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Abstract

The properties of ground state of spin-1
2 kagome antiferromagnetic Heisenberg (KAFH)

model have attracted considerable interest in the past few decades, and recent numerical
simulations reported a spin liquid phase. The nature of the spin liquid phase remains
unclear. For instance, the interplay between symmetries and Z2 topological order leads to
different types of Z2 spin liquid phases. In this paper, we develop a numerical simulation
method based on symmetric projected entangled-pair states (PEPS), which is generally
applicable to strongly correlated model systems in two spatial dimensions. We then apply
this method to study the nature of the ground state of the KAFH model. Our results are
consistent with that the ground state is a U(1) Dirac spin liquid rather than a Z2 spin
liquid.
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1 Introduction

Quantum spin liquids (QSL) can be defined as zero-temperature quantum phases of spin sys-
tems in the absence of symmetry breaking. In the presence of translational symmetry, and if
there are odd number of half-integer spins per unit cell, the Hastings-Oshikawa-Lieb-Schultz-
Mattis theorem [1–3] indicates that a QSL is necessarily a nontrivial quantum phase beyond
the Landau’s paradigm. It has been pointed out that geometric frustration, strong quantum
fluctuation and/or strong spin-orbit coupling may be helpful to realize a QSL in realistic spin
systems [4,5].

The nearest neighbour (NN) spin-1
2 kagome antiferromagnetic Heisenberg (KAFH) model

is a spin model with a strong geometric frustration. Despite the simple form of the model
Hamiltonian, the nature of the ground state of this model has been a long-standing puzzle and
attracted considerable interest in the past few decades [6–19]. In particular, recently, a series
of numerical simulations find this ground state to be a QSL. However, the nature of the QSL
is still under debate. While numerical simulations based on density matrix renormalization
group (DMRG) techniques [20,21] report evidences of a gapped Z2 QSL [13–15], state-of-the-
art variational Monte Carlo simulations find the ground state to be a gapless U(1) Dirac spin
liquid [16]. In addition, it is known that there are many different candidate Z2 QSLs that
may be realized in this model [22–26] due to the interplay between the symmetry and the
Z2 topological order — a phenomenon coined symmetry enriched topological(SET) phases.
Consequently it is still unclear which one of these candidate Z2 QSLs may be realized in this
model.

The difficulty of the problem, to a large extent, is due to the lack of suitable theoret-
ical/numerical techniques. In order to simulate even moderate system sizes of frustrated
quantum spin systems like the KAFH model, one has to work with certain kinds of varia-
tional wavefunctions. The choice of variational wavefunctions often brings up the following
dilemma: On the one hand, one would like to work with wavefunctions in specific univer-
sality classes so that the analytical understanding of the simulation is available. This is the
philosophy behind most variational Monte Carlo simulations. On the other hand, in order to
perform an unbiased simulation and to obtain accurate energetics, one hopes that the choice
of the variational wavefunctions is as general as possible. For instance, DMRG simulations
are based on the matrix product states (MPS) [27, 28] — a quite general class of variational
wavefunctions.

The problem is that the two desired features of the variational wavefunctions usually do not
come together. For example, different candidate Z2 QSLs in the KAFH model are characterized
by the different symmetry fractionalization patterns on the anyon quasiparticle excitations
[29–32]. It is highly nontrivial to extract such analytical understandings from a MPS [33],
although the DMRG simulations based on MPS provide very good energetics. At the same
time, the variational Monte Carlo simulations based on the U(1) Dirac spin liquid state [16],
although having very clear analytical understanding, may be questioned about their generality.

It would be very interesting to develop new variational simulation schemes, hopefully cap-
turing both desired features. This is indeed one of the motivations of an earlier piece of work by
us, where we particularly pay attention to symmetric tensor-network wavefunctions [25,34].
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In two spatial dimensions, we are focusing on the symmetric projected entangled pair states
(PEPS) [35–37], which are natural generalizations of MPS. It turns out that one can system-
atically classify general PEPS wavefunctions according to symmetry. Consequently one can
obtain a finite number of classes of symmetric PEPS wavefunctions, and perform a variational
simulation within each class separately. On the one hand, the analytical understanding of
each class of symmetric PEPS wavefunction is available, which is related to, but not limited to,
the symmetry fractionalization phenomenon. On the other hand, because the classification of
symmetric PEPS is quite general, after variationally simulating different classes of symmetric
PEPS, one is expected to have rather good energetics and nearly unbiased understanding of
the quantum phase diagram.

In this work, we further develop the numerical simulation scheme based on symmetric
PEPS, and apply it attempting to determine the nature of ground state of the KAFH model.
The classification of symmetric PEPS [25, 34] allows us to construct classes of generic PEPS
wavefunctions for different Z2 QSLs. We particularly focus on symmetric PEPS wavefunctions
with bond dimension D = 6 and D = 7, and study the four Z2 QSLs that can be realized by
these bond dimensions. These four classes of symmetric PEPS correspond to Sachdev’s Q1 =Q2
state, Q1 = −Q2 state and two other π-flux states. We perform variational simulations for the
KAFH model for each class separately, and obtain four optimal energy densities. If the ground
state is one of the four Z2 QSLs, these optimal energy densities are expected to be significantly
different, and the ground state is the Z2 QSL with the lowest energy density.

However, surprisingly, we find that the optimal energy densities for both Q1 =Q2 state and
Q1 = −Q2 state are nearly degenerate and comparable with the previously reported ground
energy density of this model, while the two π-flux states have energy densities significantly
higher. In fact, the most natural explanation for such a nearly degenerate energy density
between the Q1 = Q2 state and Q1 = −Q2 state, without resorting to fine-tuning, is that the
ground state is actually a U(1)Dirac QSL. This is because both the Q1 =Q2 state and Q1 = −Q2
state can be viewed as descendent states from the same parent U(1) Dirac QSL, and therefore
can both be used to approximate the parent state. Consequently although we use Z2 QSLs as
trial wavefunctions, our results can be viewed as a supporting evidence of the U(1) Dirac QSL.

2 Spin-1
2 symmetric PEPS on kagome lattice

The kagome PEPS and various notations for sites and bonds are shown in Fig. 1(a). To con-
struct a spin-1

2 kagome PEPS, we associated every site/bond of the kagome lattice with a
site/bond tensor. As shown in Fig. 1(b), a site tensor is formed by a physical leg which sup-
port a physical spin-1

2 , and four virtual legs, while a bond tensor is formed by two virtual
legs. Every leg is associated with a specific local Hilbert space, and a tensor can be viewed as
a quantum state in the Hilbert space of the tensor product of all its leg Hilbert spaces. The
physical wavefunction is obtained by contracting all connected virtual legs of site tensors and
bond tensors.

The classification of symmetric spin liquid phases on the kagome PEPS was obtained in
Ref. [25]. Here, we briefly review the procedure and the result. The symmetry group of
the spin-1

2 kagome system can be generated by translation symmetries T1(2), six-fold rotations
about the center of the hexagon C6, mirror reflection σ along the dashed line in Fig.1(a), time-
reversal symmetry T , and spin rotation symmetry Uθ ~n. A global symmetry transformation
g induces a gauge transformation Wg(x , y, s, i) on all internal legs of tensors. Here (x , y, s)
denotes the site position and i labels the leg, as shown in Fig.1(b). Different spin liquid phases
are characterized by gauge inequivalent symmetry transform rules Wg on internal legs of the
tensor network.
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Figure 1: (Color online) Schematic figures of the graphical representation of (a) the
tensor network state on the kagome lattice (b) u, v and w comprised of four virtual
legs and a physical leg describing Hilbert spaces of four virtual spins and a physical
one respectively and bond tensor (blue rectangle) connecting neighboring virtual
spins

In our case, physical legs are spin-1
2 ’s, while internal legs support virtual spin representa-

tions. We can label a virtual Hilbert space as V =
⊕M

k=1(Dk ⊗VSk
), where VSk

supports spin
~Sk and M denotes number of spin species, while Dk is the “flavor” space. The dimension of V
is D =

∑M
k=1 nk(2Sk + 1). As shown in Ref. [25], the global 2π spin rotation induces a special

pure gauge transformation {J}, which leaves every single tensor invariant up to some phase
factor. For instance, when V = 0⊕ 1

2 , J = diag [1,−1,−1] on every internal leg. {J} together
with the identity action form a Z2 invariant gauge group (IGG), which is related to the Z2 toric
code topological order.

The Z2 IGG will enter tensor equations for symmetries and enrich the classification. Briefly
speaking, Wg , which is the symmetry action on internal legs, satisfies group multiplication
rules up to an IGG element (either trivial or nontrivial) as well as a phase factor. Given the
Z2 IGG and global symmetries of the model, one obtains 32 inequivalent classes, which are
characterized by five Z2 indices: η12,ηC6

,ησ and χσ,χT . Here η’s label Z2 IGG elements,
which characterize symmetry fractionalizations of spinon e-particles, while χ ’s are phase factor
±1, which are related to “weak SPT” indices. For example, η12 = I/J corresponds to zero-
flux/π-flux spin liquids in the Schwinger boson language.

As listed in Appendix A, for all classes, we solve the symmetry transformation rules Wg for
arbitrary D by fixing gauge. The fact that tensors are invariant under symmetry actions on both
physical legs and internal legs imposes constraints on the Hilbert space of local tensors. Tensors
of different classes live in different constraint sub-Hilbert spaces. Here, we focus on two cases:
D = 6 with virtual spins 0⊕ 1

2 ⊕ 1 and D = 7 with virtual spins 0⊕ 0⊕ 1
2 ⊕ 1. Only 4 of the 32

classes can be realized in these two cases, which are fully characterized by two indices η12 and
ηC6

while other indices are fixed as ησ = J and χσ = χT = 1. These four classes happen to
contain four types of NN RVB states [23, 38–41] as representative wavefunctions. For D = 6,
in the absence of any symmetry, the Hilbert space of the site tensor would be 2 · 64 = 2592-
dimensional. After implementing all symmetries, the constrained sub-Hilbert space Vsi te of a
site tensor turns out to be only 19-dimensional for all four classes, which significantly reduces
the number of variational parameters. (For D = 7, the symmetry-constrained sub-Hilbert space
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Vsi te is 43-dimensional for all four classes.)

3 Symmetric iPEPS algorithm

Given generic tensor wavefunctions for all classes, our goal is to find the optimal PEPS wave-
function for each class, which minimize 〈hi j〉 = 〈Ψ|hi j|Ψ〉, where hi j is the local Hamiltonian
acting on two neighbouring sites i, j. In NN KAFH, hi j = ~Si · ~S j .

Figure 2: (Color online) (a) A double layer site tensor from contraction of physical
legs. (b) Graphic representation of 〈ψ|hi j|ψ〉, where hi j acts on the red sites and
bond.

As shown in Fig.2(b), 〈hi j〉 is calculated by contracting all legs of a double layer PEPS. No-
tice that we have already absorbed bond tensors to neighbouring site tensors for convenience.
The bond dimension of the double layer PEPS is D2, and it is generally impossible to get the
exact result of tensor contraction. The key point of the iPEPS algorithm is to find a reason-
able approximation for the environment tensor around site i, j. The algorithm is divided into
two parts: optimization and measurement. In the following, we will describe these two parts
separately.

Figure 3: (Color online) (a) Site tensors in a unit cell with environment matrix E
are decomposed to A and B. (b) Insert X−1X Y Y−1 projectors between A and B, and
replace X ·Y with its singular value decomposition UΛV . (c) Update the environment
matrix E to be ΛUX−1.
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3.1 Optimization.

In this paper, we apply a modified simple update algorithm [42] to optimize the wavefunction.
As shown in Fig.3, for the simple update method, the environment tensors of three sites are
approximated by the direct product of matrices E. Here, all sites share the same matrix E due
to lattice symmetries.

The algorithm to obtain E is described in the following:

1. First, we define the local wavefunction |ψ〉 as contracting single layer site tensors in one
unit cell with initial environment matrix E. As shown in Fig.3(a), we can decompose
|ψ〉 as |ψ〉 =

∑

α |φ
A
α 〉 ⊗ |φ

B
α 〉, where α labels virtual states living in the tensor product

space of leg uv and vw.

2. Define Mαα′ = 〈φA
α |φ

A
α′〉. Then, M is a hermitian matrix, and can be decomposed as

M = (X T)† · X T. The decomposition can be sped up a lot by implementing spin rotation
symmetries. Then, |eα〉 ≡ (X−1)αα′ |φα′〉 form an orthonormal set. Similar analysis on B
leads to an orthonormal set

�

| fβ〉
	

. As shown in Fig.3(b), |ψ〉=
∑

αβ XαγYγβ |eα〉⊗ | fβ〉.
We then perform singular value decomposition: X · Y = UΛV , where Λ encodes the
entanglement information of |ψ〉.

3. Update one environment matrix E to be E → ΛUX−1, as shown in Fig.3(c), and then
use spatial symmetry transformation rules in Appendix A to generate all environment
matrices at different spatial positions.

4. Repeat the above procedure until Λ converges.

Given an arbitrary PEPS wavefunction |Ψ〉 belonging to some spin liquid class, say, class A, we
are able to efficiently measure the approximate“energy density” 〈hi j〉su using the converged
environment matrix E. We then implement standard minimization algorithm, for instance,
the conjugate gradient method, to search for the optimal wavefunction in the constraint sub-
Hilbert space of class A, which minimize 〈hi j〉su. Notice that the major advantages of this
simple-update algorithm are its stability and speed, although the approximation introduced
by the direct-product-environment E is not well under control. In order to control the approx-
imation in the environment tensor, other algorithms like full-update [43] need to be used,
which we leave as a topic of future studies.

3.2 Measurement.

By implementing the optimization algorithm to all four classes, we obtain optimal wavefunc-
tions for these classes. We then measure the energy density of each optimal wavefunction as
accurately as we can. We mainly use variational Monte Carlo combined with tensor entangle-
ment renormalization method (VMC-TERG) [44] to measure the energy density on a 192-site
finite-size sample. (The energy density measurement based on iTEBD algorithm [45,46] is also
performed as a complementary check. See Appendix B for details.) VMC-TERG is a single-layer
algorithm in which one has to approximate the tensor-contraction by keeping a finite bond-
dimension Dcut during the real-space tensor renormalization. Namely, a finite Dcut would
introduce approximation and a scaling analysis with respect to Dcut is usually necessary. How-
ever, we would like to emphasize that despite having approximation for the tensor-contraction,
for any given Dcut , the energy measurement by VMC-TERG is variational. This sharp varia-
tional meaning of the VMC-TERG algorithm is one of its major advantage comparing with
other algorithms.
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Figure 4: (Color online) Numerical results on the spin-1
2 kagome PEPS for optimal

energy densities of four promising classes with D = 6 (left) and D = 7 (right) mea-
sured by VMC combined with TERG on the 8×8×3 kagome lattice. The zero-flux I(II)
class is the Q1 =Q2(Q1 = −Q2) class in Ref. [22]. Error bars are smaller than size of
data points, so are not shown in the figure. Power law functions E(Dcut) = E0+b·D−αcut
(1≤ α≤ 2) are used to fit the data. Exponents α are displayed at the bottom, while
energy densities is shown in Table 1.

Table 1: The optimal energy per site E for the four promising classes with virtual
bond dimension D = 6 and D = 7. Error bars here are due to fitting errors.

Classes E0(D = 6) E0(D = 7)
zero-flux I -0.4354(2) -0.4366(3)
zero-flux II -0.4351(6) -0.4365(5)
π-flux I -0.4293(5) -0.4313(7)
π-flux II -0.4296(8) -0.4227(4)

4 Result

We perform the above algorithm to the four promising classes with virtual bond dimension
D = 6 and D = 7. Results measured by VMC-TERG are presented in Fig.4. Energy densities of
optimized wavefunctions are measured in the 8× 8× 3 kagome lattice, and the scaling over
Dcut is applied. We fit energy densities as power law functions of Dcut : E(Dcut) = E0+ b ·D−αcut ,
1≤ α≤ 2, where fitting parameter α is chosen to have the best fitting quality 1. Energy densi-
ties obtained from extrapolation to infinite Dcut (i.e. E0) are presented in Table 1, where fitting
errors are obtained at 0.5 confidence level. We warn the readers that this type of extrapolation-
schemes is only empirically justified [47]. We test the robustness of this fitting recipes on the
two zero-flux states in Appendix C.

As shown in Fig.4 and Table 1, energy densities of the two zero-flux classes are significantly
lower than those of the twoπ-flux classes, which indicates the ground state of NN KAFH should
be a zero-flux spin liquid. However, these two zero-flux classes have degenerate optimal energy
density for both D = 6 and D = 7 within error bar. It appears that our method fails to determine
the correct class of the Z2 spin liquid for the NN KAFH model.

In fact, the most natural way to interpret the energy degeneracy is that the ground state is

1i.e., the minimal sum of square of the vertical distances from data points to the fitted curve
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actually a U(1) Dirac spin liquid [9,16,48] rather than a gapped Z2 spin liquid. To justify this
statement, we note that the U(1) Dirac spin liquid is the “parent class” of these two zero-flux
Z2 spin liquids. One way to see this is to go to the Abrikosov fermion language [38, 49, 50],
in which the U(1) Dirac spin liquid is described by gapless fermionic spinons coupling to the
internal U(1) gauge field. By adding pairings of fermionic spinons, the U(1) gauge field will
be Higgsed to Z2, leading to Z2 spin liquids. Patterns of pairing are constrained by lattice
symmetries, and different pairing patterns give different Z2 spin liquids.

It turns out that these two zero-flux classes are exactly the neighboring phases of the same
U(1) Dirac spin liquid [24], while the two π-flux states are not neighboring phases of the U(1)
Dirac spin liquid. 2 Consequently, any state belonging to the U(1) Dirac spin liquid can be
approximated by wavefunctions of these two descendant zero-flux Z2 spin liquids classes by
turning on very small pairing. This would naturally lead to the optimal energy degeneracy
obtained by the two zero-flux classes of symmetric PEPS, without having to resort to fine-
tuning.

The optimal energy density measured here on the 192-site sample is comparable to the
thermodynamic-limit energy density reported in a recent tensor-network-based work Ref. [51],
and is slightly higher than the estimated thermodynamic-limit energy density obtained from
DMRG [13]. We expect that the optimal variational energy can be further improved by imple-
menting more accurate optimization methods, such as the fast full update algorithm [43].

5 Discussion and Conclusion

We demonstrate a new variational numerical simulation scheme based on symmetric PEPS
wavefunctions. Although we study the particular KAFH model in this paper, the classification
and simulation of symmetric PEPS wavefunctions are generally applicable to other correlated
quantum systems. The main advantage of this scheme is that two desired features of varia-
tional simulations are both realized. First, the systematic classifications and constructions of
generic PEPS wavefunctions allow one to simulate the quantum phase without losing gener-
ality and obtain accurate energetics, which can be comparable with the energetics of other
state-of-the-art variational methods. Second, despite being general, sharp analytical under-
standings for each class of symmetric PEPS wavefunctions are available.

In particular, we simulate four promising candidate spin liquids on the KAFH model. Two
distinct zero-flux Z2 QSLs give nearly degenerate optimal energy density which is comparable
with the ground state energy density reported using other methods. The most natural expla-
nation for this degeneracy is that the ground state is actually the U(1) Dirac spin liquid, which
is the parent phase of both classes.

It is also informative to compare our simulation with previous parton-based variational
studies on the two zero-flux Z2 QSLs. Ref. [52] reported the variational Monte Carlo simula-
tions based on Guzwiller-projected Schwinger-boson states, and it was found that the Q1 =Q2
state has an energy density significantly lower than that of the Q1 = −Q2 state. Although the
Guzwiller-projected Schwinger-boson states are in the same universality classes as the two
symmetric PEPS classes studied here, the energetics performance of the PEPS wavefunctions
are much better. This can be intuitively understood as follows. The tunable variational pa-
rameters in parton-based wavefunctions quickly become long-ranged in the real space as one
increases the number of parameters, which would not improve energetics — a short-range
property of the wavefunctions. However, the tunable variational parameters in symmetric
PEPS wavefunctions are directly enlarging the local Hilbert space for a local tensor, which can

2The corresponding classes in the fermion language for zero-flux I/II classes are labeled as Z2[0,π]β/Z2[0,π]α
respectively in Ref. [24].

8

https://scipost.org
https://scipost.org/SciPostPhys.7.1.006


SciPost Phys. 7, 006 (2019)

significantly improve energetics.
We thank Ling Wang, E. Miles Stoudenmire and Patrick Lee for helpful discussions, and Yin-

Chen He for sharing his unpublished results on this model using DMRG techniques. The PEPS
calculations were based on the ITensor library, http://itensor.org/. This study is supported
by the Alfred P. Sloan fellowship and National Science Foundation under Grant No. DMR-
1151440. We thank Boston College Research Service for providing the computing facilities
where the numerical simulations were performed.

A Symmetry transformation rules and constrained sub-Hilbert
spaces for the symmetric kagome PEPS classes

A.1 The symmetry group for KAFH

As shown in Fig.(1), we label the three lattice sites in each unit cell with sublattice index
{s = u, v, w}. Further, we specify the virtual index {i = a, b, c, d} of a given site. We choose
Bravais unit vector as ~a1 = x̂ and ~a2 =

1
2( x̂ +

p
3 ŷ). Thus, we are able to specify the virtual

degrees of freedom of site tensors as (x , y, s, i). The symmetry group of such a two-dimensional
kagome lattice is generated by the following operations

T1 : (x , y, s, i)→ (x + 1, y, s, i),

T2 : (x , y, s, i)→ (x , y + 1, s, i),

σ : (x , y, u, i)→ (y, x , u, iσ1),

(x , y, v, i)→ (y, x , w, iσ2),

(x , y, w, i)→ (y, x , v, iσ2),

C6 : (x , y, u, i)→ (−y + 1, x + y − 1, v, i),

(x , y, v, i)→ (−y, x + y, w, i).

(x , y, w, i)→ (−y + 1, x + y, u, iC6
).

(1)

together with time reversal T . Here,

{aσ1, bσ1, cσ1, dσ1}= {d, c, b, a},
{aσ2, bσ2, cσ2, dσ2}= {c, d, a, b},
{aC6

, bC6
, cC6

, dC6
}= {b, a, d, c}.

The symmetry group of a kagome lattice is defined by the following algebraic relations
between its generators:

T−1
2 T−1

1 T2T1 = e,

σ−1T−1
1 σT2 = e,

σ−1T−1
2 σT1 = e,

C−1
6 T−1

2 C6T1 = e,

C−1
6 T−1

2 T1C6T2 = e,

σ−1C6σC6 = e,

C6
6 = σ

2 = T 2 = e,

g−1T −1 gT = e, ∀g = T1,2,σ, C6 ,

(2)

where e stands for the identity element in the symmetry group.
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Further, consider system with spin rotation symmetry operator Rθ ~n, which means spin ro-
tation about axis ~n through angle θ . We mainly consider half-integer spins (SU(2) symmetry)
in this paper. The spin rotation symmetry commutes with all lattice symmetries as well as time
reversal symmetry:

g−1R−1
θ ~n gRθ ~n = e, ∀g = T1,2,σ, C6,T . (3)

(4)

A.2 Symmetry transformation rules on internal legs

There are 25 = 32 symmetric PEPS classes, labeled by five Z2 indices:
�

η12,ηC6
,ησ,χσ,χT

	

,
where η = I/J and µ = ±1. We choose J to be the direct sum of ID1

for the integer spin
subspace and −ID2

for the half-integer spin subspace by fixing gauge.
As shown in Ref. [25], symmetry transformation rules Wg on internal legs can be repre-

sented as:

WT1
(x , y, s, i) = ηy

12,

WT2
(x , y, s, i) = I,

WC6
(x , y, u, i) = η

x y+ 1
2 x(x+1)+x+y

12 wC6
(u, i),

WC6
(x , y, v, i) = η

x y+ 1
2 x(x+1)+x+y

12 ,

WC6
(x , y, w, i) = η

x y+ 1
2 x(x+1)

12 ,

Wσ(x , y, s, i) = ηx+y+x y
12 wσ(s, i),

WT (x , y, s, i) = wT (s, i),

Wθ ~n(x , y, s, i) =
⊕

i

(Ini
⊗ eiθ ~n·~Si ). (5)

For the rotation transformation wC6
(u, i), we have

wC6
(u, a) = wC6

(u, c) = I,

wC6
(u, b) = wC6

(u, d) = η12ηC6
. (6)

For the reflection transformation wσ(s, i), we have

wσ(u, a) = I, wσ(u, b) = χση12ηC6
,

wσ(u, c) = χση12ηC6
ησ, wσ(u, d) = ησ;

wσ(v, a) = η12, wσ(v, b) = χση12,

wσ(v, c) = ηC6
ησ, wσ(v, d) = χσηC6

ησ;

wσ(w, a) = χσηC6
, wσ(w, b) = ηC6

,

wσ(w, c) = η12ησ, wσ(w, d) = χση12ησ. (7)

And for the time reversal transformation wT , we have

wT (u, a) = wT , wT (u, b) = η12ηC6
wT ,

wT (u, c) = η12ηC6
ησwT , wT (u, d) = ησwT ;

wT (v, a) = η12ηC6
wT , wT (v, b) = wT ,

wT (v, c) = ησwT , wT (v, d) = η12ηC6
ησwT ;

wT (w, a) = wT , wT (w, b) = η12ηC6
wT ,

wT (w, c) = η12ηC6
ησwT , wT (w, d) = ησwT ; (8)
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where

wT =

�
⊕

i(Ini
⊗ eiπS y

i ) if χT = 1
⊕

i(Ωni
⊗ eiπS y

i ) if χT = −1.
(9)

Here ni is dimension of the extra degeneracy associated with spin-Si . Namely, the total de-
generacy for spin-Si living on one virtual leg equals ni × (2Si + 1). We have the virtual bond
dimension

D =
∑

i

ni(2Si + 1). (10)

And, Ωni
= iσy ⊗ Ini/2 is a ni dimensional antisymmetric matrix.

For ΘR’s, we have

ΘT1
(x , y, s) = µy

12, ΘT2
(x , y, s) = 1,

ΘC6
(x , y, u) = µ

x y+ 1
2 x(x+1)+x+y

12 ΘC6
(u),

ΘC6
(x , y, v) = µ

x y+ 1
2 x(x+1)+x+y

12 ,

ΘC6
(x , y, w) = µ

x y+ 1
2 x(x+1)

12 ,

Θσ(x , y, s) = µx+y+x y
12 Θσ(s),

ΘT (x , y, u/w) = 1, ΘT (x , y, v) = µ12µC6
,

Θθ ~n = 1, (11)

where

ΘC6
(u) = (µ12µC6

)
1
2 ;

Θσ(u) = (µσ)
1
2 ;

Θσ(v) = µC6
ΘC6
(u)Θσ(u);

Θσ(w) = µσµC6
(ΘC6

(u)Θσ(u))
−1. (12)

B Optimal energies measured by iTEBD

We use the iTEBD method [45] to measure the energy densities of optimal wavefunctions
belonging to two zero flux classes with D = 7. As shown in Fig. 5, the energy densities are
still fluctuating up to Dcut = 400, and it is hard to see the trend for larger Dcut . However, these
results are in agreement with the VMC-TERG result if one intuitively treats the fluctuation
ranges as error bars.

C Robustness analysis for energy fitting of two zero-flux states

In this part, we perform robustness analysis of the energetics fit, especially for the two zero-flux
phases.

In the main text, for optimal states of zero-flux I, we extrapolate energy densities to the
Dcut →∞ limit by using a quadratic function in 1/D2

cut [47]. The almost-converged energies
at Dcut = 32 for both D = 6 and D = 7 ansatz make sure that the extrapolations are reliable.
The fitting result is summarized in Fig. 4 and Table 1.
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E/J

D=7 zero-flux I D=7 zero-flux II

Figure 5: (Color online) Optimal energy densities of two zero flux classes measured
by the iTEBD method.

In contrast, for zero-flux II state, the naive fitting by the quadratic function in 1/D2
cut de-

viates away a lot from the original data. In the main text, we fit the data by using func-
tion in D−αcut , where the exponent α is chosen to have the best fitting quality. To see the ro-
bustness of this fitting recipe, here we perform another type of fitting function, which reads
E(Dcut) = E0 + a1/Dcut + a2/D

2
cut . For D = 6, we obtain E0 = 0.437(3), while for D = 7, we

get E0 = 0.438(2). These fitting results are consistent with the energies presented in Table 1.
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