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Abstract

I studied the non-equilibrium response of an initial Néel state under time evolution
with the Kitaev honeycomb model. With isotropic interactions (Jx = Jy = Jz) the system
quickly loses its antiferromagnetic order and crosses over into a steady state valence
bond solid, which can be inferred from the long-range dimer correlations. There is no
signature of a dynamical phase transition. Upon including anisotropy (Jx = Jy 6= Jz), an
exponentially long prethermal regime appears with persistent magnetization oscillations
whose period derives from an effective toric code.
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1 Introduction

Quantum spin liquids [1] are intriguing forms of matter characterized by the absence of mag-
netic order and the presence of long-range entanglement. A defining feature is that they cannot
be transformed smoothly into a non-entangled magnetic product state, such as the Néel anti-
ferromagnet. One might wonder whether these opposite extremes can be connected under a
rapid change of external parameters.

Such a rapid change is known as a quench [2,3], and this set-up has lead to the prediction
and observation of dynamical phase transitions. [4–6] For example, in the transverse field
Ising model, time evolution of an initial magnetic state under a Hamiltonian with a trivial
paramagnetic ground state leads to nonanalytic behavior in the return amplitude at certain
times after the quench. [4] Also the opposite quench, starting from a paramagnetic spin liquid
and time-evolving with a Hamiltonian not supporting spin liquid behavior, has been studied
[7]. In this work, I will combine these works to answer the question: what happens when time
evolves a magnetic state with a Hamiltonian that has a spin liquid ground state? Will we see
a dynamical phase transition or crossover into a spin liquid regime at some finite timescale?
Or will signatures of the initial magnetic order remain?
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Figure 1: The staggered magnetization m = (−1)i〈σz
i (t)〉 after the quench for vari-

ous Jx y , fixed Jz = 1, Nmc = 2000, and system size L = 8. While the magnetization
vanishes quickly in the isotropic model, the response is exponentially slower when
Jx y < 1. For completeness, the system size dependence of the staggered magneti-
zation for Jx y = 0.2Jz is shown in Fig. 4. Inset: Typical timescales as a function of
anisotropy. Shown here are the times it takes for the system to lose 80% and 99.9%
of its staggered magnetization, as well as the time where the free energy density
reaches its steady state value.

The Kitaev honeycomb model [8] provides an ideal playground to answer this question
since it is exactly solvable. A slow ramp in this model has been studied before [9,10], but there
the dynamics started from an initial spin liquid state. Here, I start from an antiferromagnetic
Néel state, the simplest possible non-entangled magnetically ordered state, and time evolve
with the Kitaev Hamiltonian with both isotropic (Jx = Jy = Jz) and anisotropic interactions
(Jx = Jy 6= Jz). In order to time evolve with the Kitaev model I first express the Néel state
as a superposition of different gauge fields configurations. Within each gauge sector, I then
compute the exact time evolution of the free Majorana fermions.
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Figure 2: The Kitaev honeycomb model on a lattice. The unit cell with sites A and B
is shown, together with the three inequivalent bonds labeled α= x , y, z. The vectors
δα indicate the nearest neighbor position relative to an A site. In the middle of the
lattice I indicate how a spin can be split up into four Majorana operators bα and c.
On the right a visualization of the initial Néel state.

As expected, the initial staggered magnetization vanishes (see Fig. 1) after the quench.
Unlike quenches in the transverse field Ising model, however, there seem to be no signatures
of a dynamical phase transition. At long times the system becomes a steady state valence
bond solid. More surprisingly, an exponentially long prethermal regime appears when the
interactions are anisotropic, as seen for example in the time evolution of the magnetization
(Fig. 1). This prethermal regime is governed by an effective high-temperature toric code.

In Sec. 2 I will first present the Kitaev honeycomb model, its exact solution and an outline of
the quench method. The results are discussed in Sec. 3, with a special emphasis on the question
of a dynamical phase transition (3.1), the prethermal regime (3.2) and the final steady state
(3.3). I conclude with a brief discussion on entanglement and experimental realizations in
Sec. 4.

2 Model, initial state and method

Before presenting the results in detail, let me introduce the set-up of the quench. Consider
spin-1

2 degrees of freedom σi on a honeycomb lattice. The unit cell has two sites, which I will
label as the A and B site, shown in Fig. 2. The initial state will be a perfect Néel state polarized
along the z-direction, which is an unentangled product state |ψ0〉=

∏

i | ↑iA〉⊗ | ↓iB〉. Starting
from this initial state I will compute the time evolution using the Kitaev honeycomb model.
In this model the bonds between lattice sites are divided into three types, depending on their
direction, as shown in Fig. 2. Each bond-type has an Ising spin interaction along a different
spin orientation,

H =
∑

i

�

Jxσ
x
iAσ

x
i+δx ,B + Jyσ

y
iAσ

y
i+δy ,B + Jzσ

z
iAσ

z
iB

�

. (1)

Kitaev’s key insight was that one can solve this model exactly by representing each spin by
four Majorana operators bx , b y , bz and c. This enlarges the Hilbert space, and in the enlarged
Hilbert space we can define ’enlarged’ spin operators eσx = i bx c, eσ y = i b y c, and eσz = i bzc.
The projection operator onto the real, physical, subspace is P = 1

2 (1+ bx b y bzc). Therefore,
the physical spins are given by σα = P eσαP, which implies
σx = i

2 (b
x c − b y bz) ,σ y = i

2 (b
y c − bz bx) , and σz = i

2 (b
zc − bx b y). In the following, I will

use that within the physical subspace, the real spins can also be represented by the operators
of the form σz = −i bx b y and similar expressions hold for σx and σ y .
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In terms of the new Majorana operators, the Hamiltonian reads

H = i
∑

j,α

Jαu jαc jAc j+δα,B , (2)

where j sums over unit cells and u jα = i bαjAbαj+δα,B = ±1 is a static Z2 gauge field living on
the α = x , y, z bond. The product of Z2 gauge fields along a plaquette is gauge-invariant and
is the ’flux’ wp = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6. The remaining c-Majorana’s are called ’matter’ and are

noninteracting.
The spin liquid ground state of the Kitaev honeycomb model is in the zero-flux sector,

meaning all gauge fields u jα are the same. In contrast, the Néel state, when expressed in
terms of gauge and matter fields, is in a superposition of different flux configurations since
〈ψ0|wp|ψ0〉 = 0 where wp is the plaquette flux operator. We can show which flux configura-
tions are included in this superposition by repeated use of the fact that the Néel state is an
eigenstate of the physical operator σz

i .
A good basis to describe the Néel state is by pairing the remaining matter Majorana’s along

the z-bonds within one unit cell, v j = ic jAc jB = ±1. Any possible state in the enlarged Hilbert
space can be written as a superposition of u, v-configurations, |ψ〉=

∑

{u jα,v j} c{u jα,v j}|
�

u jα, v j

	

〉,
and our task is to find the weight constants c{u jα,v j}. The fact that the Neel state is physical
and therefore must satisfy Pj|ψ0〉 = |ψ0〉, and that it is an eigenstate of σz

j for every j, leads
to two constraints on the possible u, v-configurations. On a lattice consisting of Lx × L y unit
cells with periodic boundary conditions, we have periodic chains of x y-bonds. The product
of all 2Lx z-spins along such a x y-chain equals (−1) times the product of all x and y gauge
fields. Therefore, this product of gauge fields must equal (−1)Lx+1. Consequently, the Néel
state is an equal-weight superposition of all Nc = 23Lx L y−L y possible u jα gauge field configura-
tions that satisfy this constraint. The matter content vi is fixed by the constraint σz

jAσ
z
jB = −1

within each unit cell, which implies u jz = v j . The relative phases between different
�

u jα, v j

	

-
configurations are fixed by the expectation value of σz

j operators, and are multiples of i.
Note that in principle the gauge freedom allows us to construct the same Néel state with a

different set of gauge field configurations. However, the current choice is extremely transpar-
ent since it represents the Néel state as an equal superposition of all allowed configurations.
This in turn makes the calculation of observables straightforward.

Because the gauge fields are integrals of motion only the matter fields will be changing
over time,

|ψ(t)〉=
1

p

Nc

∑

{u jα}

|{u jα}〉 ⊗ e−iH{u jα} t |ψ{u jα}
0 〉 , (3)

where
�

u jα

	

represents a gauge field configuration that respects the aforementioned con-

straints, |ψ{u jα}
0 〉 is the initial matter field configuration determined by v j = u jz and H{u jα}

is a free matter Majorana Hamiltonian with hoppings depending on the Z2 gauge fields. The
magnetization on an A lattice site m jA(t) = 〈ψ(t)|σz

jA|ψ(t)〉 can be found using the gauge-

field-only representation of spin, σz
jA = −i bx

j b y
j . Therefore, the magnetization can be written

as the return amplitude with two matter Hamiltonians,

m(t) =
1
Nc

∑

{u jα}

〈ψ{u jα}
0 |eiH

{u′jα} t e−iH{u jα} t |ψ{u jα}
0 〉 , (4)

where the configurations {u′jα} and {u jα} differ only by the flip of the two gauge fields ux
j and

uy
j . The sum over exponentially many gauge field configurations can be replaced by a random

Monte Carlo sampling over all configurations [11,12] that satisfy the constraints relevant for
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Figure 3: Left: The nonequilibrium free energy f (t) = − 1
N logG(t) for various Jx y ,

fixed Jz = 1, Nmc = 20000, and system sizes L = 6 (thin lines) and L = 8 (thick
lines), where Lx = L y = L. No dynamical phase transition is observed in the short
times before a steady state plateau emerges. A prethermalization regime appears
with increasing anisotropy. Right: The nonequilibrium free energy for the isotropic
case Jz = Jx y as a function of system size L, averaged over Nmc = 500,000 gauge
configurations. I extrapolated these results to L =∞, which still does not show any
signatures of nonanalytic behavior.

the initial Néel state. For each such configuration I need to compute these generalized return
amplitudes for the matter Hamiltonian, which can be done efficiently using the Balian-Brezin
decomposition as outlined in Appendix A. [13, 14] Note that an alternative way of deriving
my results is by using the ’brick wall’-representation of the Kitaev honeycomb model. [15]

Note that in the basis we use, where we pair Majorana matter particles along the z-bonds
to create complex fermions, it is most natural to compute expectation values of Sz and corre-
lations thereof. In contrast, the computation of correlations functions containing S x or S y is
more involved. Specifically, such correlation functions can no longer be expressed purely in
terms of gauge fields b, and would require keeping track of the time evolution of Majorana
matter fermions. Since we start with a z-polarized Néel, we only focus in this manuscript on
the dynamics of correlation functions involving only Sz operators.

Finally, it is worth mentioning that the sampling over all gauge fields is specific to our choice
of initial state. In the extreme case that one has an initial state that lies purely within one flux
sector, the corresponding quench dynamics is that of a non-interacting fermion model. This is
done in, for example, Refs. [9,10], where they study a ramp within the zero-flux sector. In this
case the dynamics follow the general lore of dynamical phase transitions [4–6, 16]. Much of
our results in the following section deviate from this precisely because we intertwined various
flux sectors by choosing an initial Néel state.

3 Results

I will now show results for a quench from an initial Néel antiferromagnet, to the Kitaev hon-
eycomb model. I consider both quenches to the isotropic case (Jx = Jy = Jz) as well as the
anisotropic Kitaev model (Jx = Jy 6= Jz). The anisotropy is defined by the ratio Jz/Jx y where
Jx y ≡ Jx = Jy .
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3.1 Phase transition or crossover?

The dynamics studied here can be viewed as a quench through a quantum critical point sepa-
rating an antiferromagnetic phase and a paramagnetic spin liquid phase. It has been suggested
that a quench from the ferromagnetic to the paramagnetic phase leads to non-analytic behav-
ior of the return amplitude at given times. [4–6,16] Specifically, consider the nonequilibrium
free energy density

f (t) = −
1
N

log |G(t)| , (5)

where N = Lx L y = L2, and G(t) is the return amplitude or Loschmidt echo

G(t) = 〈ψ(t)|ψ0〉. (6)

In the transverse field Ising model, this quantity is shown to be nonanalytical at several mo-
ments after the quench. Such nonanalytic points are called dynamical phase transitions, in
analogy to thermal phase transitions where the free energy becomes nonanalytic.

In order to study the possible appearance of a dynamical phase transition in our quench
model, I computed the nonequilibrium free energy density f (t). The results are shown in
Fig. 3. On the left-hand side I show the free energy, for Jz = 1 and various Jx y , averaged
over Nmc = 20000 gauge configurations. Independent of Jx y , there is an initial growth of free
energy. Subsequently, a plateau (discussed in Sec. 3.2) appears for the anisotropic cases. After
that, there seem to be severe system-size fluctuations and it is not apparent whether or not a
true nonanalyticity appears.

On the right of Fig. 3 I show the system-size dependence of the free energy for the isotropic
case, computed using much more gauge configurations (Nmc = 500, 000). Around the time
t = 10 there seems to be a steady state plateau developing for the free energy, which is strongly
system size dependent. The infinite L limit, however, does not seem to suggest any nonanalytic
behavior. The evolution of the free energy is likely more accurately described as a crossover.

It is important to note that many dynamical phase transitions have been found in models
that are noninteracting, such as the transverse field Ising model, [4–6,16] the XY model, [17]
or fermionic band insulators. [18] Even though the Kitaev model is exactly solvable, it is not
a noninteracting theory. This might be the reason why I do not observe any dynamical phase
transition.

3.2 Prethermalization

Upon increasing the anisotropy Jz/Jx y , a plateau emerges in the free energy (Fig. 3) that
lasts long in the anisotropy ratio Jz/Jx y . During this exponentially long timescale, persistent
oscillations in the staggered magnetization m(t) =

∑

j(−1) j〈σz
j (t)〉 appear. To emphasize

this behavior, we show in Fig. 4 the staggered magnetization for Jx y = 0.2Jz as a function
of system size, including a L =∞ limit. Even though the anisotropy is only Jz/Jx y = 5, the
time-scale over which the magnetization persists is about 105 longer than for the isotropic case.
Different measures of a typical time-scale, namely the onset of the free energy plateau or when
the magnetization reaches a 0.2 or 0.001 threshold, all display an approximately exponential
dependence on the anisotropy t∗ ∼ ecJz/Jx y , as is shown in the inset of Fig. 1.

Both of these phenomena - the long time-window t∗ and the persistent magnetization
oscillations - can be understood within the framework of prethermalization. [20–25]

Let us first consider the length of the time-scale t∗. In typical quenched systems, dynamical
time-scales would depend in a power-law fashion on an anisotropy parameter. For example,
in a quench of the transverse field Ising model from the ferromagnetic to the paramagnetic
phase, the typical time-scale is set by t∗ = π/εk∗(g1), where εk(g) =

Æ

(g − cos k)2 + sin2 k,

6
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Figure 4: In case of large anisotropy the decay of magnetization is extremely slow,
here shown for Jx y = 0.2Jz with Nmc = 2000 and various system sizes extrapolated
to L =∞. Between t1 ∼ 1 and t2 ∼ 103.5J−1

z there is a persisting magnetization,
due to the high return amplitude visible in Fig. 3. After this the system is dominated
by large magnetization oscillations that finally disappear around t3 ∼ 105.5J−1

z .

cos k∗ = 1+g0 g1
g0+g1

and g0,g1 are the values of the transverse field before and after the quench.
[4] This timescale diverges as g1, the post-quench transverse field, becomes close to the
critical value gc = 1. It is easy to show that this divergence indeed follows a power-law,
t∗ ∼ (g1 − gc)−1/2.

So why is the time-scale t∗ so much longer in the case of quenching the anisotropic Kitaev
model? The answer lies in the concept of prethermalization [20–25] that occurs in systems
close to integrability. In particular, the dynamics here can be understood using the framework
of Ref. [23]. For the anisotropic Kitaev model, the coupling along the z-bonds is significantly
stronger than along the x , y-bonds. We can therefore treat the x , y-bond coupling as a per-
turbation. The Kitaev model is written as

Ĥ = −Jz N̂ + Jx y Ŷ , (7)

where N̂ is the sum of all the z-bond couplings, and Ŷ contains the couplings along the x , y-
bonds. The term N̂ is trivially integrable, it is just a sum of local commuting terms with integer
eigenvalues. Following Ref. [23], for Jx y < Jz , we can perform a unitary transformation such
that the Hamiltonian becomes

Ĥ = −Jz N̂ + Ĥ ′eff +O(e−Jz/Jx y ) , (8)

where the new term Ĥ ′eff commutes with N̂ . This means that Ĥ ′eff does not affect the relative ori-
entation of two spins along a z-bonds. More importantly, the remaining term is exponentially
small, meaning that for an exponentially long time the dynamics preserve the spin correlations
along each z-bond. To summarize, an exponentially long timescale t∗ ∼ ecJz/Jx y appears be-
cause for a suitable unitary transformation the Hamiltonian has effectively new conservation
laws that constrain dynamics for a long time.

The fact that the spin correlations are locked along a z-bond can be inferred from mea-
suring the static spin correlation function Szz

i j (t) = 〈ψ(t)|σ
z
iσ

z
j |ψ(t)〉. As shown in Fig. 5,

even in the isotropic case the relative orientation of spins along a z-bond remains nonzero in
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Figure 5: The static spin-spin correlations 〈σz
iσ

z
j 〉 for various short-range spins, in

the isotropic model, with L = 8 and Nmc = 2000. After a short time all spin correla-
tions vanish except the nearest-neighbor correlation along a z-bond. The long-range
dimer-dimer correlation function, here measured at the longest possible distance be-
tween two sets of z-bonds, also obtains a nonzero steady state value. These correla-
tions are indicative of a valence bond solid phase. [19]

the infinite time-limit. This can be further corroborated by computing the static spin correla-
tions in the diagonal ensemble (see Appendix B), which indeed yields a steady state with zero
magnetization but nonzero spin correlations along the z-bond. Notice that other static spin
correlations vanish.

Having established the z-bond spin-lock for an exponentially long time, we can investigate
how this leads to persistent magnetization oscillations during this prethermal regime. The
key lays in the effective Hamiltonian Ĥ ′eff in Eq. (8), which describes the effective interaction
between the locked spins along a z-bond. At each z-bond, the configuration must be antiferro-
magnetic, meaning that only the spin configurations ↑↓ and ↓↑ are allowed. These two states
constitute a ’new spin’ τ, and using Kitaevs fourth order perturbation theory [8] the effective
Hamiltonian becomes

Ĥ ′eff = −
J4

x y

16J3
z

∑

p

τ
y
p,leftτ

z
p,topτ

y
p,rightτ

z
p,bottom + . . . , (9)

where p is every plaquette of the honeycomb lattice, and left/right/etc. refers to the z-bond to
the left/right/etc. of this plaquette. Note that this model is equivalent to the toric code. [26]
Any attempts to understand the dynamics in terms of topology are futile, as we are very far
from the ground state during our quench dynamics and signatures of topology, such as anyonic
excitations, are defined only close to the ground state.

Nonetheless, a simple calculation shows what would happen if one starts with an initial
Néel state (meaning ↑↓ on every z-bond) and let time evolve with the Hamiltonian of Eq. (9).
In such a quench, the staggered magnetization will oscillate according to m(t) = cos2(2Jeff t)

where Jeff =
J4

x y

16J3
z
. Similarly, ignoring higher-order corrections to Eq. (9), in the prethermal

regime the effective toric code will cause persistent oscillations with period

T =
8πJ3

z

J4
x y

. (10)
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Figure 6: In the anisotropic limit Jx y � Jz , the exponentially long prethermal regime
is governed by an effective toric code. This causes persistent oscillations in the mag-
netization with a period T (Jx y) given by Eq. (10). Here we show the magnetiza-
tion oscillations in the range Jx y/Jz = 0.05− 0.3 for linear system size L = 6, with
Nmc = 2000. The time (horizontal axis) is rescaled for each value of Jx y to cor-
respond to exactly four oscillation periods. We find that indeed for small Jx y , we
approach the predicted periodicity.

The theory of prethermalization thus predicts that in quenching the anisotropic Kitaev model,
there is a regime that for an exponentially long timescale t∗ ∼ eJz/Jx y during which you will

see persistent magnetization oscillations between nonzero m and 0 of period T ∼ J3
z

J4
x y

.

To confirm this prediction, we analyzed how the period of persistent oscillations varies
with Jx y/Jz . The results are shown in Fig. 6 for L = 6, Nmc = 2000 and varying small Jx y .
Whenever Jx y < 0.2Jz , the magnetic oscillations have a period that is well approximated by
Eqn. (10). We conclude that indeed, for an exponentially long time, the system undergoes
magnetic oscillations as dictated by the toric code.

3.3 Steady state valence bond solid

In the isotropic case there is no signature of prethermalization and after a short time of order
unity the system equilibrates. While there is zero net staggered magnetization in this steady
state, there are remnant nearest-neighbor spin correlations along the z-bond, as shown in
Fig. 5. This suggests the steady state is a valence bond solid with the singlets oriented along
the z-bonds. To further corroborate this claim, I studied the dimer-dimer correlation func-
tion Dzz

i j (t) = 〈σ
z
iσ

z
i+δz
σz

jσ
z
j+δz
〉 that has been used before as an indication of valence bond

order. [19] Indeed, I find long-range dimer order, even though the state is at relatively high
temperatures. Notice that this state does break rotational invariance, since the singlet bonds
live on the z-bonds which are inequivalent to the x , y-bonds of the lattice.

Another way to quantify the steady state is through the dynamic two-time spin correlation
function Szz

j (t, t ′) = 〈ψ(t)|σz
jA(t

′)σz
jB|ψ(t)〉. [27–29] The Fourier transform with respect to

t ′ − t can be interpreted as an AC spin conductivity. Specifically, the DC (ω = 0) response
measures the antiferromagnetic correlations along a z-bond. For small ω the correlations
are reduced over a frequency scale set by the flux-averaged Majorana density of states, see
Fig. 7. At later times this correlations gets suppressed in the frequency range between 0 and
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Figure 7: The dynamical two-time response in the isotropic quench, as a function
of frequency ω for various waiting times t. Directly after the quench (t = 0) the
peak at ω = 0 indicates strong antiferromagnetic correlations. This peak is sup-
pressed as time progresses, consistent with the loss of magnetization, see Fig. 1.
After t ∼ 0.3J−1 the small frequency peak remains constant, and a dynamic mag-
netization reversal occurs in the frequency range between 4 − 6 J, where the flux-
averaged Majorana density of states (see inset) is highest and corresponding to the
triplet excitation in the valence-bond solid.

6J, which is the flux-averaged bandwidth of the matter Majorana’s. Interestingly, for times
t > 0.5 a reversal of the dynamic correlations for 4J <ω< 6J appears. This is a signature of
the elementary triplet excitation of the valence bond solid.

We thus find a dynamic crossover from a Néel state to a valence bond solid. This transi-
tion in equilibrium is known as a deconfined quantum phase transition and falls outside the
usual Landau classification of continuous phase transitions. [30] The absence of any finite
time singularity is due to the fact that the location of the valence bonds are determined by the
orientation of the initial Néel state. There is no dynamical spontaneous symmetry breaking:
a Néel state polarized along the x-axis would give rise to a valence bond solid with singlets
along the x-bonds, and so forth. It is an interesting open question to study what happens when
an initial Néel state is not aligned along one of the principal spin axes.

4 Conclusion and Discussion

I showed that starting from a Néel state, time evolution with the Kitaev honeycomb model
leads to crossover to a steady state valence bond solid. When the interactions are anisotropic
(Jz/Jx y 6= 1), an exponentially long prethermal regime appears whose dynamics can be effec-
tively described by a toric code.

Note that similar results are expected if one would start with an initial ferromagnetic prod-
uct state, rather than an antiferromagnetic product state.

To what extent these results remain valid beyond the exactly solvable model, for example
by introducing a small Heisenberg term, is an open question. Based on the proof of Ref. [23] I
expect that the prethermal regime will persist even in the presence of such perturbations, but
quantifying this requires new computational techniques beyond the ones used in this work.

An interesting aspect that was not included in this study is the topological nature of the
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Kitaev honeycomb model. The ground state of the model has nontrivial entanglement en-
tropy, [31,32] a topological groundstate degeneracy and has anyonic excitations. [8] It is hard,
however, to see one of these topological signatures in the quench set-up. After all, the Néel
state has a high energy density expectation value in the Kitaev honeycomb model, meaning
that the quench dynamics are far away from the ground state. The generated entanglement
is therefore volume law, making it almost impossible to detect a possible topological entan-
glement entropy. The same holds for anyonic excitations, which are well-defined only close
to the ground state. Interestingly, topological degeneracy might be observed. On a torus, the
Kitaev honeycomb model in the toric code regime has a fourfold degeneracy, meaning that
there are orthogonal ground states that are locally indistinguishable. Acting with a string of
spin operators allows you to go from one to the other ground state. Now in the final valence
bond steady state, acting with a vertical string of σx and σ y operators will create an orthog-
onal state that is indistinguishable from the original state on the level of single-spin operator
measurements. I leave it for future work to investigate whether indeed this amounts to a
topological degeneracy, which might be relevant for quantum computations.

Finally, in recent years some material systems have been proposed to be experimental
realizations of the Kitaev honeycomb model [33]. Though straining these materials is unlikely
to give rise to the desired anisotropy to observe a prethermal regime, it might be possible to
chemically engineer these system to get the anisotropic interactions desired. It will also be
interesting to see the dynamic response after a quench with an initial state resembling the
spiral magnetic order found in these materials. [34,35]
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A Matter Hamiltonian time evolution

As described in the main text, the time evolution of the Kitaev honeycomb model is completely
due to the Majorana fermions. In each unit cell j, which contains a z-link, we indentify an A
and B sublattice site. The c-Majorana’s in Kitaev’s notation are then paired along the z-link to
form complex fermions,

c jA = a j + a†
j , (11)

c jB = −i(a j − a†
j ). (12)

The matter Hamiltonian on the full honeycomb lattice reads

H{u} = −
∑

j

¦

(Jzuz
j)(2a†

j a j − 1)

+(Jxux
j )(a j + a†

j )(a j+δx
− a†

j+δx
) + (Jyuy

j )(a j + a†
j )(a j+δy

− a†
j+δy
)
o

, (13)
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where j labels a unit cell, and δ connects to the unit cell with center at position
δx =

1
2(−
p

3 x̂ − 3 ŷ), and δy =
1
2(
p

3 x̂ − 3 ŷ)).
In each gauge sector, the required initial state is the product state where unit cells with

uz
j = 1 are occupied with a complex matter fermion. For later purposes it is practical to perform

a particle-hole transformation on ‘occupied’ sites, so that the Hamiltonian becomes

H{u} =
∑

j

¦

Jz(2a†
j a j − 1) + (Jxuz

j+δx
ux

j )(a j + a†
j )(a j+δx

− a†
j+δx
)

+(Jyuz
j+δy

uy
j )(a j + a†

j )(a j+δy
− a†

j+δy
)
o

. (14)

With the Hamiltonian Eqn. (14), the initial matter state is nothing but the a-vacuum |0〉,
defined by a j|0〉= 0. This matter Hamiltonian can be brought into a canonical Bogoliubov-De
Gennes (BdG) format,

H{u jα} =
1
2

�

a† a
�

�

Hd ∆

−∆ −Hd

��

a
a†

�

, (15)

where Hd is a real-valued symmetric matrix, ∆ a real-valued antisymmetric matrix, and the
vector

�

a† a
�

contains all creation and annihilation operators for all unit cells. The 2N ×2N
BdG matrix in Eqn. (15) can be diagonalized, HBdG = VΛV ᵀ, with real eigenvalues

Λ= diag (ε1,ε2, . . . ,εN ,−ε1, . . . ,−εN ) and V a real orthogonal matrix of the form V =

�

Q R
R Q

�

.

This diagonalization allows us to compute the Balian-Brezin decomposition of the time evolu-
tion operator, [13,14]

e−iH t = e
1
2 a†X a†

ea†Yae
1
2 aZa det

�

Re−iΛt/2 +QeiΛt/2
�

, (16)

where A=QeiΛtQᵀ + Re−iΛtRᵀ, B =Qe−iΛtRᵀ + ReiΛtQᵀ, X = BA−1, e−Y ᵀ = A, and Z = A−1B∗.
The simplest quantity to compute is the overlap of the initial state with the time-evolved

state, known as the return amplitude G(t) = 〈ψ(t)|e−iH t |ψ0〉. Because different flux sectors
are orthogonal to one another, the total return amplitude is a sum of matter Majorana return
amplitudes in each gauge sector,

G(t) = 1
Nc

∑

{u jα}

〈ψ{u jα}
0 |e−iH{u jα} t |ψ{u jα}

0 〉 . (17)

Note that due to the particle-hole transformation, the state |ψ{u jα}
0 〉 is equal to the a-vacuum,

so a j|ψ
{u jα}
0 〉= 0 for every a j . To simplify notation, from now on I will write |0〉 for the initial

state.
The return amplitude for a single free Majorana Hamiltonian follows directly from the

Balian-Brezin decomposition Eqn. (16),

〈0|e−iH{u jα} t |0〉= det
�

Re−iΛt/2 +QeiΛt/2
�

. (18)

Since the number of gauge field configurations scales exponentially with system size, it is
impossible to compute the above sum of Eqn. (17) exactly. Instead, I averaged over Nmc
random gauge field configurations that satisfy the constraints set by the initial state. It turns
out that Nmc = 1000 yields sufficient accuracy for the system sizes considered.

The staggered magnetization, defined as m(t) = 1
2N

∑

j〈ψ(t)|σ
z
jA−σ

z
jB|ψ(t)〉, will decay

over time starting from m(t = 0) = 1. Using the representation σz
jA = −i bx

j b y
j , valid within
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the physical subspace, we see that the magnetization can be computed as a sum over return
amplitudes involving two Hamiltonians,

R2(t) = 〈0|eiH2 t e−iH1 t |0〉 , (19)

where H1 and H2 only differ through a flip of the u j x and u j y gauge fields neighboring the
spin that we want to measure. I proceed by making the Balian-Brezin decomposition for both
H1 and H2,

R(t) = det
�

R2eiΛ2 t/2 +Q2e−iΛ2 t/2
�

det
�

R1e−iΛ1 t/2 +Q1eiΛ1 t/2
�

〈0|e
1
2 aZ∗2 ae

1
2 a†X1a†

|0〉 . (20)

The remaining part can be brought again in the Balian-Brezin form,

〈0|e
1
2 aZ∗2 ae

1
2 a†X1a†

|0〉 =
Ç

det
�

Z∗2 X1 + I
�

(21)

×〈0|e
1
2 a†X1(Z∗2 X1+I)−1a†

ea†(− log(Z∗2 X1+I))ᵀae
1
2 a(Z∗2 X1+I)−1Z∗2 |0〉

=
Ç

det
�

Z∗2 X1 + I
�

. (22)

The square root can be avoided by observing that both Z and X are skew-symmetric, and thus
using the Sylvesters determinant lemma we find

Ç

det
�

Z∗2 X1 + I
�

= Pf

��

X1 −I
I Z∗2

��

, (23)

where Pf[..] refers to the Pfaffian of that matrix. In my numerical simulations, I use the soft-
ware from Ref. [36] to compute the Pfaffians.

In conclusion, the Balian-Brezin decomposition yields for the return amplitude with two
Hamiltonians

R2(t) = det
�

R2eiΛ2 t/2 +Q2e−iΛ2 t/2
�

det
�

R1e−iΛ1 t/2 +Q1eiΛ1 t/2
�

Pf

��

X1 −I
I Z∗2

��

. (24)

Note that the static correlations Szz
i j (t) = 〈ψ(t)|σ

z
iσ

z
j |ψ(t)〉 can be computed using the same

formule, where now the gauge fields need to be flipped on the x , y-bonds adjacent to both
sites i and j.

Finally, I can compute the dynamic two-time correlation function

Szz
i j (t, t ′) = 〈ψ(t)|σz

i (t
′)σz

j |ψ(t)〉 . (25)

This requires the computation of a return amplitude of time evolution with three different
Hamiltonians. Using repeatedly the Balian-Brezin trick this can be expressed as

R3(t, t ′) = 〈0|eiH3(t+t ′)e−iH2 t ′e−iH1 t |0〉 (26)

= det
�

R3eiΛ3(t+t ′)/2 +Q3e−iΛ3(t+t ′)/2
�

det
�

R2e−iΛ2 t ′/2 +Q2eiΛ2 t ′/2
�

×det
�

R1e−iΛ1 t/2 +Q1eiΛ1 t/2
�

×〈0|e
1
2 aZ∗3 ae

1
2 a†X2a†

ea†Y2ae
1
2 aZ2ae

1
2 a†X1a†

|0〉 (27)

= det
�

R3eiΛ3(t+t ′)/2 +Q3e−iΛ3(t+t ′)/2
��

det
�

R2e−iΛ2 t ′/2 +Q2eiΛ2 t ′/2
��−1

×det
�

R1e−iΛ1 t/2 +Q1eiΛ1 t/2
�

×Pf

��

X2 −I
I Z∗3

��

Pf

��

Z2 −I
I X1

��

×Pf

��

((Z∗3)
−1 + X2)−1 −A2

A2 (X−1
1 + Z2)−1

��

. (28)
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B Diagonal ensemble

The diagonal ensemble is defined as follows. Our initial state is given by |ψ〉=
∑

n cn|n〉where
the |n〉 form an orthonormal set of eigenstates. Strictly speaking, the time evolution of our
state is then |ψ(t)〉=

∑

n cne−iEn t |n〉. The diagonal ensemble is a density matrix composed of
the time-independent diagonal of the initial state density matrix,

ρD =
∑

n

|cn|2|n〉〈n|. (29)

In our case, the eigenstates of our system have the form |{u}〉 ⊗ |{ f }〉 where |{ f }〉 are Fock
states composed of the single-particle wavefunctions diagonalizing the matter BdG Hamilto-
nian. Since the flux sectors are orthogonal we can construct a diagonal ensemble within each
flux sector. The trace carries over to the extended Hilbert space provided we use the physical
subspace projector and our initial state is completely embedded in the physical subspace.

Any operator that changes the flux sector, such as an isolated σz
j , must have a zero expec-

tation value in the diagonal ensemble. The only (possibly) nonzero expectation values of two-
spin operators are of of the formσz

jAσ
z
jB along a z-bond. Usingσz

Aσ
z
B = i bz

AcAi bz
BcB = −iuzcAcB,

and the particle-hole transformation defined above, I find

Tr σz
jAσ

z
jB ρD = 1− 2Tr a†

j a j ρD (30)

= 1− 2
1
Nc

∑

{u}

L
∑

m=1

�

Q jmQ†
mj(R

ᵀR)mm + R jmR†
mj(Q

ᵀQ)mm

�

(31)

where I used the diagonalization of the matter Hamiltonian defined in the previous section.
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