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Abstract

We consider a family of SU(2)-symmetric Projected Entangled Paired States (PEPS)
on the square lattice, defining colored-Resonating Valence Bond (RVB) states, to de-
scribe the quantum disordered phase of the J1 − J2 frustrated Heisenberg model. For
J2/J1 ∼ 0.55 we show the emergence of critical (algebraic) dimer-dimer correlations –
typical of Rokhsar-Kivelson (RK) points of quantum dimer models on bipartite lattices –
while, simultaneously, the spin-spin correlation length remains short. Our findings are
consistent with a spin liquid or a weak Valence Bond Crystal in the neighborhood of an
RK point.
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1 Introduction: RVB and the frustrated Heisenberg model

Resonant valence bond (RVB) states were first proposed by Anderson [1] to describe a pos-
sible spin liquid ground state of the S = 1/2 antiferromagnetic Heisenberg model on the
triangular lattice. Later on, it was also introduced as the parent Mott state of high-Tc super-
conductors [2]. Soon after, along the same spirit, the Rokhsar Kivelson (RK) wavefunction [3]
was defined as equal weight superposition of nearest neighbor (NN) dimer coverings, avoid-
ing an explicit reference to the (hidden) spin degrees of freedom. It was shown that the RK
wavefunction is a critical dimer liquid state [4] on the square lattice, in contrast to the case
of non-bipartite kagome and triangular lattices [5–8] on which a gapped (Z2) dimer liquid
state is realized instead. Similarly, the NN RVB state, defined as an equal weight superposition
of (non-orthogonal) NN singlet bond (also dubbed “dimer”) coverings, was shown to be also
critical on the square lattice [9,10] while several numerical work [11–14] have demonstrated
that their analogs on the kagome and triangular lattices are Z2 spin liquid states. Note that the
(dimer) critical RK point is commonly unstable – ie towards dimerized phases [3,15] or gapped
dimer liquid phases [16] – upon slightly varying the model parameters. In fact, generically the
RK point appears to be a multi-critical point with all sorts of nearby phases in which the criti-
cal correlations present at the RK point could be correct over a substantial intermediate range
of energy and length scales. SU(2)-invariant spin models have also been engineered [17,18]
to mimic quantum dimer physics on the square lattice, with (critical) RVB ground state and
Valence Bond Crystal (VBC) phases (spontaneously breaking translation symmetry), reflecting
also the multi-critical nature of the RK point in SU(2)-symmetric systems.

Spin liquid behaviors are expected in two-dimensional (2D) frustrated quantum magnets
where magnetic frustration prohibits magnetic ordering at zero temperature. Strong mag-
netic frustration is realized in the square lattice J1− J2 spin-1/2 Heisenberg model defined by
summing over a 2D grid of lattice points (i, j),

H =
∑

i, j

[J1(S(i, j) · S(i+1, j) + S(i, j) · S(i, j+1)) + J2(S(i, j) · S(i+1, j+1) + S(i+1, j) · S(i, j+1))] (1)

and including both NN and next nearest neighbor (NNN) antiferromagnetic couplings J1 (set
to 1) and J2, respectively. A paramagnetic quantum disordered (QD) region was suggested
by early Lanczos Exact Diagonalizations (ED) extrapolations (including up to N = 36 spins)
in the range J2 ∈ [0.34, 0.68] [19], and similar results were announced later using ED up
to N = 40 [20]. However, until now, no agreement has been reached between several nu-
merical approaches on the nature of the QD region – with proposals of VBC [19, 21–24],
(topological) gapped [25,26] or gapless [24,27–29] spin liquids. Interestingly, density matrix
renormalization group (DMRG) approaches [30] with explicit implementation of SU(2) spin
rotation symmetry [24] suggest that the QD region splits into a (critical) spin liquid phase (for
0.44 < J2 < 0.5) and a plaquette VBC phase (for 0.5 < J2 < 0.61). Recently, DMRG simula-
tions of Wang and Sandvik using level spectroscopy [31] also indicate that the QD is formed
by a gapless spin liquid phase (for 0.46 < J2 < 0.52) and a VBC (for 0.52 < J2 < 0.62). In
contrast, other recent computations using U(1)-symmetric (infinite size) Projected Entangled
Pair States (PEPS) [32] suggest a columnar VBC (for 0.53 < J2 < 0.61) separated from the
conventional Néel phase by a deconfined critical point [33], in qualitative agreement with a
previous finite size PEPS computation [34].

Despite such recent progress, the exact nature of the QD phase remains still unclear. In
this paper we aim to investigate further the QD phase in the region around J2 = 0.55 introduc-
ing simple PEPS Ansätze which are specially designed to describe SU(2)-invariant states with
full space group symmetry. In Sec. 2 we quickly review the iPEPS method used, further details
being provided in Appendix A. Results on variational energy and correlation functions are ana-
lyzed in Sec. 3 and complementary ED results are provided in Appendix B, strongly suggesting
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that RK physics with long-range dimer correlations emerges. Finally, further discussions and
conclusions are given in the last section 4.

2 Numerical implementation

2.1 iPEPS method

Tensor networks [35–38] have recently emerged as a state-of-the-art numerical tool to tackle
correlated lattice models. Among them, 2D PEPS [39,40] are variational Ansätze constructed
from local site tensors carrying the physical degrees of freedom (of dimension 2 for spin-1

2 sys-
tems) and z “virtual” bonds (z is the lattice coordination number, z = 4 for the square lattice)
of arbitrary dimension D (see Appendix (A)). Interestingly, local (gauge) or global (physical)
symmetries can be implemented in PEPS [41–48]. In the infinite-PEPS (iPEPS) method [49],
one works directly in the thermodynamic limit by approximating the (infinite) space around a
small M -site cluster by an effective “environment" (here M = 2× 2= 4). One of the most ac-
curate computation of the environment is based on a real-space Renormalization Group (RG)
scheme involving Corner Transfer Matrices (CTM) [50–53], the so-called CTMRG algorithm.
Unrestricted energy minimization can be performed [54,55] using a simple update [56,57] or
a full update [58] of the environment. Recently, a new variational optimization scheme using
a Conjugate Gradient (CG) algorithm has been tested on the non-frustrated [59, 60] and on
the above spin-1/2 J1 − J2 Heisenberg model [61,62].

2.2 Colored-RVB states

We wish here to refine and extend the previous iPEPS study of Ref. [62] dealing with the spin-
1/2 frustrated J1− J2 Heisenberg model on the square lattice. While Ref. [62] focused mainly
on J2 = 0.5 – pointing towards a gapless spin liquid – we focus here on slightly larger J2 ∼ 0.55
where, we shall argue, a new behavior occurs. For this purpose, we shall consider the same
families of translationally invariant fully symmetric PEPS involving a linear combination of a
finite number D of single site tensors,

a =
D
∑

α=1

cα tα . (2)

The tensors tα, obtained from a complete classification of symmetric site tensors on the square
lattice [48], are fully invariant under SU(2) spin rotations and under all operations of the C4v
point group (90-degree rotations and reflections). These local symmetry properties of the site
tensors guarantee that the PEPS itself is a fully symmetric wavefunction under all the global
symmetry operations leaving the Hamiltonian invariant. The bond virtual space of dimension
D = 2N + 1 is of the form

V =

N times
︷ ︸︸ ︷

1
2
⊕ · · · ⊕

1
2
⊕0 , (3)

corresponding to N possible “colors” of spin-1
2 and a spin-0 (singlet). In the following we

shall consider the three PEPS families associated to one, two and three colors of the spin-1/2
degree of freedom i.e. namely to V = 1

2⊕0 (N = 1, D = 3), V = 1
2⊕

1
2⊕0 (N = 2, D = 5), and

V = 1
2 ⊕

1
2 ⊕

1
2 ⊕0 (N = 3, D = 7). Each of these PEPS family is spanned by a small number D

of linearly independent tensors, D = 2, 10 and 30 respectively, given in Refs. [48,62].
It is important to notice that these three PEPS families are not separated from each other

but rather embedded into one another. The smallest one (spanned by 2 independent D = 3 site
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Figure 1: N -color RVB manifolds (N = 1, 2,3) spanned by onsite PEPS tensors in-
volving, on their four virtual bonds, one, two and three colors (here blue, red and
green) of spin-1/2 virtual degrees of freedom. The spin-0 degrees of freedom (site
physical variables) are shown as dashed virtual legs (grey bullets) and the number
of linearly independent (point group-symmetric) tensors of each kind is shown in
parenthesis. All tensors contain either one or three spin-0 legs. The inner ensembles
correspond to three (identical) copies of the V = 1

2 ⊕0 PEPS manifold (each spanned
by two site tensors). Each of the three copies of the N = 2 PEPS family is spanned
by 2× 2 = 4 single-color tensors and, simultaneously, by a set of six 2-color tensors.
The D = 7 3-color RVB subspace is spanned by all the 30 tensors of the picture.

tensors) can be viewed as a manifold of generalized RVB states which include, when expanded
in terms of valence bond (VB) configurations, singlet bonds extending beyond NN sites (in
contrast to the original NN RVB state [1]). Its corresponding phase diagram contains a RK
dimer liquid phase and a (topological) spin liquid phase [63]. The N ≥ 2 PEPS family can
be viewed as N -color (generalized) RVB states where singlet valence bonds (VB) carry now
a color index, ranging from 1 to N , and where the VB amplitudes depend on the coloring
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Figure 2: A typical VB covering of the 3-color RVB state whose amplitude depends
both on the singlet covering and on the coloring pattern.

pattern. In that new language, it becomes obvious that the N = 2 PEPS family includes two
(disjoint) copies of the manifold of single-color RVB states. Similarly, our largest N = 3 PEPS
family – defining the manifold of 3-color RVB states – contains three (disjoint) sub-manifolds
of single-color RVB states (of different colors) and three (disjoint) sub-manifolds of 2-color
RVB states (with different pairs of colors). These features are summarized in Fig. 1.

All site tensors contain either one or three spin-0 virtual legs (leading to a Z2 gauge sym-
metry [63] associated to the odd parity of this number of legs). Note that, if one restricts to
only the subset of tensors with a single spin-1/2 leg and three spin-0 legs, the corresponding
PEPS is the usual NN RVB state (the VB amplitudes do not depend on the coloring pattern in
that case). Longer range singlets are created by “teleportation” [28,63] introduced by any of
the site tensors containing three spin-1/2 (of any color) and one spin-0 on the virtual legs.
Hence, the most general 3-color (D = 7) RVB Ansatz can be viewed as a resonant state of
colored VB coverings of the type drawn in Fig. 2. The VB amplitude depends both on the VB
covering and on the coloring pattern in a complex way set up by the tensor coefficients cα
entering Eq. 2.

2.3 CTMRG algorithm

For a given PEPS realization (i.e. defined by a particular set {cα} of coefficients in Eq. 2)
the corresponding energy E [{cα}] (in the thermodynamic limit) is computed by a CTMRG
method which takes advantage of the point group symmetry of the lattice (see Appendix (A)
for details). Note that, although the site tensor is fully SU(2)-invariant, the CTMRG proce-
dure of Ref. [62] (used to contract the infinite tensor network outside a 2× 2 active region)
was generically converging to a fixed-point environment exhibiting a small finite staggered
magnetization i.e. spontaneously breaking SU(2) spin-rotation symmetry, at least for J2 = 0.5
which was extensively studied. Although, this effect is spurious (the data are consistent with
a vanishing staggered magnetization in the limit of infinite environment dimension, χ →∞),
it complicates the analysis of the data. Hence, we have improved the CTMRG procedure in
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order to keep the full SU(2) symmetry at all stage and for all χ (despite numerical rounding
errors) so that the fixed-point solution of the CTMRG indeed corresponds to a fully symmetric
QD state.

2.4 Optimization over the tensor parameters

In summary, the CTMRG algorithm enables to compute the energy density E [{cα}], in the
thermodynamic limit, for a given choice of (i) the bond dimension D, (ii) the associated D
tensor coefficients cα and (iii) the environment dimension χ. We use a brute force (Conjugate
Gradient) optimization upon the set of coefficients cα to obtain the absolute minimum of the
variational energy at given D and χ. This requires to numerically compute each component
of the local gradient vector ~G of the energy E [{cα}] by finite differentiation,

Gβ ≡
∂ E
∂ cβ

'
E
�

{cα}β
�

− E [{cα}]

δ
, (4)

where, in the set of parameter {cα}β , only cβ has been incremented to cβ+δ, δ/cβ correspond-

ing typically to a relative change of less than 1%. Note that in the calculation of E
�

{cα}β
�

it
is crucial to take into account the change of the environment by computing the new CTMRG
fixed point. Interestingly, we observe that the color-exchange symmetry is broken in the op-
timal PEPS. The optimization is performed for each choice of N = 1,2, 3 and up to some
maximum value of χ, χopt(D).

Thanks to the refinements of the iPEPS technique mentioned above, we have obtained
accurate results for J2 ∼ 0.55 detailed below.

3 Results

3.1 Energetics

The variational energies (per site) at J2 = 0.55 are shown in Fig. 3(a) as a function of the
inverse of the environment dimension χ. Note that the local tensors are fully optimized up to
a maximum bond dimension χopt = 12D2 = 108 for D = 3, χopt = 4D2 = 100 for D = 5 and
χopt = 2D2 = 98 for D = 7. Then, energies are computed for larger environment dimensions
χ > χopt using the fixed optimized tensors obtained at χ = χopt. Linear fits can be performed
in 1/χ to provide the χ →∞ true variational energies. Note that our energy −0.4842 for
D = 7 is quite close to the value −0.4856(1) obtained using D = 9 finite PEPS cluster update
[34] and D = 8 finite PEPS Variational Monte Carlo (VMC) [64, 65]. Moreover, the D →∞
extrapolation shown in Fig. 3(b), using either a Taylor series or a power-law in 1/D, gives
−0.4894(5), significantly below the DMRG [24] and the VMC [29] estimates (reported in
Fig. 3(b) for convenience). Alternatively, a power-law extrapolation (almost linear) w.r.t. 1/N
gives a slightly lower energy−0.4909. This gives us some confidence that the series of colored-
RVB states, as defined by the PEPS construction, provides a faithful representation of the low-
energy physics of the J1 − J2 model at frustration J2 ∼ 0.55.

3.2 Dimer-dimer correlations

After optimizing our symmetric PEPS Ansatz w.r.t. the coefficients of the site tensor, correlation
functions can be computed using arbitrarily long (let’s say horizontal) one dimensional strips
bounded by environment tensors [62] (which depend on χ) as depicted in Fig.7 (e). Let us
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Figure 3: (a) Variational iPEPS energies plotted vs D2/χ for V = 1
2 ⊕ 0 (D = 3),

V = 1
2 ⊕

1
2 ⊕ 0 (D = 5) and V = 1

2 ⊕
1
2 ⊕

1
2 ⊕ 0 (D = 7). Dashed lines are linear fits.

(b) χ →∞ extrapolated iPEPS energy plotted vs 1/D. Polynomial and power-law
fits give very similar D →∞ extrapolations. The same data are also plotted vs 1

N
(×1

3) using smaller blue dots. An (almost linear) power-law extrapolation w.r.t. 1/N
gives a slightly lower energy. Comparison with finite size Lanczos ED of N-site square-
shaped tori (plotted vs 1/N) in (a) and with DMRG [24] and VMC extrapolations [29]
in (b) are shown. Note that error bars are included in the 50-site ED energy data
obtained by Lanczos step extrapolation after 30 steps.

first define the connected dimer-dimer correlations,

Cd(r) =



DxDx+rex

�

−



Dx

�


Dx+rex

�

, (5)

where x = (i, j) is some arbitrary lattice site, dimer operators Dx = Sx · Sx+ex
are oriented

along the horizontal ex = (1,0) direction, and the expectation values are taken in the opti-
mized PEPS. Note that, the PEPS being invariant by lattice translation, the dimer density




Dx

�

does not depend in fact on the position x. Also, although we are using a strip geometry, the
local tensor (and the corresponding environment tensor T) has been optimized for the fully
rotationally invariant (infinite) lattice.

The dimer correlations are plotted in Fig. 4(a) for D = 7 and J2 = 0.55 and several values
of χ, in semi-log scale to reveal the long-distance exponential decay. From a linear fit, one can
extract the corresponding dimer correlation length ξd(χ). The latter is plotted in Fig. 5(a) as
a function of χ and, in Fig. 5(b), versus χ/D2 which seems to be the natural rescaled variable
to compare the behaviors of the 3 different families D = 3, 5,7. For all cases, we observe a
clear linear dependence with χ,

ξd(χ) ∼ aD
χ

D2
+ bD , (6)
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suggesting a divergence of the correlation length, or at least saturation to a very large value
beyond reach. It is interesting to notice that, once plotted in terms of the rescaled variable
χ/D2, the slope aD of the linear increase is quite similar for D = 5 and D = 7, suggesting a
robust feature of the correlations. In Fig. 5(c) we compare the D = 7 correlation length at
different J2 values, showing a more pronounced increase at J2 = 0.55.

Whenever the correlation length ξd(χ) diverges (or becomes very large), one expect to
see power-law behaviors in the correlation functions,

Cd(r)∼ r−αd , (7)

in the range of distance 1< r < ξd . The exponent can be written as αd = 1 + ηd where ηd
defined e.g. in Ref. [66] is the anomalous dimension. Since the correlation length remains
moderate for D = 7, we have (i) first extrapolated the data in the χ →∞ limit in Fig. 4(b)
(using a power-law fit in 1/χ) for a few distances r and (ii) fitted these extrapolated values to
obtain the exponent αd ∼ 1.08 via a power-law fit in Fig. 4(a). The smallness of the anomalous
exponent ηd ' 0.08 reveals very long-range dimer correlations at J2 = 0.55, in contrast to
J2 = 0.5 studied in Ref. [62]. Interestingly, quite similar behaviors are found for D = 3,5 and
7 as shown in Fig. 4(c) where the dimer correlations are plotted, using a log-log scale, as a
function of the rescaled distance r̃ = r/ξd , for the largest attainable environment dimension
χ. Linear fits for r̃ < 1 provide similar values for the exponent αd , between 1.15 and 1.25, in
agreement (within error bars) with the previous analysis. It is also interesting to notice that
these values are quite close to the value αd ' 1.16 reported for the NN RVB state [9] and agree
with recent DMRG simulations [24].

3.3 Spin-spin correlations

Finally, we have computed the spin-spin correlations (e.g. along the ex horizontal direction),

Cs(r) =



Si · Si+rex

�

, (8)

using the same strip geometry of an (infinite) chain of sites bounded by environment tensors
T on the edges (Fig.7 (d)). In the original RVB picture [1] spins are correlated only at short
distance via NN singlet pairing. Our results obtained for J2 = 0.55, D = 7 and several χ values
up to χ = 9D2 = 441 are shown in Fig. 6. Linear fits of the long-distance correlations (plotted
in log-log scales) enable to estimate accurately the spin correlation length. The inset shows
that the latter remains quite small, typically less than 2 lattice spacings, even for the largest χ
at hand. The same is also true for D = 3 and D = 5. However, as shown in Fig. 4(a), the spin
correlations are much stronger than the dimer correlations at short distance. This is consistent
with the RVB picture where strong (resonating) singlet bonds are formed between NN sites.

4 Conclusion and outlook

The main findings of this iPEPS study at J2 = 0.55 and J2 = 0.575 are the following: i) a
simple SU(2)-symmetric PEPS based on a single site tensor provides a very good variational
energy; ii) its dimer correlations exhibit slow algebraic decay up to long distance; iii) its spin
correlations are short range. Properties ii) and iii) are characteristic of RK physics found e.g.
in the NN RVB spin liquid on any bipartite lattice.

The critical RK point is known to be unstable to small Hamiltonian perturbations [7,15,16]
breaking the lattice bipartiteness. However, investigation of classical dimer models at finite
temperature [8] indicates that criticality and nonbipartiteness are compatible. In fact, our
D = 3 PEPS, which realizes exactly an extended RVB state with (inter-sublattice) longer-range
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Figure 4: (a) Dimer-dimer correlations vs distance (in semi-log scale) for J2 = 0.55,
D = 7 and several environment dimension χ. Spin-spin correlations at the largest χ
value are also shown for comparison. (b) χ →∞ extrapolation of the correlations at
fixed distances using power-law fits in 1/χ. The extrapolated values are reported in
(a) as black bullets fitted as a power law (dashed line). (c) Dimer-dimer correlations
plotted in log-log scale as a function of the renormalized distance r/ξd(χ). For the
values of χ used here, the dimer correlation length was found to be ξd ' 61.5,16.4
and 9.65, for D = 3, 5 and 7 respectively. From the linear fits one obtains the expo-
nent αd of the power laws.

9

https://scipost.org
https://scipost.org/SciPostPhys.7.4.041


SciPost Phys. 7, 041 (2019)

0 5 10 15 20 25

χ / D2
0 200 400 600

χ
0

5

10

15

D
im

er
 c

or
re

la
tio

n 
le

ng
th

D=7
D=5
D=3

0 5 10

χ / D2
0

5

10

D
im

er
 c

or
re

la
tio

n 
le

ng
th

J2=0.575
J2=0.55
J2=0.50

x 1/2

(c)

J2=0.55

(b)(a)

x 1/2 D=7

Figure 5: Dimer correlation length ξd at J2 = 0.55 plotted vs environment dimension
χ (a) or vs χ/D2 (b), for D = 3, D = 5 and D = 7. The D = 3 data are multiplied by
a factor 1/2 to fit the vertical scale. (c) Comparison of ξd vs χ/D2 for different J2
values and fixed D = 7. Data for J2 = 0.5 are taken from Ref. [62].

singlets, is known to possess an extended RK dimer liquid phase [63]. Also, it is likely that
regions of (truly critical) RK phases exist also within our D = 5 and D = 7 PEPS manifolds.
Although one cannot prove that such a RK dimer liquid is realized in the J1−J2 spin-1/2 Heisen-
berg antiferromagnet, it is known that the critical RVB state is the ground state of a family of
SU(2)-symmetric local spin-1/2 models with frustrating interactions [17,18]. In any case, the
critical dimer correlations could survive in nearby phases of some RK point over a substantial
intermediate range of distances. In that case, (at least) two scenario (probably beyond our
current PEPS description) may apply; First, it may well be that the dimer correlation length
saturates to a (very) large value leading to a (gapped) spin liquid with ξd � ξs. A second
possibility is that the system would spontaneously break translation symmetry and develops
a type of (very weak) VBC ordering (dimerization, plaquette formation, . . . ) as suggested by
large-N theories [67], series expansions [68, 69] or numerical work [21, 22, 24, 31, 32]. In
fact, Lanczos ED of small clusters (see Appendix (B) for details) suggests that the tendency to
realize a VBC is maximum at J2 ' 0.55, although the VBC order parameter should be quite
small, and probably very hard to detect directly. Note that a gapped spin liquid with ξd � ξs
could be alternatively seen as a melted VBC.
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length vs χ.
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A CTMRG method

In this appendix, we provide a brief and self-contained description of the CMTRG method
used to characterize the properties of the iPEPS states considered in this paper. We focus
on the renormalization procedure aiming at deriving converged environment tensors (corner
and edge tensors) at the thermodynamic limit that can be further used to compute states
properties such as energy or correlation functions. The discussion is restricted to the case of
a fully symmetric tensor (i.e. transforming according to the A1 representation of C4v) in the
context of a translationally invariant Ansatz (the same tensor is used on every site of the square
lattice). For a more general presentation, one can refer to the appendix A of reference [53].
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Bilayer site
tensor

Site tensor

(ii) Edge renormalization

(i) Corner renormalization

Figure 7: (a) The bilayer site tensor A is obtained by contracting the physical indices
(red line) of the site tensor a and its conjugate a∗ (note that in our case a is real). (b)
The two steps CTMRG procedure involving corner and edge tensors. The 2D lattice
is contracted starting from its corners (the four corners are identical). The insertion
of a site (i) is absorbed by inserting approximate isometries U . The latter are used,
in a second step, to absorb the insertion of a site on the edge tensor (ii) (see text
for details).(c-e) Geometric setup used to compute energy (c), spin-spin correlation
functions (d) and dimer-dimer correlation functions (e).

Bilayer tensors. In the infinite-PEPS (iPEPS) method [49], one considers a PEPS Ansatz |Ψ
�

directly in the thermodynamic limit. The PEPS is an infinite two-dimensional tensor network
defined by a single site tensor, and its normalization




Ψ|Ψ
�

is then a bilayer tensor network
which can be re-expressed as a tensor network of site rank-4 bilayer tensors (of bond dimension
D2). The bilayer tensor is represented in Fig. 7(a) and possesses full invariance under spin
rotation and point group symmetry operations.

Observables. Computation of observables (like energy or correlations) also requires the
bilayer tensor network which is approximately contracted over the (infinite) space surrounded
a small M -site cluster. This approximate contraction then leads to an effective “environment"
of this small region. For the energy one needs a M = 2 × 2 = 4 site cluster (fitting the
interaction on both NN and diagonal bonds, see Fig. 7(c)) and, for the correlations at distance
r, a one-dimensional r-site segment connecting two operators at its two ends (see Fig. 7(d)
and (e)).
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Renormalization procedure. The computation of the environment is based on a Corner
Transfer Matrix Renormalization Group (CTMRG) [50–53] scheme schematically represented
in Fig. 7(b).

The environment involves a χ × χ corner transfer matrix C and a rank-3 boundary
χ × χ × D2. In practice χ = kD2 with k integer. Before describing the several steps of the
CTRMG algorithm let us remark that, thanks to the A1 symmetry of the site tensor, several
important simplifications occurs in the procedure. First of all, the four corner matrices as well
as the four edge tensors are degenerate, so that a single (C,T ) couple is needed. Furthermore,
C is a real symmetric matrix. Hence it can be reduced by diagonalization (instead of a singular
value decomposition) and only one isometry U has to be considered.

1. Initialization step. Corner matrix C and edge tensor T are initialized in a similar way
as bilayer site tensor is constructed from the site tensor (Fig. 7(a)). In addition to the
physical index, one (resp. two) virtual bonds are contracted between the two layers.

2. Corner renormalization. The new corner C̃ is obtained in two steps. Starting with a
T CT corner, one adds a bilayer site tensor A (see yellow square on Fig. 7(b)). The
resulting (real) symmetric χD2 ×χD2 matrix is diagonalized and an χD2 ×χ isometry
U is constructed by keeping only (at most) the χ largest weights. Special care is taken
to preserve the SU(2) spin-rotation symmetry in the truncation by keeping the SU(2)
multiplet structure appearing in the corner matrix spectrum.

3. Edge Renormalization By adding a bilayer site tensor A to the edge tensor T and con-
tracting with the isometry U , the renormalized χ × χ × D2 edge tensor T̃ is obtained
(see yellow rectangle on Fig. 7(b)).

Steps 2. and 3. are then repeated until a fixed point for C is reached. Note that the
complexity of step 2. is χ3D2 + χ3D4 + χ2D8 = k3D8 + k3D10 + k2D12 ∼ k2D12 for the
untruncated corner matrix computation and

�

χD2
�3
= k3D12 for the diagonalization. The

cost of step 3. is χ3D4 + χ3D6 + χ2D8 = k3D10 + k2D12 + k3D12 ∼ k3D12. As a result, the
algorithmic complexity is D12 for large D.

B VBC order parameters computed by ED

In order to investigate if the ground-state is a VBC that breaks lattice symmetries, we have
computed the dimer-dimer correlation function:

Ci jkl = 4
�

〈(Si · S j)(Sk · Sl)〉 − 〈Si · S j〉2
�

on various finite-size tori of N sites. Following Ref. [22], we can then compute various structure
factors, and in particular

SVBC =
1

Nb

∑

k,l

ε(k, l)Ci jkl ,

where the summation is over Nb parallel bonds (kl) with respect to the reference bond (i j)
and ε(k, l) = ±1 depending on the sublattice, see Fig. 8(c). It can be shown that SVBC is finite
both for a VBC with columnar or plaquette order [22].

In Fig. 8(a), we plot the behavior of SVBC vs J2 for different finite-size clusters. In order
to remove short distance data from this order parameter, we have also considered a slightly
different definition

S∗VBC =
1

Nb

′
∑

k,l

ε(k, l)Ci jkl ,
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Figure 8: (a) VBC order parameter SVBC vs J2 computed on square-shaped
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N
tori of N sites. (b) Same data for the modified VBC order parameter (see text). (c)
Sign structure ε(k, l) of the VBC order parameter (see text). In the modified VBC
order parameter S∗VBC, the dashed bonds are excluded in the summation.
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Figure 9: (a) Scaling of the VBC order parameter square SVBC vs 1/N . (b) Same data
for the modified VBC order parameter S∗VBC (see text).

where the summation does not include the nearest six bonds, see Fig. 8(b,c). Note that, com-
pared to the ground-state energy calculations, we only computed VBC order parameter on
clusters that are compatible with plaquette or columnar order, i.e. contain (π, 0) and (0,π)
in their Brillouin zone. Quite interestingly, both VBC order parameters are maximal around
J2 ' 0.55, which is the optimal value found in DMRG [24], and then have a sudden drop
beyond J2 = 0.6, which is presumably of first-order character.

Finite-size scaling analysis is shown in Fig. 9 for VBC order parameters at various J2 values.
Reliable extrapolation is not possible, but given the data points and their curvature vs 1/N ,
data are compatible with a vanishing VBC order parameter for J2 = 0.4, 0.5 or 0.6, but weak
long-range VBC order could be stabilized around J2 = 0.55.
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