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Abstract

It is shown that the hopping of a single excitation on certain triangular spin lattices
with non-uniform couplings and local magnetic fields can be described as the projec-
tions of quantum walks on graphs of the ordered Hamming scheme of depth 2. For
some values of the parameters the models exhibit perfect state transfer between two
summits of the lattice. Fractional revival is also observed in some instances. The bivari-
ate Krawtchouk polynomials of the Tratnik type that form the eigenvalue matrices of the
ordered Hamming scheme of depth 2 give the overlaps between the energy eigenstates
and the occupational basis vectors.
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1 Introduction

This paper introduces two-dimensional spin lattices that exhibit perfect state transfer between
two single locations and multi-site fractional revival on a one-dimensional subset of the lattice.
These novel models are obtained by projecting quantum walks on graphs that belong to the
ordered Hamming scheme which generalizes the well known Hamming association scheme.
On the one hand, continuous walks on graphs have been used to formulate various computa-
tion algorithms [9, 10, 13]. On the other hand, the 1-excitation dynamics of spin chains has
attracted attention as a mean to realize the transport of quantum states with a minimum of
external controls [6,7,21,27]. One speaks of perfect state transfer (PST) when the transport
between two locations happens with probability one. It has been appreciated that non-uniform
couplings and possibly local magnetic fields are required to achieve PST over distances of more
than three sites [11]. One analytic model that admits PST over (reasonably) arbitrary distances
has couplings given by the Krawtchouk polynomials recurrence coefficients [1]. Interestingly,
it has been observed [11] that the 1-excitation dynamics of this Krawtchouk chain can actually
be obtained by projecting quantum walks on the 1-link hypercube to a weighted path. It will
be recalled that the hypercube is one of the simplest graphs of the Hamming scheme [8, 29].
The fact that the Krawtchouk polynomials arise naturally in that scheme is not foreign to the
connection we just mentioned. The end-to-end PST in the chain can thus be seen as a mani-
festation of the fact that there is also PST between antipodal points of the hypercube. These
results have motivated extensive examinations of quantum walks and especially of PST on
graphs [17,22].

The coherent transport of states on higher dimensional spin lattices has also been explored.
A few models with interesting transfer properties [24,25,28] have been designed using the the-
ory of multivariate Krawtchouk polynomials [12,18,19,30]. These systems exhibit fractional
revival (FR) whereby an initially localized state is reproduced periodically in a number of fixed
locations [2, 16]. In view of the relation between the hypercube and the Krawtchouk chain,
it is natural to enquire if such models could not be obtained from the projection of quantum
walks in higher dimensional graphs. In pursuing that question we will in fact identify graphs
in a generalization of the Hamming scheme with dynamics that projects to 1-excitation hop-
ping on a triangular lattice exhibiting perfect state transfer and multi-site fractional revival.
We suggest that these systems could be realized as photonic lattices and possibly be of use for
certain algorithms.

The paper will be organized as follows. The definition of the ordered Hamming scheme
of depth 2 will be recalled in section 2. Particular graphs in that scheme will be identified in
section 3 and the dynamics governed by their adjacency matrices will be shown to project to 1-
excitation Hamiltonians for a triangular lattice of spins in the plane. The bivariate Krawtchouk
polynomials of the Tratnik type will be introduced in section 4 to obtain the energy eigenstates.
The transport properties will be examined in section 5 and it will be found that there is perfect
state transfer between two specific summits of the triangular lattice. The paper will end with
concluding remarks.

2 The ordered Hamming scheme of depth 2

Let Q = Z/2Z. Consider the set Q(n,r) of vectors of dimension nr over Q. The vector x ∈Q(n,r)

will be presented by the r-binary sequences of length n over Q:

x = (x1, x2, . . . , xn),
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where x j = (x j1, x j2, . . . , x jr) ∈Qr . We define the shape e of x ∈Q(n,r) by

e(x) = (e1, e2, · · · er),

ei = #{ j ∈ {1,2, · · · , n} | x ji = 1, x j,i+1 = x j,i+2 = · · ·= x jr = 0}

and denote the set of the all shapes by

E = e(Q(n,r)) = {(e1, e2, · · · , er) ∈ (Z≥0)
n | 0≤ e1 + e2 + · · ·+ er ≤ n}.

For example, a = (00,10, 11,00, 01) ∈Q(5,2) is a 2-binary sequence of length 5 and e(a) = (1,2).
For two vectors x , y ∈ Q(n,r), we shall write x ∼e y if the shape of x − y is equal to e. Then
we can introduce the graph Ge associated with the shape e as the one where all two vertices
(vx , vy) in {vx | x ∈Q(n,r)} are linked if vx ∼e vy ; the corresponding adjacency matrix is given
by

Ae = (ax ,y), ax ,y =

�

1 (x ∼e y)
0 (otherwise).

It is known that A = {Ae | e ∈ E} forms an association scheme. It is called the ordered
Hamming scheme of depth r [5,23].

In this paper, for fixed positive integer N , we shall consider the ordered Hamming scheme
of depth 2 (Q(N ,2),A) where the set of adjacency matrices

A(i, j) 0≤ i + j ≤ N

form the (commutative) Bose-Mesner algebra:

A(i, j)A(k,l) =
∑

0≤i′+ j′≤N

α
(i′, j′)
(i, j),(k,l)A(i′, j′).

The intersection numbersα(i
′, j′)
(i, j),(k,l) are equal to the number of vertices z such that e(x−z) = (i, j)

and e(y−z) = (k, l) if e(x− y) = (i′, j′) for x , y, z ∈Q(N ,2). In particular, one has the following
explicit formulas involving A(1,0) and A(0,1).

A(1,0)A(i, j) = (N + 1− i − j)A(i−1, j) + jA(i, j) + (i + 1)A(i+1, j) (1)

A(0,1)A(i, j) = 2(N + 1− i − j)A(i, j−1) + 2(i + 1)A(i+1, j−1) (2)

+ ( j + 1)A(i−1, j+1) + ( j + 1)A(i, j+1).

It is not difficult to obtain the above relations. Let us write

A(1,0)A(i, j) = ai, jA(i−1, j) + bi, jA(i, j) + ci, jA(i+1, j).

The coefficient ai, j stands for how many z exist such that e(x−z) = (1, 0) and e(y−z) = (i, j) if
e(x− y) = (i−1, j). For example, take y = (00, 00, · · · , 00) and x = (10,10, · · · , 10,01, 01, · · · ,
01,00, 00, · · · , 00) with i−1 10s, j 01s (11s or the combination of 01 and 11 is also possible)
and N +1− i− j 00s. In this situation, z must be obtained by changing one of the N +1− i− j
00s by 10 and there are N+1− i− j ways of doing this. It is easy to see that the number of ways
does not depend on the choice of the elements y ∈ Q(N ,2). We thus have ai, j = N + 1− i − j.
The number ci, j of z such that e(x − z) = (1, 0) and e(y − z) = (i, j) if e(x − y) = (i + 1, j)
can similarly be obtained. Take y = (00,00, · · · , 00) and x consisting of i + 1 10s and j 01s
and N − 1 − i − j 00s. We see that a z can be obtained by changing one of the i + 1 10s by
00s and there are i + 1 ways of doing that. It thus follows that ci, j = i + 1. For bi, j , take
y = (00,00, · · · , 00) and x = (10, 10, · · · , 10, 01,01, · · · , 01, 00,00, · · · , 00) with i 10s, j 01s
and N − i− j 00s. Clearly a z such that e(x−z) = (1, 0) and e(y−z) = (i, j) if e(x− y) = (i, j)
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can be obtained by changing one of the j 01s by 11 and there are j possible choices. As a
result bi, j = j and (1) holds.

Formula (2) is derived in the same fashion. We shall therefore only indicate how the
factor in front of A(i, j−1) is identified. This coefficient stands for how many z there are such
that e(x − z) = (0,1) and e(y − z) = (i, j) if e(x − y) = (i, j − 1). Take y = (00,00, · · · , 00)
and x = (10,10, · · · , 10, 01,01, · · · , 01, 00,00, · · · , 00) with i 10s, j − 1 01s and N + 1− i − j
00s. To obtain such a z, we must change one of the N +1− i− j 00s by 01 or 11 and there are
2(N + 1− i − j) ways of doing this.

3 Special weighted graphs and their projections

Let us consider the graph Gα,β whose adjacency matrix is αA(1,0) + βA(0,1) with α,β ∈ R≥0.
We shall call this graph ordered Hamming graph (of depth 2). Now, following [4,11], we con-
sider the projection of the quantum walk on the ordered Hamming graph Gα,β to the “column
subspaces” to identify the corresponding spin lattice.

To the vertices x ∈ V = Q(N ,2) (|V | = (22)N = 4N ), we associate orthonormalized vectors
|x〉 such that

〈 x | y 〉=

¨

1 (x ∼(0,0) y)
0 (otherwise)

for x , y ∈ V . In this notation the entries Ax y of A can be written as 〈x |A|y〉. Let (0) ≡
(00, 00, · · · , 00) denote a corner and organize V as a set of

�N+2
2

�

columns Vi, j (0≤ i+ j ≤ N)
defined by

Vi, j = {x ∈ V, e(x) = (i, j)}.

The number ki, j of vertices in the column Vi, j is given by

ki, j =
�

N
i, j

�

2 j ,

where
�N

i, j

�

= N !
i! j!(N−i− j)! is the trinomial coefficient. The number ki, j can be identified by taking

it into account that vertices with shape (i, j) consist of i 10s, j 01 or 11s and N − i− j 00s. Let
us then label the vertices in column Vi, j by V(i, j),k, k = 1, . . . ki, j . Under the relation defined by
the shape (1,0), each V(i, j),k in the column Vi, j is connected to N − i − j elements of column
Vi+1, j . Similarly, according to the association generated by the shape (0, 1), each V(i, j),k in
Vi, j is linked with 2(N − i − j) elements of column Vi, j+1 and j elements of column Vi+1, j−1.
Furthermore, with respect to (1,0) each V(i, j),k in Vi, j is connected to j elements of the same
column V(i, j).

Consider now the column space taken to be the linear span of the column vectors given by

|col i, j〉=
1

Æ

ki, j

ki, j
∑

k=1

�

�V(i, j),k
�

, 0≤ i + j ≤ N .

Since every vertex in column Vi, j is connected to the same number of vertices in columns Vi+1, j ,
Vi, j+1 and Vi+1, j−1 with respect to (1, 0) and (0,1), A(1,0) and A(0,1) preserve the column space.

4

https://scipost.org
https://scipost.org/SciPostPhys.7.1.001


SciPost Phys. 7, 001 (2019)

Let us compute the matrix elements of A(1,0) and A(0,1) in the basis of the column subspace.

〈col i + 1, j|A(1,0) |col i, j〉=
1

Æ

ki+1, jki, j

ki+1, j
∑

l=1

ki, j
∑

k=1




V(i+1, j),l

�

�A(1,0)

�

�V(i, j),k
�

=
1

Æ

ki+1, jki, j

(N − i − j)ki, j

=
Æ

(i + 1)(N − i − j).

To derive the second relation, one can first pick a vertex in Vi, j , compute the scalar products
with the (N − i − j) vertices to which it is linked in Vi+1, j and then sum over the ki, j vertices
in Vi, j . Similary, we also have

〈col i, j|A(1,0) |col i, j〉= j,

〈col i, j + 1|A(0,1) |col i, j〉=
Æ

2( j + 1)(N − i − j),

〈col i + 1, j − 1|A(0,1) |col i, j〉=
Æ

2(i + 1) j.

To conclude, the quantum walk on the ordered Hamming graph Gα,β is equivalent to the one-
excitation dynamics of the spin lattice of triangular shape governed by the following Hamilto-
nian:

H =
∑

0≤i+ j≤N

α
Æ

(i + 1)(N − i − j)
σx

i, jσ
x
i+1, j +σ

y
i, jσ

y
i+1, j

2

+ β
Æ

2( j + 1)(N − i − j)
σx

i, jσ
x
i, j+1 +σ

y
i, jσ

y
i, j+1

2

+ β
Æ

2(i + 1) j
σx

i, jσ
x
i+1, j−1 +σ

y
i, jσ

y
i−1, j+1

2
+α j

1+σz
i, j

2
.

(3)

The lattice sites are labelled by two integers i, j between 0 and N and such that their sum is
smaller or equal to N . Indeed, on the subspace spanned by the 1-excitation orthonormal basis
vectors

�

�ei, j

�

(0≤ i + j ≤ N), we see that

H
�

�ei, j

�

= α
Æ

(i + 1)(N − i − j)
�

�ei+1, j

�

+ β
Æ

2( j + 1)(N − i − j)
�

�ei, j+1

�

+α j
�

�ei, j

�

+α
Æ

i(N + 1− i − j)
�

�ei−1, j

�

+ β
Æ

2 j(N + 1− i − j)
�

�ei, j−1

�

+ β
Æ

2(i + 1) j
�

�ei+1, j−1

�

+ β
Æ

2i( j + 1)
�

�ei−1, j+1

�

,

(4)

thus confirming the equivalence.

4 Bivariate Krawtchouk polynomials and energy eigenstates

In the Hamming scheme, the univariate Krawtchouk polynomials

KN
n (x; p) = 2F1

�

−n,−x
−N

;
1
p

�

=
∞
∑

l=0

(−n)l(−x)l
l!(−N)l

�

1
p

�l

, x , n= 0,1, · · · , N

come up and are applied to analyze the properties of the quantum walks on the associated
graphs [11], where (a)n = a(a+ 1) · · · (a+ n− 1) is the standard Pochhammer symbol. In the
ordered Hamming scheme of depth 2, the bivariate Krawtchouk polynomials of the Tratnik

5
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type appear, as pointed out in the related coding theory [5]. These two-variable orthogonal
polynomials are defined as the following product of the univariate Krawtchouk polynomials:

T N
m,n(x , y) =

1
(−N)m+n

kN−n
m (x; p)kN−x

n (y;
q

1− p
), 0≤ x + y, m+ n≤ N ,

where kN
n (x; p) = (−N)nKN

n (x; p). The bivariate Krawtchouk polynomials are orthogonal with
respect to the trinomial distribution function:

∑

0≤x+y≤N

�

N
x , y

�

pxq y(1− p− q)N−x−y Ti, j(x , y)Tk,l(x , y) =
(1− p− q)i+ j

�N
i, j

�

p̃i q̃ j
δi,kδ j,l ,

where p̃ = p(1−p−q)
1−p , q̃ = q

1−p . These polynomials are also known to satisfy the 3-term recur-
rence relations involving multiplication by x

x T N
i, j(x , y) = −p(N − i − j)(T N

i+1, j(x , y)− T N
i, j(x , y))

− (1− p)i(T N
i−1, j(x , y)− T N

i, j(x , y))
(5)

and the 7-term recurrence relations when multiplied by y

yT N
i, j(x , y) =

pq
1− p

(N − i − j)(T N
i+1, j(x , y)− T N

i, j(x , y))

−
q

1− p
(N − i − j)(T N

i, j+1(x , y)− T N
i, j(x , y))

+ qi(T N
i−1, j(x , y)− T N

i, j(x , y))

− (1− p− q) j(T N
i, j−1(x , y)− T N

i, j(x , y))

−
p(1− p− q)

1− p
j(T N

i+1, j−1(x , y)− T N
i, j(x , y))

−
q

1− p
i(T N

i−1, j+1(x , y)− T N
i, j(x , y)).

(6)

Furthermore, one has the generating function formula [15]:

∑

0≤x+y≤N

�

N
x , y

�

sx t y T N
i, j(x , y) = (1+ s+ t)N−i− j(1+

p− 1
p

s+ t)i(1+
p+ q− 1

q
t) j . (7)

In the following, set

p =
1
2

, q =
1
4

and introduce the orthonormal bivariate Krawtchouk polynomials

tN
i, j(x , y) =

√

√

�

N
i, j

�

p̃i q̃ j(1− p− q)−i− j T N
i, j(x , y).

From (5) and (6), one can obtain for {tN
i, j(x , y)} the following contiguity relation:

λx ,y tN
i, j(x , y) = α

Æ

(i + 1)(N − i − j)tN
i+1, j(x , y) + β

Æ

2( j + 1)(N − i − j)tN
i, j+1(x , y)

+α j tN
i, j(x , y) +α

Æ

i(N + 1− i − j)tN
i−1, j(x , y)

+ β
Æ

2 j(N + 1− i − j)tN
i, j−1(x , y)

+ β
Æ

2i( j + 1)tN
i−1, j+1(x , y) + β

Æ

2(i + 1) j tN
i+1, j−1(x , y),

(8)
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where the spectrum λx ,y is given by

λx ,y = α(N − 2x) + β(2N − 2x − 4y). (9)

It is a straightforward matter to identify the correspondance between the projection (4) to the
spin lattice of the quantum walk on the ordered Hamming graph Gα,β and the above recurrence
relations for bivariate Krawtchouk polynomials (8).

5 Transfer properties on the graphs

Let us now examine the properties of the quantum walk on the ordered Hamming graph of
depth 2 and of the projected dynamics on the spin lattice. With the motion initiated at

�

�e0,0

�

,
the essential quantity is the transition amplitude

f(i, j)(t) =
�

ei, j|e−i tH |e0,0

�

.

From the correspondence between (4) and (8), the Hamiltonian (3) on 1-excitation sub-
space spanned by

�

�ei, j

�

can be diagonalized by the bivariate Krawtchouk polynomials and its
spectrum is given by (9). With the overlaps between the 1-excitation eigenstates of H and
the occupation basis states given by the orthonormalized polynomials tN

i, j(x , y) and using the
generating function formula (7), one finds

f(i, j)(t) =
∑

0≤x+y≤N

�

N
x , y

��

1
2

�x �1
4

�y �1
4

�N−x−y

tN
0,0(x , y)tN

(i, j)(x , y)e−iλx ,y t

= e−iN(α+2β)t

p
2 j

4N

√

√

�

N
i, j

�

(1+ 2z1 + z2)
N−i− j(1− 2z1 + z2)

i(1− z2)
j ,

where z1 = e2(α+β)t i , z2 = e4β t i . In [25, 28], fractional revival from the apex (0,0) to the
hypotenuse line (i, j) (i + j = N) was found in 2-dimensional XX -spin lattices related to
the bivariate Krawtchouk polynomials of the Rahman type [12, 15, 18, 19]. To realize here a
transfer to the same set or subset of points with i + j = N , it is easy to see that we should
require that there be a time t = T for which

1+ 2z1 + z2 = 0 (∃T ∈ R). (10)

Since |z1|= |z2|= 1, the relation (10) simultaneously imposes that

z2 = 1 (11)

at the same time T . Quite interestingly, these instances are the conditions for perfect state
transfer:

| f(N ,0)(T )|= 1, | f(i, j)(T )|= 0 ((i, j) 6= (N , 0)).

Let us now clarify this. We can rewrite the condition (10) and (11) as follows:

e2i(α+β)T = −1, e4iβT = 1,

from where one finds

(2αT, 2βT ) = ((2m+ 1)π, 2nπ), (2mπ, (2n+ 1)π) (m, n ∈ Z).

Therefore, we can conclude that if

α

β
=
(even integer )
(odd integer)

7
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or
α

β
=
(odd integer )
(even integer)

,

PST from (0,0) to (N , 0) takes place at some time T .
The Fig.1 and Fig.2 are the plots of the transition probabilities of the graph Gα,β associated

with αA(1,0) + βA(0,1).

t = 0 t = π
6 t = π

5

t = π
4 t = π

3 t = π
2

Figure 1: The transition amplitude | fi, j(t)| for A(1,0)+2A(0,1) when N = 7. The areas
of the circles are proportional to | f(i, j)(t)| at the given lattice point (i, j). PST occurs
at π2 and FR on the set of sites i = 0, 1, · · · , N and j = 0 occurs at t = π

4 .

It should be noted here that PST also occurs on the graph G0,1, whose projected lattice
is of the shape given in Fig 3 and that the graph coincides with one in [14] when N = 2,3.
On all these graphs, PST occurs from (0,0) to the farthest point (N , 0), which is desirable for
quantum communication.

It was remarked that when β = αp
2
, the hopping terms in the Hamiltonian (4) are symmet-

ric under rotations by 2
3π. The spin network then identifies with the weight lattice of the fully

symmetrized tensor product of the fundamental representation of SU(3). That the bivariate
Krawtchouk polynomials have an algebraic interpretation based upon SU(3) has been estab-
lished in [20] (see also [15]). For this specific choice of parameters (β = αp

2
), interestingly it

is found that there is FR between the site (0, N) and the lattice points (i, 0) (i = 0, 1, . . . , N).
Indeed, for the transition amplitude

g(i, j)(t) =
�

ei, j|e−i tH |e0,N

�

,

there exists some time T such that

N
∑

i=0

|g(i,0)(T )|2 = 1.

This is illustrated in Fig. 4.

8
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t = 0 t = π
6 t = π

5

t = π
4 t = π

3 t = π
2

Figure 2: The transition amplitude | fi, j(t)| for 2A(1,0)+A(0,1) when N = 7. The areas
of the circles are proportional to | f(i, j)(t)| at the given lattice point (i, j). PST occurs
at π2 .

Figure 3: The projected graphs associated with αA(1,0) + βA(0,1) (left) and A(0,1)
(right) when N = 5. On the graph associated with A(0,1), PST from (0,0) to (N , 0)
occurs at some time T .

9
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t = 0 t = π
6 t = π

5

t = π
4 t = π

3 t = π
2

Figure 4: The transition amplitude |gi, j(t)| for
p

2A(1,0) + A(0,1) when N = 7. The
areas of the circles are proportional to |g(i, j)(t)| at the given lattice point (i, j). FR
on the set of sites i = 0, 1, · · · , N and j = 0 occurs at π4 .

6 Concluding Remarks

This paper has established the connection between quantum walks on graphs of the ordered
Hamming scheme of depth 2 and the single excitation dynamics of certain two-dimensional
lattices of triangular shape. This relation has featured the bivariate Krawtchouk polynomi-
als of the Tratnik type that appear as eigenvalue matrices of the scheme and whose recur-
rence coefficients provide the couplings and Zeeman terms. We have focused on Hamiltonians
αA(1,0) + βA(0,1) given by weighted combinations of the adjacency matrices of the two graphs
associated to the shapes (1, 0) and (0, 1). Remarkably, when α

β is some rational number, we
have observed that PST takes place between the sites (0, 0) and (N , 0) of the lattice at time
t = π

2 after mixing on the whole two-dimensional lattice. In some examples, it has also been
found that fractional revival occurs at t = π

4 at each of the sites of one side only of the lattice.
It should be stressed that the spin lattice that has been found here differs from the one

discussed in [25] which is based on the more general Krawtchouk polynomials of Griffiths
[12, 15, 18, 19]. The question of determining the graph to which the model in [25] lifts thus
remains. The results presented here enrich the catalog of pairings between quantum walks
on graphs and spin models in the context of PST. It is likely that PST could be preserved in
the higher spin simplices related to graphs of the ordered Hamming scheme of depth r where
the multivariate Krawtchouk polynomials will intervene. It would prove interesting if such
coherent transport could be realized in photonic lattices (see for instance [11, 27]). Finally,
we would like to examine if the peculiar transport properties of the spin lattices could be of
use in the design of certain algorithms.
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