
SciPost Phys. 7, 066 (2019)

From “weak” to “strong” hole confinement in a Mott insulator

Krzysztof Bieniasz1,2, Piotr Wrzosek3, Andrzej M. Oleś2,4, Krzysztof Wohlfeld 3?
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Abstract

We study the problem of a single hole in an Ising antiferromagnet and, using the magnon
expansion and analytical methods, determine the expansion coefficients of its wave func-
tion in the magnon basis. In the 1D case, the hole is “weakly” confined in a potential
well and the magnon coefficients decay exponentially in the absence of a string potential.
This behavior is in sharp contrast to the 2D square lattice where the hole is “strongly”
confined by a string potential and the magnon coefficients decay superexponentially.
The latter is identified here to be a fingerprint of the strings in doped antiferromagnets
that can be recognized in the numerical or cold atom simulations of the 2D doped Hub-
bard model. Finally, we attribute the differences between the 1D and 2D cases to the
magnon-magnon interactions being crucially important in a 1D spin system.
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1 Introduction

A tendency towards particle delocalization is an ubiquitous phenomenon in quantum mechan-
ics, for it is encoded in the Heisenberg uncertainty principle for momentum and position op-
erators [1]. Perhaps one of its most iconic examples is the so-called particle tunneling under
a finite potential barrier: even if the energy of the particle is below the potential amplitude,
the probability to find a particle outside the potential well is finite. Yet, the particle is con-
sidered localized, for its wave function decays exponentially with an increasing distance from
the potential well. As an important feature, the potential acts here only locally and does not
increase with the distance. This example of electron localization by a potential well will be
called “weak confinement” in what follows.

The fact that a particle can delocalize beyond a potential barrier has tremendous impli-
cations for the electron wave functions typically found in crystals. It allows for an electron
tunnelling under the potential barrier of the periodic potential formed by the ions, leading to
the modulus of the electron wave function following the periodicity of the ionic potential [2].
This is the essence of the Bloch theorem and means that an electron in a typical crystal is
completely delocalized over all ionic sites.

Nevertheless, localization of electrons in crystals is possible. For instance, this can hap-
pen in the Mott insulators—crystals for which strong electron-electron interactions determine
electron localization [3,4]. The Mott localization is still not fully-understood and is an area of
active research—both for an integer filling [5–9], as well as in doped systems [10–20]. This
lack of a complete understanding of the problem is largely due to the fact that the most widely-
used models describing the problem (e.g. two-dimensional (2D) Hubbard [21], t–J [22, 23]
or even the t–Jz [4]models) cannot be solved exactly [3] and the wave function of an electron
in a Mott insulator is not known in general.

Therefore, here we concentrate on perhaps the simplest, though still nontrivial and realis-
tic,1 problems of electron localization in the Mott insulator—the problem of the confinement
of a particle by an effective potential that takes place when a single hole is added to the or-
dered ground state of the half-filled t-Jz model [24–38]. Using an improved version of the
recently developed magnon expansion (ME) method2 [39–43] and analytic calculations, we
unambiguously show that a single hole: (i) in 2D or higher dimensional models is “strongly”
confined in the ground state and its wave-function coefficients decay superexponentially, i.e.,
much faster than in the textbook case of a single finite potential well, (ii) in a 1D chain ex-
periences “weak” confinement, i.e., has the wave-function coefficients decaying exponentially,
just as in a potential well. Interestingly, as we show below, these differences between the 1D
and higher-dimensional cases can be easily understood in the magnon language as originating
from the crucial role played by the magnon-magnon interactions in a 1D spin system. Alto-

1See the concluding section for a detailed discussion.
2Also known in the literature as variational approximation or momentum average [39–43].
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gether, this means that lowering dimensionality and adding interactions may in fact remove
“strong confinement” in favor of “weak confinement” in a strongly correlated system.

2 Model and methods

The Hamiltonian of the t–Jz model reads [4]:

H= −t
∑

〈i j〉σ

�

c̃†
iσ c̃ jσ+H.c.

�

+ J
∑

〈i j〉

�

Sz
i Sz

j−
1
4 ñi ñ j

�

, (1)

where ñi=
∑

σ c̃†
iσ c̃ jσ. It describes the constrained hopping of fermions∝ t, in the restricted

Hilbert space without double occupancies, i.e., c̃†
iσ ≡ c†

iσ(1−niσ̄), along the bond 〈i j〉, and the
antiferromagnetic (AF) exchange∝ J > 0 between the z-th components of the S = 1

2 spins of
the localized c-electrons [44, 45]. In what follows we study the properties of the eigenstates
of the Hamiltonian (1) for the case of a single hole introduced into the half-filled limit (i.e.,
one electron localized at each site). As in the half-filled case, the ground state of the model
(1) is an Ising antiferromagnet; the problem studied here is that of a propagation of a single
hole in an Ising antiferromagnet.

The method used in the paper requires first to express the above model (1) in the magnon
language. To this end, the magnons are introduced here by means of the Holstein-Primakoff
transformation [46] which maps interacting spins on a boson problem,

Sz
i = ±

�1
2 − ni

�

, S±i = bi , S∓i = b†
i . (2)

Here ni = b†
i bi , b†

i is a magnon creation operator, and the sign ± alternates between the AF
sublattices in the Ising antiferromagnet. At the same time, removing a spin generates a hole:
for ↑-sublattice:

c̃i↑ = h†
i , c̃i↓ = h†

i S
+
i , (3)

since removing an inverted spin also requires its realignment; complementary operations gen-
erate a hole at ↓-sublattice [24]. Crucially, the maximal number of bosons and holes has to be
limited to maximally one at each site i (constraint C1). We note that in Eqs. (2) the aforemen-
tioned constraint C1 is implicitly imposed, allowing us to omit the “square root” multipliers on
the right hand side of these definitions.

As a result, we get an exact representation of the t–Jz model in the magnon language for
α= 1,

H = t
∑

〈i j〉

�

h†
j hi

�

b j + b†
i

�

+H.c.
�

+
1
2

J
∑

〈i j〉

P j

�

−1+ ni + n j − 2αnin j

�

Pi , (4)

where Pi = 1 − h†
i hi . This ensures that the terms ∝ J are present only on bonds without

holes in the t–Jz model (constraint C2). Most importantly, the last term in (4) is the only
magnon-magnon interaction (at α = 1) in this Hamiltonian—a constant term active only if
two magnons (i.e., inverted spins) are present on the bond 〈i j〉. It is precisely this term which
is neglected in the well-known linear spin wave (LSW) theory (at α= 0).

Our primary method, the ME, is a novel, numerical technique of solving the polaronic mod-
els, in the Green’s function formalism, through the expansion of the equations of motion [40].
It has been successfully applied to several polaronic problems [41–43], including spin, orbital,
and spin-orbital polarons. The central idea is that the relevant processes are limited to the
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hole’s neighborhood. Thus, one can perform the expansion in real space and apply a Hilbert
space cutoff based on the size and spread of the bosonic cloud surrounding the hole. This
greatly reduces the Hilbert space while all the states relevant to the dynamics, as well as the
C1 and C2 constraints, are included.

On the practical level, the method consists in multiple applications of the Dyson equation

G(ω) = G0(ω) + G(ω)VG0(ω), (5)

where V is the interaction of the problem, and G0(ω) is the free single-particle Green’s func-
tion operator corresponding to the exactly solvable, non-interacting single particle Hamilto-
nian. Taking the expectation value of the (full) single-particle Green’s function operator G(ω)
operator in a single particle state, usually the Bloch state

|k〉 ≡ h†
k |0〉=

1
p

N

∑

j

eik·R j h†
j |0〉, (6)

and expanding the right-hand-side of Eq. (5) yields a single equation of motion (EOM) for the
Green’s function.

Since the matrix element of the G0(ω) operator is in principle known, the central problem
of the expansion is evaluating the effect of the interaction V on the given single particle state.
We assume here that this interaction is a hole-boson coupling, which either creates or destroys
additional bosons in the system. For instance, acting with the kinetic coupling, as found in our
problem, on the Bloch state |k〉 leads to a hole-magnon state with momentum k:

t
∑

i,δ

h†
i+δhi(bi+δ + b†

i )h
†
k |0〉=

t
p

N

∑

j,δ

eik·R j h†
j+δb†

j |0〉. (7)

Therefore, the expansion procedure introduces higher order Green’s functions involving states
with different hole-boson spatial configurations. These Green’s functions are also unknown
and are subject to the same expansion as before. Thus, the variational expansion is controlled
by the maximal number of bosons created in the system—the process is continued until the
EOM system closes at the desired level of expansion. Once generated, the EOM system can be
solved numerically to yield the Green’s function G(k,ω), as well as all the other generalized
functions appearing in the expansion, which are crucial for recreating the wavefunction and
the resulting Pn string length probability distributions.

We stress that the ME method is a numerically exact method of calculating the Green’s
function of a particular polaronic model on a particular lattice and for a given number of
magnons. Thus, when applied to a hypercubic lattice and once the calculated observables cease
to change with increasing number of magnons (i.e., the method “converges”), the obtained
result contains all physical processes governing the propagation of a hole in the polaronic
model under study; e.g. it can include the quite-often disregarded Trugman processes [26].

3 Results

The central object that is calculated in this paper is the probability distribution {Pn} of observ-
ing n magnons in the wave function of a hole doped into the Ising antiferromagnet. This is
achieved by calculating the coefficients of the expansion of the ground state wave function
of the half-filled t–Jz model (1) with a single added hole in the above-explained “magnon
language” basis [47] using the ME method in the numerically converged case, which requires
keeping up to ca. 100 bosons in the calculations.
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Figure 1: Probabilities {Pn} of observing n magnons in the ground state of single hole
wave function as calculated using the ME method for different values of J/t in the
t–Jz model in the 1D case (a1) with and (b1) without magnon-magnon interactions;
and the 2D case (c1) with and (d1) without magnon-magnon interactions. In (a1)
[(b1)] the curves are obtained analytically (see text); in (c1) [(d1)] the curves are
fits to the numerical results (points) assuming the same functional dependence as
in (b1), cf. Appendix A. The cartoons, (a2)–(d2), illustrate the differences between
these four cases and show the energy cost E associated with the disruption of the AF
background by the moving hole (blue square) which creates magnon excitations (red
circles). The energy cost of a single excited bond E = J/2 is represented by a single
red segment.

3.1 1D AF Ising chain

The results, obtained for the “genuine” 1D t–Jz model, i.e., when the magnon-magnon inter-
actions are correctly included (α= 1), are presented in Fig. 1(a1). We observe that, irrespec-
tively of the value of the spin exchange J , the probabilities {Pn} always decay exponentially
with the increasing number of magnons n. This result is further elucidated by the analytic
calculations (see Appendix A) which are in perfect agreement with the above 1D numerical
results, see Fig. 1(a1). Thus, in the case of the full 1D model (1) we obtain an exponential
decay of the probabilities,

Pn>0(α= 1) = Aexp(−n/l), (8)

with the decay length l given by the inverse of the logarithm of the ground state energy of
the AF Ising chain with a single hole (εGS); see Appendix A for the exact expressions for the
parameters {A, l,εGS}. For completeness, let us note that we could have obtained this exact
result also in the spinon language [36]: in this case the ground state of the AF Ising chain with
a single hole is most easily understood as a bound state of a mobile holon with a spinon, which
arises as a result of the single hole being confined in a 1D potential well. Nevertheless, for
a better comparison with the numerics as well as with the 2D case studied below we employ
here the magnon language.

Interestingly, especially when contrasted with the 2D studies below, the above exponential
decay is not obtained when the magnon-magnon interactions are not correctly taken into ac-
count in the magnon language expression for the 1D t–Jz model, i.e., whenα ∈ [0, 1) in Eq. (4).
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Instead a qualitatively “faster” decay is then clearly observed in the numerical ME calculations,
see Fig. 1(b1). Again the numerical behavior is exactly reproduced by the analytically derived
values of the probabilities {Pn}, see Fig. 1(b1) and Appendix A. In the quantitatively simplest
case of α= 0 the expression for {Pn} reads:

Pn>0(α= 0) = B
�

J 1
2−

εGS
J +n

�

2t
J

��2

' B

�

�

�

�

� t
J

�n
Γ−1

�

1
2
− εGS + n+ 1

�

�

�

�

�

2

, (9)

where J is the Bessel function of the first kind and the explicit equations for the constants
{B,εGS} are given in Appendix A. The expressions for {Pn} for any value of α ∈ [0, 1) are
qualitatively similar but quantitatively more complex—they are explicitly given by Eqs. (26)
in Appendix A. Thus, in the 1D case a first order quantum phase transition can be observed at
α= 1.

We point out that the decay given by Eq. (9) is well approximated by a Γ function, i.e.,
the decay is faster than that of an exponential and can be described as a superexponential.
The superexponential character of the decay is also visible in the asympotic behavior of ln Pn
obtained for large n in both of the above-mentioned cases (cf. Appendix A for details):

ln Pn(α= 1)∼ −n/l, ln Pn(α < 1)∼ −2n ln n. (10)

Hence, in the asymptotic limit the superexponential decay of ln Pn can be understood as being
described by a function decreasing faster with increasing argument than a linear function with
a negative coefficient.

3.2 2D AF Ising model on a square lattice

The central result of this paper is that the superexponential decay of probability distribution
{Pn} is found for the hole wave function of the 2D Ising antiferromagnet—not only when the
magnon-magnon interactions are neglected but also for the “genuine” t–Jz model with all the
interactions correctly included. While such a superexponential decay is already visible from the
plots presenting the numerical ME results in Figs. 1(c1) and 1(d1), we have further confirmed
this behavior by fitting the numerical results with the following approximate expressions of
the probability distributions {Pn} that is valid for α ∈ [0,1], see Appendix A:

Pn>0(α≤ 1) = C
�

J− ε
(2−α)J +n

�

2t
p

z̄ − 1/(2−α)J
�

�2
, (11)

where {z̄,ε} are fitting parameters (note that the constant C also depends on {z̄,ε}; for more
details, including the explicit expression for C , see Appendix A). Again one can obtain the
asymptotic behavior for large n of ln Pn—which is the same as in Eq. (10), i.e.,

ln Pn(α≤ 1)∼ −2n ln n, (12)

which further confirms that the 2D case is qualitatively similar to the 1D case without the
magnon-magnon interactions. However, we note that a systematic error occurs in the 2D
square lattice antiferromagnet when magnon-magnon interaction is neglected, see also below.

The approximate expression for the probability distribution {Pn} in a square lattice 2D
model [Eq. (11)] is motivated by the analytically exact expression obtained in the 1D case
without the magnon-magnon interactions, see Eq. (9). Next, the 1D result can be extended
to the case of the Bethe lattice for a given arbitrary coordination number z and the respective
ground state energy εGS. Finally, to account for the fact that the t–J z model is studied on the
2D square lattice and not on the Bethe lattice, we allow for some variation of the coordination
number z and the ground state energy εGS and leave them as the fitting parameters z̄ and ε,
respectively.
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4 Discussion

4.1 Intuitive understanding: cartoons and effective potential

Let us now try to gain some intuitive understanding of the results presented above. It turns
out that this can be rather easily achieved by looking at the cartoon figures, showing the
hole propagation in an Ising antiferromagnet in all four studied cases, see Figs. 1(a2)–(d2).
Let us first concentrate on probably the easiest case, i.e., on the 1D model without magnon-
magnon interactions (α = 0 or the LSW case), cf. Fig. 1(a2). Here, a single hole hop to the
nearest-neighbor site (i+2) generates a boson at site (i+1) and thus ni+1 = 1. Since after
the previous step also ni = 1, the term J(ni+1 + ni)/2 in (4) increases the energy of this state
by J once magnon interactions are absent. Therefore, not only the further the hole moves
the more magnons are created, but also an energy cost ω0 ≡ J is paid after creating each
magnon according to the LSW theory, while there is no mechanism to reduce energy due to
magnons arising on the hole’s path. The well-known linear string potential found in the 2D
case [24–29,31–35] is clearly observed here, see Fig. 1(a2). Crucially, such a phenomenon is
absent once the magnon-magnon interactions are turned on in the 1D model [cf. Fig. 1(b2)]:
in that case, even though the hole creates magnons at each step of its motion, there is no energy
cost associated with this process as the −αJni+1ni term in the t–Jz Hamiltonian (4) cancels
completely the energy cost in LSW approximation after creating all but the first magnon. This
shows why the magnon-magnon interactions play such a unique role in the 1D case.

The above simple understanding changes to some extent in the 2D case. Here the magnon-
magnon interactions are no longer qualitatively relevant, since, unlike in the 1D case, the en-
ergy associated with creating a magnon during hole motion cannot be canceled completely
by the magnon-magnon interactions, see Fig. 1(c2)–(d2). This shows that the string-like pic-
ture [24–29,31–35] is valid in the 2D model even when the magnon interactions are included.
However, our analysis and the comparison with the ME approach confirms that the string en-
ergy evaluated for the 2D square lattice is overestimated in the SCBA and could be corrected by
including the effects of magnon-magnon interactions within the modified-SCBA method [31].
De facto, an unphysical part of string is generated on the hole path itself, pretty much the same
as in the 1D model. It is removed when the magnon-magnon interactions are included.

The above discussion can be rationalized in the language of the hole being mobile in an
effective potential. Then the “genuine” 1D case (i.e., with magnon-magnon interactions cor-
rectly included) corresponds to a hole effectively moving in a potential well. On the other
hand, all other cases (and in particular the 2D case with the magnon-magnon interactions)
can be approximated by a hole being mobile in a (discrete version) of a linear “string-like”
potential. Thus, the exponential (superexponetial) decay of the wave functions coefficients
can be associated with a hole moving in a potential well (a linear potential), respectively.

Although we just referred above to the discrete version of the linear potential, we would like
to emphasize that there exists actually a difference in the asymptotic behavior of {Pn} in the
discrete and continuous versions of the linear potential. Whereas the former was discussed
above [cf. Eq. (12)] and is of the −n ln n form, the asymptotic behavior of the logarithm of
the Airy function (which is the ground state wave function of a hole in the continuous linear
potential [25]) is different and is given by ∼ −2

3 n3/2. Nevertheless, in both cases the loga-
rithms of both asymptotes “decay faster” than a linear function and are thus understood as
superexponential.

4.2 Optical lattice experiments

The recent optical lattice experiments [48–50], as well as numerical simulations of the 2D
doped Hubbard model [51, 52], reported on the histograms of the lengths of strings of mis-
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aligned spins in the ground state hole wave function. As this quantity can be reliably approxi-
mated by the aforementioned probability distribution {Pn}, this means that a detailed study of
the functional form of such histograms can be used to verify to what extent the hole is confined
in the 2D Hubbard model.

More precisely, this work allows us to formulate a condition for the observation of a linear
string potential acting on the hole in the 2D doped Hubbard (or t–J) models. First, we note
that the case with the presence (absence) of the linear string potential is actually naturally
defined in the 1D t–Jz model with (without) interactions, respectively.3 Second, as discussed
in detail above, once the linear string potential is present (absent) in the latter model, the
coefficients of the ground state wave function for a hole in the “magnon language” basis (i.e.,
{Pn}) need to decay superexponentially (exponentially), respectively. Therefore, combining
these two observations we can conclude that, if the above-mentioned histograms observed in
the optical lattice experiments: (i) showed a superexponential decay with the growing string
length l, then this would strongly indicate that a linear string potential indeed plays a dominant
role in the hole motion in the 2D doped Hubbard model; (ii) showed merely an exponential
decay, then the presence of a linear string potential would be ruled out.

Can we apply the above condition to verify the existence of the linear string potential in
the recent experimental or large-scale numerical simulations of the Hubbard model? While
the latest optical lattice experiments [48–50] still show too few data points to unambiguously
conclude whether the observed dependence is exponential or superexponential, we suggest
that future optical lattice experiments might be capable of delivering more conclusive data.
Moreover, the probability distribution {Pn} can in principle be easily calculated in the (future)
large-scale numerical simulations of the doped t–J or Hubbard models.

4.3 Spectral functions

The above calculations show how the ground state properties of the t–Jz model depend on
the dimensionality of the problem as well as on the inclusion of the magnon-magnon interac-
tions. This has implications primarily for the optical lattice experiments. However, also the
excited states are affected in a somewhat similar manner and this has implications for the
understanding of the spectral function A(k,ω) of a number of correlated compounds.

Thus, we start by defining the spectral function A(k,ω) in the usual way,

A(k,ω) = −
1
π
ℑG(k,ω+ iδ), (13)

where G(k,ω) = 〈Φ0|c̃
†
kσ (ω − H + E0)−1 c̃kσ|Φ0〉 is the momentum-dependent interacting

electron Green’s function (the spin index σ can be suppressed here), and |Φ0〉 is the ground
state of the model Eq. (1) in the half-filled limit (Ising antiferromagnet) with energy E0. As the
spectral function is calculated using the ME method, we first need to express it in the magnon
language—the constrained electron Green’s function transforms then into the single-particle
hole Green’s function, Gh(k,ω) = 〈Φ0|hk (ω−H + E0)−1 h†

k |Φ0〉.
In 1D chain the spectral function A(ω) is always momentum-independent, but as the re-

sults obtained using the ME method show, its form depends crucially on the inclusion of the
magnon-magnon interactions, see Fig. 2(a). If these interactions are included, which should
always be done for a “genuine” representation of the t–Jz model, it consists of a single disper-
sionless δ-like peak at low energy, which indicates a quasiparticle-like state with infinite mass
(a bound state), accompanied by an incoherent spectrum at higher energies. On the other

3 As already stated, the presence of the linear string potential is also observed in the 2D t–Jz model—though,
then such a description is already approximate, see the discussion above. Hence, it is more instructive to refer to
the 1D t–Jz model in this discussion.
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Figure 2: Spectral function A(ω) of a single hole in the 1D t–Jz model with (α = 1)
and without (α = 0) magnon-magnon interactions correctly included in the model
calculated using: (a) the ME method, (b) the analytically exact or SCBA approach.
Parameters: J = 0.4t, broadening δ = 0.05t; the bound state at the low-energy
onset of A(ω) splits off from the continuum at larger J/t (lower δ). Note that in
the SCBA calculations for α= 0 (α= 1) constraints C1, C2 are excluded (included),
respectively.

hand, when this interaction is switched off in the LSW approximation [by putting α = 0 in
(4)], the calculated 1D spectral function is ladder-like, suggesting that the string-like poten-
tial builds up [24, 28, 29, 31], see Fig. 2(a). This striking difference between the 1D spectral
function, with / without magnon-magnon interactions is also recovered using other methods:

First, let us turn to the result obtained for the “genuine” representation of the t–Jz model
with the magnon interactions correctly included. In this case, taking advantage of an exact
analytical result for the t–Jz model obtained in the spinon language and using the continued
fractions [36–38], we observe that the same spectrum is obtained as that of the full model
in the ME method, see Fig. 2(b). This shows that the exact result is indeed fully recovered
using the magnon language—provided that the magnon interactions are properly taken into
account. However, we emphasize that such result is only obtained in the converged case; for
the non-converged ME method, i.e., once only a few or tens of bosons are retained in the ME
calculations, the spectra consist of several δ-like peaks (not shown).

Second, turning now to the approximate (LSW) representation of the t–Jz model in the
magnon language, we note that a ladder-like solution is also obtained when the widely-used
self-consistent Born approximation (SCBA) method [24] is applied to the polaronic model
with the magnon-magnon interactions switched off, see Fig. 2(b). Interestingly, this spectrum
differs a bit with respect to the one obtained using the ME method, the reason for this being
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Figure 3: Spectral function A(k,ω) (13) of a single hole in the 2D t–Jz model with
(α = 1) and without (α = 0) magnon-magnon interactions correctly included in
the model calculated using: (a) the ME method, (b) the SCBA approach following
Ref. [31]. All parameters as in Fig. 2 and k = S ≡ (π/2,π/2). Note that in the SCBA
calculations for α= 0 (α= 1) constraints C1, C2 excluded (included), respectively.

that the above-mentioned constraints C1 and C2 are typically implicitly neglected in the SCBA
method (but are automatically taken into account in the ME method). We note that the failure
of the LSW approach can be understood by comparing with the well-known 1D result [36]
obtained in the “spinon language”, for we have shown that one spinon corresponds here to an
infinite number of magnons.

A radically different situation occurs on the 2D square lattice, as evident from the spec-
tral functions calculated within the ME, see Fig. 3(a). Here, irrespectively of whether the
magnon-magnon interactions are included or not, the spectrum is ladder-like, suggesting that
the string-like potential [24–29,31–35] develops always in the 2D model: not only in the t–Jz
model approximated in terms of a polaronic model without magnon interactions (i.e., the LSW
approximation) but also in the “genuine” t–Jz model, i.e., when magnon-magnon interactions
are correctly included. We note that the distances between neighboring maxima found in
the ladder spectrum are lower when magnon-magnon interactions are present, see Fig. 3(a),
which indicates that the string potential grows then in a slower way with increasing distance.
This is indeed confirmed by a slower superexponential decrease of the wave function coeffi-
cients {Pn}, cf. Figs. 1(c1) and 1(d1), and can also be read off from the cartoon Figs. 1(c2)
and 1(d2).

For a 2D square lattice the (converged) ME method is the numerically exact method and,
since an analytically exact solution does not exist in this case, it can be used as a benchmark
for the other more approximate methods. In particular, the 2D problem can be approximately
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solved by implementing the SCBA equations derived in Ref. [31]—this time not only without
the magnon-magnon interactions and C1, C2 constraints excluded but also with the magnon-
magnon interactions and the C1 and C2 constraints included, cf. Fig. 3(b). While the SCBA
results qualitatively agree with the ME spectra (e.g. the SCBA also has lower distances between
neighboring maxima in the ladder spectrum when magnon-magnon interactions are present),
there exist two differences between these two results: (i) the higher energy peaks contain
incoherent spectral weight in the ME method whereas they are of delta–like (“quasiparticle”)
character on the SCBA level; (ii) although the energy of the ground state in the ME method and
in the SCBA method (for α= 1 and the “canonical” value of J = 0.4t) is basically the same at
k = (π/2,π/2) point (E = −1.58t), there is a small difference between the two results at, e.g.,
k = (0,0) point (δE = 0.05t, since according to the ME method the ground state energy reads
then E = −1.63t; unshown), in agreement with Ref. [31] which suggests a slight variance
between the SCBA and numerical methods once k 6= (π/2,π/2) and J = 0.4t. We attribute
these differences to the important role played by the closed loops (Trugman loops [26]) in
the 2D square lattice.4 The latter, which are neglected by definition within the SCBA, lead to
the hole propagating by “cutting the strings” and thus “disrupting” the string potential—which
partially destroys the observed ladder-like spectrum by adding a small incoherent weight to
the higher energy peaks.

The above results rather naturally lead to the following two questions:
First, a relatively important role played by the Trugman processes in obtaining the observed
spectrum in 2D means that the the spectral function is momentum-dependent and the hole
can be thought as delocalised [26]. Is it then justified to think of the hole in the ground state
as being “confined” (as discussed above)? This paradox can be resolved by realising that the
Trugman processes almost do not affect the probability distribution {Pn} which is of the super-
exponential type (see discussion in Sec. 3.2) and thus the hole in the ground state can indeed
be well-described as being confined in a (discrete) linear potential.
Second, one might ask if the physics related to the spectral functions studied above is ob-
servable. There exists a number of compounds which can possibly be modeled by the t–Jz
Hamiltonian—these are predominantly the 1D Ising-like antiferromagnetic chains of
BaCo2V2O8 [53–55] and SrCo2V2O8 [56, 57], the 2D ferromagnets with alternating orbital
order found in K2CuF4 [42, 43] and Cs2AgF4 [44, 45], and maybe even partially the high-
Tc cuprates [58]. Thus, we expect that the angle resolved photoemission spectra (ARPES)
obtained on these crystals should be qualitatively similar to the spectra shown in Figs. 2–3
(once the magnon-magnon interactions are included). This, however, could have already
been predicted using the existing results reporting the spectral functions of the 1D [36–38]
and 2D [24–35] t–Jz model. A far more interesting consequence of the present spectral func-
tion study is merely theoretical: it shows that the qualitative differences between the 1D and
2D spectral functions originate solely in the different role played by the magnon-magnon in-
teractions in the 1D and 2D models.

5 Conclusions

In this paper we investigated in detail the particle localization in a Mott insulator that takes
place when a single hole effectively moves in a confining potential (hole confinement). The
latter appears in the Mott insulating ground state with the Ising antiferromagnetic order and
turns out to be of two kinds. In the 1D Ising antiferromagnet the confining potential acts only
locally and does not increase with the distance. Hence, the hole is “weakly” confined—the
coefficients decay exponentially—just as in the textbook example of a particle localized in a

4 Note that such vertex corrections vanish in one dimension and hence we did not need to discuss them above.
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potential well. On the other hand, in the 2D (or higher-dimensional) Ising antiferromagnet,
the hole is subject to a (discrete version of the) linear string potential and “strongly” confined,
for its coefficients in the magnon language basis decay superexponentially.

The obtained results have two important consequences:
First, on the pragmatic side, observation of a superexponential decay of the wave function
coefficients in the magnon basis may serve as a fingerprint of the existence of a (long sought-
after) linear string potential in the doped 2D antiferromagnets. This can be performed by a
detailed analysis of the recent (and future) optical lattice [48–50] or numerical simulations
[51,52] of the 2D doped Hubbard model.
Second, on the more abstract level, the use of the magnon language not only in 2D but also in
1D model allows us to understand the qualitative differences between the behavior of the hole
in the 2D (or higher dimensions) and the 1D Ising antiferromagnets. These differences, which
are not only observed in the decay of the hole wave function coefficients but also in the hole
spectral functions, are attributed to the crucial role played by the magnon-magnon interactions
in one dimension. In fact, in the 1D t-Jz model with a single hole a first order quantum phase
transition is observed when magnon-magnon interaction can no longer compensate the string
potential felt by the mobile hole.5

Last but not least, this study demonstrates how a particular 1D antiferromagnetic problem
can be described in the “magnon language”. Such an approach can be seen as being comple-
mentary to, e.g., the application of the “spinon language” to magnons in the 2D non-frustrated
antiferromagnet [59–62].
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A Derivation of the formulae for the probabilities {Pn}

In what follows we derive explicit formulae for the probabilities {Pn} of observing n magnons
in the single hole ground state of the t–Jz model [47] on the Bethe lattice. This result will
be later applied to the case of the one-dimensional (1D) chain and to obtain an approximate
formula for the Pn on a two-dimensional (2D) square lattice.

5This happens for α ∈ [0, 1), see Eq. (26) in Appendix A.
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We start by choosing the basis, B = {|n〉}, where n ∈ N, and |n〉 denotes a normalized
sum of states with n magnons in a chain connecting the hole with a site at which the hole was
created. In this basis the matrix of the t–Jz Hamiltonian H [Eq. (1)] for both interacting and
non-interacting magnons becomes tridiagonal,

M(H) =















a1 b1 0 0 . . .
b1 a2 b2 0 . . .
0 b2 a3 b3

0 0 b3 a4
. . .

...
...

. . . . . .















. (14)

Using the Gaussian elimination procedure for a finite matrix and taking the limit n→∞, one
can reduce the equation for the coefficients vn of the ground state vector ~v corresponding to
the ground state energy εGS,

M(H− εGSI) ~v = 0, (15)

into a recurrence relation,

vn =

¨

v0 if n= 0,

−cnvn−1 if n> 0,
(16)

cn =
bn

an+1 − εGS − bn+1cn+1
. (17)

A.1 1D with α= 1

For the case of the matrix of the 1D t–Jz Hamiltonian H with the magnon-magnon interactions
included, calculated with respect to the energy E0 of the half-filled system, we have a1 = J ,
a2 = a3 = . . .= 3

2 J , b1 = −t
p

2, b2 = b3 = . . .= −t, so the recurrence relation simplifies to

vn =











v0 if n= 0,

−c1 v0 if n= 1,

−c2 vn−1 if n> 1,

(18)

where c1 = (εGS− J)/(t
p

2) and c2 = c1/
p

2. Normalization of the vector ~v requires |v0|2 to be
equal to the residue of the Green’s function at the quasiparticle energy εGS =

3
2 J− 1

2

p
J2 + 16t2

[30,36], i.e.,

|v0|2 = z−1 = lim
ω→εGS

(ω− εGS)G(ω) =
J

p
J2 + 16t2

. (19)

Finally, we obtain analytical expressions for the probability Pn of finding n magnons in the
single hole ground state,

Pn=

(

|v0|2 =
Jp

J2+16t2 if n= 0,

2|c2|2n|v0|2=
2Jp

J2+16t2

�

J−
p

J2+16t2

4t

�2n
if n> 0.

(20)

The above geometric progression can also be expressed in terms of the exponential function,

Pn>0 = Aexp
�

−
n
l

�

, (21)

where A= 2|v0|2 and l−1 = 2 ln(|c2|).
It is straightforward to observe that the asymptotic behavior for large n is ln Pn ∼ −

n
l .
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A.2 1D with α < 1

For the case where the interactions between magnons are not correctly included (α < 1),
the coefficients of the matrix become a1 = J , an>1 =

�

(1−α)(n− 2) + 3
2

�

J , b1 = −t
p

2,
b2 = b3 = . . .= −t. Therefore, the recurrence relation cannot be simplified but one can ex-
press the coefficients cn as continued fractions which, due to the linear dependence appearing
on the diagonal, can be further expressed (cf. Ref. [29] for details) in terms of the Bessel
functions of the first kind [63],

cn>1 =
b2

an+1 − εGS −
b2

2
an+2−εGS−...

= −
J 1−2

εGS
J

2(1−α) +n−1

�

2t
(1−α)J

�

J 1−2
εGS

J
2(1−α) +n−2

�

2t
(1−α)J

� , (22)

c1 =
b1

a2 − εGS − b2c2
= −

J 3−2
εGS

J
2(1−α)

�

2t
(1−α)J

�

J 3−2
εGS

J
2(1−α) −1

�

2t
(1−α)J

�

p
2. (23)

The ground state energy εGS must satisfy the relation, εGS − J = Σ(εGS), with

Σ(ω) = −2t

J 3−2ωJ
2(1−α)

�

2t
(1−α)J

�

J 3−2ωJ
2(1−α)−1

�

2t
(1−α)J

� . (24)

Similarly to the interacting case the normalization of the ground state vector is given by the
value of the residue of the Green’s function at the pole ω= εGS,

|v0|2 = lim
ω→εGS

1

1− d
dωΣ(ω)

. (25)

Here, neither εGS nor |v0|2 are given explicitly in the non-interacting case but given an expres-
sion for Σ(ω) one can calculate them numerically. Finally, using the recurrence relation for
vn, most of the Bessel functions cancel out which leads to a simple formula for the probability
Pn of finding n magnons in the single hole ground state,

Pn =



















|v0|2 if n= 0,

2|v0|2





J 3−2
εGS

J
2(1−α) +n−1

�

2t
(1−α)J

�

J 3−2
εGS

J
2(1−α) −1

�

2t
(1−α)J

�





2

if n> 0.
(26)

We can also approximate the above expressions in terms of the Gamma functions. This is
because for 0< x <

p
n+ 1 the Bessel functions can be expanded, leading to

Jn(2x)'
xn

Γ (n+ 1)
, (27)

so for large n the string length probabilities can be approximated as

Pn>0 ' B

�

�

�

�

�

�

1

Γ (
3−2 εGS

J
2(1−α) + n)

�

t
(1−α)J

�n
�

�

�

�

�

�

2

, (28)

14

https://scipost.org
https://scipost.org/SciPostPhys.7.5.066


SciPost Phys. 7, 066 (2019)

where

B =
2|v0|2

J 2
3−2

εGS
J

2(1−α) −1

�

2t
(1−α)J

� . (29)

Finally, one can obtain the asymptotic behavior for large n of ln Pn ∼ −2n ln n. This follows
either from the asymptotic behavior of the Bessel function lnJz(2x)∼ −z ln z or of the Gamma
functions ln Γ (z + 1)∼ z ln z.

Interestingly, the asymptotic behavior for large n of Pn is more complex. We obtain:

Pn ∼
B

2πn

�

β + n
ex

�−2(β+n)

, (30)

where

x =
t

(1−α)J
, β =

3− 2 εGS

J

2(1−α)
− 1. (31)

A.3 2D with α≤ 1

Before we jump to the case of a 2D square lattice we would like to generalize the above 1D
approach to an equivalent problem on the Bethe lattice with coordination number z > 2. Once
again, using the basis B, we end up with the tridiagonal form of the matrix of the Hamiltonian.
For any α ≤ 1 the coefficients of the matrix are a1 =

zJ
2 , an>1 =

�

( z
2 −α)(n− 2) + z − 1

2

�

J ,
b1 = −t

p
z, b2 = b3 = . . .= −t

p
z − 1. The equivalent expressions for cn reads,

cn>1 =
b2

an+1 − εGS −
b2

2
an+2−εGS−...

= −

J 2z−1−2
εGS

J
2( z

2−α)
+n−1

�

2t
p

z−1
( z

2−α)J

�

J 2z−1−2
εGS

J
2( z

2−α)
+n−2

�

2t
p

z−1
( z

2−α)J

� , (32)

c1 =
b1

a2 − εGS − b2c2
= −

J 2z−1−2
εGS

J
2( z

2−α)

�

2t
p

z−1
( z

2−α)J

�

J 2z−1−2
εGS

J
2( z

2−α)
−1

�

2t
p

z−1
( z

2−α)J

�

p
z, (33)

with εGS satisfying the relation, εGS −
zJ
2 = Σ(εGS), where

Σ(ω) = −
zt

p
z − 1

J 2z−1−2ωJ
2( z

2−α)

�

2t
p

z−1
( z

2−α)J

�

J 2z−1−2ωJ
2( z

2−α)
−1

�

2t
p

z−1
( z

2−α)J

� . (34)

The above result, with z = 4 and α = 1, is equal to the self-energy calculated using
Eqs. (21-23) in Ref. [31]: one merely needs to substitute in Eqs. (21-23) ε → ε − 2J . This
change is due to the differently defined zero energy level: in Ref. [31] the zero energy level
corresponds to the Ising antiferromagnet with one hole whereas in the present paper the zero
energy level corresponds to the Ising antiferromagnet.

Similarly to the 1D case the normalization of the ground state vector is given by the value
of the residue of the Green’s function at the pole ω= εGS,

|v0|2 = lim
ω→εGS

1

1− d
dωΣ(ω)

. (35)
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Also this time, using the recurrence relation for vn, most of the Bessel functions cancel out
which leads to a simple formula for the probability Pn of finding n magnons in the single hole
ground state on the Bethe lattice,

Pn =























|v0|2 if n= 0,

z
z−1 |v0|2









J 2z−1−2
εGS

J
2( z

2−α)
+n−1

�

2t
p

z−1
( z

2−α)J

�

J 2z−1−2
εGS

J
2( z

2−α)
−1

�

2t
p

z−1
( z

2−α)J

�









2

if n> 0.
(36)

Similarly to the 1D case with α < 1 in the case of the Bethe lattice with z > 2 the asymptotic
behavior of ln Pn for large n is −2n ln n. The asymptotics for Pn is more complicated. It reads

Pn ∼
B

2πn

�

β + n
ex

�−2(β+n)

, (37)

where

B =
z

z−1 |v0|2

J 2
2z−1−2

εGS
J

2( z
2−α)

−1

�

2t
p

z−1
( z

2−α)J

� , x =
t
p

z − 1
( z

2 −α)J
, β =

2z − 1− 2 εGS

J

2( z
2 −α)

− 1. (38)

In the case of a 2D square lattice, one can try to fit similar functions to the data obtained
from the ME calculations assuming the same functional dependence as the one calculated for
the Bethe lattice with coordination number z > 2 (note that for 2D square lattice we expect
that z ≈ 4). Therefore, we postulate approximate formulae for the 2D case, with ε and z̄ as
the fitting parameters. They read

Pn =











|v0|2 if n= 0,

4
3 |v0|2

�

J− ε
(2−α)J +n

�

2t
p

z̄−1
(2−α)J

�

J− ε
(2−α)J

�

2t
p

z̄−1
(2−α)J

�

�2

if n> 0,
(39)

where the value of |v0|2 is taken as the data point corresponding to the pure hole state with no
magnons. Thus, the constant C mentioned in the main text in Eq. (11) reads
C = 4

3 |v0|2/J 2
− ε
(2−α)J

�

2t
p

z̄−1
(2−α)J

�

. We note that for the considered in Fig. 1 values of J/t the range

of the fitted values is: ε ∈ [−3.19t,−3.60t] (ε ∈ [−1.96t,−3.09t]) and z̄ ∈ [1.22z, 1.57z]
(z̄ ∈ [1.12z, 1.30z]) for α= 1 (α= 0), respectively.
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