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Abstract

We introduce tensor network contraction algorithms for counting satisfying assignments
of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula
as a tensor network, whose full contraction yields the number of satisfying assignments
of that formula, and use graph theoretical methods to determine favorable orders of
contraction. We employ our heuristics for the solution of #P-hard counting boolean sat-
isfiability (#SAT) problems, namely monotone #1-IN-3SAT and #CUBIC-VERTEX-COVER,
and find that they outperform state-of-the-art solvers by a significant margin.
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1 Introduction

Constraint satisfaction problems (CSPs) have both a prominent function in the fundamental
understanding of computational complexity and a vast reach in applications across diverse
fields of science. The classification of computations in terms of complexity implies the exis-
tence of efficient algorithms for problems classified as “tractable”. In contrast, many CSPs are
classified as “hard”: it is expected that the amount of computational effort it takes for any
algorithm to solve an instance of the problem scales superpolynomially with the size of the
instance. This has led to decades of incremental refinement of algorithmic tools that can treat
them at an acceptable computational cost [1]. A large number of these hard problems are
of great practical importance. New algorithms for faster solution of a CSP can thus have far
reaching consequences.

The search for such algorithms has led to confluences of computer science and compu-
tational many-body physics, with notable examples like the FKT algorithm for counting the
perfect matchings of planar graphs [2–4] and survey propagation for the solution of boolean
satisfiability problems [5–7]. In the study of computational problems, one is often interested
in obtaining exact solutions. This is particularly pertinent to solution of problems that cannot
be approximated to a desired accuracy with any substantial advantage in computational effort
compared to solving the problem exactly. On the other hand, the majority of numerical many-
body techniques trade the exact solution of a problem, which typically requires computation
times that scale exponentially with the problem size, for an advantageous polynomial-time
procedure that yields adequate approximations.

In this work, we follow the opposite route: we take a highly efficient numerical tool from
many-body physics, namely tensor networks, and trade the benefit of polynomial scaling for
the capability of obtaining the exact solution of hard computational problems, focusing in
particular on counting satisfying assignments of boolean satisfiability (SAT) instances. In the
original context of condensed matter physics, a tensor network is a representation of the clas-
sical or quantum partition function of a many-body system. In this language, the evaluation
of the partition function amounts to taking the trace over all tensor indices. This represen-
tation formed the basis of powerful techniques for solving challenging problems of strongly
correlated systems [8,9]. Tensor networks have since proliferated beyond interacting particle
systems [10–12].

The problem of taking the tensor trace of an arbitrary tensor network belongs to the com-
plexity class #P-hard [13]. So far, this has been circumvented in mainly two ways. The first
is to impose restrictions on network structure, tensor entries, or both, and exploit these to
devise subexponential-time exact contraction algorithms [14–21]. The second and so far most
fruitful approach is to find an efficient scheme for accurate numerical approximation of the
tensor trace. The idea is to perform local operations that compress the crucial information into
subsets of the dimensions of a tensor, and truncate the remainder. Since in condensed mat-
ter physics one typically deals with systems defined on a lattice instead of an arbitrary graph,
it is natural to establish a coarse-graining procedure inspired by the renormalization group
apparatus [22–30]. The resulting methods approximate the tensor trace in time that scales
polynomially with the number of degrees of freedom. Recently, coarse-graining algorithms
that trade the polynomial scaling for exact computation of the tensor trace were introduced
and successfully applied to the study of vertex models encoding computational problems [31].

CSPs are commonly defined on random graphs. Even though some CSPs — in particular,
decision (SAT) and counting (#SAT) problems [32–34] — have been formulated as tensor
networks, no practical strategies for their efficient contraction exist. This is partly because it
is nontrivial to define coarse-graining protocols in arbitrary graphs, but also because there is
frequently no obviously advantageous order of contraction. Even though problems defined on
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arbitrary graphs can be embedded into lattices, this embedding often incurs large overheads in
terms of ancillary degrees of freedom, which can in turn translate to undesirable computational
penalties.

Here we introduce tensor network contraction methods for problems defined on arbitrary
graphs. Our main goal is to devise strategies for finding favorable orders of contraction. Un-
like most existing approaches, we forgo completely any compression scheme, approximate or
exact. Using tools from graph theory, we develop contraction algorithms based on graph par-
titioning that are provably subexponential for certain classes of graphs with upper bounded
maximum degree. We then extend the scope to broader classes of graphs and focus on random
regular graphs as an example. We apply our algorithms to two #P-complete problems, namely,
monotone #1-IN-3SAT and #CUBIC-VERTEX-COVER, two #P-complete #SAT problems defined
on random 3-regular graphs, and show that our heuristics indeed yield favorable contraction
sequences that enable us to outperform state-of-the-art #SAT solvers by a large margin.

We begin the presentation with a description of the tensor network contraction problem
in Sec. 2.1. In Sec. 2.2 we cast the problem into a graph theoretic language. We use this
vocabulary to prove that full contraction of tensors defined on graphs with sublinear separators
can be performed in subexponential time, using graph partitioning as a tool. In Sec. 3.1 we
detail numerical heuristics for full contraction of arbitrary networks of tensors. In Sec. 3.2 we
test our algorithms on #CUBIC-VERTEX-COVER and show that it compares favorably to modern
#SAT solvers. We conclude with a summary and outlook in Sec. 4

2 Definitions and preliminary observations

2.1 Tensor networks and boolean satisfiability

Consider a set of N variables, denoted as {i} = {i1, i2, . . . , iN}, each of which is defined over
a finite and discrete domain with at most D elements. Variables are assumed to interact with
one another. Interactions between a subset {s} ⊆ {i} of variables can be expressed by a
multivariate function E{s}(i), where the subscript indicates that the function depends only on
the entries of the configuration vector (or “state”) i that correspond to the variables in {s}.
E{s}(i) can be thought of as an energy cost penalizing “less compatible” variable configurations.
One can then define the totality of interactions as

E(i) =
∑

{s}

E{s}(i) . (1)

In statistical mechanics, one defines the partition function as

Z =
∑

i

exp[−βE(i)] =
∑

i

∏

{s}

T{s} , (2)

where β is the inverse temperature. The objects T{s} = exp(E{s}) are also multivariate func-
tions of discrete variables — or tensors — and they fully encode the underlying interactions or
constraints between variables.

With a definition that ensures E(i) ≥ 0 ∀ i, the Boltzmann factors exp[−βE(i)] express
the occurrence probability of a configuration i of “energy” E(i) relative to the probability of a
zero-energy state. When β →∞, Z simply counts the number of zero-energy states and its
calculation amounts to solving a combinatorial problem defined by the constraints imposed
by E{s}, or equivalently by T{s}. Note that a naive exhaustive search for these states over all
possible configurations requires an exponential number of operations.

This formulation allows for directly casting a variety of decision and counting CSPs as ten-
sor networks. The main goal is to perform the summation on the right-hand side of Eq. (2),
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Figure 1: Representation of a CSP instance as a graph. Circles (triangles) represent
variables (clauses). The dashed rectangle delineates the tensor contraction example
discussed in the text.

which is referred to as tensor trace or full contraction and yields the solution of the under-
lying instance. In general, tensor entries can take either continuous (e.g., R, C) or discrete
(e.g., Z, N, B) values. For simplicity and concreteness, below we focus on counting satisfying
assignments in boolean satisfiability (SAT) problems. Tensor entries will hence be nonnega-
tive integers. We stress, however, that all results are straightforwardly generalizable to CSPs
beyond the boolean domain.

A SAT problem is the problem of deciding whether a logic formula built from a set of
boolean variables {x} = {x1, x2, . . . , xn} and the operators ∧ (conjunction), ∨ (disjunction),
and ¬ (negation) evaluates to TRUE, i.e., is satisfiable. In the so-called conjunctive normal
form, variables and negations thereof — collectively called literals — are combined in clauses,
i.e., disjunctions of literals, m of which are in turn combined conjunctively to form the SAT
formula. The general SAT problem defined in this manner, as well as many of its special
cases, is NP-complete. In particular, when clauses are restricted to contain exactly k variables
each, the corresponding problem is called kSAT and is also NP-complete for all k ≥ 3. The
corresponding counting problems (#SAT) — determining how many satisfying assignments,
if any, a SAT formula has — are at least as hard as their decision counterparts, and belong to
the class #P-complete. In fact, #kSAT is #P-complete for any k ≥ 2.

Instances of (#)SAT problems can be straightforwardly represented as tensor networks [32–
34]. Each variable and clause is encoded into a tensor Ti1 i2...id , where d is the rank of the ten-
sor and all indices are boolean. Clause tensors reflect the underlying boolean operations on
variables. For example, OR tensors are of the form

TOR
i1 i2...id

=

¨

0, if i1 = i2 = · · ·= id = 0

1, otherwise
, (3)

where each index labels a bond and represents a variable appearing in the clause. If a variable
is to appear negated in a clause, the values of the corresponding boolean index of the clause
tensor are reversed. Reversed indices are overlined, e.g., Ti1 i2 i3

. Since variables can appear in
more than one clauses, we need to be able to “replicate” the same index across clause tensors.
This is achieved with COPY tensors of the form

TCOPY
i1 i2...id

=

¨

1, if i1 = i2 = · · ·= id
0, otherwise

, (4)

which indeed just “copies” the value of a variable across all indices.
With these definitions, tensor entries reveal how many assignments — if any — of the

participating variables satisfies the underlying clause. For example, TOR
000 = 0 means that an
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assignment in which all variables participating in a 3-variable OR clause are 0 is unsatisfiable,
whereas TCOPY

001 = 0 means that errors in copying a variable are disallowed.
Common indices of two tensors can be “traced over”, which results in the contraction of

the two tensors into one. A tensor obtained from the contraction of two or more tensors still
encodes the number of satisfiable assignments for each combination of values of the remaining
indices. Consider, for example, the contraction

Ti1 i6 =
∑

i2,i3,i4,i5

TOR
i1 i2 i3

TCOPY
i2 i4

TCOPY
i3 i5

TOR
i4 i5 i6

=

�

3 3
3 4

�

, (5)

shown schematically in Fig. 1. This simply verifies that there are 4 satisfiable assignments of
i2 = i4 and i3 = i5 if i1 = i6 = 1 and only 3 otherwise, leading to T00 = T01 = T10 = 3 and
T11 = 4.

As discussed above, the full trace (2) of a tensor network yields the total number of con-
figurations that satisfy all constraints. Therefore, if a tensor network encodes an instance of
a SAT problem, its full contraction yields the solution of the corresponding #SAT counting
problem.

A tensor network contraction algorithm is a method that evaluates the tensor trace nu-
merically, i.e., contracts all bonds sequentially until a single, zero-rank tensor — a scalar — is
obtained. If we allow only for contractions of tensors, then the maximum tensor rank in the
network increases as the number of tensors decreases. A linear increase in the maximum rank
means an exponential increase in both the cost of subsequent contractions and the memory
required to store the tensor network. This means that the order of contractions can play a
crucial role in the overall performance of a tensor network contraction algorithm.

The resource that defines the computation time is the tensor rank: a successful contraction
strategy must keep the maximum tensor rank as low as possible throughout the contraction
sequence. We note that the notion of bond dimension, commonly discussed in the physics
literature, is fully equivalent to the tensor rank in the present context, since we do not ever
perform any decomposition or truncation of tensor entries. The bond dimension is therefore
fully determined by the number of “legs sticking out” of each tensor, i.e., the degree of the cor-
responding vertex in the network. As we detail in Sec. 2.2, efficient contraction is essentially a
problem in algorithmic graph theory. Using methods of graph partitioning and community de-
tection to tackle this problem, in Sec. 3 we will introduce practical tensor network contraction
algorithms that construct favorable contraction sequences.

2.2 Graph theory and contraction complexity

The tensor network contraction problem is fundamentally a graph modification problem.
Graph modification problems are an important aspect of algorithmic graph theory. Decision
instances of such problems are typically stated as follows: given an input graph G, decide
whether it is possible to obtain another graph G′ by performing a finite number of graph mod-
ification operations, such as vertex and edge additions or deletions, subject to some constraints.
Problems of this kind typically tend to be NP-hard [35, 36]. The corresponding optimization
problems, i.e., finding a sequence of graph modification operations that leads from G to G′

ensuring a minimum number of violated constraints, are at least as hard as their decision
counterparts.

To define the problem, let G = (V, E) denote a graph with vertex set V and edge set
E = {uv : u, v ∈ V}, where we have denoted an edge connecting vertex u to vertex v as uv.
The numbers of vertices and edges are written as |V | and |E|, respectively. The degree deg vi

of a vertex vi ∈ V is the number of vertices it is adjacent to, so that
∑|V |

i=1 deg vi = 2|E|. We
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Figure 2: Cartoon “snapshots” of a contraction sequence based on a separator hier-
archy. Circles designate vertices of a graph and black lines are separators; edges are
not shown. Circle size is proportional to vertex degree and thicker lines are separa-
tors higher in the hierarchy. Starting from the leftmost panel, edges of the shortest
separators in the hierarchy are contracted, yielding the graph in the next panel.

also denote the minimum and maximum degrees of G as δ(G) and ∆(G), respectively. A graph
is connected if there is a path from any vertex to any other vertex. A graph is called d-regular
if deg vi = d ∀ vi ∈ V . A graph is called bipartite if it can be divided into two components,
such that each vertex belonging to one component is only connected to vertices belonging to
the other. A graph is called planar if it can be embedded in the plane, i.e., it can be drawn on
a compact two-dimensional manifold of genus zero in a way that its edges intersect only at
their endpoints.

Below we will only consider the graph modification operation called edge contraction. Edge
contraction is an operation that removes an edge uv from a graph and replaces the vertices u
and v by a new vertex w, such that all edges previously incident upon u and v (apart from uv,
which has been removed) are now incident upon w. Contracting one or more edges of a graph
G generates minors of G. A minor of a graph G is a graph that can be obtained from G by
any sequence of edge deletions, vertex deletions, and edge contractions. Below we implicitly
assume that multiple edges between adjacent vertices are all contracted at once, so that minors
obtained from edge contractions have no loops, i.e., there are no edges that connect a vertex to
itself. Full contraction is thus the operation of reducing a graph to a single vertex via repeated
edge contractions.

With the above definitions, the problem that motivates this work can be stated as follows:

BOUNDED DEGREE FULL CONTRACTION

Input: A graph G and an integer D.

Question: Is there an edge contraction sequence that reduces G to a single vertex, ensur-
ing that every minor H of G generated in the contraction sequence has maximum degree
∆(H)< D?

Without any restriction on the input graph G, BOUNDED DEGREE FULL CONTRACTION can be
shown to be NP-complete for any fixed D ≥ 2 [37]. The optimization problem of finding the
contraction sequence that minimizes D — which is equivalent to finding the optimal contrac-
tion sequence for the evaluation of the tensor trace (2) — is at least as hard as the decision
problem BOUNDED DEGREE FULL CONTRACTION.

Our goal in this work is to show that we can obtain near-optimal contraction sequences
despite the NP-hardness of BOUNDED DEGREE FULL CONTRACTION, and that this can have im-
portant practical consequences for the solution of constraint satisfaction problems using tensor
networks. We first restrict the problem to planar graphs and derive a straightforward analytical
result. This result then provides the impetus for the numerical heuristics applied to examples
of #P-complete problems in Sec. 3.

It is well known that many NP-complete problems defined on graphs can be solved in
subexponential time, when the graphs considered are planar. Here we will translate this into
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the language of tensor networks and #P-complete problems. The general algorithm for the
solution of a problem defined on a planar graph is to recursively partition the graph by finding
vertex separators and employing dynamic programming methods. A vertex separator is a subset
S ⊂ V , such that if S and all the edges incident to it were deleted, then G would split into two
disconnected induced subgraphs. The planar separator theorem states that any planar graph on
|V | vertices has a separator S that contains O(|V |1/2) vertices and separates the graph into sub-
graphs A and B, each of which has at most 2|V |/3 vertices. Such planar separators can be found
in linear time [38]. Correspondingly, there is a set of edges C = {uv ∈ E | u ∈ S, v ∈ A}, called
an edge separator or cut-set. If a graph has maximum degree ∆, then |C | is O((∆|V |)1/2) [39].
One can go one step further and construct separator hierarchies, by recursively separating A
and B as described above. Such hierarchies can be calculated in linear time [40]. This pro-
cedure eventually distributes the vertices of the original lattice into O(|V |) subgraphs, each of
size O(1).

Two immediate corollaries of the planar separator theorem and its generalizations follow:

Corollary 1. Let G be a planar graph with maximum degree ∆. A sequence of edge contractions
that fully contracts G, ensuring that the maximum degree of every minor H of G generated during
the contraction sequence is at most O((∆|V |)1/2), always exists and can be found in linear time.

To prove this, find an edge separator hierarchy in linear time that partitions G into |V | sub-
graphs of size 1. Then calculate the tensor trace by recursively contracting all edges belonging
to the smallest separators in the hierarchy in at most O(|V |) steps in total, as illustrated in the
cartoon of Fig. 2. At each step, the set of edges incident to a vertex belong to O(1) separators,
and hence they are at most O((∆|V |)1/2).

It is straightforward to generalize this corollary to other classes of graphs with sublinear
separators, such as fixed-genus graphs [41], or more generally graphs with polynomial expan-
sion [42].

In the context of tensor networks, Corollary 1 in turn has the following immediate conse-
quence:

Corollary 2. Let TN be a planar tensor network of N tensors with maximum rank upper bounded
by a constant∆ and maximum dimension of a single index upper bounded by a constant D. Then
TN can be fully contracted in time DO((∆N)1/2).

As in Corollary 1, find an edge separator hierarchy in time O(∆N). Full contraction of the
tensor network then requires at most ∆N contractions of two tensors, each of size at most
O(D(∆N)1/2). Contraction of two tensors, each with a total number of elements L, costs time
at most O(L2), and hence the total cost of contraction scales as DO((∆N)1/2).

This observation implies that instances of any #CSP, defined on planar graphs with maxi-
mum degree ∆ and with variables that can take at most D values, can be solved with tensor
networks in subexponential time irrespective of what the entries of the tensors are. On the other
hand, even stronger results can be obtained for tensor networks of planar or fixed-genus #CSP
instances if restrictions are imposed on tensor values [15–17,20]. In physics terms, Corollary 1
may be intuitively understood as a form of “area law” for classical systems [43]. In complexity
theory, it is a manifestation of the so-called “square root phenomenon”.

Corollary 2, like Corollary 1, also straightforwardly generalizes to classes of graphs with
sublinear separators. In contrast, without any restriction on graph properties, the planar sepa-
rator theorem and its generalizations do not hold and separators grow as O(|V |). In this case,
we do not have a meaningful worst-case bound that can guarantee the efficiency of tensor
network contraction. We hence resort to numerical experimentation.

7

https://scipost.org
https://scipost.org/SciPostPhys.7.5.060


SciPost Phys. 7, 060 (2019)

3 Fast counting of solutions in #P-complete problems

3.1 Algorithms

3.1.1 Tensor network contraction algorithms

The algorithms used to prove the existence and the linear-time scaling for obtaining planar
separators are not commonly implemented for graph partitioning in real-world problems. Fur-
thermore, efficient partitioning of arbitrary graphs is crucial in a variety of fields, from network
load balancing and power grid design to social and biological networks [44], and powerful
methods have been developed for this purpose.

Here we employ the multilevel graph partitioning heuristic called METIS [45]. METIS per-
forms one or more steps of coarse graining of the initial graph, in order to identify a favorable
partition — that is, a partition that splits the graph into two induced subgraphs of roughly
equal size by cutting as few edges as possible. METIS begins the partitioning procedure from
a randomly chosen vertex. This random choice causes a small percentage of partition separa-
tors to be atypically long compared to the average for a particular graph class and size. We
find that performing each partition twice and choosing the best out of 2 almost completely
eliminates this shortcoming for the classes of graphs we have studied, with only minimal cost
in computation time. We therefore always obtain 2 bipartitions of the same (sub)graph and
choose the best one. For further details on the inner workings of METIS, we refer the reader
to the relevant references.

The combined tensor-METIS algorithm works as follows. We begin by defining the ten-
sor network corresponding to an instance of a #CSP problem, as detailed in Sec. 2.1. The
first step of the algorithm is to construct a separator hierarchy of the network, like the one
shown schematically in Fig. 2, by recursively performing METIS bipartition until each parti-
tion contains a single vertex (and hence a single tensor). We then use the separator hierarchy
to determine the tensor contraction sequence, along the lines of the procedure described in
the proofs of Corollaries 1 and 2. Carrying out all contractions yields the tensor trace, which
is the count of satisfying assignments of the instance.

To provide another point of reference, we also devise a greedy contraction algorithm. At
each step of this protocol, out of all connected pairs of tensors in the network, we choose the
pair whose contraction yields the tensor with the smallest rank and contract it, and repeat this
until the network is fully contracted. We call this heuristic tensor-greedy.

Finally, as an alternative to partitioning, one may consider the community structure of a
network [46, 47] as a blueprint for efficient contraction sequences. Instead of separating a
graph into a predetermined number of partitions, community detection algorithms automati-
cally identify the number and membership of communities in a graph, such that vertices within
a community are more highly connected than vertices across communities. Here we use the
Girvan-Newman algorithm [48] as a heuristic to determine the tensor contraction sequence.
The Girvan-Newman algorithm is based on edge betweenness, i.e., the number of shortest paths
between pairs of vertices that contain an edge. The idea is that edges with high betweenness
are more likely to connect vertices across communities, and thus recursively removing them
eventually reveals the community structure in a graph. We use this community structure in the
same way we use the separator hierarchies to contract arbitrary tensor networks. We designate
this heuristic tensor-GN.

We have implemented the above tensor network contraction heuristics in Python and pro-
vide simple scripts demonstrating their usage on GitLab [49]. We use the python version of
the igraph library to construct and manipulate graphs. Graph partitioning is implemented us-
ing the METIS library [45]. Finally, we use the igraph implementation of the Girvan-Newman
algorithm in tensor-GN. All tensor contractions are performed using the library numpy. We
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note that all the tensor contraction algorithms are exponential-space in the general case, and
memory is the main performance bottleneck.

3.1.2 SAT counters used for benchmarking

It is unlikely that any #P-complete problem can be solved exactly in time that scales funda-
mentally better than exponentially [50]. Nevertheless, since solving #P-complete problems
is often important for practical purposes, any benefit in performance can have far-reaching
consequences. For this reason, copious effort has been invested in the last few decades in
the development of highly optimized heuristics for the solution of #CSP problems [1], and in
particular #SAT.

We compare our tensor network contraction algorithms against the fastest existing solvers
for the solution of a class of #SAT problems, to be introduced below. Most solvers use the
Davis–Putnam–Logemann–Loveland (DPLL) algorithm [51] to exhaustively search for all satis-
fying assignments of an instance, whereas others use ideas from knowledge compilation [52] to
perform the counting. Specifically, we have tested the performance of cachet [53],
cnf2eadt [54], CNF2OBDD [55], d4 [56], miniC2D [57], relsat [58], and sharpSAT [59].
For knowledge compilers, we have used — whenever present — appropriate options to skip
the compilation step and solely do counting. For more details on these algorithms, we refer to
the respective references.

For the problems we study in the next Section, we find that miniC2D exhibits the best
scaling of all the solvers we tested, followed by d4. For this reason, we will use miniC2D
as a performance benchmark in Sec. 3.2. It is interesting to note that both miniC2D and d4
perform a form of graph partitioning (more accurately, hypergraph partitioning) in an initial
preprocessing step, which may play a role in their superior performance compared to other
solvers in our experiments.

3.2 Numerical experiments

We have benchmarked our tensor network contraction algorithms on the #P-hard counting
problems monotone #1-IN-3SAT and #CUBIC-VERTEX-COVER. Average-case hard instances of
both these problems can be defined as random 3-regular (or cubic) graphs. This has the ad-
vantage that hard instances can be sampled almost uniformly, thus eliminating bias in their
random selection. First we detail our results on monotone #1-IN-3SAT. Our results on #CUBIC-
VERTEX-COVER are presented below.

Each monotone 1-IN-3SAT clause over three boolean variables returns TRUE if precisely one
of the three variables is 1. The corresponding clause tensors have the form

T1IN3
i1 i2 i3

=

¨

1, if i1 + i2 + i3 = 1

0, otherwise
. (6)

Equivalently, a monotone 1-IN-3SAT clause over the variables x1, x2, x3 can be written in con-
junctive normal form as (x1∨ x2∨ x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨¬x2∨ x3)∧(¬x1∨ x2∨¬x3)∧
∧(¬x1 ∨¬x2 ∨¬x3).

Monotone 1-IN-3SAT is NP-complete [60]. In fact, it represents the hardest type of satisfia-
bility problems, as it features a “shattered” solution manifold close to the SAT-UNSAT threshold
at clause-to-variable ratio α' 2/3. It is for this reason that this decision problem is used as a
paradigmatic example to demonstrate the failure of all local search algorithms [61,62]. Here
we focus on precisely the regime where the decision problem becomes hard in the average
case, but we instead tackle the counting counterpart, i.e., monotone #1-IN-3SAT, which is
even harder than the decision problem. We generate random instances of monotone #1-IN-
3SAT at α' 2/3, in which each variable appears in precisely two clauses. These instances can

9

https://scipost.org
https://scipost.org/SciPostPhys.7.5.060


SciPost Phys. 7, 060 (2019)

50 100 150 200 250 300
N

0.1

1.0

10.0

100.0

M
ed

ia
n

ru
nt

im
e

(s
)

miniC2D ∼ 1.115N

tensor-GN ∼ 1.07N

tensor-METIS ∼ 1.085N

tensor-greedy ∼ 1.1N

Figure 3: Median runtime scaling of tensor network contraction solvers and miniC2D
for the solution of monotone #1-IN-3SAT on cubic graphs. All algorithms were run
on the same random sample of 1000 instances of the problem. Dashed lines indicate
the scaling extrapolated from the last 4 data points for each method. All calculations
were performed on a single core of an AMD Opteron 6320 2800MHz processor with
64GB of RAM available.

be represented as 3-regular graphs, where each edge represents a variable and each vertex a
clause. This allows us to efficiently sample them uniformly using established methods [63].

In Fig. 3 we compare the median runtime of miniC2D and our tensor methods as a function
of the number of variables N for 1000 random instances at each N . All our methods, including
the naive greedy contraction algorithm, outperform miniC2D, achieving both better asymp-
totic scaling and absolute runtime. This exponential speedup allows us to reach instances of
up to 300 variables with the graph partitioning and community structure heuristics, with the
latter achieving a slightly better scaling than the former. This is well beyond what is achiev-
able with all other known counting solvers. Our methods solve each individual instance in the
sample faster than miniC2D in this regime. Note that, even though the median runtime is of
the order of 102 s for N = 300, exceptional instances are much harder, requiring ∼ 104 s to
solve.

Next, we apply our tensor network algorithms to the problem #CUBIC-VERTEX-COVER, i.e.,
counting the number of vertex covers of 3-regular graphs. A vertex cover is a subset of the
vertices of the graph with the property that every edge of the graph has at least one of its end-
points in the subset. #CUBIC-VERTEX-COVER is #P-complete [64]. Equivalently, each instance
of the problem can be defined as a #2SAT formula, in which a variable represents a vertex (so
that N = |V |) and a two-variable OR clause represents an edge. We remark that, even though
2SAT is in P, even sampling satisfying 2SAT assignments uniformly or almost uniformly is hard
unless P=RP [65], whereas the counting problem is #P-complete.

We can recast #CUBIC-VERTEX-COVER as a tensor network using Eqs. (3) and (4). Here we
sample 1000 cubic graphs with 32-200 vertices randomly using a Monte Carlo procedure that
guarantees asymptotic sample uniformity [63]. All the graphs we generate are guaranteed to
be connected and simple, i.e., there are no multiple edges between vertices. Our results are
summarized in Fig. 4. In Fig. 4(a) we present a comparison of median times to solution 〈τ〉
between our tensor network contraction heuristics and the miniC2D algorithm. We observe
that the exponential scaling of all the methods is revealed when instances grow beyond 100
vertices. We find that tensor-METIS outperforms miniC2D by more than an order of mag-
nitude in runtime for the largest instances accessible. Even though the asymptotic scaling is
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Figure 4: (a) Median runtime of tensor network contraction solvers and miniC2D
for the solution of #CUBIC-VERTEX-COVER. All algorithms were run on the same ran-
dom sample of 1000 instances of the problem. Dashed lines indicate the scaling
extrapolated from the last 4 data points for each method. (b) Per instance runtime
comparison between tensor-METIS and miniC2D for instances with 152 variables.
Dashed gray line indicates equal runtime for the two algorithms. (c) Average max-
imum degree ∆ encountered during the contraction sequence of tensor-METIS as
a function of instance size for unrestricted (circles) vs planar (triangles) instances of
#CUBIC-VERTEX-COVER. All calculations were performed on a single core of an AMD
Opteron 6320 2800MHz processor with 64GB of RAM available.

slightly worse than that of miniC2D, an extrapolation of the exponential scaling shows that
tensor-METIS is faster for all practically accessible instances of this problem: the curves for
tensor-METIS and miniC2D meet for |V | > 500 and τ > 1025s, i.e., runtimes several or-
ders of magnitude larger than the current estimate for the age of the universe. tensor-GN
performs even better. Finally, Fig. 4(a) indicates that it is indeed the graph partitioning and
community structure detection that are responsible for the good performance of the tensor
algorithms, as it shows that tensor-greedy fails to achieve similar results.

Fig. 4(b) shows a more detailed comparison between runtimes of tensor-METIS and
miniC2D for instances with 152 variables. Of the 1000 random instances of #CUBIC-VERTEX-
COVER, only one is solved faster by miniC2D. Moreover, Fig. 4(b) shows that the vast majority
of instances of this size are solved within 10 seconds by tensor-METIS, whereas the distri-
bution for miniC2D is much broader. Finally, in Fig. 4(c) we show the growth of the average
of the maximum degree encountered during the contraction sequence versus the number of
variables, which reflects how the length of the separators constructed by METIS grows with
|V |. The slope is clearly linear for general instances, indicating an exponential-time algorithm.
As a comparison, we also show the maximum degree growth in solving planar instances of the
same problem with tensor-METIS. This indicates that tensor-METIS is very effective in
solving problems defined on planar graphs with degree constraints. We have observed the
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same behavior in general random planar graphs [66].
We remark that in our numerical experiments, both tensor algorithms and miniC2D per-

form counting using fixed-precision floating-point arithmetic. For #CUBIC-VERTEX-COVER,
rounding errors start occurring for |V | ∼ 100 vertices, due to the fact that, for this problem, the
number of solutions grows exponentially with |V |. This means that the counts we obtain from
both methods are approximate. An exact count can be obtained by gradually incrementing
the numerical precision upon increasing |V |. Increasing the representation size of numbers by
a factor of p means that the cost of a single multiplication of two numbers increases as p2,
and hence contraction of two tensors of total dimension L now takes O(p2 L2)multiplications.
This means that extending the number representation can at most change the prefactor of the
exponential scaling and not the exponent.

4 Summary and outlook

In this work, we have reformulated tensor network contraction as an algorithmic graph theory
problem. In this language, it becomes apparent that there is a complexity dichotomy for tensor
network contraction depending on whether the underlying graph possesses sublinear separa-
tors. This renders graph partitioning a potentially useful tool for finding favorable contraction
sequences of tensor networks. We have verified that this is indeed the case by implement-
ing tensor network contraction algorithms that demonstrably outperform established #SAT
counters for instances of two #P-complete problems.

The techniques we develop have a number of limitations, all of which can be at least partly
addressed. Since all of the argumentation depends only on graph properties, it is agnostic as
to the computational problem embedded into the tensors. We have already demonstrated
this fact by studying two different classes of problems on cubic graphs, of which the first
(monotone #1-IN-3SAT) is considered harder to solve in practice. For example, the algorithms
we develop here would have identical performance on #SAT and #XORSAT defined on the
same graphs, even though the latter is a #-tractable problem. Another question pertains to
graphs without upper bounded maximum degree. Vertex degrees correspond to tensor ranks,
so if vertex degrees are allowed to grow linearly, then the size of the corresponding tensors
grows exponentially. Nevertheless, it may be possible to relax the maximum degree condition
in some cases. For SAT problems, one can break long clauses into two or more shorter clauses,
incurring a polynomial overhead in ancillary variables, while tensors representing variables
participating in many clauses can be exactly decomposed into rings of rank-3 tensors [21]. On
the other hand, an increase in the average maximum degree is compensated by a decrease in
the average clause-to-variable ratio. We thus expect that our algorithms should scale well for
hard instances of #1-IN-kSAT with k > 3 as well, as the SAT-UNSAT threshold decreases with
increasing k for these problems [67].

In the tensor network representation of CSP problems, each variable and each clause corre-
spond to a graph vertex. As our tensor network contraction methods scale with the number of
vertices, increasing the clause-to-variable ratio multiplies the number of vertices in the graph
and hence worsens the scaling of our methods in comparison to exhaustive DPLL solvers. Our
methods are hence most advantageous for problems that are the hardest when the resulting
instance graphs are sparser. A counterexample is #3SAT, which becomes hard for clause-to-
variable ratios that are higher than those of the problems studied here. However, it is important
to note that a higher threshold value of the clause-to-variable ratio does not necessarily signify
a more complex problem: close to its satisfiability threshold at α' 2/3, monotone 1-IN-3SAT
is practically a much harder decision problem than 3SAT close to its threshold at α' 4.27 [62].
In conclusion, even though our methods are applicable to a wide variety of CSPs, their poten-
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tial is greatest for hard problems that give rise to sparser graphs, such as the aforementioned
#1-IN-kSAT problems with k > 3.

Even though we have focused on #SAT problems, tensor network techniques can be used to
solve CSPs beyond boolean satisfiability, including weighted satisfiability and CSPs with vari-
ables defined over higher dimensional — and even mixed — domains. We therefore believe
this work may have important repercussions in a broad range of settings where fast solution of
instances of #P-hard #CSP problems is required. For example, the evaluation of knot invari-
ants can be thought of as weighted planar #CSP problems [68], for which our method of tensor
network contraction is subexponential and demonstrably fast [66]. Furthermore, our approach
can be used to classically simulate measurements of the outputs of random quantum circuits.
The graph G is then the circuit grid, tensors represent quantum gates, and the values of the
variables representing the initial and post-measurement states of the circuit qubits are fixed.
In this setting, a separator-based algorithm is equivalent — in terms of the functional form of
the runtime scaling — to the established simulation algorithms based on treewidth [69], but
may be advantageous in practice.

Another direction we believe holds promise is the generalization of tensor network com-
pression techniques, developed for the coarse-graining of tensor lattices, to arbitrary graphs [70].
This could lead to novel subexponential-time approximation algorithms for decision and count-
ing problems of intermediate complexity [71,72]. Of particular future interest in this context
is also combinatorial optimization.

Both graph partitioning and community detection lend themselves to divide-and-conquer
schemes. With an efficient distributed representation of tensor networks [73], one could plau-
sibly harness the potential of distributed computation over multiple machines or a cloud to
solve very large instances of hard problems. Decision problems may be particularly amenable
to such a strategy, if linear algebra of boolean tensors is implemented in a scalable manner.

Hybrid techniques that incorporate elements of more than one of the algorithms we in-
troduced here may still improve performance. Tensor network contraction methods may hold
even greater promise as members of algorithm portfolios, to be used in algorithm selection
for artificial reasoning [74, 75]. Another appealing feature of tensor network contraction al-
gorithms based on graph properties is that they can be “lazy”, i.e., one can decide whether
to evaluate the tensor trace after first contracting the underlying graph with a given method
and tracking vertex degrees to accurately predetermine the computational cost of the tensor
contraction — see, e.g., Fig. 4(c).
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