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Abstract

Describing and understanding the motion of quantum gases out of equilibrium is one
of the most important modern challenges for theorists. In the groundbreaking Quan-
tum Newton Cradle experiment [Kinoshita, Wenger and Weiss, Nature 440, 900 (2006)],
quasi-one-dimensional cold atom gases were observed with unprecedented accuracy,
providing impetus for many developments on the effects of low dimensionality in out-of-
equilibrium physics. But it is only recently that the theory of generalized hydrodynamics
has provided the adequate tools for a numerically efficient description. Using it, we give
a complete numerical study of the time evolution of an ultracold atomic gas in this setup,
in an interacting parameter regime close to that of the original experiment. We evaluate
the full evolving phase-space distribution of particles. We simulate oscillations due to
the harmonic trap, the collision of clouds without thermalization, and observe a small
elongation of the actual oscillation period and cloud deformations due to many-body
dephasing. We also analyze the effects of weak anharmonicity. In the experiment, mea-
surements are made after release from the one-dimensional trap. We evaluate the gas
density curves after such a release, characterizing the actual time necessary for reaching
the asymptotic state where the integrable quasi-particle momentum distribution func-
tion emerges.
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1 Introduction

In 2006, the pioneering experiment of the “Quantum Newton Cradle" [1] (QNC) provided a
groundbreaking demonstration of the fundamental importance of the large number of conser-
vation laws in the description of out-of-equilibrium one-dimensional (1d) quantum systems. In
this experiment, an ultracold gas of Rubidium atoms is confined to one dimension by a strong
transverse optical trap, and weakly confined to a finite region by a longitudinal quasi-harmonic
potential. A sequence of Bragg pulses imparts a linear combination of oppositely-directed mo-
menta to the initial cloud that lies at the center of the trap. After a short dephasing period,
two independent clouds emerge, which oscillate within the trap and meet twice every period.
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Surprisingly, upon meeting and interacting, the clouds do not thermalize to a single zero-
momentum cloud, as would happen in an ordinary gas. Instead, the two clouds re-emerge
and continue their oscillations. This is likened to the Newton cradle, the famous desktop toy
in which, upon collision, momentum is transferred between the end beads.

To a good approximation [2], the dynamics of a 1d gas of N identical bosonic atoms with
mass m at positions x i is described by a hamiltonian with “delta” repulsion called the Lieb-
Liniger model [3,4],

H = −
ħh2

2m

N
∑

i=1

∂ 2
x i
+ g

∑

i< j

δ(x i − x j) +
N
∑

i=1

V (x i), (1)

where g > 0 is the repulsion strength and V (x) the longitudinal trapping potential. In the
absence of a potential V (x), this model is integrable —it has an extensive number of conserved
quantities—, a property that was conjectured to be at the root of the lack of thermalization
in the QNC experiment. This has given rise to a wealth of theoretical developments on the
generalization of thermalization in integrable models, following Refs. [5,6]. It was understood
that, even after very long times, integrable systems fail to converge to a thermal Gibbs state.
Instead, they reach a macrostate that is entirely characterized by the distribution of quasi-
particles [7], in a way that parallels and generalizes the early work of Yang and Yang on the
thermodynamics of the 1d Bose gas [8].

Realistic theoretical modeling of the QNC experiment requires to deal with N ∼ 102-103

particles at finite repulsion strength —i.e. away from the hard-core limit g → +∞ that can be
treated with exact determinantal methods [9]—and with an inhomogeneous potential V (x).
This has remained completely out of reach of modern theoretical tools, and has represented
one of the most prominent challenges in quantum many-body theory in the past decade. On
the analytical side, the difficulty is twofold. First, it is known that the external potential breaks
integrability. How, then, is the physics of integrability coming into play? Second, the setup
is highly inhomogeneous, which is a major issue for most analytical techniques available in
1d [10]. On the numerical side, the situation is not better: modern tools for out-of-equilibrium
quantum many-body physics like tDMRG [11] are limited to small numbers of particles and
small times in QNC-like setups [12], while numerical methods based on integrability [13–17]
break down because of the strong inhomogeneity.

A new set of theoretical tools and ideas have come to the fore in 2016 that, as we argue
here, provide such a realistic modeling. These pertain to the theory of “generalized hydro-
dynamics" (GHD) [18, 19], a hydrodynamic approach to 1d integrable models that is able to
account for a wide variety of inhomogeneous situations [20], including states obtained from
domain-wall initial boundary conditions [18,19,21–23], the effects of external potentials [24]
and the propagation of waves [25,26]. The last two of these works show excellent agreement
with full numerical simulations of the Lieb-Liniger model for N ∼ 40 particles [25] based on
NRG+ABACUS [13–17,27], and with tDMRG in the XXZ chain [26]. The goal of this Letter is
to apply the newly developed GHD framework to provide a quantitatively accurate modeling
of the QNC experiment that remains easily tractable numerically.

2 The GHD equation

GHD is a hydrodynamic approach that captures the behavior of the Lieb-Liniger model —as
well as any other Bethe ansatz integrable model [18, 19]— at the Euler scale [28]. This is
the scale at which variations of densities of particles, momentum, energy, and all other local
conserved quantities, are slow enough, in both space and time. The system is then viewed
as an assembly of “mescoscopic” fluid cells at spacetime positions (x , t), each of which is
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large enough such that it contains a thermodynamically large number of bosons, and small
enough such that the gas is homogeneous throughout the cell. As in any other hydrodynamic
theory [28], at this scale GHD assumes that local maximization of entropy has occurred. In
standard approaches [12,29–32], this would imply that each fluid cell is locally in a Galilean
boost of a thermal Gibbs state. Instead, GHD keeps track of the infinite set of conserved charges
by representing the local macrostate by its distribution ρp(θ ) of quasi-particles with velocity
θ . In GHD, this distribution is position- and time-dependent, and is denoted ρp(θ , x , t). In

terms of the quasi-particles, the density of bosons n(x , t) =
¬

eiH t
�

∑N
j=1δ(x − x j)

�

e−iH t
¶

is
recovered, in the thermodynamic limit by integrating locally over all the quasi-particles:

n(x , t) =

∫

dθρp(θ , x , t). (2)

Similarly, all other densities of conserved charges in the Lieb-Liniger model, such as momen-
tum, energy, or others, may be expressed as integrals

∫

dθh(θ )ρp(θ , x , t) for suitably chosen
functions h(θ ), see e.g. Ref. [18].

The conservation of quasi-particle densities exchanged between neighbouring fluid cells
fully fixes the dynamics [18, 19]. Taking into account the trapping potential V (x), the GHD
equation reads [24]

∂tρp + ∂x[v
effρp] =

�

∂x V
m

�

∂θρp, (3)

where the effective velocity veff itself depends on the local distribution of quasi-particles
ρp(. , x , t) through the “dressed” functions,

veff(θ ) = iddr(θ )/1dr(θ ). (4)

Here id(θ ) = θ and 1(θ ) = 1, and the “dressing” is defined for any function f (θ ) as the

solution of the linear integral equation f dr(θ ) = f (θ )+
∫

dθ ′ 2g/m
(g/ħh)2+(θ−θ ′)2

ρp(θ ′)
1dr(θ ′) f dr(θ ′). Thus,

GHD is a large-scale approach to the (inhomogeneous) Lieb-Liniger model (1) that requires
to (i) specify an initial condition ρp(θ , x , 0) at t = 0, and (ii) solve the partial differential
equation (3).

A number of techniques are available to numerically solve Eq. (3). Numerical methods
for solving partial differential equations [33] can be adapted to GHD —a discussion about this
can be found in Ref. [26]—. Other methods have been discovered in the past months, that
can be easier to implement, and in certain simple cases, possibly more efficient (an example
is an exact solution expressed as a system of integral equations [34], which can be solved
recursively on a computer very quickly; but until now this applies only to the case without an
external potential V (x)).

An efficient technique [25] is that of the zero-entropy subspace. It uses the simplification of
GHD for initial states which have zero Yang-Yang entropy, such as zero-temperature states. In
this case, the solution is expressed via space-time dependent Fermi points, whose equations are
simple enough to be directly amenable to numerical solution. Zero-entropy GHD works in the
presence of external potentials, and it also sheds light on phenomena such as shock formation
and dissolution [25]. Zero-temperature initial states are often a good first approximation for
low-temperature experimental setups. It is possible to analyze such a zero-temperature version
of the QNC by taking the initial state as the ground state in a double-well potential that splits
the gas into two. By releasing the two clouds in a single harmonic well, the main phenomenon
– the lack of thermalization upon cloud collisions – of the QNC experiment is observed (see
Appendix I).

Finally, the technique which we chose to use here is a classical molecular simulator [35].
This is essentially a Monte Carlo technique: a gas of classical particles [36] is initially sampled

4

https://scipost.org
https://scipost.org/SciPostPhys.6.6.070


SciPost Phys. 6, 070 (2019)

Figure 1: Evolution of the density of quasi-particles ρp(θ , x , t)—here plotted in the
(x ,θ )-plane— in the QNC setup, with parameters given in the text. The solution of
the GHD equations are obtained from the flea gas [35]. The results are displayed
for the harmonic trap (top row) and the weakly anharmonic one (middle row), on
one period of the (quasi-)harmonic trap. (Bottom row) Corresponding density of
particles n(x , t), for the harmonic trap (blue) and the anharmonic one (red).

according to the distribution of integrable quasi-particles determined, via appropriate inte-
gral equations, by the initial quantum state, and then let to evolve in a deterministic fashion
by a specific dynamics that encodes the interaction of the quantum gas. The hydrodynamic
description of this classical gas is, at the Euler scale, exactly the same GHD equation (3) as
the one found in the quantum gas [35]. This quantum-classical equivalence provides an ex-
tremely efficient method for simulating solutions to the GHD equation, that is able to account
simultaneously for arbitrary initial conditions and for external potentials.

3 Modeling the Bragg pulse sequence

We start from the thermal Gibbs state in a (quasi-)harmonic potential V (x). The exact ex-
perimental distribution pre-pulse is not known, and is not expected to be exactly thermal as
cooling methods deplete the large-momentum region. However a thermal distribution is ex-
pected to be a good approximation, accounting well enough for the remaining energy that
brings the system away from absolute zero temperature. The pre-pulse density ρGibbs

p (θ , x)
is obtained by searching for the finite-temperature hydrostatic solution of (3), which can be
shown [24] to be equivalent to a local density approximation (LDA) [37], obtained using the
Thermodynamic Bethe Ansatz [8]. This technique is known to give an accurate description of
atomic gases at equilibrium in quasi-harmonic traps [38,39]. We model the post-pulse distri-
bution ρp(θ , x , 0) by imparting, in a random fashion, positive and negative momenta to the
quasi-particles. More precisely,

ρp(θ , x , 0) =
1
2
ρGibbs

p (θ + θBragg, x) +
1
2
ρGibbs

p (θ − θBragg, x), (5)

corresponding to a pulse where the momentum of a quasi-particle is kicked by ±mθBragg with
equal probability 1

2 . In fact, results of [40] show that the momentum distribution function
(MDF) of particles (both the real bosonic particles, and their fermionic Jordan-Wigner trans-
form) are affected in this way by a Bragg pulse. To a good approximation the same holds
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Figure 2: Same as Fig. 1, on a larger time window. In the harmonic case, the two
blobs in the (x ,θ )-plane keep rotating around each other after several trap periods.
In the anharmonic case, the distribution ρp(θ , x) is strongly stirred up after a few
trap periods, and it goes to stationary state that looks rotationally invariant in the
(x ,θ )-plane.

for the quasi-particle MDF because of the large momentum difference between clouds: the
inter-cloud interaction is therefore effectively hard-core, hence screened for the fermions (the
intra-cloud uniform momentum kicks by ±θBragg are Galilean transformations). We have also
considered more refined models for the Bragg pulse (see Ref. [40] for a detailed discussion),
but we find that it does not affect drastically the evolution at later times, and this simple
version is already in good agreement with what is seen in the experiment.

4 Results for the (harmonic) QNC

We work with the following parameters, which are close to the ones given in Ref. [1]. We take
N = 350 bosonic atoms with mass m= 142.9×10−27kg in a harmonic trap V (x) = mω2 x2/2
with period τ = 2π

ω = 13ms, and with repulsion strength c = mg
ħh2 = 12.3µm−1. The pre-pulse

state is a thermal Gibbs state at temperature T = 10µm−2×ħh2/m' 57nK. We then apply the
Bragg pulse sequence (random kick of the particle velocities by ±θBragg = ±ħhkBragg/m) with
2kBragg = 25µm−1. In the initial state, the density at the center of the trap is n(0) = 11.5µm−1,
which gives a dimensionless interaction strength γ= c/n(0)' 1.07, close to the experimental
value [1]. Notice that we are far from both the hard-core (or Tonks-Girardeau) limit γ � 1
and the weakly interacting (or Gross-Pitaevskii) limit γ� 1.

After the Bragg pulse, the dynamics of the Bose gas is given by Eq. (3), which we solve
with the molecular dynamics simulation, see Fig. 1. We observe that the two blobs, originally
separated in momentum space and symmetric with respect to θ 7→ −θ , evolve by perform-
ing a deformed rotation-like movement around the origin of phase space. At time t ' τ/4,
the two blobs have zero spatial overlap, corresponding to two well separated clouds in real
space. At time t ' τ/2, they have again overlapping spatial support. Their evolution is not
drastically affected by this overlapping, and it is clear, in the phase space picture, how the two
atomic clouds can pass through each other. The actual gas density —bottom row of Fig. 1—
is obtained by integrating ρp(θ , x , t) over θ according to Eq. (2).

We observe that the blobs are slightly slowed down when they overlap: it takes them
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slightly longer than a period τ to come back to their original position along the vertical axis.
The inter-cloud interaction at spatial overlap is weak because of large momentum separation,
but nonzero, with perceptible effect. Further, after several periods, the blobs elongate transver-
sally, roughly towards the center of rotation in phase space, see Fig. 2. This slow “many-body
dephasing” effect, controlled by how far the effective velocity is from the bare velocity 1, is
also due to inter-cloud interactions. Notice how, in Fig. 1, the blobs’ shape stay relatively un-
changed until just before half a period, t = 0.4τ, while after the clouds have passed through
each other, t = 0.6τ, slight modifications have occurred. Particles of one cloud, going through
the other cloud, are scattered on the scale of the scattering length. We observe that the parti-
cle density spreads mostly towards lower energies. The spreading must indeed be stronger at
lower energies than at higher energies, because total energy is conserved, while the change in
energy per distance (per momentum) is greater at higher energies than it is at lower energies
(as is clear from the form of the potential, and of the kinetic energy as function of momentum).
Intra-cloud scattering is also present but its effect is weaker as fewer scattering events occur.

5 Effects of weak anharmonicity

In the QNC experiment, the trapping potential is not exactly harmonic. To study the effects of
anharmonicity, we now replace the harmonic trap by V (x) = 1

π2ω
2`2(1−cos(πx

` )), both before
and after the Bragg pulse. This form is chosen in order to mimic actual experimental setups,
where potentials are often close to trigonometric functions. In particular, the anharmonicity
has the property that the potential is smaller than harmonic further away from the centre
(i.e. it becomes flatter). We chose ` = 100µm, and all other parameters are identical to the
ones of the harmonic case. In Fig. 1 (second row), we see that the two blobs get deformed
much more quickly than in the harmonic case; the distribution ρp(θ , x , t) gets more and more
stirred up after few periods (Fig. 2, second row). A similar effect was recently observed for a
single particle in an anharmonic trap in Ref. [41]. In particular, we observe in Figs. 1 and 2
(second row) that the blobs elongate longitudinally, roughly in the direction of their motion
in phase space. This is an effect of the anharmonicity ` <∞: because the potential becomes
flatter far from the origin, particles with higher velocities take longer to come back to their
original position. This “single-body dephasing" effect is well captured by the spreading of blobs
of noninteracting particles, and can be quantified by evaluating the nonzero difference ∆t
between the periods of independent particles of different velocities. With minimal (maximal)
velocity of 10µm/ms (40µm/ms) within one initial blob, one finds (∆t)max ≈ 1.2ms. The
anharmonic mixing time is approximately τ · τ/(∆t)max ≈ 11τ, in agreement with Fig. 2.
Many-body dephasing is also present in the anharmonic case. Noticeably, without interactions
the original blobs would simply disintegrate into long spiraling filaments. We see instead
at 10τ new structures forming. These appear as many-body dephasing takes effect, causing
filaments to merge and high-energy (longer-period) tails to scatter to lower energies, opening
the way for the quicker single-body effects to reform new blobs.

6 Discussion: thermalization?

We now turn to the fundamental question that was raised in 2006 in Ref. [1]: does the gas
thermalize after a sufficiently large number of oscillations? We first consider this question

1See Appendix II for expressions of the time variation of the total number of quasi-particles, and of their total
energy, within the region mθ 2/2+ V (x)< E, showing non-conservation in the presence of interaction, controlled
by |veff(θ )− θ )| for θ without the region.
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within pure GHD. Within this context, the answer is negative. The reason is that, in addition
to its particle number and its global energy

E =

∫

d xdθ (
mθ2

2
+ V (x))ρp(θ , x), (6)

GHD keeps track of many initial features. Indeed, we found that even in the presence of a
trapping potential V (x), the GHD equation (3) possesses infinitely many conserved quantities
Q(η), with a continuous parameter η ∈ [0,1] – see Appendix III, that give rise to conservation
of the Yang-Yang entropy [8] and generalizations thereof.

This is incompatible with the system converging to a Gibbs state, even at infinite time.
Much like phase-space preservation in classical mechanics may lead to fractal trajectories, in
GHD these constraints give rise to fine structures developing at ever decreasing scales; see for
instance the times of order t ' 6τ − 10τ in the anharmonic case of Fig. 2, Ref. [41] for a
similar study in the hard-core (γ→∞) limit, and the very recent work on the dynamics of a
classical hard rod gas in a trap [42]. However, there is a sense in which GHD converges to a
smooth, stationary state: this is through coarse-graining.

7 Microscopics and coarse-graining

GHD is an idealized hydrodynamic description with no UV cutoff. In contrast, the 1d Bose gas
(1) is a microscopic model described by GHD only at larger scales, and is therefore only an
imperfect realization of GHD.

Now GHD predicts the appearance of fine structure in phase space, i.e. strong variations of
ρp(θ , x). The way the microscopic model treats the appearance of these UV degrees of freedom
in GHD amounts to coarse graining: the density ρp(θ , x) predicted from GHD gets essentially
replaced by its average over fluid cells [x , x+d x] of size larger than the inter-particle distance,
so eliminating the UV degrees of freedom from the problem. As a result of this coarse-graining,
the entropy of the gas increases and the quantities Q(η) are not conserved. Interestingly, this
effect was studied in Ref. [42] for the classical hard-rod gas [28], and was marked as the
consequence of an interim chaotic regime.

In an attempt to understand better coarse-graining effects, we have discovered that under
certain hydrodynamic conditions, the GHD equations are invariant under the coarse-graining
procedure where quasi-particle phase-space densities are replaced by their local averages –
see Appendix IV. In particular, GHD time evolution commutes with this coarse-graining proce-
dure, as long as the coarse-gaining cells are mesoscopic and certain dephasing conditions hold.
This suggests an amount of universality to the GHD solutions; for instance, as fine structures
emerge, one may coarse-grain, still correctly describing the solution over time.

We have not been able to study coarse-graining effects directly in the 1d Bose gas (1), as
it would require a full quantum simulation which is currently beyond reach. However, the
loss of fine structures at large times is made clear as we vary the UV cutoff in our molecular
simulation (Appendix IV). The UV cutoff can be taken as the number of classical particles used
in the simulation, and this provides an indication for the relation between loss of fine structures
and actual particle numbers in the 1d Bose gas. We also observed that at a coarse-grain level,
a stationary state emerges – see Appendix V.

Although not a Gibbs state, as argued in [24] such a stationary state must be a “Generalized
HydroStatics” solution: it satisfies ∂x[veffρp] = (∂x V/m)∂θρp (this was explicitly checked
in the hard-rod case in [42]). We furthermore have partial numerical evidence that such a
stationary state is a universal property of coarse-grained GHD, and not sensitive to particular
microscopic realizations of GHD.
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8 Profiles after Time-Of-Flight (TOF) in 1d

In Ref. [1], it is not the in situ density that is being measured, but the density profile after a
trap release in 1d: in order to have a cloud that is large enough compared to the resolution of
the camera, the longitudinal potential is suddenly released, and the atomic cloud expands for
a time tTOF, before a picture is taken. When tTOF is sufficiently large, the real-space density
profile nTOF(x) is directly related to the momentum distribution function (MDF) of integrable
quasi-particles ρp(θ , x ′) just before the expansion, as

nTOF(x) =
tTOF→∞

1
tTOF

∫

d x ′ρp(θ , x ′), θ = x/tTOF (7)

(see Refs. [43–48] and Appendix VI). However, importantly, it is not only the asymptotic dis-
tribution for tTOF →∞ that is accessible thanks to GHD. Instead, the full expansion of the
cloud can be simulated by suddenly setting V = 0 in Eq. (3) at the expansion time. Since,
during the whole expansion, the typical length scale of density variations grows proportionally
to the typical inter-particle distance, the hydrodynamic approximation remains valid through-
out. Hence, GHD is particularly well-suited for predicting the outcome of such measurements,
even at finite Time-Of-Flights. To our knowledge, this is not accessible by other techniques.
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Figure 3: Density profile after Time-Of-Flight tTOF in 1d, for the QNC in an anhar-
monic trap with the same parameters as in Figs. 1-2. We compare the profiles for
tTOF = 10ms (red), tTOF = 25ms (magenta), tTOF = 50ms (cyan) and tTOF =∞
(dashed black, corresponding to Eq. (7)).

We have evaluated the expansion curves obtained after 10ms, 25ms and 50ms, as released
from an evolution within the anharmonic potential for times from 0 to 2τ, and at time 10τ,
see Fig. 3. The time necessary to reach the asymptotic state (7) depends strongly on the initial
distribution. It is very short for distributions with high momenta such as just after the Bragg
pulses (less than 5ms for an expansion at t = 0τ), but it is much longer when particles are
slower and mostly lie at the edges of the potential (requiring more than 60 ms at t = 0.25τ).
This corresponds to an expanded cloud that is 10 (for initially fast particles) to 30 (for initially
slow particles) times larger than the original one.
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9 3d expansion and momentum distribution

Longitudinal expansions are in strong contrast with three-dimensional trap releases. In the
latter case, the profile after a long TOF is given by the MDF of the real physical bosons, as
opposed to that of quasi-particles. It is also possible to calculate the bosonic MDF, but this is
more difficult. An approximation scheme combining GHD data with the ABACUS algorithm
is proposed in Appendix VII, where we evaluate the bosonic MDF at 10τ in the anharmonic
case, showing that it is significantly different from the quasi-particle MDF.

10 Integrability breaking: GHD and a collision term

In the quantum Newton’s cradle experiment, there are numerous sources of integrability break-
ing. These include heating and losses, the presence of a trap, interactions between neighbour-
ing tubes as well as hopping events between transverse levels of a given tube [49–51].

We can estimate the timescales for these processes in a variety of ways. For integrability
breaking due to a trap, an extensive analysis has been provided in [42] for the hard rod gas.
Here, for simplicity, we provide an estimate for the timescale using the notion of energy loss
due to a “quantum jump" in our MD simulations. We elaborate on this in Appendix VIII A.

To estimate the timescales associated with other processes, we exploit the fact that GHD can
readily take into account at least some integrability breaking processes through the addition of
a collision term to the GHD equations. With such a collision term, the GHD equations, in terms
of the space-time dependent filling fraction n(θ ) (the GHD normal coordinates) [18,19], read

∂t n(θ ) + veff∂x n(θ ) = fcollision(θ ). (8)

In lowest order perturbation theory, fcollision can be computed in terms of the exact matrix
elements of the Lieb-Liniger model, for instance using the density matrix elements computed
in [52]. As a simple demonstration, we sketch in Appendix VIII B fcollision due to intertube
interactions. We show that for the parameters governing the original quantum Newton’s cradle
experiment [1], fcollision leads to changes in the energy at roughly the same rate as our estimate
for the timescale of integrability breaking due to the trap.

11 Conclusion

The recently discovered Generalized HydroDynamics (GHD) is an ideal tool in order to pro-
vide a full account of the quantum Newton cradle experiment within the Lieb-Liniger model at
the Euler scale, fully in the interacting regime. We have observed non-thermalization at cloud
collisions, many-body elongation of the oscillation period, and many-body and single-body
dephasing. We have also shown that GHD is the ideal tool to study trap expansions.
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A Double-well initial state

As a warm-up exercise, we have analyzed a setup that is a rather crude approximation of the
QNC experiment [1], see Fig. 4. The initial state is the zero-temperature ground state of
(1) in a double-well potential, which splits the gas into two well separated clouds. It is then
evolved within a single harmonic well. The main phenomenon – the lack of thermalization
upon cloud collisions – of the QNC experiment is observed. We compare both the zero-entropy
GHD and molecular dynamics, with excellent agreement. In this setup, two important aspects
of the QNC experiment are overlooked: the initial state is not at zero temperature, and the
sequence of Bragg pulses produces an initial state with two sets of particles that are separated
in momentum space rather than in real space. In the main text, we develop a more realistic
approximation. The initial state is not a zero-entropy state, and we rely on the molecular
dynamics simulation to solve the GHD equation.
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Figure 4: Lieb-Liniger gas at zero temperature released from a double-well potential
to a harmonic trap V (x) = mω2 x2/2, on one full period τ = 2π

ω , for parameters
given in the text. Two methods for solving Eq. (3) are compared: zero-entropy GHD
(dashed black curve), and the flea gas (blue).

We take N = 250 particles, and (in this paragraph only) we work in units where ħh= m= 1
and g = 2. We take the initial state as the zero-temperature ground state of (1) in a double-
well potential V (x) = Vinit(x) = 20 ((x/100)4 − (x/100)2), which splits the gas into two well
separated clouds, each containing 125 particles. We construct the corresponding initial density
of quasi-particles ρp(θ , x , 0) by searching for the zero-temperature hydrostatic solution of (3),
equivalent to a local density approximation (LDA) [37]. Then, at time t > 0, the double-well
is switched off and replaced by a harmonic trap V (x) = mω2 x2/2 = x2/800. The GHD
equation (3) is integrated using the second method —zero-entropy GHD— and third method
—molecular dynamics— above. The results are presented in Fig. 4. The two methods are
compared with perfect match: this is compelling evidence for the reliability and robustness
of both methods for solving the GHD equation in a trap. Paralleling the QNC experiment, we
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see that the two clouds initially propagate towards each other due to the harmonic potential,
collide, and emerge to continue their quasi-harmonic motion. The interaction deforms the
clouds substantially, but thermalization does not occur.

B Many-body dephasing and spreading in phase space

A free particle moving in a potential V (x) preserves, at all times, its total energy θ2/2+V (x),
where θ is its velocity (and here and below we take the particles’ mass to be unity). Because of
interactions, the particles of the Lieb-Liniger Bose gas of course do not preserve this energy. A
related question is whether the quasi-particles of the GHD description of the gas do conserve
it. We derive here explicitly the fact that the number N(E) of particles within the energy
region θ2/2+V (x)< E is not conserved (for any finite E), unless the effective velocity veff(θ )
equals the bare velocity θ . Non-conservation is thus an effect of the interaction, and can
be interpreted as a many-body dephasing effect. Conservation happens when the effective
interaction is very weak: either in the Tonks-Girardeau limit, or in the free boson limit. In
particular, the accuracy of the conservation of N(E) – the distance between effective velocity
and bare velocity – is a nontrivial (and nonlinear) function of the particle density. This helps
explain the difference between the strength of the many-body dephasing effect in the harmonic
and anharmonic cases, as explained in the main text.

Using θ±(x) = ±
p

2(E − V (x)), we evaluate

d
d t

N(E) =
d
d t

∫

d x

∫ θ+(x)

θ−(x)
dθ ρp(θ , x)

= −
∫

d x

∫ θ+(x)

θ−(x)
dθ

�

∂x(v
eff(θ , x)ρp(θ , x))− V ′(x)∂θρp(θ , x)

�

.

(9)

Performing integration by part, the first term on the right-hand side gives
∫

d x
�

∂xθ+(x)v
eff(θ+, x)ρp(θ+, x)− ∂xθ−(x)v

eff(θ−, x)ρp(θ−, x)
�

(10)

and the second term
∫

d x V ′(x)
�

ρp(θ+, x)−ρp(θ−, x)
�

. (11)

Clearly, ∂xθ±(x) = ∓V ′(x)/θ±. Thus we find

d
d t

N(E) =

∫

d x V ′(x)

��

1−
veff(θ , x)
θ

�

ρp(θ , x)

�θ+(x)

θ−(x)
. (12)

Thus the change of N(E) is bounded by
∫

d x |V ′(x)|
∑

±

�

�

�

�

1−
veff(θ±(x), x)
θ±(x)

�

�

�

�

ρp(θ±(x), x), (13)

which is controlled by the relative difference between veff(θ , x) and θ at the region’s bound-
aries θ±(x).
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A similar calculation gives the change of the energy within this region,

E(E) =
∫

d x
∫ θ+(x)
θ−(x)

dθ (θ2/2+ V (x))ρp(θ , x),

d
d t

E(E) =
∫

d x V ′(x)

�

E

�

1−
veff(θ , x)
θ

�θ+(x)

θ−(x)
+

∫ θ+(x)

θ−(x)
dθ (veff(θ , x)− θ )ρp(θ , x)

�

. (14)

Further, by using the defining integral equation for the effective velocity, one has
∫ ∞

−∞
dθ (veff(θ , x)− θ )ρp(θ , x) = 0. (15)

Therefore,

d
d t

E(E) =
∫

d x V ′(x)

�

E

�

1−
veff(θ , x)
θ

�θ+(x)

θ−(x)
−
∫

θ 6∈[θ−(x),θ+(x)]
dθ (veff(θ , x)− θ )ρp(θ , x)

�

.

(16)
Again we see the same velocity difference playing an important role.

It is worth mentioning that for E → ∞, we have θ±(x) → ±∞, and recall that
veff(θ , x) → θ as θ → ±∞. In this limit it is clear that both N(∞) and E(∞) are invari-
ant, as they should as the system preserves the total number of particles and the total energy.
It is also clear that in the free case, where veff(θ , x) = θ , both quantities are preserved for all
Es.

C A continuous family of conserved quantities for the GHD equa-
tion in a trap

Given a quasi-particle distribution function ρp(θ ), one defines the occupation number
n(θ ) = 2πρp(θ )/1dr(θ ), where the dressing is defined as in the main text. The occupation
number n(θ ) is always between 0 and 1. As per the theory of GHD, this satisfies
∂t n+ veff∂x n− (∂x V/m)∂θn= 0.

We find that, under GHD evolution in a trap —see Eq. (3) in the main text—

Q[ f ] :=

∫

d xdθ f (n(θ , x , t))ρp(θ , x , t) (17)

is a conserved quantity for any function f , as long as the quasi-particle density ρp(θ , x , t) does
not have discontinuities in θ or x . To see this, notice that

∂t( f (n)ρp) = f ′(n) (∂t n)ρp + f (n)∂tρp

= f ′(n) (−veff∂x n+
∂x V
m
∂θn)ρp + f (n) (−∂x(v

effρp) +
∂x V
m
∂θρp)

= −∂x

�

veff f (n)ρp

�

+ ∂θ

�

∂x V
m

f (n)ρp

�

.

Upon integrating over d xdθ , this gives zero using Stokes theorem, assuming zero quasi-
particle density at infinity. Thus, ∂tQ[ f ] = 0.

In fact, this can be understood as the generalization of the fact that the total Yang-Yang
entropy is conserved in perfect fluids, hence in GHD. Namely, the total Yang-Yang entropy is

SYY =

∫

d xdθ
1
n
(−n log n− (1− n) log(1− n))ρp, (18)
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so it can be recast into the form of Q[ f ] with f (n) = 1
n (−(1− n) log(1− n)− n log n). The

precise structure of the infinite number of dynamical symmetries generated by these conserved
quantities is still not known, and deserves further studies.

Finally, we note that a particularly convenient choice of basis for these conserved quantities
corresponds to the choice f (.) = δ(.−η) for η ∈ [0, 1], thus leading to the conserved quantities

Q(η) :=

∫

d xdθ δ(n(θ , x , t)−η)ρp(θ , x , t) (19)

mentioned in the main text. Q(η)dη is the number of quasi-particles whose local occupation
number lies between η and η+ dη.

D Coarse-graining and numerical simulations

time evolution

time
evolution

coarse
graining

coarse
graining

Figure 5: Diagram illustrating the fact that coarse-graining commutes with GHD time
evolution. Starting from the state at t = 8τ in the anharmonic case (same data as
in Fig. 2 in the main text), we first coarse-grain the system (i.e. we chose larger
bins, and re-sample the phase-space distribution ρp(θ , x) in our molecular simulator
accordingly) and let it evolve during a time ∆t = 2τ. We compare the resulting
distribution with the one obtained from evolving the system first, and then coarse-
graining it. The two resulting distribution are almost identical.

D.1 Invariance of GHD under coarse-graining

We consider the equation
∂tρp + ∂x(v

effρp) + a∂θρp = 0, (20)

where a is the acceleration. The proof below is specialized to the simple case of the Lieb-Liniger
model, but it is straightforward to extend it to the general context of GHD.

Consider coarse graining GHD, with coarse cells of area ` × `′ in phase space. That is,
denote

∫

C(θ ,x)
dγd y =

1
``′

∫ θ+`/2

θ−`/2
dγ

∫ x+`′/2

x−`′/2
d y (21)
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and let

ρ̄p(θ , x) =

∫

C(θ ,x)
dγd y ρp(γ, y). (22)

We make the following assumptions: (a) the acceleration is essentially constant on the
scale `′, and (b) the velocity θ and (c) the differential scattering phase ϕ(θ ) are essentially
constant on the scale `. We also assume one of the following: either (d) the rapidity integral
of quasi-particle densities and currents, on scale `, are essentially constant on scale `′ in the
position variable; or (e) cells are uncorrelated,

1
`2`′

∫ α+`/2

α−`/2
dγ

∫ θ+`/2

θ−`/2
dγ′

∫ x+`/2

x−`/2
d yρp(γ, y)veff(γ, y)ρp(γ

′, y) (23)

≈
∫

C(α,x)
dγd yρp(γ, y)veff(γ, y)

∫

C(θ ,x)
dγd yρp(γ, y).

From the evolution equation,

∂t ρ̄p(θ , x) = −
∫

C(θ ,x)
dγd y

�

∂y(v
eff(γ, y)ρp(γ, y)) + a(y)∂γ(ρp(γ, y))

�

(24)

= −∂x

�

∫

C(θ ,x)
dγd y veff(γ, y)ρp(γ, y)

�

− ∂θ

�

∫

C(θ ,x)
dγd y a(y)ρp(γ, y)

�

.

Assuming (a) we have

∂t ρ̄p(θ , x)≈ −∂x

�

∫

C(θ ,x)
dγd y veff(γ, y)ρp(γ, y)

�

− a(x)∂θ ρ̄p(θ , x). (25)

The above can also be written in integral form, so that the derivation holds in the space of
weak solutions as well. Now define

v̄eff(θ , x) =

∫

C(θ ,x) dγd y veff(γ, y)ρp(γ, y)
∫

C(θ ,x) dγd y ρp(γ, y)
. (26)

Then clearly
∫

C(θ ,x)
dγd y (veff(γ, y)− v̄eff(θ , x))ρp(γ, y) = 0. (27)

Thus
∂t ρ̄p(θ , x)≈ −∂x(v̄

eff(θ , x)ρ̄p(θ , x))− a(x)∂θ ρ̄p(θ , x). (28)

We now derive the integral equation for v̄eff(θ , x) that shows that it is determined by
ρ̄p(θ , x). Assuming (b) and (c), we have

v̄eff(θ ) =

∫

C(θ ,x) dγd y
�

vgr(γ, y) +
∫

dαϕ(γ−α)ρp(α, y)(veff(α, y)− veff(γ, y))
�

ρp(γ, y)
∫

C(θ ,x) dγd y ρp(γ, y)

≈ vgr(θ , x) +
∫

dαϕ(θ −α)
∫

C(θ ,x) dγd yρp(α, y)veff(α, y)ρp(γ, y)
∫

C(θ ,x) dγd y ρp(γ, y)

−

∫

dαϕ(θ −α)
∫

C(θ ,x) dγd yρp(α, y)veff(γ, y)ρp(γ, y)
∫

C(θ ,x) dγd y ρp(γ, y)
. (29)
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Also from (c) we find in general
∫

dαϕ(θ −α) f (α) =
∫

dα

∫

C(α)
dγ′ϕ(θ − γ′) f (γ′)≈

∫

dαϕ(θ −α)
∫

C(α)
dγ′ f (γ′), (30)

where
∫

C(θ )
dγ=

1
`

∫ θ+`/2

θ−`/2
dγ. (31)

This gives, for the second terms in (29),
∫

dαϕ(θ −α)
∫

C(θ ,x)
dγd yρp(α, y)veff(α, y)ρp(γ, y)

≈
∫

dαϕ(θ −α)
∫

C(θ ,x)
dγd y

∫

C(α)
dγ′ρp(γ

′, y)veff(γ′, y)ρp(γ, y)

and similarly for the third term.
Now, on the one hand, assuming (d), we have
∫

C(α)
dγρp(γ, y)≈

∫

C(α)
dγρp(γ, x)≈

∫

C(α,x)
dγd yρp(γ, y), x ∈ [y − `′, y + `′]. (32)

Therefore,
∫

dαϕ(θ −α)
∫

C(θ ,x)
dγd yρp(α, y)veff(γ, y)ρp(γ, y)

≈
∫

dαϕ(θ −α)
∫

C(θ ,x)
dγ′d y ′

∫

C(α,x)
dγd yρp(γ

′, y ′)veff(γ′, y ′)ρp(γ, y) (33)

and, similarly,
∫

dαϕ(θ −α)
∫

C(θ ,x)
dγd yρp(α, y)veff(γ, y)ρp(γ, y)

≈
∫

dαϕ(θ −α)
∫

C(θ ,x)
dγ′d y ′

∫

C(α,x)
dγd yρp(γ

′, y ′)veff(γ, y)ρp(γ, y). (34)

Putting these together, we find

v̄eff(θ , x)≈ vgr(θ ) +

∫

dαϕ(θ −α)ρ̄p(α, x)(v̄eff(α, x)− v̄eff(θ , x)). (35)

On the other hand, assuming (e) we directly obtain (33) and (34), and the result (35)
follows again.

That is, we conclude that v̄eff(θ , x) is the effective velocity associated to the coarse-grained
density v̄eff(θ , x) = veff[ρ̄p](θ , x). This is the GGE equation of state leading to GHD, and thus
the coarse-grained equation (28) is GHD again.

D.2 Numerical analysis

Numerical simulations have been performed with the molecular dynamics simulator proposed
in [35] (using a standard desktop computer, 3.8GHz, quad core). We have performed simu-
lations with the exact parameters described in the main text (giving approx. 350 particles),
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Figure 6: Comparison of the density ρp(θ , x) obtained from three different micro-
scopic realizations of the same GHD equation (anharmonic case): the lower one
(“less refined”) is our molecular simulator with 350 classical particles, the middle
one (“more refined”) is with 32×350 classical particles, and the top one (“more and
more refined”) is with 256× 350 classical particles. The latter is the one shown in
the main text in Figs. 1 and 2. The corresponding density profiles are plotted below
(green: 350 class. part., red: 32× 350 class. part., blue: 256× 350 class. part.). As
the discretization is refined, the density ρp(θ , x) converges to the true GHD solution.
A given discretization with a finite UV cutoff cannot resolve the fine structures that
appear in GHD at scales smaller than the cutoff. However, GHD remains valid at
larger scales, and this then amounts to coarse-graining.

as well as after rescaling all lengths by factors of 2n for n = 1, . . . , 8. Since GHD is manifestly
invariant under scaling of lengths, these represent different choices of microscopy, with differ-
ent numerical precision for the solution to the GHD equations. The equivalent of a sampling
of 2000 has been used (that is, approx. 2000/2n samples). In the harmonic case, this was
observed to give a noise level (as calculated by the relative L1 distance between two equiva-
lent sampling) of the order of 5% throughout the evolution, on spectral densities binned on a
70× 70 lattice covering the range of Figs. 1 and 2 (main text). In this case, we have found it
sufficient to take n = 4 (approx. 5600 particles): we observed a Yang-Yang entropy produc-
tion of approx. 6% over 10τ, and no significant change of the GHD-conserved function Q(η)
(defined in Section III).

The anharmonic case is much more delicate, and we have performed a more detailed
numerical analysis. We show here results n = 0 (approx. 350 classical particles), n = 5
(approx. 11000 particles), and n = 8 (approx. 90000 particles; this with about half the
sampling, using 4 samples only). The latter provides the results presented in the main text,
see Fig. 2, reproduced (in the anharmonic case) in Fig. 6 for convenience, where we show
the results at t = 0, 2τ, 4τ, 6τ, 8τ, 10τ. It is apparent that agreement between the choices
n= 5 and n= 8 is relatively good, although small-scale structures are more clearly discerned
in the latter case. We have observed a Yang-Yang entropy production of approx. 20% over
the evolution time of 10τ for n = 8. More striking, however, is the analysis of the conserved
quantity Q(η). For the less refined discretization (350 classical particles), we see that it is
conserved up to 4τ− 7τ, then fine structures develop and are progressively erased by coarse
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(a) 350 classical particles (b) 32×350 classical particles (c) 256×350 classical particles

Figure 7: Time-evolution of the quantities Q(η), that are exactly conserved in pure
GHD, but not in microscopic realizations of GHD. We see that, as the discretization
is refined, and more and more fine structures of GHD are probed by the microscopic
model, the quantities are conserved on longer times. Differences of thickness be-
tween the various cases are due to noise level differences.

graining, and after that Q(η) is conserved again. For more refined discretizations, Q(η) is
conserved for a longer time, see Fig. 7. The distribution at 10τ is relatively stable under change
of the microscopy, as long as the number of particles is such that the corresponding coarse-
graining is fine enough, in phase-space, for variations of the potential and scattering length to
be small from cell to cell, yet large enough so that each cell contains a large number of particles
(this happens to good approximation for n≥ 6 on a binning of 70×70, for instance). This lay
support to the idea that coarse-grained GHD leads to the large-scale evolution, independently
from the microscopy.

E Numerically obtained stationary state in the anharmonic case,
and evidence that it is not thermal

We have investigated the stationary state obtained at large time. The setup is the same as in the
main-text, however in order to speed up the many-body dephasing, we take a slightly stronger
anharmonicity. We take the confining potential as V (x) = (1+4(x/`)2)mω2 x2

2 with `= 120µm
and ω= 0.314ms−1. We call τ= 2π

ω . We observe that, at times than t > 12τ, the distribution
ρp(θ , x) looks stationary, see Fig. 8. We have compared this stationary distribution to the
thermal distribution that has the same particle number and the same total energy. The two
distributions are obviously different, as can be seen in the last plot of Fig. 8.

Figure 8: Comparison of the “stationary state” obtained numerically at t = 20τ, and
of the thermal distribution with the same number of particles and the same total
energy.
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F Trap release in 1d, and measurement of the momentum distri-
bution of quasi-particles

Assume that we have a 1d Bose gas described, at some given time t (which we fix to zero
in this appendix), by a distribution of quasi-particles ρp(x ,θ ), as in GHD. Assume that this
density has a support that is contained in [−∆x ,∆x]× [−∆θ ,∆θ] so that no particle is out-
side the box [−∆x ,∆x], and no particle has a velocity larger than ∆θ . Then we release the
longitudinal confinement, and let the gas expand in 1d. In this appendix, we are going to
derive the following result: for a sufficiently long time of flight T , the spatial density of bosons
n(X , T ) =




Ψ†(X )Ψ(X )
�

is given by the momentum distribution function of the quasi-particles
before the release, n(θ ) =

∫

d xρp(x ,θ ):

n(X , T ) =
1
T

n(θ ), with θ = X/T. (36)

This result has long been known for the Tonks-Girardeau gas, where it has sometimes been
dubbed “dynamical fermionization” [44, 45]. For the interacting case, it seems to have been
pointed out only recently [46,47]. Here, for the convenience of the reader, we provide a fully
detailed proof of this result. The derivation of formula (36) consists of two steps.

The first step is to note that there must exist a time T1 that is large enough such that the
local density n(x) is sufficiently low everywhere in the system, so that γ(x) = c/n(x)� 1 for
all x . At that time T1, the quasi-particle distribution is some functionρp,1(x ,θ ), with support in
[−∆x1,∆x1]× [−∆θ ,∆θ] for some ∆x1. Since, by construction in the Bethe ansatz method,
quasiparticle spectral densities are exactly conserved under quantum evolution, we have

n(θ ) =

∫

d x ρp,1(x ,θ ) =

∫

d x ρp(x ,θ ), (37)

namely n(θ ) was conserved during the evolution from t = 0 to t = T1. Importantly, on the
right-hand side, although the quantity ρp(x ,θ ) is meaningfully defined only if the state is
weakly varying in space (so that we can approximate it by a collection of homogeneous fluid
cells), its spatial integral makes sense beyond this regime. Indeed, it simply encodes, as a func-
tion of θ , the values of all extensive conserved quantities in the inhomogeneous initial state.
Of course, in the application considered in the present work, ρp(x ,θ ) is obtained after time
evolution within an inhomogeneous external potential using the hydrodynamic approxima-
tion, and thus the values of all extensive conserved quantities it encodes are likewise subject
to the hydrodynamic accuracy.

The second step goes as follows. At times T > T1, because γ is uniformly very large, the
dynamics of the gas is captured by the Tonks-Girardeau hamiltonian,

H =

∫

d x
1

2m
(∂xΨ

†
F) (∂xΨF) , (38)

where
ΨF(x) = eiπ

∫

u<x duΨ(u)Ψ(u)Ψ(x). (39)

Thus, we are back to the case of the Tonks-Girardeau gas, and we simply apply the results
of [44,45]. For completeness, here we give a fully detailed calculation that leads to the wanted
result.
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The density of bosons at point X and time T is

n(X , T ) =



Ψ†(X )Ψ(X )
�

T

=



Ψ†
F(X )ΨF(X )

�

T

=

∫

dk
2π

∫

dk′

2π
ei(k−k′)X−i(T−T1)[ε(k)−ε(k′)]




Ψ†
F(k)ΨF(k

′)
�

T1
(40)

=

∫

dk
2π

∫

dk′

2π
ei(k−k′)X−i(T−T1)[ε(k)−ε(k′)]

∫

d y e−i(k−k′)y

∫

dq
2π

eiq y
­

Ψ†
F(

k+ k′

2
+

q
2
)ΨF(

k+ k′

2
−

q
2
)
·

T1

=

∫

dk
2π

∫

dk′

2π
ei(k−k′)X−i(T−T1)[ε(k)−ε(k′)]

∫

d y e−i(k−k′)y 2π
m
ρp,1(y,

k+ k′

2m
).

In the last line, we used the fact that
∫ dq

2π eiqx



Ψ†
F(mθ +

q
2)ΨF(mθ −

q
2)
�

T1
is nothing but the

Wigner function, so it is exactly the number of fermions at position x with momentum mθ ,
therefore it has to be equal to 2π

m ρp,1(x ,θ ). [The factor 2π
m simply comes from a difference in

normalization convention between ρp,1 for the Tonks-Girardeau gas and the Wigner function:

for instance, the total number of particles is
∫

d xdθρp,1 =
∫ d xd(mθ )

2π W , if W is the Wigner
function.]

Since ε(k)−ε(k′) = k2

2m−
k′2
2m =

(k+k′)(k−k′)
2m , this gives (with the change of variables K = k+k′

2 ,
q = k− k′):

n(X , T ) =

∫

d y

∫

dK
m

∫

dq
2π

e−iq[y−X+ K
m (T−T1)]ρp,1(y,

K
m
)

=

∫

dK
m
ρp,1

�

X −
K
m
(T − T1),

K
m

�

. (41)

This is essentially the result we want: it expresses the fact that the number of bosons at position
X at time T is the one of fermions at time T = T1 that have traveled a distance K/m(T − T1),
so they must have velocity K/m. Notice that the statistics of the particles does not play a role
in the argument, and even though we are doing calculations with the fermions, in the end we
have a result valid for the density of bosons.

Finally, to get the more compact formula (36), we use the fact that ρp,1(x ,θ ) is zero if
x /∈ [−∆x1,∆x1], so

∫ ∞

−∞

dK
m
ρp,1

�

X −
K
m
(T − T1),

K
m

�

=

∫ m
X+∆x1
T−T1

m
X−∆x1
T−T1

dK
m
ρp,1

�

X −
K
m
(T − T1),

K
m

�

,

with an integrant centered around mΘ, where Θ = X/(T − T1). Taking T − T1 � m∆x1, we
can substitute the second argument of ρp,1,

∫ ∞

−∞

dK
m
ρp,1

�

X −
K
m
(T − T1),

K
m

�

=
T−T1�m∆x1

∫ m
X+∆x1
T−T1

m
X−∆x1
T−T1

dK
m
ρp,1

�

X −
K
m
(T − T1),Θ

�

=
1

T − T1

∫ ∆x1

−∆x1

duρp,1 (u,Θ) ,

where we have set u= X − K/m(T − T1). We thus arrive at

n(X , T ) =
1

T − T1
n(Θ), with Θ = X/(T − T1). (42)

If we further assume that T � T1, then we get Eq. (36) as claimed.
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G Computing the bosonic MDF
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Figure 9: Left: Density profile of the gas at time 10τ as obtained through GHD. For
practical computations of the MDF, three regions are defined, each with character-
istic root density function (see text). Right: Root density functions for each of the
three regions defined in the left panel. Each curve is normalized to unit filling for
convenience.

The starting point for the calculation of the bosonic momentum distribution function in
the anharmonic trap is the full spatial density profile of the gas at time t = 10τ obtained from
GHD and plotted in the left panel of Fig. 9. This density is subsequently divided into three
separate regions, as illustrated again in the left panel of Fig. 9. For each region, a root density
ρi(θ ) is extracted. These are plotted on the right panel of Fig. 9. They satisfy the sum rule

∫

dθρi(θ ) =
Ni

Li
= ni .

These distributions clearly show that the gas in each of the three regions is significantly excited
away from the ground state.

The next step is to compute the bosonic MDF separately on each of these three individual
constituent representative states. To do this, we rescale the ρi(θ )’s via

ρ̃(θ ) = ρi(niθ ), (43)

so that we are working at unit density, i.e.
∫

dθρ̃i(θ ) = 1.

We then use ABACUS [13–17] to compute the MDF on each representative state. This in-
volves the following steps: starting from each individual ρ̃i(θ ), a best-fitting discretized Bethe
state |i〉N is constructed at a chosen particle number NABACUS (setting this equal to LABACUS to
stay at unit filling) by choosing a set of quantum numbers generated from the state’s counting

function, namely: adding a rapidity whenever L
∫ λ

−∞ dλ′ρi(λ′) crosses a half-odd integer, and
setting the quantum numbers to those giving the closest-matching set of rapidities; N is chosen
even, and as large as practically possible. ABACUS is then run for the one-body correlation
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N 〈i|ψ†(x , t)ψ(0,0)|i〉N . The quality of the result is quantified by the saturation of the inte-
grated intensity sum rule. On such highly-excited states, a large number of intermediate states
must be summed over (for NABACUS = 32, these were 74307322 (i = 1), 101334549 (i = 2)
and 87195380 (i = 3), yielding saturations of 0.964412, 0.933457 and 0.979004).

Having these three MDFs (ñi(k), i = 1,2, 3), we now rescale back to MDFs (ni(k), i = 1, 2,3)
corresponding to the original three regions characterized by Ni , Li . The relevant relation here
is

ni(k, Ni , Li)) = ci(Ni , Li)ñi(kLABACUS/L, NABACUS , LABACUS) (44)

Here ci is a constant that can be determined by insisting that
∫

dkni(k, Ni , Li) = ni .

The results are displayed in Fig. 10. We then average over the three ni(k) to obtain what
would be the MDF measured in the actual experiment. If we compare the r.h.s. of Fig.9 and
Fig. 10, we see the bosonic MDF and ρ(θ ) are considerably different. However both have a
double humped feature characteristic of post-Bragg pulse states.

-10 -5 0 5 10
k

0
0.05

0.1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
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0.65

n(
k)

Region 1
Region 2
Region 3
Average
of regions

Figure 10: Bosonic momentum distribution function of the trapped gas at t = 10τ,
computed through three representative states using ABACUS (see text). The charac-
teristic double-peak structure of the post-Bragg pulse state is clearly seen.

H Timescales for Integrability Breaking

We consider in this section estimates for timescales due to integrability breaking. We do this
in two parts. In the first part we consider the timescale associated with integrability breaking
due to the trap. And in the second part, we consider the derivation of a GHD collision term
coming from intertube interactions.

H.1 Estimate of Integrability Breaking due to Trap

We have argued in the main text that integrability breaking due to the trapping potential is
small. We provide here an argument for this 2.

2We are indebted to Igor Mazets for suggesting this line of argument to us.
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One way to parameterize the integrability breaking is to consider how the potential energy
of a particle changes when two particles collide in the presence of the trap. We can estimate
this energy by using the molecular dynamics representation of the GHD equations. In the
molecular dynamics, when two particles collide, they experience a quantum jump, ∆x , where
the particles are displaced according to their relative momentum, p1− p2, and the strength of
interactions:

∆x =
2c

((p1 − p2)/ħh)2 + c2
. (45)

The quantum displacement gives us a scale for integrability breaking because upon displace-
ment in the molecular dynamics simulation, the potential energy of a particle experiencing a
quantum displacement changes by an amount (so violating energy conservation):

∆V ∼
dVtrap

d x
∆x ∼ mω2 L∆x . (46)

Rather than trying to estimate this directly (it is difficult to provide even a back of the
envelope estimate of this quantity as it requires accounting for both inter- and intra-cloud
collisions), we read off the change of energy directly from our numerical simulations. We find
it to be approximately 0.1% for each oscillation of the clouds. This rate is smaller than what
we estimate in the next section for the intertube interactions present in the QNC experiment.

H.2 Collision Term due to Density-Density Couplings Between Tubes

In the main text we have discussed the possibility of adding a collision term to the GHD equa-
tions. Here we elaborate on how to compute the collision term and from it provide an estimate
of the time scale for integrability breaking.

For this exercise, we are going to consider a system composed of two Lieb-Liniger models
that are coupled by a density-density interaction. As we will be deriving the collision term in
lowest order perturbation theory, the effects of having more tubes coupling to one another,
either because the tubes are in an array of a given coordination number (as is typical) or
because of long range dipolar forces (as in Ref. [49]) are additive. The case of two coupled
Lieb-Liniger models is then sufficiently general.

The Hamiltonian we will then consider

Hpert = A

∫ R

0

d x ρ1(x)ρ2(x);

= AL
∑

k

ρ1kρ2−k, (47)

where ρi,k, the Fourier component of the density operator in the i-th tube, is defined as

ρi,k =
1
L

∑

q

ψ†
i,k+qψi,q, (48)

where ψi,q is the q-th Fourier component of the i-th chain field operator.
To compute the collision term, i.e. the rate of change of the quantum numbers Ir in a

state, we imagine that we have an initial state |i〉, characterized by a set of occupied quantum
numbers

{Ir,s}Nr=1, s = 1,2. (49)

These integers Ir,s are the the Bethe integers for which one solves the Bethe ansatz equations
describing the uncoupled chains.
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Now let ns(Ir,s) be the occupation of quantum number Ir,s on chain s. By the Fermi golden
rule, the rate of change of ns(Ir,s) from its initial value is

fcollision(Ir,s) ≡ ṅs(Ir,s)

=
∑

f

R f i

�

n f ,s(Ir,s)(1− ni,s(Ir,s))− ni,s(Ir,s)(1− n f ,s(Ir,s))
�

=
∑

f

R f i

�

n f ,s(Ir,s)− ni,s(Ir,s)
�

,

(50)

where we are summing over all final states, f , and

R f i = 2π|〈 f |Hpert|i〉|2δ(ω f −ωi),

n f ,s(Ir,s) = occupation of Ir,s on chain s in the final state f ,

ni,s(Ir,s) = occupation of Ir,s on chain s in the initial state i. (51)

To develop this expression for ṅs(Ir,s) further, we write the states |i〉, | f 〉 explicitly as a product
state of states belonging to the two chains:

|i〉= |i1〉|i2〉; | f 〉= | f1〉| f2〉. (52)

We, for simplicity, will take the initial states on the two chains to be equal, i.e. |i1〉 = |i2〉. We
will also only consider the first set of final states that can lead to thermalization. Such states
involve 2-particle-hole excitations on one chain, and 1-particle hole excitation on the other,
i.e. | fs=1,2〉 are given by

| f1〉= |i1, ĥ1, ĥ′1, p1, p′1〉, | f2〉= |i2, ĥ2, p2〉, (53)

where here a state
|is, ĥs, ĥ′s · · · , ps, p′s, · · · 〉 (54)

is defined as the state |is〉 on chain s with quantum numbers (holes) hs, h′s, · · · removed and
quantum numbers (particles) ps, p′s, · · · added. States involving only 1-particle-hole excitation
on each chain can lead to equilibriation between the chains, but will not thermalize non-
Gibbsian distributions. As such, these final states will not be considered.

With these assumptions, we can write the matrix element square, R f i , as

R f i =
32πA2

L2
δ(ω f −ωi)δp1+p′1+p2−h1−h′1−h2,0F2

p1,p′1,h1,h′1
F2

p2,h2

×ni(h1)ni(h
′
1)ni(h2)(1− ni(p1))(1− ni(p

′
1))(1− ni(p2)) +

�

1↔ 2
�

, (55)

where ni(I) = 0, 1 marks the presence or absence of the quantum number I in the initial state
|is〉, and Fp1,··· ,h1,··· is the matrix element for the density operator on one of the chains involving
particles p1, · · · and holes h1, · · · . The occupation of the quantum number Ir,s in the final state
on chain s is given by

n f ,s(Ir,s) =
�

∏

hs

ni(hs)
��

∏

ps

(1− ni(ps))
�

(ni(Ir,s)−
∑

hs

δIr,s ,hs
+
∑

ps

δIr,s ,ps
). (56)
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We are then able to write the rate of change of quantum numbers nI1
(where we take chain 1

for specificity) as follows

ṅ1(Ir,1) =
8A2

π

∑

h1,h′1,h2,p1,p′1,p2

�

(Fp1,p′1,h1,h′1
Fp2,h2

)2

δ(p1
2 + p′1

2 + p2
2 − h1

2 − h′1
2 − h2

2)δp1+p′1+p2−h1−h′1−h2,0ni(h1)ni(h
′
1)ni(h2)

×(1− ni(p1))(1− ni(p
′
1))(1− ni(p2))(δIr,1,p1

+δIr,1,p′1
−δIr,1,h1

−δIr,1,h′1
)

�

+
8A2

π

∑

h1,h2,h′2,p1,p2,p′2

�

(Fp2,p′2,h2,h′2
Fp1,h1

)2

×δ(p2
1 + p2

2 + p
′2
2 − h2

1 − h2
2 − h

′2
2 )δp1+p2+p′2−h1−h2−h′2,0ni(h1)ni(h2)ni(h

′
2)

×(1− ni(p1))(1− ni(p2))(1− ni(p
′
2))(δIr,1,p1

−δIr,1,h1
)

�

. (57)

Here the first term in the above corresponds to the case where the 2-particle-hole excitation
takes place on chain 1 and the 1-particle-hole excitation on chain 2 while the second term
exchanges the chains where these two processes occur.

We are not going to evaluate this expression in detail as the 2-particle hole matrix elements
Fp1,p′1,h1,h′1

are highly non-trivial. We can however provide an estimate of the time scale. We
know that matrix elements Fp1,p′1,h1,h′1

scale as 1/c (and so in the c =∞ limit this process
would be suppressed and thermalization would not occur). In general, density matrix elements
involving n-particles and n-holes scale as 1/cn−1. The contribution then from the above sum
goes as N3/c2 (N is the number of particles) with the result

ṅ1(I1)∼ A2N
n2

c2

ħh
m

, (58)

where here m is the mass of rubidium atom. We can write the density-density coefficient A
coupling the tubes together as γinter tubeρ0 where ρ0 is the background density in the tubes.

ṅ1(I1)∼ N
ħh
m

n2
γ2

inter tube

γ2
int ratube

, (59)

This then implies the change in energy of the gas due to intertube interactions is

Ė ∼ N
ħh3n4γ2

inter tube

m2γ2
int ratube

. (60)

As the energy goes as E ∼ Nħh2n2/m we see that

Ė
E
∼
ħhn2γ2

inter tube

mγ2
int ratube

∼ 104s−1
γ2

inter tube

γ2
int ratube

. (61)

We know in the context of Ref. [1] that γinter tube� γint ratube. If, for example, γint ratube ∼ 10−2,
we see that the energy change per oscillation of the gas is on the order of 1%, similar to our
estimates of the energy change due to integrability breaking arising from the trap. However
this rough estimate shows that if γint ratube ∼ γinter tube as in Ref. [49], the fractional change
in energy per oscillation cycle will be O(1).
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