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Abstract

It has been proposed that topological insulators can be best characterized not as sur-
face conductors, but as bulk magnetoelectrics that – under the right conditions– have a
universal quantized magnetoelectric response coefficient e2/2h. However, it is not clear
to what extent these conditions are achievable in real materials that can have disorder,
finite chemical potential, residual dissipation, and even inversion symmetry. This has
led to some confusion and misconceptions. The primary goal of this work is to illustrate
exactly under what real life scenarios and in what context topological insulators can be
described as magnetoelectrics. We explore analogies of the 3D magnetoelectric response
to electric polarization in 1D in detail, the formal vs. effective polarization and magne-
toelectric susceptibility, the

1
2 quantized surface quantum Hall effect, the multivalued

nature of the magnetoelectric susceptibility, the role of inversion symmetry, the effects
of dissipation, and the necessity for finite frequency measurements. We present these
issues from the perspective of experimentalists who have struggled to take the beautiful
theoretical ideas and to try to measure their (sometimes subtle) physical consequences
in messy real material systems.

Copyright N.P. Armitage and L. Wu.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 14-11-2018
Accepted 05-02-2019
Published 17-04-2019

Check for
updates

doi:10.21468/SciPostPhys.6.4.046

Contents

1 Introduction 2

2 "Modified" Maxwell’s equations for the ideal case 4

3 Quantized response from symmetry considerations 5

4 Analogy to (ferro)electric polarization 7
4.1 Polarization in one dimension: the simplest topological scheme 7
4.2 Formal polarization vs. effective polarization 9
4.3 Polarization in higher dimension 11
4.4 Wannier functions and Berry’s phase 12
4.5 The 1D Thouless pump 14

1

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
mailto:npa@pha.jhu.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.6.4.046&amp;domain=pdf&amp;date_stamp=2019-04-17
http://dx.doi.org/10.21468/SciPostPhys.6.4.046


SciPost Phys. 6, 046 (2019)

5 The surface half integer Hall effect as a signature of a bulk magnetoelectric
response 15
5.1 A simple cartoon of a 3D topological insulator 15
5.2 The formal magnetoelectric susceptibility vs. the effective magnetoelectric sus-

ceptibility 20
5.3 The Thouless pump in 3D topological insulators and hybrid Wannier functions 21

6 The effects of residual surface dissipation on the magnetoelectric response of
topological insulators 24

7 Experiments 25

8 Concluding remarks 27

A Derivation of "modified" Maxwell’s Equation 28

References 30

1 Introduction

Topological insulators (TI) are a recently discovered class of materials that are in the ideal
(e.g. in the absence of bulk conductivity) characterized as bulk insulators with topologically
protected surface states [1–3]. Although in many cases it is sufficient to characterize them
as surface conductors it has been proposed that topological insulators are – with some con-
siderations – better characterized as bulk magnetoelectrics [4, 5]. Indeed we will see that to
understand some of their aspects this perspective is essential. However this perspective has
led to some confusion and misconceptions. The goal of this work is to give some insight into
how one can regard TIs as magnetoelectrics and how this can give a more complete character-
ization of their properties. These issues are important because this quantized magnetoelectric
response is the 2nd example (with the quantum Hall effect the first) where a topological quan-
tum number can in principle be measured directly via a response function.

A number of aspects are highlighted here. We explore in detail analogies of the 3D magne-
toelectric response to electric polarization in 1D. The formal polarization of a bulk sample is a
multivalued quantity in contrast to the single-valued effective polarization of actual crystallite.
We can then make a direct analogy to the multivalued formal magnetoelectric susceptibility of
a bulk magnetoelectric vs. the single valued effective magnetoelectric susceptibility. This anal-
ogy also leads to insight regarding the role of inversion symmetry in these topological systems
and demonstrates how the 1

2 quantized surface quantum Hall effect of an inversion symmetric
topological insulator arises as a higher dimensional analog of the 1

2 quantized end charges of a
1D inversion symmetric chain. Moreover, in just the same fashion as the effective polarization
can only be defined in a charge neutral system, the effective magnetoelectric susceptibility can
only be defined in a system whose net Hall response is zero. However the formal polariza-
tion and magnetoelectric susceptibility can be defined independent of these considerations.
In fact, measurement of a single end charge or one surface Hall conductance is sufficient to
establish the formal polarization and magnetoelectric susceptibility. Further insight is gained
by making analogies regarding Thouless pumps in both cases as well. Finally, we show that
a “true" effective magnetoelectric response e.g. a dc electric polarization being created by a
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dc applied magnetic field or a dc magnetization being created by a dc applied electric field
can only occur in a topological insulator under a very restricted set of material conditions.
These conditions are essentially unrealizable with current (and perhaps foreseeable) material
considerations. However, under conditions fulfilled in real experiments, the ac response at
very low frequencies exhibits a response indistinguishable from a magnetoelectric and in this
regard, it is appropriate to characterize real topological insulators as magnetoelectrics.

Magnetoelectrics are materials in which an electric polarization can be created by an ap-
plied magnetic field or a magnetization can be created by an applied electric field. They have
been topics of interest for decades [6–10]. Representative examples of magnetoelectric (ME)
materials are Cr2O3 [8], which has an ME coupling with a E ·B ME coupling and multiferroic
BiFeO3 [11] which has a ME coupling that can be written (in part) in a E×B form. The linear
magnetoelectric tensor is defined as

αi j =
∂ Pi

∂ B j

�

�

�

�

E→0

=
∂Mi

∂ E j

�

�

�

�

B→0

. (1)

In general this response contains both “frozen-ion" and “lattice-mediated" contributions.
Each of these can be further separated into spin and orbital parts. It has been proposed that
topological insulators are best characterized not as surface conductors, but as special E · B
magnetoelectrics [4, 5] with a frozen-ion orbital response that gives a diagonal and uniform
contribution to Eq. 1 and whose size is quantized to be half-integer multiples of the fundamen-
tal von Klitzing constant e2/h e.g α = (N + 1

2)
e2

h (where N is an integer). In the topological
field theory this can be shown to be a consequence of an additional term,

Lθ = 2α

√

√ ε0

µ0

θ

2π
E ·B, (2)

added to the usual Maxwell Lagrangian [4]. Here ε0 and µ0 are the permittivity and perme-
ability of free space. θ is the “axion angle" that will be defined in more detail below, but in a
material that has either time reversal (T ) or inversion (P) symmetry it is constrained to be an
integer times π. In topological insulators it is an odd multiple of π and in trivial insulators, it
is an even integer times π. This defines the “strong" Z2 topological index that assumes values
of either 1 or 0. As we will see below, defining these systems as bulk magnetoelectrics has the
advantage of not only allowing explanation of the quantized ME response, but is also more in
keeping with how we usually define response functions of homogeneous materials, as we can
describe the physics in terms of a bulk response function without making explicit reference to
surface states.

An analogy can be made between the physics described by Lθ to that of the hypothetical
field/particle that was proposed by Peccei and Quinn, Weinberg, and Wilczek to explain the
small charge conjugation parity (CP) symmetry violation in the strong interaction (for instance
the lack of a large neutron electric dipole moment) [12–15]. Wilczek called the particle the
axion after a brand of laundry detergent (Fig. 1) because they “cleaned up" a problem with
CP violation [16]. The fundamental axion particle has not been observed in particle physics
experiments, but one may study a related effect in the context of magnetoelectrics [15, 17].
For these reasons the topological magnetoelectric effect (TME) of the kind that appears in TIs
has been called “axion electrodynamics".

Although Lθ is generic expression which can be applied for instance to Cr2O3 (with a
θ � π [17–20]) or in a astrophysical context [21–23] its form merits additional discussion
when applied to TIs. Moreover, there are a number of aspects that require clarification in
regarding TIs as magnetoelectrics. For instance, it is usually taken as a given that one must
break both T and P to have a finite magnetoelectric coefficient. Indeed this was part of
Dzyaloshinskii’s original considerations [8]. However, many TI materials (even if T is broken
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Figure 1: Axion laundry detergent was Wilczek’s inspiration for the name of his par-
ticle that “cleaned up" a problem with CP violation. Wilczek has written, “I called this
particle the axion, after the laundry detergent, because that was a nice catchy name
that sounded like a particle and because this particular particle solved a problem
involving axial currents." [16]

by an applied magnetic field or inherent magnetism) do not break inversion in their bulk. How
then can a TI be characterized as a magnetoelectric? Indeed these issues have led to much
confusion and debate [24]. Moreover, it is not clear to what extent the considerations of the
beautiful field theoretic formulations hold up in real materials. For instance, what is the role
of dissipation and disorder at the surfaces? In what circumstances is it better to regard TIs as
bulk magnetoelectrics vs. surface conductors? We will address these issues and others in this
work.

With the possible exception of the explicit formulation of the formal magnetoelectric sus-
ceptibility as a multivalued lattice and the discussion on the role of dissipative effects, there is
very little that is truly new in this manuscript. And although some parts of it should be consid-
ered very elementary, we hope that this manuscript’s sometimes unconventional presentation
means that even experts working in the area of topological materials will find it novel, in-
teresting and useful. Many people who have understand these issues may have understood
them only in a quite different context or considered aspects too elementary to write down
explicitly. Others may have found existing treatments too opaque. Even casual perusal of this
manuscript should make clear that our goal here is not rigor. We present these issues from the
perspective of experimentalists who have struggled to take beautiful theoretical ideas and to
try to measure their (sometimes subtle) physical consequences in messy real material systems.
More rigorous and advanced treatment of some of these concepts can be found in original
literature and a number of excellent reviews [25–33].

2 "Modified" Maxwell’s equations for the ideal case

As mentioned above, Qi et al. [4] showed that the electrodynamics of topological insulators can
be described by adding a topological termLθ = 2α

Ç

ε0
µ0

θ
2πE·B to the usual Maxwell Lagrangian

L0. The consequences of this additional term gives modified Gauss’s and Ampère’s law with
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new source and current contributions that read

∇ · E=
ρ

ε0
− 2cα∇

�

θ

2π

�

·B, (3)

∇×B= µ0J+
1
c2

∂ E
∂ t
+

2α
c

�

B
∂

∂ t

�

θ

2π

�

+∇
�

θ

2π

�

× E
�

. (4)

In Appendix A, we rederive these modified Maxwell’s equations in the conventional 3D
vector component notation, which will be more familiar to many readers of this section as com-
pared to the relativistic Einstein notation that is typical in the field theory literature. Readers
who are willing to accept the modified Maxwell’s equations without derivation can proceed to
Sec. 3. It should be noted that it more conventional treatments of magnetoelectrics [9,10,17]
the magnetoelectric properties are introduced into the constitutive equations for the material
and not into the Maxwell’s equations directly. In this regard the Maxwell’s equations are not
really "modified", but this is an effective description which is largely equivalent. We use it
here for historical reasons [15] and the fact that it allows a direct perspective on how surface
properties are modified by the axion physics.

3 Quantized response from symmetry considerations

The topological field theory and resulting modified Maxwell’s equations contain the essential
axion angle parameter θ that characterizes the state of matter. It can take on different values
in the TI or in the vacuum of free space. From the form of Eqs. 3 and 4, one can see that the
additional physics described by the axion term only depends on derivatives of θ , e.g. in the
equilibrium case the physics only manifests at surfaces. For instance, the final term of Eq. 4
[2α

c ∇(
θ

2π)× E] gives a contribution that has the form of surface Hall effect the size of which
depends on the net change in θ across the boundary.

Constraints on the permissible values of the axion angle θ follow from system symmetries.
The Lagrangian defines the action S =

∫

d td x3L and since all physical bulk observables de-
pend on exp(iS/ħh) they are invariant to changes to θ modulo 2π in an infinite bulk crystal.
Therefore due to the transformation properties of E and B, if either T or P are present, θ is
constrained to be not only zero (as it is conventionally non-magnetoelectric materials), but
can take on integer multiples of π without changing any of the bulk physics [34, 35]. For in-
stance, an inversion operation takes E to −E and hence θ to −θ . As θ is defined modulo 2π,
an inversion symmetric system’s θ must satisfy θ = −θ + n2π and hence θ = nπ, where n is
an integer. Similar considerations hold for B and T symmetry. In fact, it can be shown that any
magnetic point group that contains a proper rotation composed with T , or an improper rota-
tion without T , constrains θ to be an integer times π [36, 37]. Three-dimensional insulators
with axion angles predicted to be an integer times π can be further divided into two classes,
which correspond to situations when n is even (conventional) or odd (topological) [4]. As
mentioned above, the difference between even and odd n corresponds to the strong Z2 index
of TIs. With a change in ∆θ across a surface from a TI to a conventional material, one gets a
contribution to a surface Hall conductance that is

Gx y =
∆θ

2π
e2

h
=
�

N +
1
2

�

e2

h
, (5)

where n = 2N + 1. As we will see below, N indicates the number of fully filled Landau level
(LL) or Chern layers on the surface when T is broken weakly1.

1Note that nothing prevents surface Hall conductances of N e2

h from being on the surface of conventional insu-
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Figure 2: a) Magnetization can be induced in the same direction as the electric field
for a TI in a cylindrical geometry. With the magnetization of a ferromagnetic layer
pointing outward from the side surface of the TI a circulating current is induced by the
electric field. This surface current is indistinguishable from a bulk magnetization. b)
A charge polarization can be induced by a magnetic field directed along the cylinder
axis. As magnetic field is turned on, an electric field is induced which drives charge
to the end of the cylinder. Note that charge will be distributed over the whole end
surface of the cylinder, not just the edge as displayed. From Ref. [4].

How a pure surface Hall conductance (e.g. Gx x = 0) then manifests as magnetoelectricity
can be seen through a thought experiment. Consider a cylindrically shaped TI sample (Fig.
2a), which has an outwardly directed magnetic field large enough to induce a well defined
Hall effect in the surface. Alternatively, one could imagine a magnetic layer deposited such
that the magnetization is everywhere directed radially. With a pure Hall current, an applied
electric field in the ẑ direction, will induce a circumferential quantized Hall surface current
Kφ . As a surface current can be written as bulk magnetization e.g. K = M × r̂ and using

Eq. 5, one has Mz =
�

N + 1
2

� e2

h Ez e.g. a magnetoelectric effect. Now consider the situation
of a magnetic field that is turned on slowly from zero to a value B field in the z direction.
As the B field is being turned on, it induces a circumferential E. With a pure quantized Hall
response, a surface current will be driven in the ẑ direction, where it flows to the ends of
the cylinder giving a surface charge σb as shown in Fig. 2b. A surface charge as such is
equivalent to a bulk polarization via σb = P· ẑ. Integrating the current flow over the time scale
that the magnetic field builds from zero to B gives Pz =

�

N + 1
2

� e2

h Bz . Note that essential to
maintaining an equilibrium polarization, is that after the magnetic field reaches its maximum
and the circumferential electric field goes to zero, the surface charge cannot dissipate under its
own field (in this idealized case) due to the lack of a longitudinal conductance e.g. the charge
is “trapped" at the ends of the cylinder. This anticipates our below discussion in Sec. 6 on the
important role of having only a dissipationless surface Hall current in order to define a true
magnetoelectric e.g. diagonal conductance terms have to be vanishingly small. The fact that
the response coefficient is the same for applied electric and magnetic fields is a well-known
property of magnetoelectrics [6].

Although it is usually said that TIs are protected by T , in fact – as discussed above – other
symmetries can be equally important in quantizing θ . However, since P and at least some
rotation symmetries must be broken at any surface T symmetry is unique in protecting the
existence of metallic surface states in TIs when it is present. Moreover, when the surface
states are ungapped they prevent the observance of any magnetoelectric effects. Consider a

lators, but unless a system has its bulk and surface topological properties protected by crystalline symmetries (e.g.
mirrors) as in the case of, for instance, topological crystalline insulators, such surface conducting layers will not
be robust.
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situation when T is broken only at the surface, by say a magnetized layer at the surface but
inversion is preserved in the bulk. If the sample is thick enough, then the effect of T breaking
at the surface can hardly affect the bulk of the material and whatever contribution the bulk has
to be the same whether the magnetized layer is there or not. Therefore when T is unbroken
at the surface and the surface is a metal, that surface is guaranteed to have a half-quantized
surface anomalous Hall effect that exactly cancels the bulk quantized Hall effect. T must be
broken in order to gap the surface and allow the bulk axion effect to manifest.

4 Analogy to (ferro)electric polarization

Although the treatment in Sec. 3 may seem straightforward, there are a number of aspects that
should raise the eyebrows of experienced readers. First, we wrote that the Hall conductance
of a surface can be

�

N + 1
2

� e2

h . The 1
2 is anomalous as we know from Thouless and collabora-

tors [38] that the Hall response of a 2D gapped insulator must be an integer times e2

h as the
Brilloun zone (BZ) integral of the Berry-curvature flux is quantized. Of course, in conventional
insulators the integer is zero. How can it be half-integer here? Second, magnetoelectrics con-
ventionally occur in materials that break both T and P . But as we discussed above if either T
or P is preserved then the magnetoelectric response will be quantized if inversion is preserved
in bulk. So what does it mean to define a ME response in a material that has inversion? And
how can it be that we can have half-quantized Hall response exhibited at the surface? It turns
out these two aspects are related! Before delving into this too deeply, we make an illuminating
and extended analogy to the related physical case of electric polarization.

4.1 Polarization in one dimension: the simplest topological scheme

In most textbook treatments of electric polarization, we are told that to compute polarization
one must first identify a microscopic dipole and then average this dipole over space to obtain
the macroscopic polarization vector P. As P is defined as the electric dipole moment per unit
volume, a natural definition is then

P=
1

Vcel l

∫

cel l
rρ(r)dr, (6)

where the integral is over the unit cell and ρ is the microscopic charge density. The problem
with this approach is that it depends on the definition of the unit cell. Indeed depending on
the unit cell basis, completely opposite values of P may result. Another possible definition
for polarization is where the volume integral and averaging volume in Eq. 6 are replaced by
the sample volume itself. Although this is a straightforward procedure for a molecule whose
density vanishes at infinity, such a definition is problematic for an infinite crystal. Moreover
for a finite piece of a periodic crystal, the integral will have contributions from both the surface
and the bulk, which gives the problematic situation that the quantity P which is supposed to
represent a bulk macroscopic property of a crystal depends on surface terminations. These
kind of ambiguities led to discussion for many years about whether or not electric polarization
(and related quantities like pyroelectricity, piezoelectricity and the Born effective charge) could
be defined as intrinsically bulk quantities or were determined by the surface termination [33,
39–41].

The difficulties with these conventional views can be highlighted by considering the case
of a simple 1D chain of Na+ and Cl− ions. Consider Fig. 3a (Type I lattice). The application
of a 1D version of Eq. 6 would mandate that we choose a unit cell as for instance given by
the box in Fig. 3a, which gives a dipole moment d and then average over a lattice vector
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Figure 3: Polarization in a 1D inversion symmetric lattice. a) One choice of micro-
scopic dipole d in the Type I lattice. b) Another choice of d that results in completely
opposite polarization vector. c) A Type II lattice is the other possibility for an inver-
sion symmetric lattice. The change in the microscopic dipole is ∆d. Here the idea is
that positive and negative charges are sharing the same lattice site. They are shown
as slightly displaced for illustration purposes. d) Sandwiching a Type II lattice be-
tween sections of a Type I lattice gives charges of ± e

2 at the interfaces, which one can
see by allowing the point charges to be blurred out a bit in space.

R. For the choice of d shown, the polarization of the lattice is e
2 . The problem is that the

unit cell as defined in Fig. 3b is an equally valid choice, which gives the completely opposite
value of the macroscopic polarization! The conclusion to be reached from this example is that
it is impossible to use knowledge of a periodic charge distribution to give a unique value of
polarization.

Similar difficulties in 3D were pointed out as early as 1974 [42], and were only resolved
with what is now called “The Modern Theory of Polarization" [25,26,28,30,33,41], in which
it was realized the bulk polarization is a multivalued function that can only be defined modulo
a polarization quantum Pq. This lead to a new perspective that one should usually concern
oneself with changes in polarization rather than with the polarization itself, as changes in P
are well-defined and can be compared to experimentally measurable quantities.

We realize that for the 1D case shown in Fig. 3a and b, that despite the ambiguities and
irrespective of which microscopic dipole is chosen, for a given 1D lattice only certain polariza-
tion values are possible and that for the Type I structure these values themselves form a 1D
lattice whose nodes are e

2 ± ne, where e is the electric charge and n is an integer. The e
2 offset

is an intrinsic property of this inversion symmetric lattice, which has additional significance
that we come back to below. The multivaluedness is a natural consequence of the periodicity
of a bulk crystal. It also suggests a definition for polarization that is in keeping with what
is actually measured when a material undergoes a ferroelectric transition which is a change
in polarization. An experimental determination of the spontaneous polarization is normally
extracted from a measurement of the transient current flowing through the sample during a
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switching process with a polarization change defined as

∆P= P(t)− P(0) =

∫ t

0

d tJ(t). (7)

Note that for the 1D crystal shown in Fig. 3a and b, zero is not a possible value of the po-
larization lattice. This may be surprising as by inspection, any ionic site in this structure is an
inversion center and conventional wisdom says that in a centrosymmetric lattice one can not
define a polarization. But the conventional wisdom is wrong! In the modern view, polarization
can be defined, but it can take on only certain discrete values that are constrained by symme-
try. The centrosymmetric constraint requires only that the polarization must get mapped onto
itself by the inversion operation, which it can only do if polarization is a multivalued quantity.
Here the inversion operation takes the 1D polarization e

2 to − e
2 , which in the bulk is equiva-

lent to e
2 via the 1D polarization quantum e. This is an extension (or caveat, if you will) to

Neumann’s principle, which usually states that, if a crystal is invariant with respect to certain
symmetry operations, any of its physical properties must also be invariant with respect to the
same symmetry operations [43,44]. Conventionally this would be taken to mean that a crystal
with inversion symmetry must have P = 0. However with the realization that polarization is
a multivalued quantity, polarization in such systems can be non-zero because two values of
the polarization that are separated by the polarization quantum represent the same bulk state.
This multivalued polarization lattice is called the formal polarization.

The lattices shown in Fig. 3a and b are not the only centrosymmetric lattices using such
ions, and one could also imagine a (fictional) lattice where we have moved the Na+ and Cl−

ions relative to each other by half a lattice constant such that they sit on top of each other as
shown in Fig. 3c (Type II). This crystal structure gives a polarization lattice that is 0±ne. Note
that whatever the difference between the Type I and Type II lattices are, it is not symmetry
as their symmetries are identical. This gives a number of interesting consequences. First, if
we imagine a structure of Type II sandwiched between two strings of ions in Type I lattice, we
realize such a situation results in localized charges at the interface that are quantized as ± e

2 .
In order to see this easily, one should imagine a lattice made of base units in which the charge
is slightly spread out in space as shown in Fig. 4(top left). Then as in Fig. 3, one can construct
two different kinds of lattices where these positive and negative charge units are either on top
of each other or displaced by half a unit cell (Fig. 4(top right) and (middle left)). Sandwiching
Type I between two copies of Type II gives localized charges at the interface that each have total
charge ± e

2 as seen in Fig. 4(middle right) and (bottom). Secondly, a general result follows
in that any inversion symmetric structure has surface charges that are n e

2 , with the two types
of lattices giving two possibilities, where n is a positive or negative integer. One can imagine
for instance a symmetry transformation where you pass positive and negative charges through
each other by moving them relative to each other by one lattice constant. This leaves the bulk
invariant, but will increase the end charges by integer amounts. However, the surface charge
will always quantized as ne/2 for a Type I lattice irrespective of the surface termination by
extra positive or negative charge. For instance compare Fig. 3a or b where a has well defined
polarization being charge neutral, but b does not. Both have exactly quantized ne/2 surface
charges.

4.2 Formal polarization vs. effective polarization

It is important to note in all this discussion that one must distinguish between the formal
polarization that we have been discussing and the actual effective polarization of finite sized
crystallite with a particular surface termination. The former is a multivalued quantity, and
the latter is a single valued quantity, which assumes one of the values allowed by the formal
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Figure 4: Simple 1D model to illustrate e
2 on the ends of a 1D chain. (top left) The

simple “ion" unit that has +1 integrated unit of charge spread out over space. (top
right) Charge unit arranged in Type I lattice with alternating positive and negative
charge units. Note that system is neutral in bulk. (middle left) Charge units arranged
in Type II lattice with positive and negative charge units on top of each other. (middle
right) Type I lattice sandwiched between pieces of Type II lattice. Black represents
the sum at each point of the net local charge. (bottom) Replotted net local charge.
Integrated charge density at ends of chain shows that e

2 charges are located at the
interface of the Type I and Type II lattices.

polarization. However, note that while the formal polarization is always well defined, for the
effective polarization to be well defined the crystallite must have surfaces whose charge sums
to zero. The polarization of a charged object depends on the choice of origin and a unique value
for the effective polarization cannot be given2. In this regard the crystallite shown in Fig. 3b
has a negative net charge and although an effective polarization cannot be defined, its formal
polarization is still defined and it still has quantized end charges! In fact a measurement of the
end charges is sufficient to determine the formal polarization even for a charged crystallite.
Related to this, the effective polarization can only be finite if the crystallite breaks inversion.
In this regard, the effective polarization of the crystallite shown in Fig. 3c is zero, which is one
of the allowed valued of its formal polarization.

For the Type I lattice above, one may ask by what mechanism has the charge fractionalized?
Where has the other half of the surface charge gone? Clearly, it has been swallowed in the

2This can be easily shown. An objects dipole moment can always be defined as d=
∫

rρ(r)dr. If one displaces
the origin by an amount r0 then this quantity becomes d′ =

∫

(r− r0)ρ(r)dr=
∫

rρ(r)dr− r0

∫

ρ(r)dr= d− r0Q,
where Q is the object’s total charge. Hence, for finite Q the dipole moment depends on the choice of origin.
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Figure 5: (a) and (b) The two possible 2D polarization lattices that are consistent
with 2D square lattice symmetry. They correspond to the 2D projections of BaTiO3
and KNbO3 respectively. Note that for ‘(b)’ zero is not a possible polarization. (c) A
change in polarization induced by some symmetry-lowering change of the Hamilto-
nian. Adapted from Ref. [28].

bulk as a consequence of charge neutrality leaving only part of it on the surface. There are
a number of similar models in condensed matter physics, where fractionalization happens
through loosing part of an otherwise discrete unit into the bulk of the material. The Su-
Schrieffer-Heeger (SSH) model applied to charge fractionalization in polyacetylene [45] and
the spin-1

2 end spins that arises in a 1D spin-1 chain described by the Haldane model are
prominent examples [46]. Similar effects have even been discussed in the context of physical
chemistry, where it is known for centrosymmetric stereoregular oligomers (e.g. a molecular
complex), that the end charges can only be integer multiples of 1/2 [47]. With both integer
and half-integer terminations possible in 1D inversion symmetric lattices, the prescient reader
may intuit that this discussion is remarkably similar to the notion that there are two families
of inversion symmetric 3D insulators that are not distinguished by their symmetries, one of
which has a half -quantized QHE on their surfaces. The prescient reader would be jumping
ahead, but indeed this is exactly the point! Note that that the quantization of the end charges
depends on symmetry. If one considers an inversion symmetry broken lattice where the +
and - charges are at relative positions somewhere intermediate to Fig. 3b and c, then the end
charges will be no longer quantized. The symmetry is essential to quantization. It will be the
same in topological insulators.

4.3 Polarization in higher dimension

This example of a 1D ferroelectric can be easily extended to higher dimension. In keeping
with its multivalued nature, the formal polarization can be expressed as

P̃= P+
eR

Vcel l
, (8)

where R is a lattice vector R=
∑

j m jR j and P is a value that depends on details of the crystal
structure. However, similar to the 1D case, for inversion symmetric structures it is either zero or
a value that corresponds to e

2 per surface unit cell. For a 2D inversion symmetric lattice with
a square lattice symmetry there are two possible polarization lattices, which we represent
in Fig. 5a and b. In a real world example, compare the cases of the ferroelectrics BaTiO3
and KNbO3 in their high-temperature cubic inversion symmetric structures. First principles
calculations reveal that P for BaTiO3 can be zero, whereas for KNbO3 it can be 1

2
e

a2 (where a is
the lattice constant) [28]. This is remarkable because the point group symmetries of both these
lattices are exactly the same e.g. centrosymmetric, cubic etc. (Pm3̄m), but they have different
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symmetry protected constrained charge due to the different Wyckoff positions occupied. It
is not possible to determine from symmetry alone which of the representations of the formal
polarization is expressed in each lattice type3. Moreover, in each case, the formal polarization
of a state is not just some value P, but corresponds to a lattice of values that are related to
each other by the polarization quantum eR/Vcel l . The surprising and important thing is that
despite the fact that KNbO3 is cubic and inversion symmetric, none of the allowed values of
the formal polarization are zero! Similar to the 1D case, this is allowed because the inversion
operation takes P̃ to −P̃, but these are related to each other by the polarization quantum (and
indeed can even be said to be the same if we regard the allowed values of P̃ as a multivalued
quantity). See Resta and Vanderbilt [28] for further discussion on these points.

The realization that the formal polarization is a multivalued quantity and different crystal
structures with the same symmetries can be intrinsically different again leads to the insight that
experimentally, changes in the effective polarization can be defined with respect to a reference
state. This change may be found across an interface to give a surface charge (σb) according
to the expression σb = n̂ ·

�

P̃1 − P̃2

�

that given two actual materials gives a well defined
value, with however the formal polarization being defined only modulo e

Acel l
where Acel l is the

surface unit cell area. Or it may be changes in polarization as a function of temperature, when
undergoing a ferroelectric transition. In such a case the polarization lattice vectors uniformly
shift as shown in Fig. 5c. Although given a new perspective in the context of topological
properties by Niu [50], similar physics had been established since at least the 1960s regarding
the physics of surfaces where it was known that for inversion symmetric crystals surface charge
was always quantized in units of half-integer charge per surface unit cell [51–53].

4.4 Wannier functions and Berry’s phase

These simple cartoon of point charges can be formalized with a mapping onto Wannier centers.
Wannier functions are localized functions, which span the same Hilbert space as the extended
Bloch states |ψnk〉. They are defined as

|wnR〉=
Vcel l

(2π)3

∫

dkeik·R|ψnk〉, (9)

where R are the lattice vectors. From the Wannier functions |wnR〉, one can define “Wannier
centers" as rnR = 〈wnR|r|wnR〉. One can show that the Wannier centers can be written as
rnR =

Vcel l
e Pn + R, where Pn is the contribution to polarization of the nth band, which is the

analog of Eq. 8 above [28]. Because the Wannier functions form a set of states that are
only differentiated by the lattice vectors R, the polarization inherits this indeterminacy by a
quantized amount. Via the “Berry-phase theory of polarization" [25, 28, 33], the polarization
Pn can be expressed as

P=
∑

Pn =
e

(2π)d
Im
∑

n

∫

BZ
dk〈unk|∇k|unk〉, (10)

where the |unk〉’s are the periodic part of the Bloch states of the nth occupied band and d is the
dimensionality. As the integrand of Eq. 10 is the Berry connection (a quantity whose integral

3The fact that these states with the same symmetries can have very different topological properties has an analog
in topological electronic states, as a particular crystal space group is consistent with a number of distinct atomic
Wyckoff positions and obviously lattices with different atomic positions can have very different properties. The
role of the Wyckoff positions has been emphasized recently in systematized approaches to find new topological
materials [48,49].
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Figure 6: Two different patterns of dimerization in the SSH model representing (top)
δt > 0 and (bottom) δt < 0. Sublattices A and B are represented by blue and red
respectively. The unit cell of A and B together represent a well defined unit that has
a well defined connection to the molecular limit. Double lines indicates a double
covalent bond making the atoms are closer and hence the hopping stronger.

is the Berry phase) Eq. 10 can be written for a single band as

P=
∑

Pn =
e

(2π)d
Re

∫

BZ
dk ·A, (11)

where A = i〈unk|∇k|unk〉 is the Berry connection. As far as the polarization is concerned, the
formation of Wannier functions can be regarded as an effective mapping of extended wave-
functions onto a lattice of point charges that is in correspondence with the simple cartoon
presented in Fig. 3 above4. The Berry’s phase formulation of polarization makes explicit the
polarization quantum as this just manifests through the phase’s inherent 2π indeterminacy.
One should also point out that the integrals in Eqs. 10 and 11 are gauge invariant (modulo
the polarization quantum) despite the fact that their integrands are not gauge invariant, as
they depends on the choice of the phases of the |unk〉’s. In 3D, polarizations calculated in this
fashion can be computed with modern ab initio packages.

In 1D the polarization can be calculated by integrating the Berry connection of the occupied
states over the BZ [54] to get the Berry phase. Just like the axion angle that characterizes the
ME coupling, the 1D polarization is perhaps most naturally expressed as an angle. It was
noticed by Zak that when inversion symmetry is present this “Zak phase" becomes quantized
and can only assume values of 0 or π (modulo 2π). The simplest 1D model of a topological
insulator is that of the celebrated SSH model [45]. One considers a Hamiltonian of spinless
fermions hopping on a 1D lattice with staggered hopping amplitudes such as

HSSH =
∑

i

(t +δt)c†
AicBi + (t −δt)c†

Ai+1cBi + h.c.. (12)

The unit cell has a two atom basis labeled A and B with weak and strong hoppings. δt controls
the pattern of dimerization as shown in Fig. 6. The two phases are separated by a gap that is
controlled by the sign of δt. The ground state Bloch function for this Hamiltonian is

|uk〉=
1
p

2

�

1
−eiφk

�

, (13)

where φk is

tan φk =
(t −δt)sin k

t +δt + (t −δt)cos k
. (14)

4This treatment uses the language of non-interacting Bloch functions, but one may also note that many-body
formulations for the macroscopic polarization as a Berry phase have been given as well [41].
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Figure 7: Polarization as a function of parameters∆ andδ in the 1D Rice-Mele model.
Here the units are ea where a is the lattice constant. The line of discontinuity can be
chosen anywhere depending on the particular phase choice of the eigenstate. From
Ref. [27].

By evaluation of the Bloch wave’s Berry’s connection one finds that the Berry’s phase integrated
over the BZ is

γ=

∮

dkA(k) = π
2

�

1+ sgn
�

δt
t

��

(15)

and then by Eq. 11, P = 0 for δt > 0 and P = e/2 for δt < 0. The SSH model has a
chiral symmetry that constrains these phases to have polarizations as such and fractionalized
charge on the ends that sit at zero energy5. Polyacetylene itself does not have fractionally
charged solitons because the molecular orbital states are occupied by two electrons nor does
it have this chiral symmetry as it is broken by longer range hopping terms. It does however
have inversion symmetry around the center of a bond which as we have discussed generally
quantizes the polarization and the end charges of a 1D chain.

4.5 The 1D Thouless pump

One can break the inversion symmetry of the SSH model by introducing a term that breaks
the onsite sublattice degeneracy. This Rice-Mele model [55] adds a term to Eq. 12 that has the
form HRM =

∑

i∆c†
AicAi −∆c†

BicBi +h.c. where ∆ can be tuned from positive to negative. One
can imagine starting from deep in the symmetry protected topological phase (δt < 0, ∆= 0),
but then sequentially changing both ∆ and δt such that inversion symmetry is first broken in
the positive sense (∆ > 0), then δt is changed from negative to positive, then the sign of the
inversion symmetry breaking term is flipped (∆ < 0), then δt is changed back to negative,
and then finally inversion symmetry is restored with∆= 0 [27]. The Hamiltonian is returned
back to its original configuration, yet if polarization is computed, one finds that it has changed
by ±e. Exactly one net elementary charge has been transferred through the system. Fig. 7
shows the computed polarization as a function of Hamiltonian parameters with the red circle

5For this 1D example of the Zak phase, one should point out that the Berry phase for each of the signs of δt is
a gauge dependent quantity e.g. it depends on the choice of the unit cell. However, given a choice of unit cell, the
difference of Zak phases between the two states is uniquely defined and this determines the topological distinction
between phases.
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representing a smooth trajectory of these parameters. One elementary charge is transferred
if a trajectory includes the central singular point. Closed trajectories that do not include this
point do not transfer charge. The general mechanism is known as a Thouless pump [56] and
its extension to higher dimension provides an explanation of quantized transport in topological
systems. Although made generic when formulated in terms of Berry’s phase the general notion
was anticipated by Laughlin [57] in his gauge invariance argument for the quantum Hall effect
(QHE).

Symmetry protected topological phases may also be considered from the perspective of
adiabatic continuity. A symmetry protected phase can be said to be topological if it cannot be
adiabatically deformed to the atomic limit while retaining its symmetries. In this regard, it is
clear that only Type II in Fig. 3c above can be adiabatically connected to a well defined atomic
limit (here actually the “molecular" limit of the fictitious symmetric Na+Cl−1 unit) in a fashion
that preserves inversion. Therefore the Type I lattice is the topological phase. This idea that
topological systems are ones that cannot be adiabatically connected to the atomic limit will be
used again below.

5 The surface half integer Hall effect as a signature of a bulk mag-
netoelectric response

Aspects of the above discussion with regards to the lessons learned for polarization have direct
analogy to topological insulators. Just as for case of the Type I and Type II centrosymmetric
ionic chains, there are two kinds of insulators distinguished not by symmetry, but by topology.
And in the same fashion that the Type I inversion symmetric 1D chain has half-quantized
charges localized on its ends, a topological insulator with inversion symmetry (but broken T )
has a half-quantized QHE on its surface, whereas (in principle) a conventional insulator can
only host a conventional integer QHE on its surface.

As suggested by these aspects and its definition, the formal magnetoelectric susceptibility
can be formulated as a bulk quantity only modulo a quantum (here e2

h ) in much the same
way as the formal electric polarization P. And in the same fashion, the formal magnetoelectric
susceptibility is also properly expressed as a multivalued lattice. Note that its quantum e2

h
is the same quantum as that found in the 2D QHE. As pointed out by Essin et al. [5], this
follows from the fact that the smallest magnetic field that can be applied without destroying
the periodicity of a crystalline system is one flux quantum per surface unit cell (e/Acel l). This
can be combined with the flux quantum of polarization (one charge per surface unit cell) to
give a natural quantum for the magnetoelectric susceptibility that is

∆P
∆B
=

e/Acel l

h/(e/Acel l)
=

e2

h
. (16)

5.1 A simple cartoon of a 3D topological insulator

As in the case for the polarization where P can be changed by a polarization quantum without
changing anything of the bulk, the magnetoelectric susceptibility can be changed by e2

h while
leaving the bulk invariant. Physically this corresponds to removing a quantum Hall layer from
one surface (leaving behind a net quantum Hall layer of the opposite sign) and moving it
through the system to the other side. The analogous operation in the 1D ionic chain is sliding
the charges passed each other by one lattice constant, which changes both end charges but
leaves the bulk invariant. Again by way of analogy with the 1D chain, this suggests a way of
looking at inversion symmetric insulators as overlapping e2

h and − e2

h layers. As shown in Fig.
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Figure 8: Cartoon model of conventional insulator and axion insulators built from
overlapping Chern insulators. The ends of the diagrams are supposed to described
some fictitious regions where the Chern layers are exposed. It is not supposed to
represent a real system (although it could). (left) Chern insulators or quantum Hall
layers of e2

h and − e2

h are centered on top of each other in a conventional insulator
giving no net Hall response at any surface. Regions where Chern layers overlap are
given in purple. (center) The distributions of layers in a topological insulator such
that −1

2
e2

h and +1
2

e2

h are left on the surfaces giving the half-quantized Hall response
of a surface and the quantized mangetoelectric effect. An applied electric (magnetic)
field will give a magnetization (polarization) pointing in the same direction. Such
a scenario would be realized if the surface magnetization was everywhere pointed
outwards, or if a TI slab was placed in magnetic field, but the top and bottom surfaces
were differentially doped to be electron and hole-like. (right) Here the topmost − e2

h

layer has be removed such that +1
2

e2

h is left over on the top surface. One can see
that the bulk is not effected. A scenario as such is effectively realized in a TI slab in
magnetic field.

8, one can conceive of conventional insulators as being materials these conducting layers are
centered on top of each other and spatially overlap and cancel6, whereas a TI is where layers of
them are displaced from each other by half a unit cell, giving 1

2
e2

h on the surface. This picture
gives immediate resolution to the issue raised above of how one can have a surface with a
half quantized Hall effect, making clear the point that the surface of a TI is NOT a 2D system,
but is the termination of a 3D material. This also answers the questions raised above about
how one can get a half quantized Hall effect. The half quantized Hall effect is a bulk response
expressed at the surface! The other 1

2
e2

h is lost into the bulk just as the 1
2 surface charge we

discussed above in the charge examples is lost in the bulk by virtue of bulk charge neutral-
ity. One can imagine two scenarios of an inversion symmetric TI (Fig. 8(center) and (right))
where surfaces are terminated by Chern layers of the different or same signs of the Hall con-
ductance. Different phenomena may manifest itself in either case, but the physics of the bulk
is not changed. Similar to what we discussed above with the formal polarization vs. the effec-
tive polarization, we must distinguish between the formal magnetoelectric susceptibility and
the effective magnetoelectric susceptibility. Only neutral objects can have an effective polar-
ization defined, whereas the formal polarization is defined in any case. Similarly, an effective
magnetoelectric susceptibility can only be defined when the net Hall response is zero. In this
fashion the effective magnetoelectric susceptibility can only be defined for the crystallites in
Figs. 8 (left) and (center). The crystallite in Fig. 8 (right) has a net Hall response and an
effective magnetoelectric susceptibility cannot be defined, whereas its formal magnetoelectric
susceptibility is independent of these considerations and can be defined.

This simple cartoon in Fig. 8 can be realized in a number of models. For instance, in the

6In 2D, canceling and spatial overlapping e2

h and −e2

h layers is precisely the situation in the topologically trivial
2D transitional metal dichalcogenides, where each K and K ′ valley host a Chern insulator with opposite quantized
Hall conductance.
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Figure 9: a) Schematic representation of the staggered interlayer mixing pattern of
Dirac nodes. Interlayer couplings are represented by red arrows. The degenerate
Dirac points at the ends of the red arrows mix and split, opening up a gap. A surface
Dirac node colored green is left behind. b) A pair of surface Dirac nodes can arise as
nodes are mixed in fashion separated by two layers. Mixing in this fashion requires
a chiral symmetry.

context of creating a model for a chiral topological insulator Ref. [58] considered a model of
bilayers of Dirac nodes coupled weakly both inter- and intra-bilayer. In the situation in Fig. 9a
one considers a situation where a particular R or L Dirac node couples only to the layer above
or below. This means that the R Dirac points mix and split only within the bilayers, and the
L Dirac points, mix only between bilayers resulting in a staggered mixing pattern as shown.
In this fashion the bulk becomes gapped but a single Dirac node is left on the surface. Fig.
9b represents a more complicated model for a chiral topological insulator where couplings
between farther separated layers ultimately generated a greater number of Dirac cones on the
surface. Pershoguba and Yakovenko [59] considered a 3D model related to SSH (called the
Shockley model therein) where 2D A and B layers were coupled in a fashion similar to the
ionic couplings in SSH. Mong et al. [60] explicitly considered model for an antiferromagnetic
topological insulator that was effectively alternating magnetized Chern layers. Depending on
the magnetization of the surface termination, the surface Hall conductance can be ± e2

h .
Considering all the above discussion, one can define the formal magnetoelectric suscepti-

bility then as

α̃i j = αi j +
�

1
2
+ N

�

e2

h
δi j . (17)

Here αi j is the magnetoelectric susceptibility from other contributions including spin and
frozen-ion and lattice-mediated contributions and N is an integer that corresponds to the num-
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Figure 10: The axion angle θ as a function of space passing through a TI slab for four
different scenarios. Jumps in the axion angle are shown as occurring at the sample
surface positions. a) A TI slab in magnetic field, showing the minimal jumps of π on
each surface that corresponds to two Hall effects of 1

2
e2

h each. b) A TI slab with an
inwardly directed magnetization for each surface c) A TI slab with a quantum Hall
layer on the front surface in addition to the 1

2
e2

h Hall effect. d) An example of a TI slab
for a material that does not have inversion symmetry. The jumps in the axion angle
on the front and back surfaces are not quantized, giving surface fractional quantum
Hall effects of arbitrary magnitude. However, the net winding of the axion angle is
quantized in units of 2π and hence the total Hall conductance of the full slab is an
integer times e2/h.

ber of quantum Hall layers on the surface (or equivalently the number of filled Landau levels).
In terms of the axion angle (defined modulo 2π) one may write

α̃i j = αi j + θ
e2

2πh
δi j . (18)

The fact that the formal ME susceptibility is a multivalued function resolves the issue as to
how a magnetoelectric can be defined in the presence of bulk inversion symmetry. Centrosym-
metry requires that the response tensor can get mapped onto itself by the inversion operation,
which if it is non-zero it can only do if the magnetoelectric susceptibility is a multivalued quan-
tized quantity. Otherwise inversion symmetry would mandate that the magnetoelectric tensor
is zero. But if it is multivalued, then the inversion operation takes 1

2
e2

h → −
1
2

e2

h , but by the

magnetoelectric susceptibility quantum this is equivalent to the original 1
2

e2

h . Alternatively,
one can say the formal ME susceptibility is set by θ , which in the TI is π (or odd integer mul-
tiples thereof). Due to the 2π periodicity of θ , the ME susceptibility does not have to be zero
if inversion is maintained in the bulk, but it is constrained to quantized values.

To get extra insight into the physical significance of the axion angle θ consider a hypothet-
ical situation where all of space is divided by a slab of a TI. We know that the vacuum on either
side has its θ value constrained to be π times an even integer and if the TI has inversion sym-
metry then θ inside the TI is constrained to be an odd integer times π. This determines that
the Hall conductance of each surface by itself is an odd integer times 1

2
e2

h , but the total Hall

conductance of the slab must be an integer times e2

h . In Fig. 10 we show a number of different
situations corresponding to various ways of breaking T symmetry on the surfaces of the TI or
by their differing surface environments. In Fig. 10a, we show the situation that corresponds
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to experiments performed so far where a TI slab is placed in magnetic field and exhibits a
quantized Faraday rotation. Both surfaces show a quantum Hall effect of +1

2
e2

h . Fig. 10b cor-
responds closely to the situation envisioned originally in Ref. [4], in which a magnetized layer
coats the TI in a fashion such that the magnetization points inward from both surfaces. In Fig.
10c, one envisions that due to finite doping the front surface has an additional e2

h quantum
Hall layer Chern layer stitched to it.

These pictures gives additional insight into the relation between the conventional QHE and
the topological magnetoelectric effect. As discussed above it is necessary to break T symmetry,
but for instance preserveP to get a half quantized Hall effect on a surface. But the conventional
Hall effect in a 2D electron gas effect does not require any such additional symmetries. One
can see that in the limit where the TI slab thickness goes to zero, since the total change in
θ must be an even integer times 2π (since there is the inversion symmetric vacuum on both
sides), the total Hall conductance of a 2D layer must be an integer times e2

h irrespective of
whatever happens in the bulk. Thus the axion electrodynamic formulation naturally turns
into the conventional QHE in the limit that the slab becomes 2D. This discussion would also
be relevant Faraday rotation experiments on films of a non-centrosymmetric TIs, where no
improper rotation quantizes the bulk θ (HgTe has an S4 symmetry (improper rotation) that
presumably quantizes its bulk θ in recent experiments [61]). If inversion symmetry or an
improper rotation does not quantize θ , nothing mandates that its bulk axion angle is an odd
integer times π and hence although the total Hall conductance of the entire slab must be an
integer times e2

h , the Hall effect at either surface could be anything. See Fig. 10d for an
example of how this might happen. An analogous version of Fig. 8b would be one where the
positive and negative QH layers would be shifted by some amount that is not half a lattice
constant allowing a non quantized Hall-effect on the surface, but still quantizing the sum of
top and bottom Hall responses. This is only allowed if inversion is not a symmetry in the bulk
of the material. If all of T , P , proper rotations composed with time-reversal, and improper
rotation symmetries are broken and bands are still inverted, the ME susceptibility is likely to
still be large through the same Chern-Simons mechanism, however it will not be quantized
and an experiment that relies only on the sum of the Hall conductances from the two surfaces
in magnetic field is not evidence for the quantized magnetoelectric effect.

This discussion hopefully makes clear that for materials that do have inversion or other
relevant symmetries there is no fundamental difference between measuring a material that
has magnetization directed in the same direction on both surfaces or inward/outward on both
surfaces (Figs. 10a and b respectively). The latter has been explicitly called the axion state
and said to be the configuration to measure the topological ME effect. [24, 62,63]. Although
the development of systems that realize this configuration is very important from a materials
perspective, we do not believe it warrants any particular consideration as anything special or
fundamental. Both scenarios have the same formal ME susceptibility. As shown in Fig. 10, the
two configurations should just be considered as different experimental conditions and realize
fundamentally the same thing. Both cases arise through the same E · B physics and as such
they are simply different (partial) manifestations of the same physics. For instance, one can
get the same dependence of θ on position as in Fig. 10b by instead of having an inward
pointing magnetization on both surfaces, but instead putting the slab in a magnetic field, but
then absorbing locally a Chern insulator layer with Hall conductance − e2

h layer on the back
surface.
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5.2 The formal magnetoelectric susceptibility vs. the effective magnetoelectric
susceptibility

As we have discussed above, it is not important to break inversion to discuss the formal ME
susceptibility in a bulk material. In fact, inversion quantizes the θ angle. However, in order
to generate a macroscopic moment of a finite size sample, global inversion symmetry of the
crystallite must be broken. For instance, because inversion symmetric Bi2Se3 in magnetic field
breaks only T , a slab of such material cannot exhibit a net macroscopic moment from mag-
netoelectricity unless inversion is broken macroscopically through some other means to get a
finite magnetoelectric susceptibility. Moreover, as we mentioned – in an analogous fashion to
the polarization discussion above – we can distinguish between the formal ME susceptibility
and the effective ME susceptibility of an actual crystallite. Recall that in Fig. 3a and b both
represent the same kind of inversion symmetric crystal (with the same formal polarization),
but a macroscopic dipole moment can only be defined for Fig. 3a, as the crystallite represented
by b is macroscopically inversion symmetric and charged. The effective polarization can only
be defined for a charge neutral object. In exactly the same fashion, a topological insulator
slab’s effective ME susceptibility can only be finite if the total Hall conductance is zero. Also
note that just like in the case of the 1D lattice where it is sufficient to measure just a single end
charge to establish the formal polarization, it is in principle sufficient to measure the surface
Hall effect of a single surface to establish the formal ME susceptibility. One can in principle do
this by placing a TI in magnetic field and measuring the Faraday or Kerr rotation.

To break inversion and ensure a zero total Hall conductance, surfaces could be doped
with charge species that make them differently electron and hole doped top or bottom, or
coated by a magnetic layer that has magnetizaton outwards or inwards on both surfaces. It
is important to note that as long as the inversion breaking field is local (whether this is a
magnetic layer or preferential electron and hole doping on top and bottom) then θ should
still be quantized in the bulk. In this regard, putting a sample in an E field to preferentially
bias the surfaces with different signs will formally destroy the quantization although if the
field is not too strong this inversion symmetry breaking effect will be likely weak. In the case
relevant for our experiment [64], inversion symmetry constrains the crystal’s bulk θ term to be
2π
�

N + 1
2

�

but a net macroscopic moment cannot be generated, because the applied magnetic
field does not break inversion, however, the sample can still be considered magnetoelectric in
the sense that we have discussed above. To get a “true" magnetoelectric (e.g. the possibility
to create a moment from an applied field) with a finite effective ME susceptibility one must
have a situation like in Fig. 10b, that one would get by depositing a magnetic layer on both
surfaces such that everywhere the magnetization of both surfaces points in or out (or by surface
doping) [24,63]. Then the sample is described by a particular θ , the sample macroscopically
breaks inversion such that it can have a ME effect, but the bulk is unaffected such that θ is
quantized.

Systems that have a net winding of the θ angle across the bulk as shown in Fig. 10a or c
will show a quantized Faraday effect, but no true magnetoelectric effect as the pattern of θ is
consistent with inversion symmetry being maintained. Systems that have a dependence of the
θ angle in the bulk as shown in Fig. 10b will show no Faraday effect, but will demonstrate
true magnetoelectric effect (putting aside the finite ω effects discussed below) as the spatial
dependence of θ demonstrates that inversion is broken. The effective ME susceptibility of
such a system will be finite. And not to belabor the point, but we wish to emphasize that both
scenarios in Fig. 10a or b are indicative of axion electrodynamics and the topological ME effect
and simply different (partial) manifestations of the same quantized E · B physics. One is not
more fundamental than the other as they have the same formal ME susceptibility.
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Figure 11: A schematic view of the possible values of θ as a function of both a sym-
metry preserving parameter and a symmetry breaking parameter in a Hamiltonian
as considered in Ref. [29]. Along the horizontal axis θ jumps from πmod 2π to zero
mod 2π. The gap must close along the horizonal axis, whereas the topological class
also changes, but the gap remains finite if the path is on the dotted circular line.

5.3 The Thouless pump in 3D topological insulators and hybrid Wannier func-
tions

Let us make a further connection between the 1D ionic chain and TIs. Independent of the
particular realization, there are two ways to change the topological class of a symmetry pro-
tected topological phase. One can for instance, close a gap while preserving the symmetry.
This is the situation considered for a number of topological phase transitions in topological
insulators [65,66] by changing the energetic ordering of bands through a band inversion tran-
sition. The other possibility is to maintain the gap while changing a parameter that breaks the
protecting symmetry and moves the system from a symmetric case through a symmetry bro-
ken regime and then back to a symmetric phase. The thought experiment we have considered
above for the 1D lattice where positive and negative charges where moved past each other is
an example of that. Starting from the centrosymmetric phase in Figs. 3a and b (Type I) and
moving the relative positions of the charge to put it in the phase demonstrated in Fig. 3c (Type
II) the system goes through a regime where the ions are at intermediate positions and breaks
inversion. As mentioned above this phase with intermediate positions of the ions will not have
quantized end charges, but remains insulating and keeps the gap throughout the transition.
One unit net charge is pumped through the system in the process. Thouless charge pumping
in the Rice-Mele model discussed above is another example of this.

For a 3D TI, analogous to the thought experiment of 1D charge pumping in the Rice-Mele
model, Essin et al. [5] considered the model of Fu, Kane, and Mele [1] for a 3D topological
insulator on the diamond lattice. They add a staggered Zeeman field on the two fcc sublattices,
the magnitude of which can be written |h| = msinβ . For non-zero values of β this term
breaks both inversion and time-reversal, but for β = 0 and π obviously breaks neither. If
the nearest-neighbor hopping amplitude is set to be 3t +mcosβ , one can smoothly vary the
single parameter β from zero to π and drive the system between trivial and TI phases while
keeping the gap constant. In so doing, Essin et al. find that the magnetoelectric polarizability
interpolates smoothly between 0 and e2/2h. The two end members are the two symmetry
protected phases and both possess quantized ME responses as expected (quantized at zero
in the trivial phase). In the intermediate regime, symmetries are broken and although the
ME response is large, it is not quantized. Coh et al. [29] used the same general idea in their
work looking for materials with large magnetoelectric couplings. They considered a model

21

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046


SciPost Phys. 6, 046 (2019)

Hamiltonian which depends on two parameters as shown in Fig. 11, one of which preserves
time and/or inversion symmetry, and another that breaks these symmetries such that θ can
assume a non-quantized value. Along the horizontal axis where a symmetry is preserved θ
must jump discontinuously fromπmod 2π to zero mod 2π. The gap closes at a point indicated
“Metal". Another route is possible however and one could imagine taking a trajectory indicated
by the black dashed line such that θ can vary smoothly and continuously without closing the
gap anywhere along the path.

Similar to the 1D case given for the Rice-Mele model in Fig. 7 where a net loop in Hamil-
tonian parameter space “Thouless pumps" charge across a system, one can ask what happens
when the T breaking parameter β in the Essin extension to the Fu-Kane-Mele model is varied
over a whole cycle from 0 to 2π [1,5]? In analogy with Fig. 7 we may expect that if a origin
encircling loop is made in the space shown in Fig. 11, something is pumped, but what? To
answer this question we need a little more formalism.

Just as the cartoon we had of the ionic chain could be formalized in terms of a Berry phase
and made explicit in the form of the SSH model, the cartoon of QH layers shown in Fig. 8 can
be made explicit. Vanderbilt and collaborators [67–69] considered a hybrid Wannier function
representation obtained by Wannier transforming the Bloch functions in one dimension while
keeping them extended and Bloch-like in the other two. The hybrid Wannier functions can be
expressed as

|Wnlz

�

kx , ky

�

〉=
1

2π

∫

dkzeik·(r−lz cẑ)|un,k〉. (19)

where lz is a layer index and c is the lattice constant along ẑ. From this procedure, one can
obtain the Wannier centers z̄ and plot them as a function of the orthogonal momentum in the
projected BZs. Under conditions that that these Wannier “sheets" do not touch, as each sheet
corresponds to a filled 2D band, each sheet’s ẑ Berry flux is quantized to 2π times an integer
by the Chern theorem [67]. As one varies the orthogonal momentum across the BZ, Wannier
centers z̄ can either return to their original values of z̄ or they can be shifted by one lattice
constant.

In the case that the z̄’s cross the BZ, such a plot allows one to see how electrons are adi-
abatically pumped along ẑ as kx and ky are varied. 2D quantum Hall systems, 2D quantum
spin Hall insulators, and weak and strong 3D TIs can be characterized by examining how the
Wannier center sheets connect along time-reversal invariant lines in the BZ for different “Wan-
nierization" directions. How this occurs in a 2D system can be seen easily for the example of
a single layer 2D Chern insulator in Fig. 12 (far left). As a function of ky the Wannier center
moves in ẑ and connects one unit cell to another. A 2D quantum spin Hall layer is effectively
two copies of the same as shown in Fig. 12 (middle left). In the absence of spin-mixing terms,
it shows the “switching of partners" characteristic of time-reversal invariant phases. A trivial
2D insulator would show bands that do not cross the unit cell in the ẑ direction as a function
of ky .

In 3D, the behavior of the hybrid Wannier functions depends on the topological class. Be-
cause an isolated “Wannier sheet" represents a discrete 2D system with all occupied or unoc-
cupied states, each holds a quantized amounts of Berry-curvature flux e.g. an integral Chern
number. For weak TIs, the system looks trivial in at least one Wannierized direction. The
non-trivial behavior of the hybrid Wannier function sheets in strong TIs will be apparent irre-
spective of the direction chosen to Wannierize. Hybrid Wannier function calculations for the
3D Fu-Kane-Mele model (a four-band model of s orbitals on the diamond lattice with spin-
orbit interaction) are shown in Fig. 12 (right). Here the ẑ direction is taken to be [111]. The
hybrid Wannier function representation makes explicit the fact that one cannot create Wan-
nier functions in such topological systems that respect all symmetries, despite the fact that
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Figure 12: (far left) Flow of Wannier charge centers along ẑ vs. ky for a 2D Chern
insulator. (middle left) Flow of Wannier charge centers along along ẑ vs. ky for a 2D
quantum spin Hall layer. (right) Flow of Wannier charge centers in hybrid Wannier
representation for 3D 3D Fu-Kane-Mele model. From Ref. [67].

the eigenstates of Hamiltonian have the Bloch form [70, 71]. And as was anticipated in our
discussion of the 1D ionic chain and of Fig. 8 above, one cannot adiabatically connect the
system to the atomic limit while preserving all symmetries. This is related to the fact that in
a 3D strong topological insulators one goes from an 2D trivial insulator to a 2D topological
insulator (or vice versa) in going from kz = 0 to kz = ±π as shown in Fig. 12 (right).

The hybrid Wannier function representation also makes quite apparent the Thouless pump
mechanism for quantized transport in the 3D TIs. In general in the Thouless pump, one imag-
ines replacing one of the momentum e.g. ky , by some parameter Q that characterizes a re-
duced dimensional Hamiltonian. For instance for Fig. 12(far left), as a charge’s momentum
ky is cycled from 0 to 2π/b the Wannier center is displaced by one or more unit cells in the z
direction. Thereby the quantized Hall transport of the 2D quantum Hall effect is mapped into
a quantized 1D polarization induced by a cycle in Q of the 1D Hamiltonian’s parameters.

A similar situation applies for the 3D TI , where now the adiabatic pump corresponds to
a pumping of a quantized amount of Berry flux across a unit cell. Using the staggered field
that [5] added to the model of Fu, Kane, and Mele [1] for a 3D topological insulator on the
diamond lattice (discussed above), Taherinejad et al. [68] showed that as β is cycled from 0 to
π and then to 2π, the system’s bulk goes from trivial to topological and back to trivial, but in so
doing the axion angle was pumped by 2π. This is completely analogous to the charge pumping
in the Rice-Mele model. Physically it corresponds to displacing Chern layers with quantized
Hall conductance by a unit cell. This leaves a deficit of Chern conductance on one surface and
an excess on the other. If one ran the β pump from π to 3π this would be equivalent to going
from a situation which is Fig. 10b to a situation where the central region increases its θ from π
to 3π. From the perspective of the hybrid Wannier functions, as β is varied the pumping of θ
by 2π occurs by a series of band touching events between Wannier sheets, such that one Chern
number of Berry curvature flux is passed off to the neighboring sheet with each touching.

The magnetoelectric susceptibility coupling can be expressed in the spirit of the 1D polar-
ization discussed above in terms of the Berry curvatures. In terms of the axion angle defined
via Eq. 18, the susceptibility can be written as an integral over the Brillouin zone of the
“Chern-Simons 3-form" as

θ = −
1

4π

∫

d3k εi jk Tr
�

Ai∂ jAk − i
2
3
AiA jAk

�

. (20)

Here Ai is again the Berry connection in the ith direction and the trace is over occupied states.
An arbitrary gauge transformation can be shown to only shift the 3-form integral by an integer
times 2π [4,5,68] so again θ is best regarded as a phase angle that is only well-defined modulo
2π. Thus again the presence of either time reversal or inversion requires that θ be an integer
times π.
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Table 1: Analogies between polarization and magnetoelectric susceptibility in in-
version symmetric systems. For both cases presented here for inversion symmetric
systems, N is an even integer in trivial materials and is an odd integer in topological
systems. Based in part on Ref. [72]. Note that both Chern forms can be expressed as
angles.

Quantity 1D Polarization 3D Magnetoelectric Susceptibility

Observable P= ∂ 〈H〉/∂ E αi j = δi j∂ 〈H〉/∂ Ei∂ B j

Surface “charge" N e
2 N 1

2
e2

ħh

“Polarization" quantum |e| | e
2

ħh |

Thouless pumped quantity Integer charge Quantized Berry flux (e.g. Chern layer)

Condition for effective P or αi j Charge neutral Zero net Hall conductance

Chern form γ=
∮

dkA(k) θ = − 1
4π

∫

d3k εi jk Tr
�

Ai∂ jAk − i
2
3
AiA jAk

�

In this work we have explored in-depth analogies between polarization (in particular in
1D) and the 3D magnetoelectric susceptibility. We conclude this section with the summarizing
Table 1 where we make the correspondences explicit between the various quantities.

6 The effects of residual surface dissipation on the magnetoelec-
tric response of topological insulators

In the search for a “true" magnetoelectric with finite effective ME susceptibility effect in topo-
logical insulators, one may wish to measure the corresponding dc response e.g. a true macro-
scopic electric polarization when placed in dc magnetic field or a macroscopic magnetization
when placed in a dc electric field. As we have seen above, in order to create a macroscopic
moment symmetry considerations must apply globally to the sample i.e. the crystallite itself
must break T and P independent of the local symmetries of the bulk. However, there are also
dynamical considerations and it turns out that the requirements to see a dc effect puts severe
limits on any residual dissipation in the surface states that occurs through imperfect gapping.

To analyze the effects of residual dissipation it is useful to use the language of a surface
Hall effect albeit one that can exhibit a half quantized Hall conductance. As we have discussed
above, in the dissipationless limit (e.g. small Gx x) this is equivalent to a bulk magnetoelectric
effect. To be explicit consider again the geometry of a cylinder shaped TI, where a T breaking
perturbation is applied such that T is broken at the surface as in Fig. 2. In the situation of a
perfectly formed QHE on the surface of the TI where Gzφ =

�

N + 1
2

� e2

h and Gzz = 0, if an electric
field is applied in the ẑ direction, this will cause a surface current to flow in the circumferential
φ direction. Again, an object with a surface current as such, is indistinguishable from a bulk
magnetization K = M × n̂. As K = GE, one may write that Mz =

�

N + 1
2

� e2

h Ez . As discussed
above, there is a reciprocity for magnetoelectrics and the same response function (in the low
frequency limit) is relevant with applied magnetic field. As discussed above, in this case, as a
B field is turned on, it induces a circumferential electric field that due to the Hall effect drives
a current in the ẑ direction. This charge is “trapped" at the ends of the cylinder due to lack
of longitudinal conductance. Hence a polarization forms in response to an applied magnetic
field.
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But what happens in the presence of finite Gzz , which can occur due to insufficient local-
ization of the surface states? Qualitatively, in the presence of an applied ẑ axis electric field a
finite Gzz will allow some current in the ẑ direction giving a surface charge at the cylinder ends
that will eventually cancel the applied electric field. Similarly for an applied ẑ axis magnetic
field, a finite Gzz will allow charge to leak out of the ends of the cylinder allowing the effective
polarization to dissipate after the magnetic field is ramped to its final value. We realize from
this qualitative discussion, that the capacity to build up magnetization or polarization in the
presence of finite Gzz , is a matter of time scales, and the effect of finite non-zero Gzz may be
ameliorated at high enough frequencies.

Starting from a scenario of B applied at a low frequency ω along ẑ and realizing that a
finite Gzz gives a channel whereby built up Pz polarization can dissipate, one can show for the
cylinder geometry that

Pz =
Gzφ

1− i2Gzz
ε0Rω

Bz , (21)

where R is the radius of the cylinder. Since Gzz can never be identically zero, it is unreasonable
to imagine that the trueω= 0 dc magnetoelectric susceptibility is finite. For a R∼ 1 mm cylin-
der, Gzz has to be on the order of 10−7 e2

h to push the frequency crossover down well below the
kHz range of conventional ac susceptometers. Note that in addition to any surface dissipation,
any residual bulk conduction (commonly present in TIs) also adds a channel for polarization
relaxation and presents an arguably even more serious problem. Due to the potentially large
conducting volume and the tendency for impurity states to not localize in this class of com-
pounds, this puts a very strong additional strong constraint on using a dc or low frequency ac
techniques. It is important to point out that similar constraints likely apply to the proposals
to induce a magnetic monopole image charge [73]. With current or foreseeable materials,
experiments will likely have to be done with an oscillating cantilever to induce a transient
image magnetic monopole. Pesin and MacDonald treated the related problem of the effective
magnetic monopole induced near the surface of a TI in the presence of finite longitudinal con-
ductance due to the presence of a suddenly introduced external electric charge [74]. In a very
related fashion to the above they found that finite longitudinal conductivity introduces certain
dynamical constraints on seeing the topological magnetoelectric effect.

7 Experiments

More or less simultaneously, three groups – performing experiment on bulk insulating Bi2Se3
[64] (by the present authors), Cr-doped BiSbTe3 [76] and HgTe [61] – reported the observation
of the topological magnetoelectric effect consistent with axion electrodynamics. In all these
experiments, either a magnetic field was applied perpendicular to the film, or the film was
uniformly magnetized putting these experiments in the regime of Fig. 8c and Figa. 10a, c,
and d. Unless top and bottom surfaces are differentially doped to be electron and hole biased,
in such a configuration the system is not expected to have a effective ME susceptibility (e.g.
a polarization cannot be generated from an applied magnetic field), but it will still have a
formal ME susceptibility that can be measured through its response to low frequency radiation.
In these cases, researchers were looking to measure quantized Faraday and Kerr rotations
accurately. This is similar to the original experiments proposed, although they were done in
a slightly different fashion [77–79]. It is interesting to consider these experiments in light of
the above discussion. Both the experiments on Cr-doped BiSbTe3 [76] and HgTe [61] were
performed on samples that were quite thin on the scale of the evanescent depth of the surface
state wavefunctions and hence on the edge of the regime that should be considered 2D. This is
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Figure 13: Left) Quantized Faraday rotation for different Bi2Se3 films. Dashed black
lines are theoretical expectation values assuming certain values for the filling factor
of the surface states. (inset) dc transport Hall resistance of a representative 8-QL
sample. Right) Measured quantization index versus filling factor. The solid line is
the expectation for quadratic bands, and the dashed line is for two topological surface
states. From Ref. [64].

important in inferring the existence of an isolated 1/2 quantized surface Hall conductance. In
the case of the magnetic doped TI the material does have inversion symmetry on average, but
the experimental quantization is imprecise, presumably due to sample inhomogeneity coming
from large amounts of magnetic dopants [80] and even at 1.5 K the surface states are not fully
gapped at the chemical potential and therefore the sample is not completely in the quantum
anomalous Hall regime [76]. In contrast, in the cleaner Bi2Se3 samples [81], an external
magnetic field with a few Tesla is large enough to put the chemical potential in the fully gapped
surface states [64]. The Faraday rotation on Bi2Se3 is quantized as shown in Fig 13. The value
is given by

tan (φF ) =
2α

1+ n

�

Nt +
1
2
+ Nb +

1
2

�

, (22)

where n is the refractive index of the substrate and Nt and Nb are Landau Level index of the
top and bottom surfaces. As discussed in Ref. [64, 76], measuring Faraday and Kerr rotation
at the same time can probe the quantization and give a direct measure of the fine structure
constant α. αwas measured on a macroscopic Bi2Se3 sample to within 0.5% error [64]. In Fig.
13, a plot of observed quantized index vs. filling factor is a direct evidence that one observed
the contribution of two topological surface states, each of which contributes to half-integer
quantum Hall conductance and therefore provide the evidence for the topological magneto-
electric effect [64]. Recent work utilizing ionic liquid gating successfully tuned the chemical
potential as low as 10 meV above the Dirac point and pushed the sample across a few surface
quantum Hall plateaus [75], as shown in Fig.14. This experiment is a direct measure of the
formal ME susceptibility and the ME susceptibility lattice.

All of these experiments are manifestations of what was called the quantum Faraday effect
in Ref. [24], which is again a configuration where the axion angle is an increasing function
of space as in Fig. 10a or c. There has been no experimental measure of quantization in the
regime shown in Fig. 10b that could be expected to manifest a true ME with finite effective
ME susceptibility for the reasons discussed above. However, as is hopefully clear from this
discussion there is no intrinsic difference from one scenario the other. They are all just different
demonstrations of the same underlying physics and both experiments are measures of the
formal ME susceptibility.
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Figure 14: Left) (a) Real part of Faraday rotation (θF ) at high magnetic field for a
sample with ionic liquid gated at difference voltages, B > 5.5T. The grey lines are
theoretically predicted values assuming particular filling factors of the surface states.
(b) Average value of Re θF over frequency range spanning from 0.2 to 0.8 THz at 6.5
T at different values of the bias voltage (VBias) From Ref. [75].

The interpretation of all these experiments in terms of quantized formal ME response rests
on the fact that symmetry constrains the bulk axion angle to be an odd integer times π in the
bulk. Therefore the observation of a quantum Hall odd integer sum of top and bottom surfaces
can be interpreted as a half-integer quantum Hall effect of a single surface. However, it is still
desirable to isolate the half-integer Hall conductance of a single surface. It may be possible to
do this through performing a THz reflection experiment off of a single surface directly. This
would be a completely model free measurement of the formal ME lattice in much the same
fashion as the measurement of a single end charge establishes the formal polarization lattice
of a 1D chain. Although in principle possible, such an experiment has not yet been performed.
It will require thick single insulating crystals.

8 Concluding remarks

This article is an attempt to explain in plain language how and why topological insulators
should be regarded as magnetoelectric materials. We have drawn inspiration from the related
example of electrical polarization in 1D and the concepts of formal vs. effective polarization.
In so doing we gain important insight on the formal vs. effective magnetoelectric susceptibil-
ity, the 1

2 quantized surface quantum Hall effect, the role of inversion symmetry, and the role
of finite frequency measurements. Going forward one potentially fascinating, but as of yet
unrealized related state of matter is that of the “intrinsic axion insulator". These are theoret-
ically proposed [82, 83] stochiometric materials with a large ME response that originates in
the same Chern-Simons contribution to the ME tensor that gives topological insulators their
ME response. Roughly speaking these will be band-inverted materials “like" topological in-
sulators, but with extant magnetism; the TI surface states are then intrinsically gapped such
that a bulk sample exhibits a large intrinsic ME response. Related materials have been found
where the magnetism is achieved by doping, but what is desired is a pure material that shows
magnetism in this fashion. A number of compounds were theoretically proposed some years
ago in Refs. [82, 83] and much more recently in Ref. [84]. The material proposed in the lat-
ter work MnBi2Te4 has been synthesized and shown to be magnetic and possess topological
surface states [85,86], but the very large parasitic bulk conductances will destroy any magne-
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toelectric effect. In the event that bulk insulating samples can be synthesized the discussion
in this manuscript will directly apply.
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A Derivation of "modified" Maxwell’s Equation

One may derive the “axion modifications” to the Maxwell equations appearing in Eqs. 3 and
4 using a modified version of the standard Langrangian treatment, where it is mandated that
the action be stationary with respect to variations of the potentials. The two terms in the
Lagrangian density in potential form are

L0 =
ε0

2

�

∇φ +
∂ A
∂ t

�2

−
1

2µ0
(∇×A)2 −ρφ + J ·A, (23)

Lθ = 2α

√

√ ε0

µ0

θ

2π

�

∇φ +
∂ A
∂ t

�

· (∇×A). (24)

They represent the conventional (Maxwell) and topological (axion) contributions to the La-
grangian respectively. Here α is the fine structure constant and ε0 and µ0 are the permittivity
and permeability of the free space. The topological contribution is distinguished by θ , which
is an angle that will assume different values inside and outside the material of interest.

If either T or P symmetry is present, its value is quantized to be an even or odd integer
times π modulo 2π. The action is

S = S0 +Sθ =
∫

d t d3x (L0 +Lθ ), (25)

where Sθ derives from the additional term and S0 is the usual Maxwell action. One can
start with with Eq. 25 and perform the typical variation of the potentials in the action to get
modifications to Gauss’s law and Ampère’s law. The modified Gauss’s law term comes from
variations in the scalar potential φ. One defines

δS = S(φ +δφ)−S(φ) = δS0 +δSθ , (26)
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where δφ is an infinitesimal. As found in standard references [87] the Maxwell part of the
variation can be written as

δS0 = −
∫

d t d3x
�

ε0∇ ·
�

∇φ +
∂ A
∂ t

�

+ρ
�

δφ. (27)

For the new term, to first order in δφ one has the variation

δSθ = −
∫

d t d3x

�

2α

√

√ ε0

µ0

θ

2π
(∇×A) · ∇δφ

�

. (28)

As with the Maxwell term, one shifts the derivatives to the other spatially dependent terms
in the integrand by integration by parts. The surface terms can be set to zero. One has

δSθ =
∫

d t d3x ∇ ·
�

2α

√

√ ε0

µ0

θ

2π
(∇×A)

�

δφ. (29)

Expanding the divergence and using the fact that the divergence of a curl is zero one has

δSθ =
∫

d t d3x

�

∇
�

θ

2π

�

· 2α
√

√ ε0

µ0
(∇×A)

�

δφ. (30)

We add this to the variation of the usual Maxwell action to get

δS =
∫

d t d3x

�

−
�

ε0∇ · (∇φ +
∂ A
∂ t
) +ρ

�

+ 2α

√

√ ε0

µ0
∇(
θ

2π
) · (∇×A)

�

δφ. (31)

Setting the variation of this total action to zero requires the term in the brackets be equal
to zero. Rearranging and substituting back in for the fields, one gets a modified version of
Gauss’s law (Eq. 3) with the additional source term that we gave above.

To get the modified version of Ampère’s law one must vary the vector potential. Expanding
S(A+δA) to first order in δA one has for the Maxwell term

δS0 =

∫

d t d3x
�

−ε0
∂ (∇φ + ∂ A/∂ t)

∂ t
−∇× (∇×A)/µ0 + J

�

·δA. (32)

For Sθ we have

δSθ =
∫

d t d3x

�

2α

√

√ ε0

µ0

θ

2π

�

∂ δA
∂ t
· (∇×A) +

�

∇φ +
δA
δt

�

· (∇×δA)
�

�

. (33)

Now we integrate by parts by moving the derivative with respect to time on the first term
and the gradient on the second. Setting the surface terms to zero and after some simplification
one gets

δSθ =
∫

d t d3x

�

2α

√

√ ε0

µ0

�

∂ θ/∂ t
2π

(∇×A)−∇
�

θ

2π

�

×
�

∇φ +
∂ A
∂ t

��

�

·δA. (34)

The total variation with respect to the vector potential then reads

δS =
∫

d t d3x
�

−ε0
∂ (∇φ + ∂ A/∂ t)

∂ t
−∇× (∇×A)/µ0 + J

+2α

√

√ ε0

µ0

�

∂ θ/∂ t
2π

(∇×A)−∇
�

θ

2π

�

×
�

∇φ +
∂ A
∂ t

��

�

·δA. (35)
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As before if the total variation is to be zero for any infinitesimal δA then the quantity in
brackets must be zero. Rearranging and again substituting in for the fields, one finds the mod-
ified version of Ampère’s law with an additional current term that we we have above in the
main text (Eq. 4).

Again it should be noted that it more conventional treatments of magnetoelectrics [9, 10,
17] the magnetoelectric properties are introduced into the constitutive equations for the mate-
rial itself and not directly into the Maxwell’s equations. Ours is an effective description which
is largely equivalent, but Maxwell’s equations are not “really modified” as they are fundamen-
tal laws based on electric charge and magnetic flux conservation. We use this description
here for historical reasons [15] and the fact that it allows a direct perspective on how surface
properties are modified by the axion physics in for instance the pumping of axion coupling.

References

[1] L. Fu, C. L. Kane and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett.
98, 106803 (2007), doi:10.1103/PhysRevLett.98.106803.

[2] R. Roy, Topological phases and the quantum spin Hall effect in three dimensions, Phys. Rev.
B 79, 195322 (2009), doi:10.1103/PhysRevB.79.195322.

[3] J. E. Moore and L. Balents, Topological invariants of time-reversal-invariant band struc-
tures, Phys. Rev. B 75, 121306 (2007), doi:10.1103/PhysRevB.75.121306.

[4] X.-L. Qi, T. L. Hughes and S.-C. Zhang, Topological field theory of time-reversal invariant
insulators, Phys. Rev. B 78, 195424 (2008), doi:10.1103/PhysRevB.78.195424.

[5] A. M. Essin, J. E. Moore and D. Vanderbilt, Magnetoelectric polarizability and ax-
ion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102, 146805 (2009),
doi:10.1103/PhysRevLett.102.146805.

[6] M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38, R123 (2005),
doi:10.1088/0022-3727/38/8/r01.

[7] T. H. O’Dell, The electrodynamics of magneto-electric media, Philosophical Magazine 7,
1653 (1962), doi:10.1080/14786436208213701.

[8] I. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnets, J. Exp. Theor. Phys.
10, 628 (1959).

[9] R. R. Birss and R. G. Shrubsall, The propagation of electromagnetic waves in magnetoelec-
tric crystals, Philos. Mag. 15, 687 (1967), doi:10.1080/14786436708220916.

[10] R. M. Hornreich and S. Shtrikman, Theory of gyrotropic birefringence, Phys. Rev. 171,
1065 (1968), doi:10.1103/PhysRev.171.1065.

[11] J. C. Wojdeł and J. Íñiguez, Magnetoelectric response of multiferroic BiFeO3 and re-
lated materials from first-principles calculations, Phys. Rev. Lett. 103, 267205 (2009),
doi:10.1103/PhysRevLett.103.267205.

[12] R. D. Peccei and H. R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev.
Lett. 38, 1440 (1977), doi:10.1103/PhysRevLett.38.1440.

30

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1088/0022-3727/38/8/r01
http://dx.doi.org/10.1080/14786436208213701
http://dx.doi.org/10.1080/14786436708220916
http://dx.doi.org/10.1103/PhysRev.171.1065
http://dx.doi.org/10.1103/PhysRevLett.103.267205
http://dx.doi.org/10.1103/PhysRevLett.38.1440


SciPost Phys. 6, 046 (2019)

[13] F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev.
Lett. 40, 279 (1978), doi:10.1103/PhysRevLett.40.279.

[14] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978),
doi:10.1103/PhysRevLett.40.223.

[15] F. Wilczek, Two applications of axion electrodynamics, Phys. Rev. Lett. 58, 1799 (1987),
doi:10.1103/PhysRevLett.58.1799.

[16] F. Wilczek, The birth of axions, Curr. Contents 16, 8 (1991).

[17] F. W. Hehl, Y. N. Obukhov, J.-P. Rivera and H. Schmid, Relativistic analysis of magneto-
electric crystals: extracting a new 4-dimensional P odd and T odd pseudoscalar from Cr2O3
data, Phys. Lett. A 372, 1141 (2008), doi:10.1016/j.physleta.2007.08.069.

[18] E. Kita, K. Siratori and A. Tasaki, Experimental determination of the mechanism of ME
effect of Cr2O3 from ME susceptibility and electric shift in the antiferromagnetic resonance,
J. Appl. Phys. 50, 7748 (1979), doi:10.1063/1.326810.

[19] F. W. Hehl, Y. N. Obukhov, J.-P. Rivera and H. Schmid, Magnetoelectric Cr2O3 and relativity
theory, Eur. Phys. J. B 71, 321 (2009), doi:10.1140/epjb/e2009-00203-7.

[20] F. W. Hehl, Y. Itin and Y. N. Obukhov, On Kottler’s path: origin and evolution of the premetric
program in gravity and in electrodynamics, Int. J. Mod. Phys. D 25, 1640016 (2016),
doi:10.1142/S0218271816400162.

[21] P. Sikivie, Experimental tests of the "invisible" axion, Phys. Rev. Lett. 51, 1415 (1983),
doi:10.1103/PhysRevLett.51.1415.

[22] M. S. Turner, Windows on the axion, Phys. Rep. 197, 67 (1990), doi:10.1016/0370-
1573(90)90172-X.

[23] D. J. E. Marsh, Axion cosmology, Phys. Rep. 643, 1 (2016),
doi:10.1016/j.physrep.2016.06.005.

[24] C. Beenakker, Topological magnetoelectric effect versus quantum Faraday effect, J. Club
Condens. Matter Phys., Leiden University (2016).

[25] R. Resta, Theory of the electric polarization in crystals, Ferroelectrics 136, 51 (1992),
doi:10.1080/00150199208016065.

[26] R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach,
Rev. Mod. Phys. 66, 899 (1994), doi:10.1103/RevModPhys.66.899.

[27] D. Xiao, J. Shi and Q. Niu, Berry phase correction to electron density of states in solids,
Phys. Rev. Lett. 95, 137204 (2005), doi:10.1103/PhysRevLett.95.137204.

[28] R. Resta and D. Vanderbilt, Theory of polarization: a modern approach, in Physics of
Ferroelectrics, Top. Appl. Phys. 105, 31 (2007), doi:10.1007/978-3-540-34591-6_2.

[29] S. Coh, D. Vanderbilt, A. Malashevich and I. Souza, Chern-Simons orbital mag-
netoelectric coupling in generic insulators, Phys. Rev. B 83, 085108 (2011),
doi:10.1103/PhysRevB.83.085108.

[30] N. A. Spaldin, A beginner’s guide to the modern theory of polarization, J. Solid State Chem.
195, 2 (2012), doi:10.1016/j.jssc.2012.05.010.

31

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1016/j.physleta.2007.08.069
http://dx.doi.org/10.1063/1.326810
http://dx.doi.org/10.1140/epjb/e2009-00203-7
http://dx.doi.org/10.1142/S0218271816400162
http://dx.doi.org/10.1103/PhysRevLett.51.1415
http://dx.doi.org/10.1016/0370-1573(90)90172-X
http://dx.doi.org/10.1016/0370-1573(90)90172-X
http://dx.doi.org/10.1016/j.physrep.2016.06.005
http://dx.doi.org/10.1080/00150199208016065
http://dx.doi.org/10.1103/RevModPhys.66.899
http://dx.doi.org/10.1103/PhysRevLett.95.137204
http://dx.doi.org/10.1007/978-3-540-34591-6_2
http://dx.doi.org/10.1103/PhysRevB.83.085108
http://dx.doi.org/10.1016/j.jssc.2012.05.010


SciPost Phys. 6, 046 (2019)

[31] C. L. Kane, Topological band theory and the Z2 invariant, in Contemporary Concepts
of Condensed Matter Science 6, Elsevier, (2013), doi:10.1016/B978-0-444-63314-
9.00001-9.

[32] Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82, 102001 (2013),
doi:10.7566/JPSJ.82.102001.

[33] D. Vanderbilt and R. D. King-Smith, Electric polarization as a bulk quantity and its relation
to surface charge, Phys. Rev. B 48, 4442 (1993), doi:10.1103/PhysRevB.48.4442.

[34] T. L. Hughes, E. Prodan and B. Andrei Bernevig, Inversion-symmetric topological insula-
tors, Phys. Rev. B 83, 245132 (2011), doi:10.1103/PhysRevB.83.245132.

[35] A. M. Turner, Y. Zhang, R. S. K. Mong and A. Vishwanath, Quantized response and topol-
ogy of magnetic insulators with inversion symmetry, Phys. Rev. B 85, 165120 (2012),
doi:10.1103/PhysRevB.85.165120.

[36] C. Fang, M. J. Gilbert and B. Andrei Bernevig, Bulk topological invariants in non-
interacting point group symmetric insulators, Phys. Rev. B 86, 115112 (2012),
doi:10.1103/PhysRevB.86.115112.

[37] N. Varnava and D. Vanderbilt, Surfaces of axion insulators, Phys. Rev. B 98, 245117
(2018), doi:10.1103/PhysRevB.98.245117.

[38] D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Quantized Hall con-
ductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982),
doi:10.1103/PhysRevLett.49.405.

[39] R. Landauer, Pyroelectricity and piezoelectricity are not true volume effects, Solid State
Commun. 40, 971 (1981), doi:10.1016/0038-1098(81)90046-6.

[40] C. Kallin and B. I. Halperin, Surface-induced charge disturbances and piezoelectricity in
insulating crystals, Phys. Rev. B 29, 2175 (1984), doi:10.1103/PhysRevB.29.2175.

[41] G. Ortiz and R. M. Martin, Macroscopic polarization as a geometric quantum phase: Many-
body formulation, Phys. Rev. B 49, 14202 (1994), doi:10.1103/PhysRevB.49.14202.

[42] R. M. Martin, Comment on calculations of electric polarization in crystals, Phys. Rev. B 9,
1998 (1974), doi:10.1103/PhysRevB.9.1998.

[43] J. Nye, Physical properties of crystals: their representation by tensors and matrices, Oxford
University Press, Oxford (1985), ISBN: 9780198511656.

[44] N. P. Armitage, Constraints on Jones transmission matrices from time-reversal
invariance and discrete spatial symmetries, Phys. Rev. B 90, 035135 (2014),
doi:10.1103/PhysRevB.90.035135.

[45] W. P. Su, J. R. Schrieffer and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42,
1698 (1979), doi:10.1103/PhysRevLett.42.1698.

[46] F. D. M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: semi-
classically quantized solitons of the one-dimensional easy-axis Néel atate, Phys. Rev. Lett.
50, 1153 (1983), doi:10.1103/PhysRevLett.50.1153.

[47] K. N. Kudin, R. Car and R. Resta, Quantization of the dipole moment and of the end charges
in push-pull polymers, J. Chem. Phys. 127, 194902 (2007), doi:10.1063/1.2799514.

32

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
http://dx.doi.org/10.1016/B978-0-444-63314-9.00001-9
http://dx.doi.org/10.1016/B978-0-444-63314-9.00001-9
http://dx.doi.org/10.7566/JPSJ.82.102001
http://dx.doi.org/10.1103/PhysRevB.48.4442
http://dx.doi.org/10.1103/PhysRevB.83.245132
http://dx.doi.org/10.1103/PhysRevB.85.165120
http://dx.doi.org/10.1103/PhysRevB.86.115112
http://dx.doi.org/10.1103/PhysRevB.98.245117
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1016/0038-1098(81)90046-6
http://dx.doi.org/10.1103/PhysRevB.29.2175
http://dx.doi.org/10.1103/PhysRevB.49.14202
http://dx.doi.org/10.1103/PhysRevB.9.1998
http://dx.doi.org/10.1103/PhysRevB.90.035135
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/10.1063/1.2799514


SciPost Phys. 6, 046 (2019)

[48] H. Chun Po, H. Watanabe, M. P. Zaletel and A. Vishwanath, Filling-enforced quan-
tum band insulators in spin-orbit coupled crystals, Sci. Adv. 2, e1501782 (2016),
doi:10.1126/sciadv.1501782.

[49] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo
and B. Andrei Bernevig, Topological quantum chemistry, Nature 547, 298 (2017),
doi:10.1038/nature23268.

[50] Q. Niu, Surface and soliton charge in insulating systems, Phys. Rev. B 33, 5368 (1986),
doi:10.1103/PhysRevB.33.5368.

[51] V. Heine, Phase shifts and local charge neutrality in semiconductors, Phys. Rev. 145, 593
(1966), doi:10.1103/PhysRev.145.593.

[52] J. A. Appelbaum and D. R. Hamann, Surface-induced charge disturbances in filled bands,
Phys. Rev. B 10, 4973 (1974), doi:10.1103/PhysRevB.10.4973.

[53] F. Claro, Phase rule for the semiconductor-vacuum interface, Phys. Rev. B 17, 699 (1978),
doi:10.1103/PhysRevB.17.699.

[54] J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62, 2747 (1989),
doi:10.1103/PhysRevLett.62.2747.

[55] M. J. Rice and E. J. Mele, Elementary excitations of a linearly conjugated diatomic polymer,
Phys. Rev. Lett. 49, 1455 (1982), doi:10.1103/PhysRevLett.49.1455.

[56] D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983),
doi:10.1103/PhysRevB.27.6083.

[57] R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632
(1981), doi:10.1103/PhysRevB.23.5632.

[58] P. Hosur, S. Ryu and A. Vishwanath, Chiral topological insulators, superconductors,
and other competing orders in three dimensions, Phys. Rev. B 81, 045120 (2010),
doi:10.1103/PhysRevB.81.045120.

[59] S. S. Pershoguba and V. M. Yakovenko, Shockley model description of surface states in topo-
logical insulators, Phys. Rev. B 86, 075304 (2012), doi:10.1103/PhysRevB.86.075304.

[60] R. S. K. Mong, A. M. Essin and J. E. Moore, Antiferromagnetic topological insulators, Phys.
Rev. B 81, 245209 (2010), doi:10.1103/PhysRevB.81.245209.

[61] V. Dziom et al., Observation of the universal magnetoelectric effect in a 3D topological in-
sulator, Nat. Commun. 8, 15197 (2017), doi:10.1038/ncomms15197.

[62] D. Xiao et al., Realization of the axion insulator state in quantum anoma-
lous Hall sandwich heterostructures, Phys. Rev. Lett. 120, 056801 (2018),
doi:10.1103/PhysRevLett.120.056801.

[63] T. Morimoto, A. Furusaki and N. Nagaosa, Topological magnetoelectric ef-
fects in thin films of topological insulators, Phys. Rev. B 92, 085113 (2015),
doi:10.1103/PhysRevB.92.085113.

[64] L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh and N. P. Armitage, Quantized Faraday and
Kerr rotation and axion electrodynamics of a 3D topological insulator, Science 354, 1124
(2016), doi:10.1126/science.aaf5541.

33

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
http://dx.doi.org/10.1126/sciadv.1501782
http://dx.doi.org/10.1038/nature23268
http://dx.doi.org/10.1103/PhysRevB.33.5368
http://dx.doi.org/10.1103/PhysRev.145.593
http://dx.doi.org/10.1103/PhysRevB.10.4973
http://dx.doi.org/10.1103/PhysRevB.17.699
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1103/PhysRevLett.49.1455
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.81.045120
http://dx.doi.org/10.1103/PhysRevB.86.075304
http://dx.doi.org/10.1103/PhysRevB.81.245209
http://dx.doi.org/10.1038/ncomms15197
http://dx.doi.org/10.1103/PhysRevLett.120.056801
http://dx.doi.org/10.1103/PhysRevB.92.085113
http://dx.doi.org/10.1126/science.aaf5541


SciPost Phys. 6, 046 (2019)

[65] L. Wu et al., A sudden collapse in the transport lifetime across the topological phase transi-
tion in (Bi1−x Inx)2Se3, Nat. Phys. 9, 410 (2013), doi:10.1038/nphys2647.

[66] T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando and T.
Takahashi, Unexpected mass acquisition of Dirac fermions at the quantum phase transition
of a topological insulator, Nat. Phys. 7, 840 (2011), doi:10.1038/nphys2058.

[67] M. Taherinejad, K. F. Garrity and D. Vanderbilt, Wannier center sheets in topological insu-
lators, Phys. Rev. B 89, 115102 (2014), doi:10.1103/PhysRevB.89.115102.

[68] M. Taherinejad and D. Vanderbilt, Adiabatic pumping of Chern-Simons axion coupling,
Phys. Rev. Lett. 114, 096401 (2015), doi:10.1103/PhysRevLett.114.096401.

[69] T. Olsen, M. Taherinejad, D. Vanderbilt and I. Souza, Surface theorem for the Chern-Simons
axion coupling, Phys. Rev. B 95, 075137 (2017), doi:10.1103/PhysRevB.95.075137.

[70] A. A. Soluyanov and D. Vanderbilt, Wannier representation of Z2 topological insulators,
Phys. Rev. B 83, 035108 (2011), doi:10.1103/PhysRevB.83.035108.

[71] G. W. Winkler, A. A. Soluyanov and M. Troyer, Smooth gauge and Wannier functions
for topological band structures in arbitrary dimensions, Phys. Rev. B 93, 035453 (2016),
doi:10.1103/PhysRevB.93.035453.

[72] J. E. Moore, An introduction to topological phases of electrons, Topological aspects of con-
densed matter physics: lecture notes of the Les Houches summer school 103, 1 (2017).

[73] X.-L. Qi, R. Li, J. Zang and S.-C. Zhang, Inducing a magnetic monopole with topological
surface states, Science 323, 1184 (2009), doi:10.1126/science.1167747.

[74] D. A. Pesin and A. H. MacDonald, Topological magnetoelectric effect decay, Phys. Rev. Lett.
111, 016801 (2013), doi:10.1103/PhysRevLett.111.016801.

[75] M. Mondal et al., Electric field modulated topological magnetoelectric effect in Bi2Se3, Phys.
Rev. B 98, 121106 (2018), doi:10.1103/PhysRevB.98.121106.

[76] K. N. Okada, Y. Takahashi, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S. Takahashi,
N. Ogawa, M. Kawasaki and Y. Tokura, Terahertz spectroscopy on Faraday and Kerr
rotations in a quantum anomalous Hall state, Nat. Commun. 7, 12245 (2016),
doi:10.1038/ncomms12245.

[77] W.-K. Tse and A. H. MacDonald, Giant magneto-optical Kerr effect and universal Fara-
day effect in thin-film topological insulators, Phys. Rev. Lett. 105, 057401 (2010),
doi:10.1103/PhysRevLett.105.057401.

[78] W.-K. Tse and A. H. MacDonald, Magneto-optical and magnetoelectric effects of topo-
logical insulators in quantizing magnetic fields, Phys. Rev. B 82, 161104 (2010),
doi:10.1103/PhysRevB.82.161104.

[79] J. Maciejko, X.-L. Qi, H. D. Drew and S.-C. Zhang, Topological quantization
in units of the fine structure constant, Phys. Rev. Lett. 105, 166803 (2010),
doi:10.1103/PhysRevLett.105.166803.

[80] M. Liu, W. Wang, A. R. Richardella, A. Kandala, J. Li, A. Yazdani, N. Samarth and N. Phuan
Ong, Large discrete jumps observed in the transition between Chern states in a ferromagnetic
topological insulator, Sci. Adv. 2, e1600167 (2016), doi:10.1126/sciadv.1600167.

34

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
http://dx.doi.org/10.1038/nphys2647
http://dx.doi.org/10.1038/nphys2058
http://dx.doi.org/10.1103/PhysRevB.89.115102
http://dx.doi.org/10.1103/PhysRevLett.114.096401
http://dx.doi.org/10.1103/PhysRevB.95.075137
http://dx.doi.org/10.1103/PhysRevB.83.035108
http://dx.doi.org/10.1103/PhysRevB.93.035453
http://dx.doi.org/10.1126/science.1167747
http://dx.doi.org/10.1103/PhysRevLett.111.016801
http://dx.doi.org/10.1103/PhysRevB.98.121106
http://dx.doi.org/10.1038/ncomms12245
http://dx.doi.org/10.1103/PhysRevLett.105.057401
http://dx.doi.org/10.1103/PhysRevB.82.161104
http://dx.doi.org/10.1103/PhysRevLett.105.166803
http://dx.doi.org/10.1126/sciadv.1600167


SciPost Phys. 6, 046 (2019)

[81] N. Koirala et al., Record surface state mobility and quantum Hall effect in topo-
logical insulator thin films via interface engineering, Nano Lett. 15, 8245 (2015),
doi:10.1021/acs.nanolett.5b03770.

[82] X. Wan, A. Vishwanath and S. Y. Savrasov, Computational design of axion in-
sulators based on 5d spinel compounds, Phys. Rev. Lett. 108, 146601 (2012),
doi:10.1103/PhysRevLett.108.146601.

[83] S. Coh and D. Vanderbilt, Canonical magnetic insulators with isotropic magnetoelectric
coupling, Phys. Rev. B 88, 121106 (2013), doi:10.1103/PhysRevB.88.121106.

[84] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang and J. Wang, Topological axion
states in magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect (2018),
arXiv:1808.08014.

[85] M. M. Otrokov et al., Prediction and observation of the first antiferromagnetic topological
insulator (2018), arXiv:1809.07389.

[86] Y. Gong, et al., Experimental realization of an intrinsic magnetic topological insulator
(2018), arXiv:1809.07926

[87] M. E. Peskin, An introduction to quantum field theory, CRC Press, (1995),
doi:10.1201/9780429503559.

35

https://scipost.org
https://scipost.org/SciPostPhys.6.4.046
http://dx.doi.org/10.1021/acs.nanolett.5b03770
http://dx.doi.org/10.1103/PhysRevLett.108.146601
http://dx.doi.org/10.1103/PhysRevB.88.121106
https://arxiv.org/abs/1808.08014
https://arxiv.org/abs/1809.07389
https://arxiv.org/abs/1809.07926
http://dx.doi.org/10.1201/9780429503559

	Introduction
	"Modified" Maxwell's equations for the ideal case
	Quantized response from symmetry considerations
	Analogy to (ferro)electric polarization
	Polarization in one dimension: the simplest topological scheme
	Formal polarization vs. effective polarization
	Polarization in higher dimension
	Wannier functions and Berry's phase
	The 1D Thouless pump

	The surface half integer Hall effect as a signature of a bulk magnetoelectric response
	A simple cartoon of a 3D topological insulator
	The formal magnetoelectric susceptibility vs. the effective magnetoelectric susceptibility
	The Thouless pump in 3D topological insulators and hybrid Wannier functions

	The effects of residual surface dissipation on the magnetoelectric response of topological insulators
	Experiments
	Concluding remarks
	Derivation of "modified" Maxwell's Equation
	References

