-form symmetry.

A typical example in 4d is an SU(N) gauge theory without quarks. Here the ZN one-form
symmetry is expected to be unbroken, which is related to the confinement of the system. If we
add quarks in the fundamental representation to this theory, then the one-form symmetry is
absent, and indeed the theory with quarks does not have a meaningful notion of confinement.

1.2 4d SU(N) gauge theory with θ and domain walls

Of particular interest for us will be the behavior of this 4d SU(N) theory with a θ -parameter.
The lore is that at generic θ the system is confining and gapped with a trivial vacuum. At
θ ∈ πZ, we have time-reversal and parity symmetries. These are unbroken at θ ∈ 2πZ. (For
small values of N there are also other logical options [2].) But they are spontaneously broken at
θ an odd multiple of π. In these cases the system has two degenerate vacua with domain walls
that interpolate between them. Arguments based on anomalies in the one-form symmetry,
which we will review below, suggest that the theory on the domain wall is an SU(N)1 TQFT
[1,2].1

As stressed in [1, 2], the transition at θ = π separates two distinct vacua in the following
sense. On one side of the transition monopoles condense, leading to confinement, and on the
other side of the transition dyons condense, leading to oblique confinement. More precisely,
the transition at θ an odd multiple of π separates two distinct oblique confinement vacua.
Since different dyons condense on the two sides of the domain wall, no dyon condenses on
the wall. Therefore, the theory on the wall is not confining and the Wilson lines of the SU(N)1
theory on the wall are world lines of unconfined probed quarks. Not only are these quarks
liberated, they also have nontrivial braiding, i.e. they are anyons! Below we will give an
intuitive physical argument explaining why they are anyons.

1.3 Interfaces

One of our goals is to study in detail interfaces in this theory. We let θ be a space- depen-
dent interpolation between θ0 to θ0 + 2πk. If the interpolation is over a length scale much
longer than the inverse of the dynamical scale of the theory Λ, then at a generic spacetime
point θ is essentially constant on the scale where confinement takes place and the vacuum
is unique and varies smoothly. When θ crosses an odd multiple of π there is a domain wall
separating two vacua. Therefore, the interpolation leads to k domain walls with SU(N)1 on
each of them [2], as illustrated in Figure 1a. If the interpolation is more rapid, then the TQFT
SU(N)1 ⊗ SU(N)1 ⊗ ... can undergo a transition to another TQFT Tk, see Figure 1b. It was
suggested in [2,3] that this theory is SU(N)k. However, we will soon argue that there are also
other logical possibilities and only a more detailed dynamical analysis can determine the right
answer.

It is important that the theory on the interface is uniquely determined by the microscopic
theory and by the profile of the space-dependent θ . This is to be contrasted with a sharp

1Although as spin TQFTs SU(N)1←→ U(1)−N , we prefer to use SU(N)1 because our theory is bosonic.
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T ⊗k
1

(a) Slow θ interpolation

Tk

(b) Rapid θ interpolation

T

(c) Sharp θ interpolation

Figure 1: The interfaces for different profiles of θ that interpolate from θ = θ0 to
θ = θ0 + 2πk. The dashed lines are the profile of the θ parameter and the solid
lines are the locations of the interfaces. In (a), there are k domain walls located at
the transitions when θ crosses an odd multiple of π. The theory on each domain
wall is T1, which we argue is SU(N)1 [1]. When the θ variation is more rapid, as
in (b), there is only one interface and the theory on it is Tk. One option for that
theory is SU(N)k, but we will argue that other options are also possible. Finally,
as in (c), θ can be discontinuous. In this case the theory on the interface T is not
determined uniquely by the microscopic dynamics. But it is constrained by anomaly
considerations.

interface when θ is discontinuous, as illustrated in Figure 1c. Here we have the freedom to
change the theory on the interface by adding more degrees of freedom there and to consider
their dynamics. We will not study it here. The same comments apply to a system with a
boundary. As with the sharp interface, the boundary theory is constrained by anomalies, but
there is a lot of freedom in adding boundary degrees of freedom.

Our main tool for analyzing the system is its ZN one-form global symmetry. Related to this
symmetry is an integer label p with p ∼ p+2N and pN even [1,4]. Furthermore, we have an
identification in labeling the theories [1,2,4]

(θ , p)∼ (θ + 2πk, p+ k(N − 1)) . (1.1)

One way to think about the parameter p is through coupling the ZN global symmetry to a
classical background two-form gauge field BC (the subscript C means that it is classical). Then,
the parameter p is the coefficient of a counterterm proportional to the square of BC [1,4]. This
term does not affect any separated points correlation function, but it does affect contact terms
and the behavior of the system with a boundary.

The key dynamical fact is that the theory confines. This means that the ZN one-form
symmetry is unbroken. Also, the spectrum is gapped and the low-energy dynamics is trivial
– there is not even a TQFT at long distances. The only meaningful fact that remains at low
energies is the coefficient p of the counterterm of BC , which means that the system can be in
a nontrivial Symmetry Protected Topological (SPT) phase.

When we have an interface where θ changes by 2πk the two sides of the interface are
typically in different SPT phases labeled by p± with

p+ − p− = k(N − 1) mod 2N . (1.2)

This means that when p+ 6= p− mod 2N the theory on the interface cannot be trivial. It must
have a ZN one-form global symmetry with anomaly (p+ − p−) mod 2N .

Let us try to determine the theory on the interface. When the interface is rapid, we can
shift θ on one side, as in equation (1.2), so that θ does not change across the interface, but
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p changes. It induces a Chern-Simons term SU(N)k on the interface. Next, as the theory
becomes strongly coupled it confines and the bulk on the two sides of the interface become
gapped and trivial. What happens to the SU(N)k theory on the interface? One option, which
was advocated in [2], is that at least for small enough |k| it is not affected by the confinement.
However, the strong dynamics could change that answer.2 But whatever the dynamics does,
the one-form ZN global symmetry and its anomaly p+ − p− cannot change. Therefore, if
p+ 6= p− mod 2N , the theory on the interface cannot be trivial, and we’ll denote it by Tk.

We start by reconsidering the special case k = 1. Can the UV answer SU(N)1 be modified?
We suggest that this cannot happen. First, as we will discuss in detail below, this particular
theory is the minimal theory with a ZN one-form symmetry of anomaly N − 1. Every other
TQFT with this property factorizes into SU(N)1 times another TQFT, whose line operators
are ZN invariant. Therefore, it is natural to assume that in this case the UV answer does not
change. Also, in a closely related supersymmetric theory, a string construction shows that the
theory on the interface is U(1)−N [5], which is dual (as spin TQFT) to our answer SU(N)1 [6].

As we move to higher values of k the situation is less clear. It was suggested in [2] that as
a slow interface becomes steeper, the SU(N)⊗k

1 TQFT can be Higgsed to the diagonal SU(N)k.
This would agree with the answer in the UV. However, further dynamical effects can change
this answer. Since we expect the interface theory to remain non-confining, we do not anticipate
monopoles to participate in this dynamics on the interface. Instead, we can consider dynamical
scalar fields in the adjoint representation of SU(N). Such scalar fields can arise from modes
of the microscopic gluons and their presence does not break the exact ZN one-form symmetry
of the system. The condensation of these scalars can Higgs SU(N) to various subgroups. The
maximum possible Higgsing with one adjoint scalar is to the Cartan torus U(1)N−1. In this case
the SU(N)k theory becomes U(1)N−1 with a coefficient matrix given by kKCartan with KCartan
the Cartan matrix of SU(N). (Note that for k = 1 the TQFT SU(N)1 is the same as this Abelian
TQFT.) With more than one adjoint scalars, we can further Higgs the system all the way down
to a ZN gauge theory3 with level K = −kN(N − 1) = −(p+ − p−)N . Below we will review in
detail this TQFT and its properties.

The upshot of the discussion above is that the spontaneously broken ZN one-form sym-
metry and its anomaly p+ − p− restrict the TQFT on the interface Tk, but do not uniquely
determine it. For k = 1 it is natural to assume that the correct answer is the minimal one
T1 = SU(N)1. For higher values of k there are several natural possibilities including SU(N)k,
but the other options include also some Abelian TQFTs. It should be emphasized, however,
that despite our inability to determine Tk beyond the symmetry and anomaly constraints, this
theory is uniquely determined by the dynamics.

1.4 Gauging the ZN one-form symmetry – 4d PSU(N) gauge theory and inter-
faces

When the ZN one-form symmetry is gauged, the microscopic 4d SU(N) gauge theory becomes
a PSU(N) gauge theory and the macroscopic theory might no longer remain trivial [10].
Specifically, it becomes a ZL gauge theory with4

L = gcd(p, N) . (1.4)

2We thank E. Witten for encouraging us to think about other options.
3The ZN gauge theory at level K can be expressed as the following U(1)× U(1) Chern-Simons theory [4,7,8]

(ZN )K :

∫

�

K
4π

xd x +
N
2π

xd y
�

. (1.3)

For even K this is a Dijkgraaf-Witten (DW) theory [9].
4Below we will show that on a nonspin manifold this ZL gauge theory is sometimes twisted in a particular way.
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γ

γ′

γ′

Figure 2: Braiding the line operators supported on the curves γ and γ′.

Unlike the original SU(N) theory where p affects only the SPT phase, here it affects the low-
energy dynamics. Now the interface is more interesting. Clearly, we have a ZL± gauge theory
with L± = gcd(p±, N) on the two sides of the interface. But what is the resulting theory on the
interface?5

When L+ = L− = 1 the bulk theory on the two sides is trivial and the low-energy theory is
only the 3d theory on the interface and it is completely meaningful. However, when either L+
or L− (or both) are not equal to one, the bulk theory is not trivial and the low-energy TQFT
is not three dimensional. It is four dimensional and the interface appears as a 3d defect in
the 4d bulk. Therefore, it is meaningless to ask what the 3d theory on the interface is. It is
not decoupled from the 4d bulk. Nevertheless, we will argue that there exists a 3d TQFT that
captures many of the features of the physics along the interface. Roughly, it is a quotient of
the full 4d system by the physics of the 4d bulk. We will describe this in more detail below.

1.5 One-form global symmetries in 3d and their gauging

In order to understand these TQFTs we will have to explore in more detail the one-form global
symmetry, its anomaly, and its gauging in 3 and 4 dimensions. Let us start with a 3d one-form
symmetry A. The charge operators are line operators ag labeled by a group element g ∈ A.
The group multiplication corresponds to the fusion of the lines:

ag+g′ = agag′ , (1.5)

where the group multiplication of A is denoted by addition, and the product of two lines
denotes their fusion. Each line ag represents an Abelian anyon in the TQFT.

For simplicity we will focus on a ZN one-form symmetry. The symmetry lines are as with

aN = 1 (1.6)

and we refer to a as the generating line. In general, this generator is not unique and some of
the expressions below depend on the choice of generator.

In a TQFT with a ZN one-form symmetry, each line W carries a ZN charge q(W ) ∈ ZN under
the symmetry, which is determined by braiding the generating line a with W (see Figure 2):

a(γ)W (γ′) =W (γ′)e
2πiq(W )

N . (1.7)

We will show that general considerations constrain the spins of the symmetry lines to be6

h[as] =
ps2

2N
mod 1 , (1.8)

5Note that the naive answer PSU(N)k cannot be right. For generic k this is not a consistent theory [9,11]!
6We thank Z. Komargodski and J. Gomis for a discussion about this point.
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for some integer p = 0, 1, · · · , 2N − 1 mod 2N . Imposing (1.6) leads to

pN ∈ 2Z . (1.9)

The situation in spin TQFT is slightly different because such theories have a transparent
spin-half line ψ. This will be discussed in detail below.

One significance of the parameter p is that it determines the ZN charge q(a) = −p mod N
of the generating line a (see Section 2.1). Clearly, the symmetry can be gauged only when
the symmetry lines themselves are neutral, i.e. when q(a) = 0. Therefore, the parameter p
controls the obstruction to gauging, which is the ’t Hooft anomaly.

When p = 0, the ZN one-form symmetry is anomaly free and it can be gauged. Denoting
the original TQFT by T , we will denote the result of this gauging by the TQFT

T ′ = T /ZN . (1.10)

When p = N the generating line has spin 1
2 and the gauged system T /ZN is a spin TQFT.7

There are several ways to describe the gauging procedure. From the perspective of symme-
try defects, gauging a symmetry amounts to summing over all possible insertions of symmetry
defects [1]. In the corresponding two-dimensional chiral algebra, gauging the one-form sym-
metry corresponds to extending the chiral algebra [11, 12]. For Chern-Simons theory it can
sometimes be described by the quotient of the gauge group by a subgroup of the center [1,11].
In the condensed matter literature, it is called “anyon condensation” of the Abelian anyon that
corresponds to the generating line of the one-form symmetry [13].

For p = 0 when the symmetry generating line a has integer spin the gauging involves three
steps [11,12]:

Step 1 Discard the lines W that are not invariant under the ZN one-form symmetry.

Step 2 Since a is trivial, we identify the lines W and Wa obtained by fusing with a.

Step 3 If W is a fixed point under the fusion with a, then there are N copies of W . More
precisely, if s is the minimal divisor of N such that W is invariant under the fusion with
as, then there are N/s copies of W .8

For even p = N , the generating line a has half-integer spin and then the resulting theory after
gauging is a spin TQFT. As we will discuss below, this leads to the same three-step process.

When p 6= 0, N the generating line a is charged under the ZN symmetry and that symmetry
cannot be gauged. However, a subgroup ZL ⊂ ZN with9

L = gcd(p, N) (1.11)

can be gauged. It is generated by the line ba = aN/L . Since its spin is h = pN
2L2 , its p-parameter

is bp = pN
L mod 2L. Note that bp = 0 mod L. When bp = 0 mod 2L we can gauge this ZL

subgroup as above, and when bp = L mod 2L the resulting gauged theory is a spin TQFT. The
most anomalous case has L = 1 and it will have particular significance below.

7This is the case even when the original TQFT is non-spin. In this case we can say that there is a mixed ’t Hooft
anomaly between the ZN one-form symmetry and gravity (the bosonic Lorentz symmetry).

8This can be proven by iteration. Let N1 be the highest non-trivial divisor of N0 = N . Then gauging the ZN0/N1

subgroup generated by aN1 leads to N0/N1 copies at each fixed point. We can continue to gauge the remaining ZN1

symmetry by repeating the process. For the minimal divisor Ni such that W is the fixed point under the fusion with
aNi , there will be N0

N1

N1
N2
· · · Ni+1

Ni
= N

Ni
copies of W after gauging the ZN symmetry.

9The relation to the seemingly unrelated equation (1.4) will be clear soon.
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1.6 Outline and summary of new results

In Section 2 we will discuss in detail the one-form symmetry in 3d and will prove the statements
above. We will also show that for given relatively prime N and p (i.e. L = 1) there is a minimal
TQFT with a ZN one-form symmetry of anomaly p. We will denote it by AN ,p. Furthermore,
we will show that any TQFT T with such a one-form global symmetry factorizes as

T ′ ⊗AN ,p for L = gcd(N , p) = 1 . (1.12)

This means that all the lines in T ′ are ZN neutral. This is quite surprising – the entire effect of
the global symmetry is limited to this factor of AN ,p and the rest of the theory is not affected
by it. We can also invert equation (1.12) and map the TQFT T to

T ′ = T ⊗AN ,−p

ZN
. (1.13)

When L = N we have the three-step gauging procedure we discussed above that maps a
TQFT T to T ′ = T /ZN (1.10). In the other extreme of L = 1 we can map T to T ′ of (1.13).
Here we simply remove the non-invariant lines, i.e. we perform only step 1 of the three steps.

In Section 2.5 we will generalize this procedure to generic L = gcd(N , p). We map

T → T ′ = T ⊗AN/L,−p/L

ZN
=

T /ZL ⊗AN/L,−p/L

ZN/L
. (1.14)

The equality between these expressions will be derived in Section 2. In the map (1.14) we
perform step 1 of the three-steps using ZN and perform steps 2 and 3 using ZL . This expression
coincides with (1.10) for L = N and with (1.13) for L = 1 and generalizes them to generic L.
(Depending on the details (1.14) might be a spin TQFT.)

This generalized gauging procedure has a physical interpretation, which we describe be-
low, in terms of coupling the system to a 4d bulk gauge theory. It is also related to a more
mathematical discussion in [14–17] and the discussion on the Walker-Wang lattice models
in [18,19].

In Section 3, we couple the 3d system to a 4d bulk and promote the background BC gauge
fields to quantum fluctuating fields and correspondingly, we drop the subscript C. The bulk
theory becomes effectively a ZL gauge theory.

As we said above, for L = 1 the bulk theory is trivial and therefore there is a meaning-
ful 3d TQFT on the boundary. It cannot be T /ZN because the anomaly makes this quotient
inconsistent. Instead, we will show that the theory on the boundary is T ′ of (1.13)

T ′ = T ⊗AN ,−p

ZN
. (1.15)

This equation has several complementary interpretations. First, we can say that the bulk pro-
duces a factor of our minimal theory AN ,−p on the boundary such that the combined boundary
theory T ×AN ,−p is anomaly free and then we can gauge the ZN symmetry using the three
steps above. Second, T ′ is as in (1.12), i.e. it includes only the ZN invariant lines in T . This
means that it is obtained from T by applying only step 1 of the three-step gauging procedure
above. And since L = 1 this leads to a consistent TQFT.

When L 6= 1 it is not meaningful to discuss the boundary theory, because it does not de-
couple from the bulk, which includes a non-trivial 4d TQFT. We could attempt to consider a 3d
theory that consists only of the lines on the boundary and describes their correlation functions.
We will find that these lines are the ZN invariant lines from T . This amounts to implementing
step 1 of the three-step gauging procedure above. Because of the lack of decoupling from the
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bulk, the resulting theory is not a consistent 3d TQFT. It includes L lines that can move from
the boundary to the 4d bulk and therefore they have trivial braiding with every line on the
boundary. It is natural to consider a new effective theory obtained by performing a quotient
by these lines.10 In more detail, we performed step 1 of the three-step procedure above for
ZN , and now we perform steps 2 and 3 with respect to the ZL subgroup. The resulting TQFT
is T ′ of (1.14)

T ′ = T ⊗AN/L,−p/L

ZN
(1.16)

and it is a fully consistent 3d TQFT. It captures the nontrivial correlation functions of the lines
on the boundary. However, as we said above, T ′ is not “the theory on the boundary” except
for L = 1. We will refer to it as “the effective boundary theory”. We can think of the factor of
AN/L,−p/L as a 3d TQFT produced by the bulk so that the ZN gauging can be performed.

We see that the 3d discussion of T ′ of (1.14) has a physical interpretation in terms of a 4d
system with a boundary. We will discuss in detail the purely 3d system in Section 2 and the
4d interpretation in Section 3.

We will further generalize this discussion to interfaces between bulks with p+ and p−.
Again, when L+ = L− = 1 there is a meaningful 3d theory on the interface. And for other
values of L± there is only an effective description as above. It is

T ⊗AN/L+,−p+/L+ ⊗AN/L−,p−/L−

ZN
. (1.17)

As in the case of a boundary, the two factors of AN/L±,∓p±/L± can be interpreted as being
produced by the bulk in the two sides such that the ZN gauging can be performed on the
interface.

In Section 4, we review the bulk dynamics of the SU(N) and the PSU(N) gauge theories
and discuss their interfaces. Here we use the results in Section 3 to construct the interfaces in
the PSU(N) theory by gauging the one-form ZN symmetry of the corresponding interfaces in
SU(N) theory.

In several appendices we summarize some background information and extend the analysis
in the body of the paper. Appendix A reviews the equivalence of different definitions of Abelian
anyons and derives some useful facts we use in the paper. Appendix B reviews the properties
of the Jacobi symbols that appear in the central charge of the minimal Abelian TQFT AN ,p. In
Appendix C, we demonstrate that every Abelian TQFT corresponds to a unitary chiral RCFT.
In Appendix D, we prove the equivalence of different procedures that remove lines from a
TQFT. Appendix E reviews and extends the analysis of a ZN two-form gauge theory in 4d. In
Appendix F, we generalize the discussion to a TQFT with an arbitrary Abelian one-form global
symmetry group

∏

ZNI
.

2 One-form symmetries in 3d and their gauging

2.1 One-form global symmetries in 3d TQFTs

In a 3d TQFT with a ZN one-form symmetry, every line W is in some ZN representation of
charge q(W ). This means that the line transforms under a symmetry group element s by

as(γ)W (γ′) =W (γ′)e
2πisq(W )

N , (2.1)

10This quotient is related to the discussion in [14–18].
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where the symmetry transformation is implemented by the symmetry line as that braids with
W as illustrated in Figure 2 with a the generating line of the symmetry. The charge q(W )
can be determined by the spins of the lines h[W ] [20] (for a later presentations see e.g. the
mathematical treatment in [21] and a more physical review in [22])

q(W ) = N
�

h[a] + h[W ]− h[aW ]
�

mod N , (2.2)

where aW denotes the unique line in the fusion of a and W . (The line aW is unique since a
is an Abelian anyon as explained in Appendix A.)

For the special case W = as′ , the transformation under the group element s is characterized
by some integer P mod N

as(γ)as′(γ′) = as′(γ′)e−
2πiss′P

N , (2.3)

Using (2.2) we obtain

h[as+s′]− h[as]− h[as′] =
Pss′

N
mod 1 . (2.4)

Consider the case s′ = −s. Since particles and their antiparticles have the same spin
h[as] = h[a−s] mod 1, and h[1] = 0 mod 1, we find two solutions with a given P mod N

h[as] =
ps2

2N
mod 1, p ∈ {0,1, ..., 2N − 1} , (2.5)

with p = P or (P + N) mod 2N .
The condition aN = 1 in (1.6) requires that aN has spin pN

2 = 0 mod 1 and hence pN must
be even. Therefore, for even N , the distinct cases are labeled by p = 0,1, ..., 2N − 1 and for
odd N , they are labeled by p = 0,2, ..., 2N − 2.

Some different values of the label p can be identified using group automorphisms. For
a ZN one-form symmetry, this amounts to choosing a new generating line for the symmetry
ba = ar with gcd(N , r) = 1. The charge of a line W in the TQFT becomes q(W )r mod N . The
new generating line ba has spin bp

2N mod 1 with bp = pr2 mod 2N so the label p and bp = pr2

mod 2N should be identified.
In a spin TQFT there are new elements. These theories include a transparent spin-half line

ψ. Using the language of one-form symmetries, we can say that ψ generates a Z2 one-from
symmetry that does not act faithfully on the lines.

Consider first the case of even N . Here we can replace the generating line a with ba = aψ,
which also satisfies (1.6) baN = 1. The spin of ba is p

2N +
1
2 =

p+N
2N . Therefore, we can identify

p ∼ p+N . Equivalently, we can say that our system has a ZN ⊗Z2 one-form symmetry, where
the first factor is generated either by a or by ba and the second by ψ.

For odd N we could contemplate aN =ψ and therefore allow odd pN (and hence p is also
odd). This means that a generates a Z2N symmetry. Since N is odd, Z2N

∼= ZN ⊗Z2. Here, the
first factor is generated by ba = aψ; indeed, baN = 1. The second factor is generated by ψ. The
ZN factor is characterized by the label bp = (p+ N) mod 2N , which is even (because p and N
are both odd). Therefore, without loss of generality, we can say that even in spin theories we
impose that pN is even. (Alternatively, we can allow odd pN , but identify p ∼ p+ N .)

The labels of distinct one-form symmetries for both non-spin and spin theories are summa-
rized in Table 1. Recall that in addition, choosing a different generator for the ZN symmetry
changes p.

Examples. An example of a class of 3d TQFTs that has aZN one-form symmetry of all possible
parameter p = 0, · · · , 2N −1 mod 2N is the U(1)pN Chern-Simons theory. The symmetry lines
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Table 1: The allowed labels p for ZN one-form symmetry up to the redundancy in
redefining the generators of the symmetries. A ZN one-form symmetry of parameter
p is generated by a line a of spin h[a] = p

2N mod 1. For a non-spin TQFT, we need
pN ∈ 2Z, and p ∼ p + 2N . For a spin TQFT, we can use pN ∈ Z and p ∼ p + N .
Alternatively, we can say that in the spin case we keep the condition pN ∈ 2Z and
add the identification p ∼ p+ N only for even N .

even N odd N

non-spin TQFT p = 0,1, ..., 2N − 1 p = 0,2, ..., 2N − 2

spin TQFT p = 0,1, ..., N − 1

p = 0, 1, ..., N − 1

or equivalently

p = 0,2, ..., 2N − 2

of the ZN one-form symmetry are generated by the Wilson line a of U(1) charge p, and the
line as for a general group element s has spin

h[as] =
(ps)2

2pN
=

ps2

2N
mod 1 , (2.6)

in accordance with (2.5).
Another example is the simplest Abelian ZN gauge theory in 3d, denoted by (ZN )0. The

theory has a ZN ×ZN one-form symmetry, generated by the basic electric and magnetic lines
VE , VM of integer spins. VE generates a ZN one-form symmetry with p = 0 and VM generates
another ZN one-form symmetry with p = 0. However, these two lines VE , VM have a mutual
braiding phase e−2πi/N . This fact can be used to find a ZN ⊂ ZN ×ZN of arbitrary even label
p. Specifically, the line

b = V p/2
E VM , (2.7)

generates a ZN ⊂ ZN × ZN one-form symmetry and since its spin is p
2N mod 1, the one-form

symmetry is characterized by p.
What about the remaining lines? The line

c = V p/2
E V−1

M , (2.8)

generates a ZN one-form symmetry of even parameter −p mod 2N . However, the lines b and
c satisfy

(bc)N/gcd(N ,p) = 1 , (2.9)

and therefore only when gcd(N , p) = 1 do the two lines generate the entire ZN ×ZN one-form
symmetry.

Let us study a third example. We consider U(1)N ⊗U(1)−N (for N odd this is a spin TQFT)
with gauge fields z and y and an action

∫

�

N
4π

zdz −
N
4π

yd y
�

. (2.10)

Writing it in terms of x = z − y , this action becomes
∫

�

N
4π

xd x +
N
2π

xd y
�

, (2.11)

and as in [4], it describes the ZN DW theory [9] that we denote as (ZN )N . It has a ZN × ZN
one-form symmetry, generated by Z = exp(i

∮

z) of spin 1
2N mod 1, and Y = exp(i

∮

y) of
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spin − 1
2N mod 1. The two lines Z and Y have trivial mutual braiding. The basic electric and

magnetic lines of the DW ZN gauge theory can be written as VE = ZY−1 = exp(i
∮

x) and
VM = Y . As in the previous example of (Z)0, the line

b = Z (p+1)/2Y−(p−1)/2 = V (p+1)/2
E VM (2.12)

generates a ZN ⊂ ZN ×ZN one-form symmetry of odd parameter p ∼ p+ 2N .
Again, we could ask about the remaining lines. The line

c = Z (p−1)/2Y−(p+1)/2 = V (p−1)/2
E V−1

M (2.13)

generates a ZN one-form symmetry of odd parameter −p mod N . As in the previous example,
these lines satisfy a relation: (bc)N/gcd(N ,p) = 1 and therefore only when gcd(N , p) = 1 do the
two lines b and c generate the entire ZN ×ZN one-form symmetry.

Let us summarize the last two examples. A subset of the lines of (ZN )0 generates a ZN
one-form symmetry with even parameter p and a subset of the lines of (ZN )N generates a
ZN one-form symmetry with odd parameter p. When gcd(N , p) = 1 the remaining lines also
generate a ZN one-form symmetry with parameter −p.

We can combine these two examples more concisely using the theory (ZN )−pN with the
action

∫

�

−
pN
4π

xd x +
N
2π

xd y
�

. (2.14)

Here the parameter p can be identified with p + 2 using the redefinition y → y − x so these
theories are either (ZN )0 or (ZN )N , and the lines b and c in (ZN )0 and (ZN )N are mapped to
the following lines in (ZN )−pN

b = exp(i

∮

y), c = exp(ip

∮

x − i

∮

y) . (2.15)

2.2 The minimal Abelian TQFT AN ,p

In this section, we will show that when gcd(N , p) = 1 and pN ∈ 2Z the N symmetry lines
associated to aZN one-form symmetry form a consistent TQFT. We call this theory “the minimal
Abelian TQFT” and denote it by AN ,p. This theory was first studied in [20] and more recently
in [23, 24]. Here we emphasize its one-form global symmetry and show how it appears as a
sub-theory in TQFTs with a ZN one-form global symmetry.11

Using the assumed underlying ZN one-form symmetry, we can simplify the discussion in

[20]. The symmetry determines the spins of the lines h[as] = ps2

2N mod 1, and their braiding
leads to the following S matrix

Sss′ =
1
p

N
exp

�

2πi
�

h[s] + h[s′]− h[ss′]
�

�

=
1
p

N
exp

�

−
2πip

N
ss′
�

, s, s′ ∈ {1, ..., N} .

(2.16)
This matrix is unitary only when L = gcd(N , p) = 1. (If L = gcd(N , p) 6= 1, the line aN/L has
trivial braiding with all the lines in the theory, so the S matrix is not unitary.)

The chiral central charge c(p)N modulo 8 of the Abelian TQFT AN ,p can be computed using
the following formula (see e.g. [22,25])12

ei 2π
8 c(p)N =

1
p

N

N
∑

s=1

e2πih[as] . (2.17)

11A putative theory with N Abelian lines as with h(as) = ps2

2N is not a consistent (modular) TQFT when
gcd(N , p) 6= 1.

12The chiral central charge of a TQFT can be shifted by adding a (E8)1 theory, since it has c = 8 and no nontrivial
lines.
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Table 2: The chiral central charge c(p)N mod 8 of the minimal Abelian theory AN ,p

computed from (2.18). For each case c(p)N mod 8 is one of the two possible values
depending on [N] = N mod 4 and [p] = p mod 4. Here × means that the theories
with such p and N do not exist according to the conditions that pN is even and
gcd(N , p) = 1.

[N]
[p]

0 1 2 3

0 × 1,5 × 3,7
1 0,4 × 0,4 ×
2 × 1,5 × 3,7
3 6,2 × 6,2 ×

The summation is a Gaussian sum with the following closed-form expression [20,26]

exp
�

i
2π
8

c(p)N

�

=











�

p/2
N

�

ε(N) N odd, p even
�

N/2
p

�

ε(p)−1 exp (πi/4) N even, p odd
, (2.18)

where ε(s) = 1 for s = 1 mod 4, ε(s) = i for s = −1 mod 4 and ( a
b ) is the Jacobi symbol

reviewed in Appendix B. The values of the chiral central charges are summarized in Table 2,
and they are always integers.

Every Abelian TQFT can be represented by some Abelian Chern-Simons theory [27–31]
(for a review see e.g. [32]). It is also true for AN ,p. For example,13 AN ,1 ←→ U(1)N and
AN ,N−1 ←→ SU(N)1. An alternative description of AN ,N−1 is the U(1)N−1 Chern-Simons
theory with the coefficient matrix given by the Cartan matrix of SU(N) (see e.g. [25]). The
dualities also hold after taking orientation-reversal.

Similar to one-form symmetries, any two minimal Abelian TQFTs AN ,p and AN ,pr2
with

gcd(N , r) = 1 are related by group automorphsims.
Following the discussion of spin TQFTs in the previous subsection we can generalize the

minimal theory to spin theories. Originally, we imposed aN = 1 and then pN has to be even
and the minimal theory is nonspin. We can make it into a spin TQFT by tensoring the almost
trivial theory14 {1,ψ}. After doing that, for odd N we can further redefine a → aψ, which
makes aN =ψ and shifts p→ p+ N making pN odd. This way we can define a spin TQFT

AN ,p ≡ AN ,p+N ⊗ {1,ψ} for odd pN and gcd(N , p) = 1 . (2.19)

This is the minimal spin TQFT generated by a line of spin p
2N mod 1.

As an application, the spin TQFT U(1)N for odd N factorizes15

U(1)N ←→AN ,N+1 ⊗ {1,ψ} , (2.20)

13Typically (and perhaps always) the TQFT can be described by a Chern-Simons (CS) gauge theory and a cor-
responding Rational Conformal Field Theory (RCFT). In fact, there are often several distinct CS theories corre-
sponding to the same TQFT. Then the symbol ←→ means that they are dual. It is important to stress, however,
that distinct RCFTs with the same TQFT are often inequivalent.

14The almost trivial TQFT {1,ψ} can be represented by SO(M)1 for some integer M . The dependence on M
is only in the framing anomaly or equivalently in the chiral central charges c = M

2 . See e.g. Appendix C of [33],
Appendix B of [34], and also [6].

15We use equal sign to relate two isomorphic TQFTs. However, we used←→ to denote two dual presentations
of the same TQFT. Typically one or both of these presentations is given by a Chern-Simons gauge theory. Then the
classical Chern-Simons theories are not equal (hence we do not use an equal sign), but the quantum theories are
the dual.
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where the first factor is a nonspin minimal theory. Since AN ,N+1 = AN ,−N+1 ←→ SU(N)−1.
This reproduces the level-rank duality U(1)N ←→ SU(N)−1, which is valid only as spin TQFTs
[6].16

2.3 Factorization of 3d TQFTs when gcd(N , p) = 1

In this section we show that a TQFT T with a ZN one-form symmetry of label p such that
gcd(N , p) = 1 factorizes as

T =AN ,p ⊗ T ′ when gcd(N , p) = 1 . (2.21)

This is quite surprising. It means that in this case all the information about the global symmetry
and its action on T is included in a decoupled factor of the minimal theory AN ,p and T ′ is
invariant under the symmetry.17

The theory T includes the ZN symmetry lines as. When gcd(N , p) = 1 these lines form
the minimal theory AN ,p. Next, consider any line W ∈ T . Since a is Abelian, the fusion of W
with a includes a single line rather than a sum of lines. (See Appendix A.) Therefore, since
gcd(N , p) = 1, we can always find an integer s such that the line W ′ = Was has vanishing
charge q(W ′) = 0 mod N . Denote the set of neutral lines W ′ by T ′. This shows that every line
W ∈ T is a product of a line W ′ ∈ T ′ and a line in AN ,p. It is clear that all the conditions of a
consistent TQFT are satisfied separately for T ′ and AN ,p and hence we have the factorization
(2.21).

The factorization (2.21) also follows from a theorem in modular tensor category (see [16]
and Theorem 3.13 in [17]). In physics language, the theorem states that if a 3d TQFT T has
a consistent sub-theory A, then T factorizes into A⊗T ′ where T ′ is another consistent TQFT
that consists of all the lines in T that have trivial braiding with the lines in A.18

Next, we use the fact that (AN ,p⊗AN ,−p)/ZN is a trivial theory, where the quotient means
gauging the anomaly free diagonal ZN one-form symmetry generated by the two generating
lines of the minimal Abelian TQFTs. This leads to an alternative presentation of the TQFT T ′

T ′ = T ⊗AN ,−p

ZN
, (2.22)

where the quotient means gauging the anomaly free diagonal ZN one-form symmetry gener-
ated by the symmetry generating line a in T and the generating line of AN ,−p.

Let us demonstrate this factorization in some examples.
The minimal Abelian TQFTs can be found as sub-theories in various examples discussed

in Section 2.1. We start by considering U(1)pN when gcd(N , p) = 1. The theory has a
ZpN

∼= ZN ⊗ Zp one-form symmetry with a ZN subgroup generated by a, the Wilson line of
charge p, and a Zp subgroup generated by b, the Wilson line of charge N . The line a and the
line b each generates a minimal Abelian TQFT AN ,p and Ap,N . The full theory factorizes into
these minimal Abelian TQFTs19

U(1)pN ←→ ApN ,1 =AN ,p ⊗Ap,N when gcd(N , p) = 1 . (2.23)

16If N = 8n for some integer n, the non-spin minimal Abelian TQFT satisfies AN ,1 = AN ,N+1 by redefining the
generating line a→ a4n+1. Thus U(1)8n←→ SU(8n)−1 are dual as non-spin TQFTs in agreement with [35].

17If the theory T is a spin TQFT, then since the transparent spin-half line is invariant under any one-form sym-
metry, the theory T ′ also contains such a line and is a spin TQFT.

18We thank Zhenghan Wang for discussions about this point.
19For odd pN the full theory U(1)pN as well as AN ,p and Ap,N are spin TQFTs. The spin Chern-Simons theory

U(1)pN can also factorize as U(1)pN ←→ AN ,p+N ⊗Ap,p+N ⊗ {1,ψ} (compare with (2.20)), where the first two
factors are non-spin minimal theories.
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To show the factorization of an Abelian TQFT, it is sufficient to check the factorization in the
fusion rules, the spins of the lines and the chiral central charge. The fusion rules of U(1)pN are
the same as the group law of ZpN . When gcd(N , p) = 1, the group factorizes into ZN ×Zp and
every line in the theory can be decomposed into W = as br with some unique (s, r) ∈ ZN ×Zp.
The spins of the lines also factorize

h[W ] =
(ps+ N r)2

2pN
=
�

p
2N

s2 +
N
2p

r2
�

mod 1= (h[as] + h[br]) mod 1 . (2.24)

The chiral central charge of U(1)pN is c = 1. It agrees with the sum of the chiral central charges
of individual sub-theories up to a periodicity of 8

ei 2π
8

�

c(p)N +c(N)p

�

=
1
p

N

N−1
∑

j=0

e
πip j2

N
1
p

p

p−1
∑

k=0

e
πiNk2

p =
1

p

pN

∑

j,k

e
2πi(p j+Nk)2

2pN = ei 2π
8 . (2.25)

We conclude that U(1)pN factorizes into AN ,p ⊗Ap,N when gcd(N , p) = 1.
The minimal Abelian TQFT AN ,p is also a sub-theory in (ZN )−pN when gcd(N , p) = 1.

Similarly, the theory also factorizes

(ZN )−pN ←→ AN ,p ⊗AN ,−p when gcd(N , p) = 1 , (2.26)

where AN ,p and AN ,−p are generated by the lines b and c in (ZN )−pN defined in (2.15).
As a consistency check, combining (2.21) and (2.22) and using the factorization property

of (ZN )−pN in (2.26), we recover the following canonical duality [36]

T ←→
T ⊗ (ZN )−pN

ZN
←→















T ⊗ (ZN )0
ZN

even p

T ⊗ (ZN )N
ZN

odd p
, (2.27)

where the quotient means gauging the anomaly free diagonal one-form symmetry generated
by the line a in T and the line c in the ZN gauge theories defined in (2.8), (2.13) and (2.15).
The duality holds even when gcd(N , p) 6= 1. Under the duality, the symmetry generating line
a in T is mapped to the line b in the dual theories defined in (2.7), (2.12) and (2.15). Then
the ZN one-form symmetry is entirely in the (ZN )−pN factor.

We remark that although the 3d TQFT factorizes, the corresponding 2d RCFTs may not fac-
torize since the unitary modular tensor category does not fully specify the 2d chiral conformal
field theory [37]. For Abelian TQFTs, we provide a construction of a corresponding unitary
chiral RCFT in Appendix C.

2.4 ’t Hooft anomaly of one-form global symmetries

Consider a 3d TQFT T with a ZN one-form symmetry of label p with the symmetry generating
line a. Gauging the one-form symmetry amounts to summing over all possible insertions of
the symmetry lines [1]. If the symmetry lines have non-integer spin, the partition function
vanishes because of the summation. This means that the one-form symmetry has an ’t Hooft
anomaly unless p = 0 mod 2N . Indeed, the one-form symmetry of label p = 0 mod 2N can
be gauged following the procedure outline in Section 1. (When p = N , the theory can also
be gauged as a spin TQFT by redefining the symmetry generating line using the transparent
spin-half line. After gauging it becomes a spin TQFT, even though the original theory can be
a non-spin theory. It reflects a mixed ’t Hooft anomaly between the one-form symmetry and
gravity, which we will explain in details later.)
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We couple the one-form symmetry of the 3d TQFT to a classical ZN two-form gauge field
BC ∈ H2(M4,ZN ).20 The anomaly of the one-form symmetry is characterized by a 4d term of
the gauge field BC through anomaly inflow. To determine the 4d term, we use the canonical
duality in (2.27) [36]

T ←→
T ⊗ (ZN )−pN

ZN
. (2.28)

Under the duality, the original ZN one-form symmetry in T is mapped to the one-form sym-
metry generated by line b defined in (2.15) in the dual description so the theory on the right
hand side couples to the classical gauge field BC through the (ZN )−pN factor. It was shown
in [4] that the anomaly of (ZN )−pN is cancelled by the 4d term

2π
p

2N

∫

M4

P(BC) , (2.29)

where P is the Pontryagin square operation (for a review see e.g. [10,38,39]). Therefore, the
anomaly of a ZN one-form symmetry of label p is characterized by the 4d term (2.29) [1,4,39].

The 4d term (2.29) is consistent with the ZN periodicity of the BC field only for even pN .
Furthermore, for p = N (which is possible only for even N) it can be written as

π

∫

M4

P(BC) =

�

π

∫

M4

BC ∪BC

�

mod 2π=

�

π

∫

M4

w2(M4)∪BC

�

mod 2π , (2.30)

where w2(M4) ∈ H2(M4,Z2) is the second Stiefel-Whitney classe of the manifoldM4 (see e.g.
[40, 41]). Equation (2.30) follows from the identity x ∪ x = w2(M4) ∪ x for
x = (BC mod 2) ∈ H2(M4,Z2) (on orientable manifolds). We interpret the 4d term (2.30)
as a mixed ’t Hooft anomaly between the one-form symmetry and gravity (fermion parity),
which means that when this anomaly exists the one-form symmetry can be gauged only on
spin manifolds. See also the related discussion in appendix E.

On spin manifolds, pN in (2.29) can be odd. Furthermore, (2.29) vanishes for p = N .
In summary, on non-spin manifolds, the anomaly is labeled by p = 0, 1, ..., 2N −1 for even

N and p = 0,2, ..., 2N − 2 for odd N , and on a spin manifolds, the anomaly is labeled by
p = 0,1, ..., N −1. This agrees with the labels of 3d ZN one-form symmetries listed in Table 1.

The anomaly can be changed by choosing a different generating line ba = ar with
gcd(N , r) = 1 as explained in Section 2.1. It is equivalent to redefining the classical gauge
field BC by a multiplication by r and the anomaly coefficient in (2.29) becomes pr2 mod 2N .

In the presence of the classical gauge field BC , the line W is dressed with an open surface

e−
2πiq(W )

N

∫

BC for gauge invariance and the redefinition of the classical gauge field BC rescales
the charge from q(W ) to q(W )r.

An anomalous ZN one-form symmetry can have anomaly free subgroups. On spin man-
ifolds, a Zm subgroup is anomaly free if the symmetry generator ba = aN/m has integer or
half-integer spin

h[ba] =
pN
2m2

∈
1
2
Z . (2.31)

There is always a ZL subgroup with L = gcd(N , p) that satisfies this condition and hence it
is anomaly free. But the ZL subgroup may not be the maximal anomaly free subgroup. For
N L = r2 t with some integers r, t such that t does not contain any complete-square divisors
great than one, the maximal anomaly free subgroup is Zr . As a non-spin TQFT, a Zm subgroup
is anomaly free only if h[ba] ∈ Z and therefore the ZL subgroup is anomaly free only for even
pN/L2.

20The subscript C, as in BC , denotes that the gauge field is classical.
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2.5 A generalization of the three-step gauging procedure to anomalous theories

In this subsection, we will introduce a new operation on 3d TQFTs that generalizes the three-
step gauging procedure outlined in Section 1. This generalized operation will appear naturally
in Section 3, where we consider 4d theories with boundaries and interfaces.

The standard gauging procedure of an anomaly free ZN one-form symmetry can be used
when p = 0, where all the symmetry lines have integer spins. Then in step 1 we remove the
non-invariant lines, in step 2 we identify lines that differ by the fusion with the symmetry lines,
and in step 3 we take lines at fixed points of the identification several times.

When p = N this simple process cannot be repeated because the generating line a has
half-integer spin. As we said above, this can be interpreted as a mixed anomaly between the
one-form symmetry and gravity. This anomaly vanishes on spin manifolds and therefore, we
can gauge the symmetry and find a spin TQFT. Let us discuss it in more detail. If the original
TQFT T is a spin theory, it has a transparent spin-half line ψ. Otherwise, we make it into a
spin TQFT by tensoring the almost trivial theory {1,ψ}. Now that we have a spin TQFT we
can redefine a → ba = aψ. Since p = N and pN is even, this occurs only for even N and
then the redefinition preserves the fact that aN = 1. The redefinition shifts p to be zero. As a
result, even in this case we can use the standard three-step gauging process with ba. The only
difference is that the theory is spin.

For simplicity from this point on we will limit ourselves to spin TQFTs.
Consider a 3d spin TQFT T with aZN one-form symmetry of label p such that gcd(N , p) = 1,

the spin TQFT factorizes as discussed in Section 2.3

T = T ′ ⊗AN ,p , (2.32)

where T ′ is the 3d spin TQFT that consists of all the ZN invariant lines in T , and it can be
extracted through

T ′ = T ⊗AN ,−p

ZN
. (2.33)

In this case, we define an operation that maps T to T ′. The operation discards all the ZN
non-invariant lines in T . It is equivalent to applying only the step 1 of the three-step gauging
procedure.

When gcd(N , p) 6= 1, the ZN one-form symmetry has an anomaly free ZL subgroup gener-
ated by ba = aN/L with L = gcd(N , p). Gauging this ZL subgroup produces a new spin TQFT
T /ZL . The new spin TQFT contains the original symmetry generating line a, but now it gen-
erates a ZN ′ one-form symmetry (N ′ = N/L) with label p′ = p/L. Since gcd(N ′, p′) = 1, T /ZL
factorizes

T
ZL
=
� T
ZL

�′
⊗AN/L,p/L , (2.34)

where (T /ZL)′ contains all the lines in T /ZL that have trivial braiding with a. We define the
generalized gauging operation that maps

T → T ′ ≡
� T
ZL

�′
=

T /ZL ⊗AN/L,−p/L

ZN/L
=

T ⊗AN/L,−p/L

ZN
. (2.35)

In both presentations, the quotient in the denominator uses the symmetry generator a and the
generating line of the minimal Abelian TQFT. In the second presentation, the ZL subgroup of
the ZN quotient acts only on T .

There are three ways to think about the map (2.35).
First, as we motivated it and as in the first presentation in (2.35), we first gauge the ZL

subgroup of the ZN one-form symmetry and then remove the sub-theory in T /ZL consisting
of the ZN/L symmetry lines.
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Second, since the ZN symmetry is anomalous, we tensor a minimal theory AN/L,−p/L that
cancels the anomaly and then gauge the new anomaly free ZN symmetry. This is clear in the
second presentation in (2.35).

Third, we can perform step 1 of the three-step gauging procedure using the full ZN sym-
metry and then perform steps 2 and 3 using only its ZL subgroup:

Step 1 Select the lines invariant under the ZN one-form symmetry. In particular, among the
symmetry lines, only the ones associated to the ZL subgroup generated by ba = aN/L

remain.

Step 2 If ba has integer spin, identify W ∼Wba and if ba has half-integer spin, identify W ∼Wbaψ.

Step 3 Take multiple copies at the fixed points of the identification.

When p = 0, N , the symmetry is anomaly free and the generalized gauging operation
reduces to the standard gauging procedure that produces T ′ = T /ZN .

In general, the ZN one-form symmetry can have larger anomaly free Zm subgroups that
contain the ZL subgroup. In Appendix D we show that the same result (2.35) can be repro-
duced if we first gauge the Zm subgroup and then apply the generalized gauging operation to
the remaining theory (up to a possible transparent spin-half line, which we will ignore).

Below we will see similar operations on TQFTs, which are not minimal. Following the
second presentation in (2.35), we can tensor not the minimal theory AN/L,−p/L , but other
theories that cancel the anomaly, e.g.

T ⊗AN/L+,−p+/L+ ⊗AN/L−,p−/L−

ZN
, (2.36)

where p = p+ − p− and L± = gcd(N , p±). The operation adds to the theory T two minimal
Abelian TQFTs to cancel the anomaly and then gauges the diagonal one-form symmetry. The
two minimal Abelian TQFTs AN/L+,−p+/L+⊗AN/L−,−p−/L− always have greater or equal number
of lines than AN/L,−p/L with L = gcd(N , p) and p = p+ − p−.21 All the lines in T ′ defined in
(2.35) can be identified with the lines from the original TQFT T . In contrast, the theory (2.36)
in general has additional lines.

3 Coupling to a 4d bulk

3.1 The bulk coupling

Consider a 4d symmetry protected topological (SPT) phase of ZN one-form symmetry with the
same action as the anomaly in (2.29)

2π
p

2N

∫

M4

P(BC) , (3.1)

where BC ∈ H2(M4,ZN ) is a classical ZN two-form gauge field. The theory has a description,
reviewed in Appendix E, in terms of a dynamical U(1) one-form gauge field A and a classical
U(1) two-form gauge field BC

∫

M4

�

pN
4π

BCBC +
N
2π

BCdA
�

. (3.2)

21AN/L,−p/L has N/L lines and AN/L+ ,−p+/L+ ⊗ AN/L− ,p−/L− has N 2/L+L− lines. The ratio between them is
N L

L+ L− =
�

N`
L+ L−

� �

L
`

�

with gcd(N , p+, p−) = `. Since the two factors are integers, the product theory has more
lines.

18

https://scipost.org
https://scipost.org/SciPostPhys.6.3.039


SciPost Phys. 6, 039 (2019)

The equation of motion of A constrains BC to be a ZN two-form gauge field 2π
N BC .

The theory (3.2) is invariant under a one-form gauge transformation of background fields

BC → BC − dλ, A→ A+ pλ , (3.3)

with λ a one-form gauge parameter.
We put the theory on a 4-manifold M4 with a boundary.22 The action is gauge invariant

under (3.3) up to a boundary term

−
∫

∂M4

�

pN
4π
λdλ+

N
2π
λdA

�

. (3.4)

It can be cancelled by a theory on the boundary with a ZN one-form symmetry of anomaly
p, that couples to the classical gauge field BC . So we are going to place on the boundary an
arbitrary TQFT T with such a symmetry and anomaly.

The coupling of the boundary TQFT T to the classical gauge field BC has a convenient
Lagrangian description using the canonical duality in (2.27) [36]

T ←→
T ⊗ (ZN )−pN

ZN
(3.5)

and the Lagrangian description (2.14) of the second factor in the numerator. Then the classical
gauge field BC couples to the boundary theory through the (ZN )−pN theory

∫

∂M4

�

−
pN
4π

xd x +
N
2π

xd y +
N
2π

BC y −
N
2π

BCA
�

, (3.6)

where the last term BCA can be absorbed into the bulk action by modifying BCdA to AdBC .
Now the one-form gauge transformation (3.3) acts as

BC → BC − dλ, A→ A+ pλ, x → x +λ, y → y + pλ . (3.7)

3.2 Gauge the one-form symmetry

The whole system is anomaly free so there is no obstruction to gauging the one-form sym-
metry by turning the background gauge field BC into a dynamical gauge field denoted by B.
After gauging, the bulk theory becomes a dynamical ZN two-form gauge theory reviewed in
Appendix E. For later convenience, we define

L = gcd(N , p), K = N/L . (3.8)

The bulk ZN two-form gauge theory is effectively a ZL one-form gauge theory23 [1,4]. It has
L genuine line operators generated by V = exp(iK

∮

A) and L surface operators generated
by U = exp(i

∮

B). We will be interested in the effect of gauging on the boundary TQFT. For
simplicity, we will limit ourselves to spin 4-manifolds.

It is important to stress that when L 6= 1 the bulk theory is nontrivial and hence it is
meaningless to ask what the 3d theory on the boundary is. Instead, it should be thought of
as part of the 4d-3d system. Nevertheless, we can discuss the physical observables such as the

22We restrict to the 4-manifolds such that every ZN two-form gauge field on the boundary can be extended to
the bulk. It requires the third relative cohomology H3(M4,∂M4;ZN ) to vanish.

23When pN/L2 is odd, V = exp(iK
∮

A) represents the worldline of a fermionic particle and the bulk theory is
effectively a ZL gauge theory that couples to w2(M4) of the manifold (see Appendix E).
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γ
γ⊥

Figure 3: If a boundary line W (γ) is at the fixed point of the identification using
ba = aK , it can form a junction by emanating a bulk line exp(iK

∫

γ⊥
A).

line operators on the boundary and their correlation functions. We will extract from the 4d-3d
system an effective boundary theory that reproduces many of these observables.

Let us examine the line operators on the boundary. The bulk ZN gauge theory has L line
operators. When they are restricted to the boundary, they are regarded as boundary lines. But
they have trivial braiding with all the boundary lines since they can smoothly move into the
bulk and get un-braided. This means that unless L = 1 (where the bulk is trivial) the boundary
lines to do not form a modular TQFT [4].

What are the other lines on the boundary? They can be constructed by fusing a line W from
the 3d TQFT T and the bulk lines generated by exp(i

∮

A)|, where | denotes the restriction to
the boundary

W (γ)exp
�

im

∮

γ

A
�

exp
�

i(mp− q(W ))

∫

Σ

B
�

with γ= ∂Σ , (3.9)

where m ∼ m+ N . The coupling to B is needed for the one-form gauge symmetry. Next, we
impose that these lines are genuine line operators, i.e. independent of the choice of surface Σ.
This happens when q(W ) = mp mod N [1,4]

W (γ)exp
�

im

∮

γ

A
�

with q(W ) = mp mod N . (3.10)

An operator W for which we cannot solve q(W ) = mp mod N cannot be “dressed” to a physical
line operator. In addition, using (3.6), the equation of motion of B on the boundary leads to

exp(i

∮

A)|= exp(i

∮

y) . (3.11)

Now, the canonical duality (2.27) maps exp(i
∮

y) to the symmetry generating line a ∈ T , so
exp(i

∮

A)|= a. Therefore all the line operators on the boundary are the ZN -invariant lines in
T . This means that we have performed only step 1 of the three-step gauge procedure.

Using this identification we also recognize the L symmetry lines associated to the ZL sub-
group generated by ba = aK as the bulk lines generated by V = exp(iK

∮

A). As we said above,
these lines have trivial braiding with all the lines on the boundary.

One of the main points in our discussion is that since the bulk lines are trivial in any 3d
correlation functions, we find it natural to identify them with the trivial line and accordingly,
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Table 3: Gauging an SPT phase ofZN one-form symmetry with a boundary supporting
a 3d TQFT T leads to a 4d-3d system. It is not meaningful to discuss the resulting
boundary theory unless the bulk is trivial. This happens when L = gcd(N , p) = 1.
However, we can extract an effective boundary theory that captures many of the
features for any L.

gauging bulk boundary theory effective boundary theory

none SPT of ZN T

ZN with L = 1 trivial T ′ =T ⊗AN ,−p

ZN

ZN with L 6= 1 ZL gauge theory not meaningful T ′ = T ⊗AN/L,−p/L

ZN

identify the boundary lines W ∼ Wba. This works when pN/L2 is even, so that the bulk line
V |= ba = aK has integer spin h[ba] = pN/2L2. When pN/L2 is odd, the bulk line V is charged
under the Z2 fermion parity (see Appendix E), and on the boundary it is identified with ba
of half-integer spin. Thus, we identify W ∼ Wbaψ. The procedure above is equivalent to
quotienting by the boundary lines that can move to the bulk. This is essentially the step 2 of
the gauging procedure, except that we perform it with respect to ZL rather than with respect
to ZN . As with the step 3 in the gauging procedure, the identification leads to new lines.
Consider a boundary line W at the fixed point of the fusion with ba. It can form junctions by
emanating bulk lines at some points as shown in Figure 3. When the bulk lines are viewed as
trivial, these junctions become new boundary line operators.

We have just performed step 1 of the gauging with respect to ZN and steps 2 and 3 with
respect to its ZL subgroup. The result is exactly T ′ defined in (2.35)

T ′ = T ⊗AN/L,−p/L

ZN
. (3.12)

We note that the identification by the bulk lines, whose correlation functions on the bound-
ary are trivial, is similar to the procedure of the more mathematical analysis in [14–18].

In this system, the minimal theory AN/L,−p/L can be interpreted as the 3d TQFT that the
bulk theory provides to cancel the anomaly.

After gauging theZN one-form symmetry, there is an emergent dualZN one-form symmetry
in the bulk and an emergent dual ZN zero-form symmetry on the boundary. They are both
generated by exp(i

∮

B). The original system can be recovered by gauging these emergent
symmetries.

In summary, starting with a general 3d TQFT T with a ZN one-form symmetry of anomaly
p, by coupling it to the bulk (3.1) and then gauging the one-form symmetry, we find the 3d
TQFT T ′ as the effective boundary theory. We emphasize again that T ′ is only an effective
theory, since the boundary can only be thought of as part of the 4d-3d system when the bulk
theory is nontrivial. However, in the special cases when L = 1, the bulk theory is trivial and
T ′ is the theory on the boundary.
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3.3 Interfaces between two different bulk TQFTs

A generalization24 is to consider interfaces between two different SPT phases of ZN one-form
symmetry one with coefficient p+ and the other with p−

S4d =

∫

M−
4

�

p−N
4π

B−C B−C +
N
2π

B−C dA−
�

+

∫

M+
4

�

p+N
4π

B+C B+C +
N
2π

B+C dA+
�

. (3.13)

On the interface ∂M+
4 = ∂M−

4 , we choose the boundary condition BC = B+C | = B−C | where |
represents the restriction to the interface. The anomaly inflow can be cancelled by an interface
theory with a ZN one-form symmetry of anomaly p = p+ − p− that couples to BC . As in the
case of a boundary, which we discussed above, we place on the interface a 3d TQFT T with a
ZN one-form symmetry generated by a and with anomaly p. Following the discussion of the
boundary, we use the canonical duality (2.27) and couple the interface theory to BC through
the (ZN )−pN factor

S3d =

∫

∂M4

�

−
pN
4π

xd x +
N
2π

xd y +
N
2π

BC y −
N
2π

BC(A
+ − A−)

�

. (3.14)

The one-form gauge symmetry of the system is

B±C → B±C − dλ, A±→ A± + p±λ, x → x +λ, y → y + pλ . (3.15)

We can gauge the ZN one-form symmetry in the full system, i.e. make BC dynamical (and
remove the subscript C). For later convenience, we define

L± = gcd(N , p±), L = gcd(L+, L−), K± = N/L±, K = N/L = lcm(K+, K−) . (3.16)

After gauging, the bulk theory becomes effectively a ZL± one-form gauge theory on each side.
In the special cases when L± = 1, the bulk theories on both sides are trivial and there is a
meaningful 3d theory on the interface. Otherwise, the interface can only be thought of as
coupled to the 4d TQFT.

All the line operators fW on the interface can be constructed by fusing the lines W from the
original 3d TQFT T and the lines bV± = exp(i

∮

A±)|

fW =W bV m+
+
bV m−
− , q(W ) = (p+m+ + p−m−) mod N . (3.17)

The various factors in fW are not ZN gauge invariant line operators – each of them needs to
be attached to a surface with B to make them invariant. But the condition on m± means that
their product fW is ZN invariant and hence it is a genuine line operator. (We ignore here a
possible trivial open surface exp(iN

∫

B) and use m± ∼ m±+N .) An operator W for which we
cannot solve this equation cannot be “dressed” to a physical operator.

Using the equation of motion of B

bV+ = abV− (3.18)

and that a is a special case of W , all the lines on the interface can be written as25

fW =W bV m−
− , q(W ) = p−m− mod N . (3.19)

24As above, for simplicity, we will limit ourselves to spin 4-manifolds.
25Note that unlike the case of a boundary discussed in Section 3.2, where a = bV was a line in the original theory

T , here the interface lines with m− 6= 0 were not present in T . Correspondingly, there are new interface lines that
arise from the bulk degrees of freedom.
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Table 4: The emergent global symmetry in a 4d system with an interface. The first
row summarizes the symmetries and their spontaneous breaking. The second row
presents the charge generators. In U the integral is over a closed surface that pierces
the interface. U L±

± = 1 means that this symmetry is broken to ZK± . Below we will
study an effective theory on the interface by performing a quotient of the full 4d-3d
system by the bulk modes. We will see that the one-form global symmetry of this
effective theory is Zgcd(K+,K−) = ZN/lcm(L+,L−).

bulk at M−
4 Interface bulk at M+

4

one-form: ZN → ZK− one-form: ZN → 1 one-form: ZN → ZK+

U− = exp(i
∮

B−) U = exp(i
∫

B+ − i
∫

B−) U+ = exp(i
∮

B+)

Let us discuss the global symmetry of the system and its breaking (Table 4). After gauging,
the bulk theories have an emergent ZN one-form symmetry. It is spontaneously broken to ZK±

on the two sides. The broken ZL± = ZN/ZK± one-form symmetry is generated by the surface
operator U± = exp(i

∮

B±) with U L±
± = 1. It acts on the ZL± gauge theories in the two sides.

The interface has an emergent symmetry generated by the surface operator that pierces
the interface

U = exp(i

∫

Σ+
B+ − i

∫

Σ−
B−) , ∂Σ+ = ∂Σ− , (3.20)

where Σ± are two hemispheres in the two sides of the interface. Together they form a closed
surface. U acts on the interface lines (3.17) W bV m+

+
bV m−
− by a phase of e−2πi(m++m−)/N . (As a

check, this phase is invariant under the fusion with the trivial operator abV−1
+
bV− = 1.)

The original ZN one-form symmetry acted faithfully on T . This means that there are
lines W with all possible ZN charges. Therefore, for every value of m± we can find a line
W satisfying (3.17). After gauging this ZN symmetry, the emergent ZN symmetry acts with
charge −(m+ +m−). We see that it acts faithfully in the resulting TQFT. This means that this
emergent ZN one-form symmetry is completely broken on the interface.

There is also an emergent dual ZN zero-form symmetry on the interface generated by
exp(i

∮

B|). All these emergent symmetries have the same origin and gauging them with ap-
propriate counterterms recovers the original system.

We conclude that the 4d-3d system has an emergent ZN one-form symmetry, which acts
faithfully on the interface; i.e. it is spontaneously broken.

Effective 3d theory. Next, we imitate what we did with a boundary and construct an effective
interface theory by moding out by the bulk lines

V± = (bV±)
K± = exp(iK±

∮

A±)| . (3.21)

Step 2 The bulk lines are trivial in all correlation functions in 3d. We identify them with the
trivial lines and therefore, the interface lines fW are identified as

fW ∼fW V−ψ
K−p−/L− ∼fW V+ψ

K+p+/L+ =fW aK+(bV−)
K−ψK+p+/L+ , (3.22)

where we used the result that V± has interger spin for even K±p±/L± and half integer
spin for odd K±p±/L± (see Appendix E).

Step 3 A line at the fixed point of the identification using aK with K = lcm(K+, K−) can form
junctions by emanating two bulk lines V K/K+

+ and V K/K−
− at the same point. These junc-

tions become genuine line operators if the bulk lines are taken to be trivial.
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As an example we consider T = (ZN )−pN defined in (2.14). After gauging all the lines on
the interface are generated by b+ and b−

b± = exp(i

∮

A± − ip±
∮

x) . (3.23)

We are interested in the expectation value of a knot on the interface

K[{Ci}, {C ′i }] = exp
�

i
∑

i

∮

Ci

(A+ − p+x) + i
∑

i

∮

C ′i

(A− − p−x)
�

. (3.24)

Since the path integral is quadratic it can be evaluated easily (see Appendix E for similar
calculations)

〈K[{Ci}, {C ′i }]〉= exp

 

2πip+

N

∑

i< j

`(Ci , C j)

!

exp

 

−
2πip−

N

∑

i< j

`(C ′i , C ′j)

!

, (3.25)

where `(Ci , C j) is the linking number between Ci and C j . Here the result arises from contrac-
tions of 〈A+A+〉 and 〈A−A−〉. Since (b±)K

±
is identified with the bulk line V± = exp(iK±

∮

A±),
the effective interface theory is AK+,−p+/L+ ⊗AK−,p−/L− .

Using the canonical duality (2.27), the effective interface theory for a general 3d TQFT T
is

T ⊗AK+,−p+/L+ ⊗AK−,p−/L−

ZN
=

T /ZL ⊗AK+,−p+/L+ ⊗AK−,p−/L−

ZK
, (3.26)

where the quotient in the first presentation means gauging the diagonal anomaly free ZN
one-form symmetry generated by ab−(b+)−1 = a exp(i

∮

(px − A+ + A−)).
The two minimal Abelian TQFTs AK+,−p+/L+ and AK−,p−/L− can be interpreted as the 3d

TQFTs that the bulk theory provides to cancel the anomaly. The sign difference in the labels
comes from the different orientations of the bulk relative to the interface.

It should also be added that when we performed the quotient of the full 4d-3d system by
the two bulk theories to find an effective 3d theory, we modded out by the bulk operators.
This means that the effective theory captures the correlation functions of interface lines, but
does not capture the correlation functions of the bulk lines and the bulk surfaces.

Let us determine the one-form global symmetry of the effective theory. Since we have
modded out by some bulk lines, it is different than the ZN that acts on all possible lines in the
interface.

Clearly, we should focus on the surface operator U that pierces the interface (3.20). In
general, it has nontrivial correlation functions with the lines in the bulk. Hence, its intersection
with the interface ∂Σ+ = ∂Σ− does not represent a genuine line operator on the interface.
Since it is not included as a line operator in our effective theory, the effective theory does not
have the full ZN symmetry.

However, the surface operator

UeL , with eL = lcm(L+, L−) (3.27)

has trivial correlation functions with all the bulk lines and therefore we expect that it corre-
sponds to a line operator on the interface. Indeed, it is

UeL =
�

bV r+
+

�−eL/L+ �
bV r−
−
�
eL/L−

, r±p± = L± mod N . (3.28)

This line generates a ZN/eL subgroup of the emergent ZN one-form symmetry of the full 4d-3d
system.
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The one-form global symmetry of the effective theory can also be obtained from (3.26).
First, using the ZK quotient we can express the symmetry lines as the lines in the minimal
Abelian theories. Since r±p±/L± = 1 mod K±, we can choose the generating line of the
minimal theories AK±,∓p±/L± to be (bV±)r± . Then the lines in the effective interface theory
(3.26) originating from the minimal theories are

(bV r+
+ )

m+(bV r−
− )

m− , m+L+ +m−L− = 0 mod N , (3.29)

with m± ∼ m±+K±. The condition only has solutions (m+, m−) = n(eL/L+,−eL/L−) with inte-
ger n and hence the line (3.28) generates all the interface lines originating from the minimal
theories. This means that the ZN/eL one-form symmetry is the largest symmetry of the effective
interface theory (3.26) generated by the lines from the minimal theories.

Another way to understand this global ZN/eL one-form symmetry of the effective theory is
the following. The full 4d-3d system realizes a spontaneously broken ZN symmetry, which acts
faithfully. In the bulk this symmetry is spontaneously broken to ZK± , so the bulk modes realize
ZL± . Together, the two bulk half-spaces realize Z

eL = ZL+ ∪ZL− . Therefore, the effective inter-
face theory, obtained as the quotient by the bulk modes realizes ZN/eL . Equivalently, the unbro-
ken global one-form symmetries in the two bulks are ZK± and hence Zgcd(K+,K−) = ZK+ ∩ZK−

is unbroken throughout the two bulks. We know that the full ZN symmetry is broken in the
interface. Therefore, the quotient theory should realize the symmetry Zgcd(K+,K−) = ZN/eL .

4 SU(N) and PSU(N) gauge theory in 4d

4.1 SU(N) gauge theory, walls and interfaces

We begin by reviewing the dynamics of 4d pure SU(N) gauge theory and its domain walls and
interfaces following [1,2,42]. The action of the theory is

S = −
1

4g2

∫

Tr(F ∧ ∗F) +
θ

8π2

∫

Tr(F ∧ F) , (4.1)

where the parameter θ is identified periodically θ ∼ θ + 2π.
This system has a ZN one-form global symmetry, which we will refer to as electric. It is

generated by a surface operator

UE = exp(i

∮

C) , (4.2)

where C depends on the dynamical gauge fields. As expected of a charge operator, the corre-
lation functions of the surface operator UE are topological [1]. The charged objects are Wilson
lines in representations of SU(N) and the ZN charge is determined by the action of the center
of the gauge group on the representation. We will denote the Wilson line in the fundamental
representation by W .

In addition to the Wilson lines and the charges Ur
E = exp(ir

∮

C), the system also includes
open versions of the charges

T (γ)exp(i

∫

Σ

C) , γ= ∂Σ , (4.3)

where T is the ’t Hooft operator. In the SU(N) theory it is not a genuine line operator and
needs to be attached to an open surface operator. The ’t Hooft operator is the worldline of a
monopole, which is defined by being surrounded by a two-sphere with a nontrivial PSU(N)
bundle on it. The SU(N) theory does not have such objects. They have to be attached to
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strings. (This is like the Dirac string of a magnetic monopole, except that it is detectable by
Wilson lines, and hence it is physical.) The surface in (4.3) can be interpreted as the worldsheet
of this string. This allows us to interpret the ZN charge operator Ur

E = exp(ir
∮

C) as a closed
worldsheet of such strings.

It is natural to couple the global ZN symmetry to background gauge fields BC . Then, since
the Wilson lines are charged under the symmetry, they take the form

W(γ)e 2πi
N

∫

Σ
BC , γ= ∂Σ . (4.4)

One way to think about the classical background BC is that instead of summing over SU(N)
bundles in the path integral, we sum over PSU(N) bundles E with fixed second Stiefel-Whitney
classes w2(E) = BC ∈ H(M4,ZN ).

Another consequence of the background field is that we can add to the action the coun-
terterm

2π
p

2N

∫

M4

P(BC) . (4.5)

In the presence of this term the θ periodicity is as in (1.1)

(θ , p)∼ (θ + 2π, p+ N − 1) . (4.6)

This lack of 2π periodicity in θ has another consequence. Because of the Witten effect [43]
the open surface operators (4.3) are not invariant under θ → θ + 2π. They transform as

T (γ)exp(i

∫

Σ

C)→W(γ)T (γ)exp(i

∫

Σ

C) . (4.7)

This fact will be important below.
So far we have discussed the kinematics of the SU(N) theory. Now we turn to the dynamics.

At low energies the SU(N) theory has a gap and it confines. This means that the ZN one-form
symmetry is unbroken and the charged Wilson lines (those in representations that transform
nontrivially under the ZN center) have an area law. Correspondingly, these Wilson lines vanish
at long distances. As a result, the low-energy theory is trivial. It does not even have a TQFT.
In the low-energy theory the Wilson lines W r vanish and the charges Ur

E are equal to one.
The dynamical objects of the system have electric and magnetic charges that are N times

the basic units of the Wilson line W and the ’t Hooft operator (with its attached surface (4.3)).
Confinement means that some dynamical monopoles or dyons condense. But these are differ-
ent dyons at θ and at θ + 2π. Because of the Witten effect, their electric charges differ by N
units. This means that if we have confinement at θ , we have oblique confinement at θ + 2π.
And more generally, we have different kinds of oblique confinement at these two values of θ .

At θ ∈ πZ, the SU(N) gauge theory has a time-reversal symmetry. It is unbroken at
θ ∈ 2πZ. At θ ∈ 2πZ+π, the theory is argued to have two degenerate vacua associated with
the spontaneous symmetry breaking of the time reversal symmetry. Since the action of time
reversal at these points involve a shift of θ by a multiple of 2π, the two vacua have different
kinds of oblique confinement.

Let us discuss the domain walls between these two vacua. Since they have different kinds
of oblique confinement in the two sides, one dyon condenses in one side and another dyon
condenses in the other side. Therefore, no dyon condenses on the wall and correspondingly,
the theory is not confining there. This means that the electric ZN one-form symmetry is sponta-
neously broken on the domain wall and the fundamental Wilson loops are physical observables
in the low-energy theory.

It was argued in [2] that the wall supports a nontrivial TQFT, SU(N)1. This TQFT has a
ZN one-form symmetry with an anomaly p = N − 1, which accounts to the different anomaly
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inflow from the two sides of the wall. Note that this is the minimal TQFT with these properties
AN ,N−1 and any other TQFT with such properties includes SU(N)1 as a decoupled sector and
the rest of the theory is ZN invariant.

The SU(N) gauge theory can also have interfaces that interpolate between θ0 and θ0+2πk
for some integer k. The anomaly inflow requires the interfaces to support theories with a ZN
one-form symmetry of anomaly p = k(N − 1) mod 2N . This does not uniquely specify the
theories on the interfaces. However, when θ varies smoothly, the interface theory is uniquely
determined by the microscopic theory and the profile of the θ -parameter. This is to be con-
trasted with sharp interfaces when θ is discontinuous. When θ varies smoothly and slowly
with |∇θ | � Λ, where Λ is the dynamical scale of the theory, there are k domain walls where
θ crosses an odd multiple of π. Each domain wall supports an SU(N)1 TQFT. When θ varies
smoothly and more rapidly with |∇θ | � Λ, the interface theory SU(N)⊗k

1 is argued to un-
dergo a transition to SU(N)k theory [2,3]. This can be understood as the Chern-Simons term
induced by by the θ -term in the bulk.

However, it is possible that the strong dynamics changes the interface theory at low-energy.
One logical possibility is that the dynamics Higgses SU(N) using scalar fields in the adjoint
representation. This preserves the ZN one-form symmetry and the anomaly. The maximum
possible Higgsing with one adjoint scalar is to the Cartan torus U(1)N−1, where the U(1)N−1

gauge fields aI , I = 1, · · · , N − 1 are embedded in the SU(N) gauge field a through

a = aI H I , (H I)i j = diag(0, · · · , 0
︸ ︷︷ ︸

I − 1

, 1,−1,0, · · · , 0
︸ ︷︷ ︸

N − I − 1

) . (4.8)

In terms of these fields the SU(N)k theory becomes a U(1)N−1 Chern-Simons theory

k
4π

Tr
�

ada−
2i
3

a3
�

→
k

4π
(KCartan)I J aI daJ , (4.9)

where KCartan is the Cartan matrix of SU(N)

(KCartan)I J = Tr(H I HJ ) = 2δI ,J −δI ,J+1 −δI+1,J . (4.10)

For k = 1 this Abelian TQFT is the same as SU(N)1, so this possibility is the same as the
previous suggestion.

We can further Higgs SU(N) all the way down to its ZN center. In order to identify the
TQFT of this ZN gauge theory, we use a presentation of SU(N)k based on U(N)×U(1) gauge
fields b and y [6]

k
4π

Tr
�

bd b−
2i
3

b3
�

−
k

4π
(Tr b)d(Tr b) +

1
2π

yd(Tr b) , (4.11)

where the U(1) field y constrains b to be a SU(N) gauge field. The ZN gauge field x is
embedded in U(N) through b = xI. After Higgsing, the SU(N)k theory becomes a ZN gauge
theory (ZN )−kN(N−1) = (ZN )−pN . Alternatively, the preciseZN gauge theory can be determined
by matching the anomalies.

In conclusion, without a more detailed dynamical analysis we cannot uniquely determine
the TQFT on the interface, so we will denote it by Tk. The simplest case T1 was argued to be
the minimal allowed theory, SU(N)1. But for higher values of k there isn’t a preferred choice
and we presented several options, e.g. SU(N)k and (ZN )−kN(N−1) = (ZN )−pN . However, using
the analysis in the previous sections, we can proceed without knowing exactly what Tk is.

Let us analyze the interface theory Tk in more detail. The theory has a ZN one-form sym-
metry of anomaly k(N − 1), which means that the symmetry lines are anyons with a braiding
phase of e−2πik(N−1)/N . These symmetry lines can be thought of as bulk charge operators gen-
erated by UE that pierce the interface. To see that, recall that because of confinement, the

27

https://scipost.org
https://scipost.org/SciPostPhys.6.3.039


SciPost Phys. 6, 039 (2019)

shape of UE in the bulk is not important (a closed surface on each side equals to one) and
therefore, UE, which pierces the interface is effectively a line operator on the interface. Also,
UE can be interpreted as the worldsheet of a string constructed by gluing two ’t Hooft lines
from the two sides at the interface. So we can view UE as associated with two ’t Hooft lines, T
on one side of the interface and T−1 on the other side. Then, because of the Witten effect [43],
the electric charges of these two ’t Hooft lines differ by k and therefore UE that pierces the
interface appears as a Wilson line with electric charge k. More precisely, it is the generator of
the ZN one-form global symmetry on the interface. For example, if the theory on the interface
Tk is SU(N)k, it is a Wilson line in a k index symmetric representation of SU(N).

The fact that UE leads to a Wilson line on the interface shows that not only are the probe
quarks on the interface liberated (because there is no confinement there), they are also anyons!

4.2 PSU(N) gauge theory

The PSU(N) gauge theory differs from the SU(N) gauge theory in the global form of the gauge
group. It can be constructed by gauging the electricZN one-form symmetry in the SU(N) gauge
theory, i.e. by making the classical background field BC dynamical (and dropping the subscript
C). Summing over B means that we sum over all PSU(N) bundles E . Now, the choice of the
counterterm (4.5) is more significant than in the SU(N) theory and the value of p affects the
set of observables.

Let us discuss the operators in the theory. Since now B is dynamical, the Wilson loop (4.4)
is no longer a genuine line operator; it depends on the surface Σ. We can consider a closed
surface operator

UM = exp

�

2πi
N

∮

wPSU(N)
2

�

= exp

�

2πi
N

∮

B
�

, (4.12)

where wPSU(N)
2 is the abbreviation for w2(E) (with E the PSU(N) bundle). It is the generator

of a new emergent ZN one-form symmetry, which we will refer to as magnetic.
The original Wilson line is an open version of UM. And just as the surface in this Wilson

line can be interpreted as the worldsheet of an electric (confining) string, the closed surface
operator UM can be interpreted as a closed worldsheet of such a string. (Note that in the
PSU(N) theory this string worldsheet is an operator in the theory.)

For p = 0 the ’t Hooft line T is a genuine line operator and we do not need to write C of
(4.3). It is charged under the magnetic symmetry (4.12). Other dyonic operators of the form
TW r need an attached surface and they are not genuine line operators (unless r = 0 mod N).

We would like to find the line operators when p is nonzero. We simplify the discussion by
considering the theory on a spin manifold such that the periodicity of p is p ∼ p+N .26 We first
keep p = 0 and extend the range of θ ∼ θ + 2πN . Clearly, T remains a genuine line operator
as we change θ . But because of the Witten effect it acquires electric charge −k as θ is shifted
by −2πk. Then we restore the original θ and have nonzero p = k(N −1). This means that the
basic line operator has electric charge p, i.e. it is [10]

bT (γ) = T (γ)W(γ)p . (4.13)

Note that this is a genuine line operator, which does not need a surface.

26On an orientable non-spin manifold, the change p → p + N (with even N) produces the coupling
π
∫

w2(M4) ∪ B (where w2(M4) is the second Stiefel-Whitney class of the 4d manifold M4) that is equivalent
to turning on classical background field eBC = Nw2(M4)/2 for the magnetic ZN one-form symmetry generated
by exp( 2πi

N

∮

B). Thus it changes the statistics of the basic ’t Hooft line from a boson to a fermion and vice
versa [39, 44, 45]. This does not modify the PSU(N) bundle but instead gives additional weights in the path
integral.
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Table 5: The dictionary between the operators in the microscopic PSU(N) gauge
theory and the operators in the macroscopic ZN two-form gauge theory. The line
operator in the second row is the minimal line that obeys a perimeter law. It is
identified with the genuine line operator in the low-energy theory (and hence we
suppress the B dependent term). Here we use a continuous notation for the low-
energy TQFT, which is reviewed in appendix E.

Microscopic PSU(N) gauge theory Low energy ZN two-form gauge theory
bT r = (TW p)r 0 for r 6= 0 mod K
bT K = T KW pK exp

�

iK
∮

A+ ipK
∫

B
�

∼ exp
�

iK
∮

A
�

UM = exp
�

2πi
N

∮

wPSU(N)
2

�

exp
�

i
∮

B
�

Another way to understand the lines (4.13) is to write them as TW p exp
�

i
∫

Σ
(C + 2πp

N B)
�

,

where C comes from T (4.3) and 2πp
N B from W (4.4). In the PSU(N) theory with p the term

in the exponent vanishes and hence this operator is independent of Σ.
Now, let us consider the dynamics. In the SU(N) theory the dyons that condense at

θ = 2πk have the quantum numbers of T NWkN . (Note that these dyons exist as dynami-
cal objects regardless of the global structure of the gauge group. The global part of the group
and the value of p determine the line operators in the theory.)

Let us focus on θ = 0 with arbitrary p. The genuine line operators in the theory are powers
of bT (4.13). Some of them have area law because of the condensation and hence they vanish
at low energies. Only the lines that are generated by

bT K = T KW pK , L = gcd(N , p) , K =
N
L

, (4.14)

are aligned with the condensed dyons and hence they have a perimeter law. These are the
only nontrivial line operators in the low-energy theory.

It is clear that the magnetic ZN one-form symmetry is spontaneously broken to ZK and
the broken elements are realized at low-energy by a ZL gauge theory [10]. The operators
in this ZL gauge theory are generated by the basic ZL Wilson line (4.14) (which is not to be
confused with the microscopic PSU(N)Wilson line) and its dual surface operator, which is the
microscopic operator UM.27

In conclusion, the low-energy manifestation of this spontaneous symmetry breaking of the
magnetic ZN one-form symmetry is the theory (3.2). And the relation between the microscopic
operators in the PSU(N) gauge theory and the low-energy theory is summarized in Table 5.

4.3 Interfaces in PSU(N) gauge theory

Here we study an interface in the PSU(N) theory. We let it interpolate smoothly between
θ = 0 and θ = 2πk. As above, we can approximate it at low energies with constant θ = 0 and
p changing from p+ to p−. This is the setup we considered in the SU(N) theory above, and
now we simply gauge the electric ZN one-form symmetry in that theory.

We use the definitions (3.16)

L± = gcd(N , p±), L = gcd(L+, L−), K± = N/L±, K = N/L . (4.15)

The low-energy dynamics of the PSU(N) theory in the two sides are approximated by the
ZN two-form gauge theories with parameters p±, which are equivalent to ZL± gauge theories.
They describe the spontaneous breaking of the magnetic ZN one-form global symmetry to

27On a nonspin manifold this ZL gauge theory could be twisted, as in Appendix E.
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ZK± . Note that unlike the SU(N) theory, where the two sides of the interface differed only by
a counterterm for background fields, here the two sides are dynamically different.

The TQFT in the bulk and on the interface is as in Section 3.3, so we will not repeat its
analysis in detail, except to summarize the main points.

We have already said that in the bulk the magneticZN one-form symmetry is spontaneously
broken to ZK± . On the interface, since the confined line operators in the bulk become liber-
ated, the magnetic ZN one-form symmetry, generated by the surface operators piercing the
interface, is completely broken. Equivalently, we have argued above that in the SU(N) theory
no monopole condenses on the wall and the dynamics is weakly coupled there. Therefore, the
ZN one-form symmetry of the PSU(N) theory should also be spontaneously broken there.

When θ varies smoothly and rapidly, the interface in the SU(N) gauge theory supports a
TQFT Tk. The effective interface theory on the corresponding PSU(N) interface is found easily
using the results in Section 3.3. When L+ = L− = 1 the theory on the interface is

Tk ⊗AN ,−p+ ⊗AN ,p−

ZN
. (4.16)

As in Section 3.3, we can interpret the two minimal theories in the numerator as produced
by the bulk in the two sides, such that we can gauge an anomaly free ZN one-form global
symmetry.

For generic L± the interface couples to the ZL± gauge theory in the bulk and it is mean-
ingless to ask what the theory on the interface is. Yet, we can identify an effective interface
theory. It is

Tk/ZL ⊗AN/L+,−p+/L+ ⊗AN/L−,p−/L−

ZK
=

Tk ⊗AN/L+,−p+/L+ ⊗AN/L−,p−/L−

ZN
. (4.17)

As an example, we argued above that the interface in the SU(N) theory between θ = 0 and
θ = 2π with p+ = p− = 0 supports an SU(N)1 theory. This corresponds to θ = 0 with p+ = 0
and p− = 1−N , and thus L+ = N , L− = 1. The effective interface theory on the corresponding
PSU(N) interface is trivial, since AN ,1−N = SU(N)−1.
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A Definitions of Abelian anyons

In this Appendix we will review some properties of Abelian anyons. There are three equivalent
definitions of Abelian anyons. An anyon a in a 3d TQFT is called Abelian when
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(1) a obeys group-law fusion, aas = as+1 for integers s with a0 = 1. In particular, since the
number of lines in a consistent 3d TQFT is finite, there exists an integer m such that
am = 1.

(2) a obeys Abelian fusion rules. For any line W in the 3d TQFT, the fusion product aW
only contains one line.

(3) the quantum dimension of a is one.

First, the definition (1) implies (3). The group-law fusion am = aa · · · a = 1 implies dm
a = 1

for the quantum dimension da of a. Since da must be a positive real number in any unitary 3d
TQFT, we conclude da = 1.

The definition (2) implies (1) by specializing W = a, aa, · · · and defining the unique line
appears in the fusion of n line a to be an.

Now we will show the definition (3) implies (2) by contradiction. Suppose there exists a
line x that fuses with a into at least two lines that we denote by y, z:

a · x = y + z + · · · . (A.1)

This implies
a · y = x + · · · , (A.2)

where a denotes the antiparticle of a, i.e. a · a = 1 + · · · . The quantum dimensions in the
fusion u · v =

∑

i wi satisfy dudv =
∑

i dwi
[22], and thus

dadx = dy + dz + · · · , dady = dx + · · · ⇒ dadadx ≥ dx + dadz > dx , (A.3)

where the last two inequalities used the property that the quantum dimensions are real and
positive, and in particular the last inequality comes from the existence of the second anyon
z in the fusion (A.1). Since a and a have the same quantum dimension, by definition (3)
da = da = 1. Thus the last equation in (A.3) leads to a contradiction. Therefore, any line
x must fuse with a into only one line. We conclude that (3) implies (2), and since we have
already shown that (1) implies (3), this means that (1) implies (2). This completes the proof
that the three definitions are equivalent to one another.

B Jacobi symbols

For any odd prime number q, the Legendre symbol is defined as

�

a
q

�

= a
q−1

2 mod q =











0 a = 0 mod q

1 a = r2 mod q for some integer r

−1 otherwise

. (B.1)

For any odd integer b with a prime factorization b =
∏

k qαk
k , the Jacobi symbol is the gener-

alization of the Legendre symbol defined as

�a
b

�

=
∏

k

�

a
qk

�αk

. (B.2)

The Jacobi symbol obeys the following identities for odd integers a, b, c
�

ab
c

�

=
�a

c

�

�

b
c

�

,
�

−1
c

�

= (−1)(c−1)/2 . (B.3)
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C 2d unitary chiral RCFT for Abelian 3d TQFT

In this Appendix we will show that every Abelian 3d TQFT corresponds to a 2d unitary chiral
RCFT. Such unitary CFTs are generally not unique for a given TQFT and here we construct
one example of them. The unitary RCFT is characterized by an extended chiral algebra of a
product of chiral algebras of free compact bosons, free complex fermions, and SU(N)1 Wess-
Zumino-Witten models. If the TQFT is a spin theory, then the RCFT is Z2-graded [9].

Every Abelian TQFT A can be expressed as an Abelian Chern-Simons theory 28 [27–31]
(for a review see e.g. [32]). Denote the U(1) gauge fields by x0, x1, · · · , xn for some integer n,
and the Chern-Simons action is

k
4π

x0d x0 +
n
∑

i=1

�q0i

2π
x0d x i

�

+L[x1, · · · , xn] , (C.1)

where k, q0i are integers, and L[x1, · · · , xn] denotes Chern-Simons terms independent of the
gauge field x0. k, q0i cannot be simultaneously zero for all i, since otherwise the theory has a
decoupled gapless sector described by the dual photon of x0. If k = 0, there exists q0i 6= 0 for
some i, and the redefining x i → x i + x0 produces nonzero k. Thus we can assume k is always
nonzero without loss of generality. Consider the change of variables from x0, x1, · · · , xn to
y0, y1, · · · , yn

x0 = y0 −
n
∑

i=1

q0i yi , x j = k y j , j = 1, · · · , n . (C.2)

The Jacobian is |k|n. The theory A can thus be expressed as

A= A′
Zn
|k|

, (C.3)

where the quotient denotes gauging a one-form symmetry Zn
|k|, and A′ is an Abelian Chern-

Simons theory with U(1) gauge fields y0, y1, · · · , yn. Substituting (C.2) into (C.1), we find the
theory A′ has the Chern-Simons action

k
4π

y0d y0 + eL[y1, · · · , yn] , (C.4)

where eL[y1, · · · , yn] denotes Chern-Simons terms independent of y0. Thus A′ = U(1)k ⊗A′′
for another Abelian Chern-Simons theory A′′ with gauge fields y1, · · · , yn. By iteration, we
find the Abelian TQFT A can be expressed as

A= ÒA/Z, ÒA=
n
∏

i=0

U(1)ki
, (C.5)

where the quotient denotes gauging a one-form symmetry Z that is a finite Abelian group, and
ki are non-zero integers.

If all ki are positive, then the Abelian TQFT A corresponds to the extended chiral algebra
of a product of compact bosons in 2d (the RCFT may be Z2 graded).

If some of ki = −mi is negative, the corresponding U(1)−mi
in ÒA can be replaced by an

SU(N) Chern-Simons theory at level one using the duality 29

U(1)−mi
←→

�

SU(4mi)1/Z2 even mi
SU(mi)1 ⊗ {1,ψ} odd mi

, (C.6)

28For example, the Chern-Simons theories with gauge group of rank n including SU(n+1)1, Spin(2n)1 and (En)1
can be written as U(1)n Abelian Chern-Simons theories with the coefficient matrix given by the Cartan matrix of
the gauge groups.

29For the case mi is odd, the duality (C.6) is the level-rank duality [6].
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where for even mi the theory U(1)−mi
is non-spin, and we omit a trivial TQFT such as (E8)1

in the duality.
For odd mi the theory U(1)−mi

is a spin theory. On the right hand side of the duality (C.6)
the theory {1,ψ} represents the almost trivial TQFT that has only two lines (of integer and
half integer spins), and it includes the gravitational Chern-Simons term −2MiCSg for some
positive integer Mi = −mi mod 8. The almost trivial TQFT corresponds to Mi free complex
fermions in 2d.

Thus the theory ÒA corresponds to the 2d unitary chiral RCFT (Z2 graded if some ki is
odd) given by the product of free compact bosons, free complex fermions, and SU(Ni) Wess-
Zumino-Witten models at level one with Ni given in (C.6) (or its extended chiral algebra when
ki = −mi is even and negative). The Abelian TQFT A then corresponds to the 2d unitary chiral
RCFT given by the extended chiral algebra (C.5) of the 2d unitary chiral RCFT of ÒA.

D Gauging a general anomaly free subgroup

In order to simplify the discussion we will assume in this appendix that all the TQFTs are spin
TQFTs.

A theory T with a ZN one-form symmetry with anomaly p can have multiple anomaly free
subgroups. One of them is the ZL subgroup with L = gcd(N , p). In this Appendix, we will
discuss gauging a larger anomaly free symmetry Zm, i.e.

ZL ⊂ Zm ⊂ ZN . (D.1)

It is anomaly free when pN/m2 is an integer (recall that we discuss spin theories). Gauging
this symmetry leads to T /Zm, which has a ZN ′ one-form symmetry of anomaly p′ with

N ′ =
N L
m2

, p′ =
p
L

. (D.2)

They satisfy gcd(N ′, p′) = 1. Then we can further apply the generalized gauging operation
with respect to this ZN ′ one-form symmetry to find

T /Zm ⊗AN ′,−p′

ZN ′
. (D.3)

The goal of this appendix is to show that this is the same as the answer in (2.35)

T /ZL ⊗AN/L,−p/L

ZN/L
=

T ⊗AN/L,−p/L

ZN
. (D.4)

Note, as a check that for L = m they are trivially the same.
We will use the canonical duality in (2.27) [36]

T ←→
T ⊗ (ZN )−pN

ZN
. (D.5)

The second factor in the numerator can be described by the Lagrangian (2.14)
∫

�

−
pN
4π

xd x +
N
2π

xd y
�

. (D.6)

Its lines are generated by b and c (2.15)

b = exp(i

∮

y), c = exp(ip

∮

x − i

∮

y) . (D.7)
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In this dual description, the ZN one-form symmetry is entirely in the (ZN )−pN factor and it is
generated by b.

The duality allows us to only keep tack of the (ZN )−pN factor in various procedures (and
ignore the TQFT T ).

Gauging the anomaly free ZL subgroup in (ZN )−pN is the same as redefining x as x ′ = Lx
and viewing x ′ as a U(1) gauge field. This leads to (ZK)−p′K with K = N/L and p′ = p/L.
Since gcd(K , p′) = 1, the theory (ZK)−p′K factorizes (2.26)

(ZK)−p′K =AK ,p′ ⊗AK ,−p′ , (D.8)

where the first and second minimal theories are generated by b and c, respectively.
Then, gauging the anomaly free Zm ⊂ ZN (which includes ZL) in (ZN )−pN is equivalent to

gauging the anomaly free Zm/L subgroup generated by bN/m in (ZK)−p′K = AK ,p′ ⊗AK ,−p′ .
Only the first minimal theory is involved in the gauging, which reduces it to AN ′,p′ with
N ′ = K(L/m)2 = N L/m2 and p′ = p/L.30 This implies that

T
Zm
←→

�T ⊗ (ZN )−pN

ZN

��

Zm ←→
T ⊗AN ′,p′ ⊗AK ,−p′

ZN
. (D.9)

The remaining global symmetry is ZN ′ and it is carried by the second factor in the numerator.
Applying the generalized operation with respect to this symmetry removes this factor and leads
to

T ⊗AN/L,−p/L

ZN
. (D.10)

We conclude that the final theory (D.10) is the same for any choice of Zm ⊃ ZL .

E Two-form ZN gauge theory in 4d

The 4d topological ZN two-form gauge theory of a gauge field B ∈H2(M4,ZN )

S = 2π
p

2N

∫

P(B) , (E.1)

has a continuum description [1,4]

S =

∫

�

pN
4π

BB +
N
2π

BdA
�

, (E.2)

where A is a U(1) one-form gauge field and B is a U(1) two-form gauge field. A constrains B
to be a ZN two-form gauge field B→ 2π

N B. The theory has a one-form gauge symmetry

B→ B − dλ, A→ A+ pλ . (E.3)

Under the gauge transformation, the action is shifted by

−
∫

�

pN
4π

dλdλ+
N
2π

dλdA
�

. (E.4)

30More generally, AM ,r with gcd(M , r) = 1 is generated by a line z such that zM = 1 and the spin of z is r
2M .

When M = ÒMq2 with ÒM , q ∈ Z, it has a Zq anomaly free subgroup generated by zÒMq. (It is anomaly free because

the spin of this line is rÒM
2 .) The gauged theory AM ,r/Zq has ÒM lines generated by zq (with (zq)ÒM = 1), whose spin

is r
2ÒM

. Therefore, the resulting theory is AM ,r/Zq =AÒM ,r .
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On a closed spin manifolds it is always a multiple of 2π, but on general closed manifolds it is
a multiple of 2π only when pN is even. The parameter p has an identification of p ∼ p+ 2N
on non-spin manifolds and p ∼ p+ N on spin manifolds.

Define
L = gcd(N , p), K = N/L . (E.5)

The theory has L surface operators generated by

U = exp(i

∮

B), U L = 1 (E.6)

and L genuine lines operators generated by

V = exp(iK

∮

∂Σ

A+ ipK

∫

Σ

B), V L = 1 (E.7)

(they are genuine line operators because they do not depend on the surface Σ). These oper-
ators and their correlation functions are identical to the ones in a ZL gauge theory, and they
realize a ZL = ZN/ZK one-form symmetry. As we will discuss below, depending on N and p
this ZL gauge theory could be twisted on nonspin manifolds.

This theory can arise as the low-energy approximation of a microscopic theory whose
ZN one-form symmetry is spontaneously broken to ZK . Examples of such UV theories are a
PSU(N) gauge theory (discussed in Section 4) and the Walker-Wang lattice model [18,19,46].

There are also open surface operators generated by

exp(i

∮

∂Σ

A+ ip

∫

Σ

B) . (E.8)

They are genuine line operators if the surface dependence is trivial, otherwise, the surface is
physical and the operators can only have contact terms. Hence, we will not include them in
the list of operators.

Two special cases are particularly interesting. First, for p = 0 this theory is the same as an
ordinary ZN gauge theory. Here B implements the constraint that A is a ZN one-form gauge
field.

The second special case is p = N . On a spin manifold, it is the same as p = 0, i.e. it is
an ordinary ZN gauge theory. On a nonspin manifold, we must have pN ∈ 2Z so, p = N can
happen only when N is even. Then, the action (E.1) is the same as

π

∫

P(B) =
�

π

∫

w2(M4)∪B
�

mod 2π , (E.9)

where w2(M4) is the second Stiefel-Whitney class of the manifold. This fact has some inter-
esting consequences. First, it shows that the possible added term (E.9) on nonspin manifolds
for even N was already included in our labelling by p = 0,1, · · · , 2N − 1. Second, it makes it
manifest that on spin manifolds we can identify p ∼ p + N . Finally, it shows that on a non-
spin manifold, the theory with even p = N , which is an ordinary ZN gauge theory on a spin
manifold, becomes a ZN gauge theory coupled to w2(M4) of the manifold.

In the ZN gauge theory, the surface
∮

B is the world volume of a ZN magnetic string.
It generates the one-form symmetry that acts on the Wilson lines in the ZN gauge theory.
The coupling (E.9) is thus equivalent to turning on a background gauge field for this one-
form symmetry eBC = (N/2)w2(M4) mod N . One consequence of this is that on a non-spin
manifold, the basic ZN Wilson line, which corresponds to the microscopic line

∮

A, is attached
to the surface 2π

N

∫

eBC = π
∫

w2(M4). The surface represents an anomaly in the theory along
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the line and it implies that if we view this line as the worldline of a probe particle, this particle
is a fermion [39, 44]. The conclusion is that the theory with p = N for even N is a (twisted)
ZN gauge theory with fermionic probe particles.

Another way to see this is as follows. w2(M4) of a manifold is the obstruction to lifting
the SO(4) tangent bundle to an Spin(4) bundle. Thus the background eBC = (N/2)w2(M4)
modifies the symmetry to be

Zgauge
N × Spin(4)

Z2
. (E.10)

The quotient identifies Z2 ⊂ Z
gauge
N with the Z2 fermion parity symmetry (−1)F of the Lorentz

symmetry. Thus the ZN Wilson lines in the odd-charge representations also transform under
the fermion parity, and they represent fermionic probe particles.

Let us examine in more detail the path integral of the ZN gauge theory coupled to fixed
w2(M4) of the manifold. The path integral is performed over twisted ZN gauge fields as in the
symmetry (E.10), which is an extension of the bosonic Lorentz group SO(4) by the ZN gauge
group. The twisted ZN gauge field is a one-cochain a valued in ZN that satisfies

δa = (N/2)w2(M4) mod N . (E.11)

The path integral sums over all possible a with fixed w2(M4) of the manifold.
If N/2 is odd, ZN

∼= ZN/2 ×Z2 and the symmetry (E.10) is isomorphic to ZN/2 × Spin(4).
Another way to see this is that (E.11) implies w2(M4) = δa mod 2 by reducing both sides to
mod 2. On a general manifold w2(M4) is non-trivial, and therefore the gauge field a cannot
be defined everywhere. Indeed, near a surface operator insertion

∮

B that generates the one-
form symmetry, the gauge field a is not well-defined: a Wilson line of a that links with the
surface transforms by its one-form charge. For a similar discussion, see [47].

Let us return to generic p. On a spin manifold the theory is the same (up to a geometric
counterterm) as a ZL gauge theory [1]. On a non-spin manifold the situation is more inter-
esting. For odd N the equivalence to a ZL gauge theory is still true [1]. However, for even N
a new subtlety occurs, which is related to (E.9). The computation in [1] can be interpreted
to mean that when both K = N/L and p/L are odd (which can happen only when both N , p,
and therefore also L are even), or equivalently, when pN/L2 is odd the equivalent ZL gauge
theory is actually a twisted theory as mentioned above. In terms of a ZL two-form gauge field,
its action is

π
pN
L2

∫

w2(M4)∪B(L) . (E.12)

Similarly, the basic line operator in the ZL gauge theory corresponding to exp(i
∮

KA) also
represents a fermion when pN/L2 is odd.

This discussion of odd pN/L2 is consistent with our 3d analysis in Section 2.4, where we
saw that in this case the generating line of the ZL one-form symmetry is a fermion and the 3d
theory has a mixed anomaly between the ZL global symmetry and gravity (E.12).

Next, consider the ZN two-form gauge theory on a manifold with a boundary [1,4].31 We
choose the Dirichlet boundary condition B| = 0. This explicitly breaks the one-form gauge
symmetry on the boundary so the line bV = exp(i

∮

A) is liberated there and it satisfies

〈bV (γ)bV (γ′)〉=
1
Z

∫

DADB exp

�

i

∫

pN
4π

BB +
N
2π

BdA

�

exp

�

i

∮

γ

A+ i

∮

γ′
A

�

= exp
�

2πip
N
`(γ,γ′)

�

,

(E.13)

31Some examples were considered in [19,46] in the context of the Walker-Wang lattice model.
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where γ,γ′ ∈ ∂M4 and `(γ,γ′) is the linking number of γ and γ′. When L = gcd(N , p) = 1,
the bulk theory is trivial and the N lines generated by bV form the minimal Abelian TQFT
AN ,−p that has a ZN one-form symmetry of label p. For general L, V = bV K can smoothly move
into the bulk so it has trivial braiding. Therefore the lines on the boundary do not form a
modular TQFT. However, we can perform a quotient with the bulk lines generated by V to find
an effective 3d TQFT AK ,−p/L . If K , p/L are odd, the line V has half-integer spin so from the
boundary perspective, V can only be taken asψ the transparent spin-half line and the 2K lines
generated by bV form a consistent spin TQFT AK ,−p/L .

F Minimal TQFTs for general one-form symmetries

In this Appendix, we generalized the previous discussion to a general discrete one-form sym-
metry A=

∏

ZNI
.

We start with an arbitrary TQFT with one-form global symmetry
∏

ZNI
and analyze its

symmetry lines, as in the introduction and in Section 2.1. Each ZNI
factor is generated by a

line aI . The symmetry group means that they satisfy the mutual braiding

asI
I (γ)a

sJ
J (γ

′) = asJ
J (γ

′)e−
2πisI sJ mIJ

NI , (F.1)

where γ circles around γ′ as in Figure 2 and mI J ∈ ZNI
. Consistency of the mutual braiding

implies mI J NJ = mJ I NI mod NI NJ and thus

mI J =
NI PI J

NI J
, with NI J ≡ gcd(NI , NJ ) , PI J = PJ I ∈ Z . (F.2)

This means that the spins of the symmetry lines are

h

�

∏

I

asI
I

�

=
∑

I ,J

pI J sI sJ

2NI J
mod 1 , pI J = PI J or PI J + NI J . (F.3)

The one-form symmetry A=
∏

ZNI
is characterized by the symmetric integral matrix pI J that

satisfies
pI I ∼ pI I + 2NI and pI J ∼ pI J + NI J for I 6= J . (F.4)

Imposing the condition aNI
I = 1 requires pI I NI ∈ 2Z. Otherwise, the theory is a spin theory.

The braiding between V =
∏

asI
I and V ′ =

∏

a
s′I
I is given by

e2πi(h[V ]+h[V ′]−h[V V ′]) = exp

 

−2πi
∑

I ,J

pI J

NI J
sI s
′
J

!

. (F.5)

It will be convenient to view the braiding as a bilinear map A ×A → U(1). Equivalently, it
defines a linear map M : A→ ÒA= Hom(A, U(1)).

An example of a TQFT that has the one-form symmetry A=
∏

ZNI
characterized by pI J is

the Abelian Chern-Simons theory

−
∑

I ,J

pI J NI NJ

4πNI J
x I d x J +

∑

I

NI

2π
x I d y I , (F.6)

where the generating lines aI are

aI = exp

�

i

∮

y I

�

. (F.7)
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The symmetry lines in L = ker M have trivial braiding with all the symmetry lines in A.
Thus the braiding (F.5) is degenerate if and only if L is non-trivial. If L is trivial, the symmetry
lines form a modular 3d TQFT, and we will call it the minimal Abelian TQFT for the one-form
symmetry A, denoted by A{NI },{pI J }. An example is the (ZN )0 theory that corresponds to the
minimal theory with N1 = N2 = N , p11 = p22 = 0 and p12 = p21 = 1.

Next we discuss the anomaly for the one-form symmetry A. From an argument similar
to that in Section 2.4, the anomaly is characterized by the symmetric matrix pI J , and can be
described by the following 4d term with background two-form gauge fields BC ∈ H2(M4,A):

2π

∫

Ph(BC) = 2π
∑

I

pI I

2NI

∫

M4

P(BI
C) +

∑

I<J

2π
pI J

NI J

∫

M4

BI
C ∪BJ

C , (F.8)

where on the left hand side Ph is the generalized Pontryagin square with the quadratic function
h that maps a line in A to its spin (F.3) (for a review see e.g. [39]). On the right hand side we
express the anomaly in the basis {aI} for A, and BI

C ∈ H2(M4,ZNI
) are the components of BC

in this basis.
Let us use the anomaly (F.8) as the bulk action and promote the gauge field BC to be a

dynamical gauge field B. The theory has surfaces given by the fluxes of B, and magnetic
lines, both are described by the group A with the group multiplication given by the fusion of
operators. As we will see, some of the operators have trivial correlation functions, and they
should not be included in the list of non-trivial operators. The equation of motion for the
gauge field B in (F.8) implies

exp

�

2πi

∮

M(B)
�

= 1 , (F.9)

and thus the surfaces generated by (F.9) have trivial correlation functions, while the non-trivial
surfaces are described by the group L∼= ker M . The surfaces generated by (F.9) are described
by the group K ∼= im M ∼= A/L, and the open version of them describe the line operators
that have trivial correlation functions. Thus the non-trivial line operators are described by
the quotient L. The lines realize a faithful one-form symmetry L generated by the non-trivial
surfaces. The theory can describe the spontaneous breaking of the one-form symmetry A
generated by the surfaces to the subgroup K generated by the surfaces in (F.9).

Note that these K and L generalize the groups ZK and ZL in the case A= ZN that we have
been discussing throughout most of this paper.

We can also study the bulk theory in the continuum description.
∫

M4

∑

I ,J

pI J NI NJ

4πNI J
BI BJ +

∑

I

NI

2π
BI dAI , (F.10)

in terms of U(1) two-form gauge fields BI and U(1) one-form gauge fields AI . It has a one-form
gauge symmetry

BI → BI − dλI , AI → AI +
∑

J

pI J NJ

NI J
λJ . (F.11)

Therefore the lines are attached to surfaces

exp

�

i

∮

γ

∑

sIAI + i

∫

Σ

∑

sI
pI J NJ

NI J
BJ

�

, γ= ∂Σ . (F.12)

They are genuine lines, if and only if sI is in L, the kernel of M . Effectively, the theory becomes
a one-form (ordinary) L gauge theory. It may couple to w2(M4) of the manifold such that the
symmetry group is twisted as described in Appendix E.
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On an open manifold with the choice of boundary condition BI |= 0, the gauge symmetry
(F.11) is completely broken on the boundary and all the bulk lines are liberated there. Their
braiding is the same as (F.5) with pI J → −pI J (see Appendix E for a similar calculation). If
L is trivial, they form a modular TQFT A{NI },{−pI J }. Otherwise, the bulk lines associated to L
have trivial braiding and we can only find an effective boundary theory consisting of the lines
in A/L by modding out by the bulk lines.

Alternatively, as in the main text we can consider the boundary condition BI | 6= 0. To do
this, we start with a 4d-3d system with an SPT phase (F.8) in the bulk and a 3d TQFT T on
the boundary that has an anomalous one-form symmetry coupled to the classical gauge fields
(BC)I , and the anomaly is cancelled by the inflow. We can then promote the gauge fields to be
dynamical. When L is trivial, the bulk dynamics is trivial and there is a meaningful boundary
theory

T ′ = T ⊗A{NI },{−pI J }
∏

ZNI

, (F.13)

It is obtained from T by removing all lines that are not invariant under the one-form symmetry.
When L is non-trivial, the theory above is not modular, and we can find an effective boundary
theory as a quotient by the transparent bulk lines associated to L. The discussion can be
generalized easily to interfaces.
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