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Abstract

We discuss compactifications of rank Q E-string theory on a torus with fluxes for abelian
subgroups of the E8 global symmetry of the 6d SCFT. We argue that the theories cor-
responding to such tori are built from a simple model we denote as E[USp(2Q)]. This
model has a variety of non trivial properties. In particular the global symmetry is
USp(2Q)×USp(2Q)×U(1)2 with one of the two USp(2Q) symmetries emerging in the
IR as an enhancement of an SU(2)Q symmetry of the UV Lagrangian. The E[USp(2Q)]
model after dimensional reduction to 3d and a subsequent Coulomb branch flow is
closely related to the familiar 3d T[SU(Q)] theory, the model residing on an S-duality
domain wall of 4d N = 4 SU(Q) SYM. Gluing the E[USp(2Q)] models by gauging the
USp(2Q) symmetries with proper admixtures of chiral superfields gives rise to system-
atic constructions of many examples of 4d theories with emergent IR symmetries. We
support our claims by various checks involving computations of anomalies and super-
symmetric partition functions. Many of the needed identities satisfied by the supersym-
metric indices follow directly from recent mathematical results obtained by E. Rains.
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1 Introduction

Quantum field theories in various space-time dimensions are interconnected by a variety of
relations. These for example include RG flows, dimensional reductions, and dualities. For
supersymmetric theories such interconnections can be effectively probed using robust quanti-
ties such as anomalies and supersymmetric partition functions. Deeper understanding of the
relations between models often leads to novel physical insights. Examples of these include de-
ducing dualities from compactifications, emergence of symmetry in the IR, novel constructions
of CFTs, as well as interesting interrelations between a priori unrelated subjects in mathemat-
ical physics. In this paper we will discuss an example of an interconnection between different
constructions of certain quantum field theories which has all of the features mentioned above.

Concretely we will first construct a family of four dimensional N = 1 theories correspond-
ing to the compactification of a six dimensional SCFT, the rank Q E-string theory, on a torus
with fluxes for E8 subgroup of its E8 × SU(2)L symmetry group. This construction is a gener-
alization of the results for Q = 1 obtained in [1] which follows the general ideas of relating
four dimensional models to compactifications of six dimensional theories initiated in [2, 3]
and pursued in various setups, see e.g. [4–21]. The geometric construction starting from six
dimension allows us to make predictions regarding the global symmetries and the anomalies
of the four dimensional models.

As in [1] we will build the four dimensional models by combining together tube theories
corresponding to compactifications on two punctured spheres with flux. In the Q = 1 case the
basic tube theory consists of an SU(2)×SU(2) bifundamental with two octets of fundamentals
and an additional singlet. In the higher rank case the basic tube theory will be constructed
from the basic building block theory, which we will denote by E[USp(2Q)], depicted in Figure
1. The E[USp(2Q)] theory in the UV has SU(2)Q × USp(2Q)× U(1)2 global symmetry which
we will argue enhances to USp(2Q)× USp(2Q)× U(1)2 in the IR.

The basic tube theory will then be defined by connecting two octets of fundamentals to
the E[USp(2Q)] theory as depicted in Figure 2. The theories obtained by gluing these higher
rank tubes will perfectly match the predictions obtained via the six dimensional construction.
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Figure 1: The E[USp(2Q)] quiver theory. Each gauge node has USp(2n) symmetry,
while each flavor node carries SU(2) symmetry. The crosses indicate singlets flipping
the diagonal mesons. The lines starting and ending on the same node stand for two-
index antisymmetric field which for the USp(2Q) flavor node is also traceless. The
IR global symmetry group is USp(2Q)× USp(2Q)× U(1)2. On the rhs we introduce
a compact representation of the IR SCFT to which E[USp(2Q)] flows to.

2Q 2Q

8

Figure 2: The basic tube theory: we couple the E[USp(2Q)] block to two sets of
chiral fields in the fundamental and anti-fundamental representation of SU(8) re-
spectively. We use simple circles and squares to denote gauge and flavor USp(2n)
nodes and double-line squares to denote flavor SU(k) nodes.

In particular, they will display the predicted enhanced symmetries, such as SU(2)× E7×U(1)
or SU(2)× SO(14)× U(1) depending on the flux chosen in the compactification.

Thus we see a second interesting phenomenon: the geometric construction leads to IR
symmetry enhancement properties that the theories obtained by gluing the basic tubes need
to satisfy. As the symmetry of the four dimensional model is determined by the six dimensional
symmetry and details of the compactification, such as flux, though the tube building block has
lower symmetry the combined models might have larger symmetry. Also, combining the tube
building blocks in different orders does not affect the IR fixed point which leads to various IR
dualities. For both such effects see e.g. [16,17].

The four dimensional theories corresponding to torus compactifications will be built glu-
ing tube theories by gauging both USp(2Q) symmetries associated to the two punctures. In
particular, as an example of a third interesting effect, this means that in order to construct
these models we need to gauge a symmetry which only appears in the IR and is not visible in
the UV. This is an example of a novel construction of QFTs which played an important role in
various setups in recent years. In particular this idea was applied to construct a Lagrangian
for the E6 Minahan-Nemeschansky SCFT [22] and later also the E7 SCFT [23], as well as a
variety of Lagrangians of other strongly coupled SCFTs [7,18].

Fourth, by dimensionally reducing the E[USp(2Q)] theory farther to three dimensions and
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studying its flows under different real mass deformations we will show it reduces to various
known theories. In particular we can reach the N = 2 F M[SU(Q)] theory recently discussed
in [24] and with a further flow the N = 2 F T[SU(Q)] discussed in [25, 26], which up to an
extra set of singlets fields coincides with the widely studied N = 4 T[SU(Q)] [27]. All these
three dimensional theories display, as their four dimensional ancestor E[USp(2Q)] theory, a
non-trivial IR symmetry enhancement and interesting self-duality properties.

Fifth, the whole construction is tightly tied to seemingly unrelated topics in mathemati-
cal physics. The integral form of the superconformal index [28–30] (see for a review [31])
of the E[USp(2Q)] theory coincides with the interpolation kernel recently discussed by E.
Rains [32] as analytic continuation of the elliptic interpolation functions. The interpolation
kernel satisfies various remarkable properties inherited from its definition in terms of interpola-
tion functions and here we reinterpret these properties as dualities for the E[USp(2Q)] theory
which play a key role in unraveling the network of relations presented in this paper. Integral
identities encoding supersymmetric dualities at the level of partition functions calculated via
localisation (see [33] for a review) have often been discussed independently in the mathemat-
ical literature. For example, as noted in [30], the fact that pairs of Seiberg dual theories [34]
have the same superconformal index is due to very non-trivial integral identities which were
earlier proven in [35, 36]. Indeed there are many interrelations between math and physics
literature in this context (see e.g. [37–44] for more examples).

There is a further connection. As mentioned above once compactified to three dimension
and subject to a real mass deformation the E[USp(2Q)] theory reduces to the F M[SU(Q)]
quiver theory. Then, as shown in [24, 45], the S2 × S1 partition function of the F M[SU(Q)]
theory reduces in a suitable limit to another very interesting mathematical object, the kernel
function defined in [46]. This kernel function, defined as a Q-dimensional complex integral,
plays a key role in the manipulation of complex integrals encoding the free field representation
of 2d CFT correlators. In [24,45] these manipulations were re-interpreted as dualities between
three-dimensional supersymmetric gauge theories.

The paper is organized as follows. In section 2 we discuss the six dimensional rank Q E-
string theory which is the starting point of our considerations. We review its tubes and tori
compactifications and make prediction for the global symmetries and anomalies of the four
dimensional models. In section 3 we introduce the E[USp(2Q)] theory and discuss various
properties it satisfies. In section 4 we show how the E[USp(2Q)] theory is related to com-
pactifications of the rank Q E-string theory on a torus with fluxes. In section 5 we discuss the
reduction of E[USp(2Q)] to three dimensions and the relation of it to T[SU(Q)]. We finish
in section 6 with several comments about the results. The bulk of the paper is supplemented
with appendices discussing various technical facets of the computations.

2 Six dimensions

The 6d SCFT, compactifications of which we are about to consider, is the rank Q E-string
theory, and we shall begin our discussion by listing several properties of this SCFT that will
be useful later. The rank Q E-string SCFT can be engineered in string theory as the theory
living on Q M5-branes probing an M9-plane. In addition to the 6d superconformal symmetry,
it has an SU(2)L × E8 global symmetry. In the brane construction the E8 comes from the
gauge symmetry on the M9-plane, and the SU(2)L comes from the SO(4) = SU(2)L × SU(2)R
symmetry acting on the directions of the M9-plane orthogonal to the M5-branes, where the
other SU(2)R is the R-symmetry. The matter spectrum consists of Q tensor multiplets. While
it has no known Lagrangian description in 6d, its compactification to lower dimensions leads
to more approachable theories and we shall consider these.
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It is known that when compactified on a finite radius circle to 5d, with a proper holon-
omy inside E8,1 it flows to a 5d gauge theory with a USp(2Q) gauge group, an antisymmetric
hypermultiplet and eight fundamental hypermultiplets [48]. We can also consider the com-
pactification without the holonomy in the zero radius limit, where the theory flows to a 5d
SCFT with SU(2)L× E8 global symmetry, which was originally found in [47]. We can consider
turning back the holonomy, which is mapped to a mass deformation that causes the 5d SCFT
to flow to a 5d gauge theory with gauge group USp(2Q) and matter being an antisymmetric
and seven fundamental hypermultiplets. We note that one can continue with circle compact-
ification to get other interesting theories with E8 global symmetry in lower dimensions. For
instance the compactification on a torus leads [48] to the rank Q Minahan-Nemeschansky E8
strongly interacting SCFTs [49].

2.1 Rank Q E-string compactifications on tori and tubes: 6d predictions

We are interested in the compactification of the E-string SCFTs on Riemann surfaces with fluxes
in their E8 global symmetry2. The majority of the discussion in this section was already worked
out in [1], and we shall merely summarize the main parts here. As previously mentioned we
are interested in compactifications that have a non-trivial flux in the U(1) subgroups of the E8
global symmetry. To enumerate the fluxes it is convenient to introduce a flux basis. For this we
use the SO(16) ⊂ E8 and parametrize the fluxes via the eight fluxes in the SO(2)8 ⊂ SO(16).
The fluxes are then given by a vector of eight numbers, (n1, n2, ..., n8). For more information
see [1] and appendix A.

The major thing that will concern us here is the determination of the anomalies of the
resulting 4d theories from the anomalies of the original 6d SCFT. The anomalies generally
receive two contributions. One is from the integration of the anomaly polynomial of the 6d
SCFT on the Riemann surface [4], and the other is the contribution from the degrees of freedom
associated with the punctures, if these are present. We shall begin by discussing the first
contribution and then move on to discuss the second one.

Barring the issue of punctures, the anomalies of the resulting 4d theories can be evaluated
by integrating the anomaly polynomial eight form of the 6d SCFT on the Riemann surface.
This calculation was already performed in [1], based on the anomaly polynomial of the rank
Q E-string SCFTs that was evaluated in [51], and here we shall just quote the results. We
integrate the 6d anomaly polynomial on a genus g Riemann surface with s punctures. The
flux on the surface is given by the vector (n1, n2, ..., n8) in the eight Cartans of E8, U(1)Fi

,
as introduced previously. The flux is normalized such that

∫

FU(1)Fi
= 2πni . We consider

vectors (n1, n2, ..., n8) breaking E8→ U(1)×G. We also define z as the flux in the U(1) whose
commutant is G and we introduce the coefficient ξG parametrising [1] the choice of the U(1)
in E8 in which the flux is turned on. For ξG = 1 the commutant of the U(1) is E7, for ξG = 2 it
is SO(14), for ξG = 3 it is E6 × SU(2), for ξG = 4 it is SU(8), for ξG = 6 it is SU(3)× SO(10),
for ξG = 7 it is SU(2) × SU(7), for ξG = 10 it is SU(4) × SU(5), and for ξG = 15 it is
SU(2)× SU(3)× SU(5). The U(1)R symmetry we use is the descendent of the Cartan of the
6d SU(2)R. Its 6d origin makes it useful to work with for the purpose of anomaly calculations,

1That an holonomy is necessary can be seen from the fact that the E8 symmetry is broken in the low-energy
gauge theory. More specifically, to get the low-energy 5d gauge theory the holonomy must be tuned with the
radius, see [47].

2Flux compactifications of 6d SCFTs to four dimensions were first discussed in [50].
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though it is in general not the superconformal R-symmetry. The anomalies are

Tr(U(1)3R) = (g − 1+
s
2
)Q(4Q2 + 6Q+ 3), Tr(U(1)R) = −(g − 1+

s
2
)Q(6Q+ 5),

Tr(U(1)) = −12QzξG , Tr(U(1)3) = −12Qzξ2
G , (1)

Tr(U(1)RU(1)2) = −2Q(Q+ 1)(g − 1+
s
2
)ξG , Tr(U(1)U(1)2R) = 2Q(Q+ 1)ξGz,

Tr(U(1)RSU(2)2L) = −
Q(Q2 − 1)(g − 1+ s

2)

3
, Tr(U(1)SU(2)2L) = −

Q(Q− 1)
2

ξGz.

We can use the above anomalies to write a trial a function and perform a maximization to
obtain candidate values for the superconformal a and c anomalies. This always comes with the
caveat of having no accidental abelian symmetries, which is not always satisfied. Nevertheless,
if we have matched the symmetries between 4d and 6d the analogous naive computation
should produce the same result and thus we quote it here. The anomalies are [1],

a =

p

2ξGQ(3Q+ 5)
3
2

16
|z| , c =

p

2ξG(3Q+ 5)Q(3Q+ 7)
16

|z| . (2)

2.2 Punctures

We now move on to discussing the contribution of the punctures to the anomalies, where
we specifically concentrate on the contribution from the degrees of freedom associated with
the punctures rather than the geometric contribution which was previously discussed. The
calculation of this contribution of the punctures to the anomalies was set up in [1, 16, 17]3,
and here we shall briefly review and apply it to the case at hand. The basic idea is to consider
the region around a puncture and deform it so as to look like a long thin tube ending at the
puncture. We can then compactify the 6d SCFT on the circle of the tube and get the reduced
5d theory on an interval ending with the puncture. Particularly, we shall assume that the
necessary holonomy as been turned on around the tube so that the reduced 5d theory is the IR
free USp(2Q) gauge theory with an antisymmetric hyper and eight fundamental hypers that
was introduced previously. The puncture then can be described as a boundary condition of
this 5d gauge theory.

This leads us to consider boundary conditions of 5d gauge theories preserving four super-
charges. These can be described as giving Dirichlet or Neumann boundary conditions to vari-
ous multiplets on the boundary. Specifically, close to the boundary the 5d bulk fields approach
the 4d boundary and can be decomposed in terms of 4d N = 1 superfields. The boundary
conditions can then be described as assigning Dirichlet or Neumann boundary conditions to
those superfields.

There are in principal many different possible boundary conditions leading to the many
different punctures that exist in these types of construction. Here we shall only consider one
type, which is the one considered in [1] for Q = 1, generalized to the case of generic Q. This
type of puncture can be thought of as a generalization of the so called maximal punctures
of class S theories [2]. The boundary conditions associated with this choice are as follows.
First we decompose the 5d vector multiplet to the 4d N = 1 vector multiplet and adjoint
chiral on the boundary. We then give Dirichlet boundary conditions for the N = 1 vector and
Neumann boundary conditions for the adjoint chiral. Note that as the vector multiplet is given
Dirichlet boundary conditions, the 5d USp(2Q) gauge symmetry becomes non-dynamical at
the boundary. As a result it becomes a global symmetry associated with the puncture.

3See [52] for the discussion in case of (2,0) SCFT.
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Likewise we can decompose the hypermultiplets to two chiral fields in conjugate represen-
tations, and give Dirichlet boundary conditions to one and Neumann boundary conditions to
the other. Here we have a choice as to which chiral gets which boundary conditions, and this
leads to slightly different punctures. This difference is usually referred to as the sign of the
puncture.

We next want to consider the contribution of the degrees of freedom at the boundary to
the anomalies. This is known to be given by half the 4d anomalies expected from the matter
given Neumann boundary conditions, see [1] for the details. We next evaluate these for the
punctures considered here. First we consider the anomalies involving the U(1)R Cartan of the
SU(2)R symmetry. These only receive contributions from the adjoint chiral as the fermions in
the hypermultiplet are SU(2)R singlets. Specifically the fermion in the adjoint chiral has charge
−1 under U(1)R, is in the adjoint of the USp(2Q) symmetry associated with the puncture, and
is a singlet under the other global symmetries. As a result it contribute to the anomalies:

Tr(U(1)3R) = −
Q(2Q+ 1)

2
, Tr(U(1)R) = −

Q(2Q+ 1)
2

, (3)

Tr(U(1)RUSp(2Q)2) = −
(Q+ 1)

2
.

Next we want to consider the anomalies under the SU(2)L global symmetry. It receives con-
tributions only from the antisymmetric hyper, the two chirals in which form a doublet of this
symmetry. As we give different boundary conditions to them, the puncture breaks SU(2)L to
its U(1)L Cartan, and the anomalies expected for this symmetry are:

Tr(U(1)3L) = q3 (Q(2Q− 1)− 1)
2

, Tr(U(1)L) = q
(Q(2Q− 1)− 1)

2
, (4)

Tr(U(1)LUSp(2Q)2) = q
(Q− 1)

2
.

Here q is the charge under U(1)L which depends on the normalization and the sign. We will
use in what follows normalization of charges such that q = −1

2 .
Finally the contribution to the anomalies of the U(1) for which we are turning on the flux

receives contributions only from an octet of the USp(2Q) fundamental hypers carrying charge
qa with a = 1, · · ·8, and it is given:

Tr(U(1)3) =Q
8
∑

a=1

q3
a, Tr(U(1)) =Q

8
∑

a=1

qa, Tr(U(1)USp(2Q)2) =
1
4

8
∑

a=1

qa. (5)

We will use a normalization for U(1) such that all the octet fields have the same charge
qa = −

1
2 .

3 The E[USp(2Q)] theory

In this section we introduce the E[USp(2Q)] theory. This model satisfies a lot of interesting
properties, which will be discussed in detail in this section. In the next section we will also
see that it serves as a building block to construct theories obtained by compactifications on a
torus with flux in E8 of the rank Q E-string, and in section 5 we will show how upon reduction
to three dimensions it is related to the T[SU(Q)] theory.
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2Q−2 2Q

2 22 2

A(1) A(2)

d (1) d (2) d (Q)

A(Q−1) A(Q)

v(1) v(2) v(Q−1)

q(1,2) q(Q−1,Q )

2 4

Figure 3: Fields in the E[USp(2Q)] theory. The crosses represent the gauge singlet
fields bn.

3.1 Symmetry enhancement and dynamics

E[USp(2Q)] is the 4d N = 1 quiver gauge theory represented in Figure 3. It consists of a
∏Q−1

n=1 USp(2n) gauge group with several chiral fields in the singlet, fundamental, bifunda-
mental and antisymmetric representation, which we denote as follows:

• q(n,n+1) is a chiral field in the bifundamental representation of USp(2n)× USp(2(n+ 1));

• d(n) is a chiral field in the fundamental representation of USp(2n) which is connected to
the n-th SU(2) flavor node diagonally;

• v(n) is a chiral field in the fundamental representation of USp(2n) which is connected to the
(n+ 1)-th SU(2) flavor node vertically;

• A(n) is a chiral field in the antisymmetric representation of USp(2n); for n = Q it is actu-
ally a gauge singlet in the traceless4 antisymmetric representation of the USp(2Q)M global
symmetry, which we will often denote simply by Ax ;

• bn is a gauge singlet that is coupled to a gauge singlet built from d(n) through a superpo-
tential which will be discussed momentarily.

We assign R-charge, which we denote as R0, zero to fields q(n,n+1) and d(n), and R0 charge
two to fields bn, A(n) and v(n). This is not the superconformal R-symmetry but it is anomaly
free and consistent with the superpotentials we will turn on, and it is the simplest one we can
write. We will discuss the superconformal R-symmetry momentarily.

4The tracelessness is in terms of the following trace:

Tr2n A= J (n)i j Aji = Ai
i ,

where J (n) is an antisymmetric tensor associated to the USp(2n) group defined as

J (n) = In ⊗ iσ2 .

For SU(2) this is simply the usual εαβ tensor. In our conventions, indices that appear both up and down are
contracted and we can use the J (n) tensor to raise and lower indices. Thus, in many of the expressions we will
write some J (n) tensors are actually implied. For example

Tr2n (AB) = Ai j B
ji = J (n)ik J (n)jl Akl B ji .
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In order to write the superpotential in a compact form, we introduce for each USp(2n)
gauge node the following mesonic fields transforming in its antisymmetric representation:

M(n)L,i j = J (n−1)
ab q(n−1,n)a

iq
(n−1,n)b

j = q(n−1,n)a
iq
(n−1,n)
a j

M(n)i j
R = J (n+1)abq(n,n+1)i

aq(n,n+1) j
b = q(n,n+1)i

aq(n,n+1) ja . (6)

For the first node n= 1 we only have the right mesonM(1)R , while for the last flavor node n=Q

we only have the left mesonM(Q)L which is actually a gauge invariant operator.
The superpotential consists of three parts. The first one is the cubic interaction between

the bifundamentals and the antisymmetrics, then we have the cubic interaction between the
chirals in each triangle of the quiver and finally the flip terms with the singlets bn coupled to
the diagonal mesons:5

WE[USp(2Q)] = Tr2

�

A(1)M(1)R

�

+
Q−1
∑

n=2

Tr2n

�

A(n)
�

M(n)R −M
(n)
L

��

− Tr2Q

�

AxM
(Q)
L

�

+

+
Q−1
∑

n=1

Tr2 Tr2n Tr2(n+1)
�

v(n)q(n,n+1)d(n+1)
�

+
Q
∑

n=1

bn Tr2 Tr2n

�

d(n)d(n)
�

. (7)

Notice that in the last term of the first line the antisymmetric Ax is flipping the gauge invariant
operatorM(Q)L .

The manifest global symmetry of the theory is

USp(2Q)x ×
Q
∏

n=1

SU(2)yn
× U(1)t × U(1)c . (8)

We claim that the
∏Q

n=1 SU(2)yn
symmetry of the quiver enhances to USp(2Q)y at low ener-

gies, so that the global symmetry becomes

USp(2Q)x × USp(2Q)y × U(1)t × U(1)c . (9)

We will give several pieces of evidence for this enhancement later on. The charges of all the
chiral fields under the two U(1) symmetries as well as their trial R-charge are represented in
Figure 4.

The abelian symmetries can mix with the R-charge at low energy and the true R-charge at
the superconformal fixed point will be

R= R0 + cqc + tqt , (10)

where R0 is the trial R-charge, qc and qt are the charges under the two U(1) symmetries and
c and t are mixing coefficients that are determined via a-maximization [53].

The fact that we only have two U(1) global symmetries descends from the requirement
that the superpotential is uncharged under all the global symmetries and has R-charge 2 and
that U(1)R is non-anomalous6. Indeed, if we parametrize U(1)t and U(1)c such that the last

5 For Q = 1 the last term is

b1 Tr2 Tr2 d(1)d(1) = b1ε
αβεγδd(2)

βδ
d(2)
αγ
= b1det d(2) .

6This requirement translates into the condition
∑

f

T (R f )R f = 0 ,

9

https://scipost.org
https://scipost.org/SciPostPhys.8.1.014


SciPost Phys. 8, 014 (2020)

…

…

2Q−2 2Q

2 22 2

2 , t−1 2 , t−1 2 , t−1 2 , t−1
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Figure 4: Trial R-charges and charges under U(1)c × U(1)t . The qc and qt charges
are given by the exponents of the fugacities c and t.

bifundamental has R-charge R[q(Q−1,Q)] = 1
2 t while the last diagonal has R-charge R[d(Q)] = c

(as we do in Figure 4), then the superpotential terms that couple the bifundamentals to the
antisymmetrics imply that

R[Φ(n)] = 2− t, R[q(n,n+1)] =
1
2
t, ∀n . (11)

The cubic superpotential associated to the last triangle of the quiver then forces the last vertical
to have R-charge

R[v(Q−1)] = 2−
1
2
t− c . (12)

The R-charge of the next diagonal is instead fixed by the requirement that U(1)R is non-
anomalous at the USp(2(Q− 1)) node

R[d(Q−1)] = −
1
2
t+ c . (13)

Proceeding along the tail in this way we can fix all the R-charges in terms of the mixing coef-
ficient t and c only. If the (n+ 1)-th diagonal has R-charge

R[d(n+1)] =
n+ 1+Q

2
t+ c , (14)

then the cubic superpotential will fix

R[v(n)] = 2−
n+ 2−Q

2
t− c , (15)

where the sum is over all the fermions in the theory which are in the representation R f of the gauge group and
have R-charge R f . T (R) is one-half the Dynkin index of the representation R and it is defined as

Tr
�

T a
RT a

R

�

= T (R)δab

where T a
R are the generators of the gauge group in the representation R. For our purposes, it will be useful to

recall that for USp(2n) we have

T (fund.) = 1/2

T (adj.) = n+ 1

T (antisymm.) = n− 1

10
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64

Figure 5: Operators in the upper triangle of the Ay matrix in the Q = 3 case.

while the condition that U(1)R is preserved at the USp(2n) node will imply

R[d(n)] =
n+Q

2
t+ c . (16)

Notice that at each step c gets shifted by c→ c− 1
2 t.

Operators

We now list some interesting gauge invariant operators of the E[USp(2Q)] theory. The fact
that they organise themselves into representation of the full USp(2Q)y symmetry will be a
first piece of evidence of the symmetry enhancement.

• Operator Ax , transforming in the traceless antisymmetric representation of USp(2Q)x .
In our parametrization it has charges −1 and 0 under U(1)t and U(1)c respectively and
trial R-charge +2.

• Operator Ay , with the same abelian charges as Ax , but which is in the traceless antisym-
metric representation of the enhanced USp(2Q)y symmetry. This is a 2Q × 2Q matrix
that can be split in several 2× 2 sub-matrices corresponding to different gauge invari-
ant operators. Those that are placed above the diagonal are constructed starting with
one of the diagonal chirals, going along the tail with the bifundamentals and ending on
a vertical chiral (see Figure 5). Those below the diagonal are fixed requiring that the
matrix is antisymmetric. Finally, the diagonal is filled with the following Q−1 operators
that are singlets under USp(2Q)y :

iσ2 Tr2n A(n) =

�

0 Tr2n A(n)

−Tr2n A(n) 0

�

, n= 1, · · · ,Q− 1 . (17)

Notice all that these operators have the same charges under the U(1) symmetries and
the same R-charges, so we can collect them in the same matrix Ay . As an example, for
Q = 3 this matrix takes the explicit form

Ay =







iσ2 Tr2 A(1) Tr2

�

d(1)v(1)
�

Tr2

�

d(1) Tr4

�

q(1,2)†
i v(2)

��

−Tr2

�

d(1)v(1)
�

iσ2 Tr4 A(2) Tr4

�

d(2)v(2)
�

−Tr2

�

d(1) Tr4

�

q(1,2)†
i v(2)

��

−Tr4

�

d(2)v(2)
�






.

(18)
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2

22 2

64

Figure 6: Operators contributing to Π in the Q = 3 case.

The missing entry in the bottom right corner should be filled in by requiring that the
matrix Ay satisfies Tr2Q Ay = 0.

• OperatorΠ in the bifundamental representation of the enhanced USp(2Q)x×USp(2Q)y
symmetry. This operator is constructed by collecting all the operators built starting with
one diagonal chiral d(n) and going along the tail with all the remaining bifundamentals
ending on q(Q−1,Q) (see Figure 6). Each of these operators transform in the fundamental
representation of one of the SU(2)yn

symmetries of the saw and in the fundamental
representation of USp(2Q)x . Moreover, they all have charges 0 and +1 under U(1)t
and U(1)c respectively and trial R-charge 0. Hence, we can collect them in a vector that
becomes an operator transforming in the bifundamental representation of the enhanced
USp(2Q)x × USp(2Q)y symmetry. As an example, for Q = 3 it takes the explicit form

Π=





Tr2

�

d(1) Tr4

�

q(1,2)†q(2,3)†
��

Tr4

�

d(2)q(2,3)†
�

d(3)



 . (19)

• There are also other gauge invariant operators that we can construct using the chirals
of the saw, which are singlets under USp(2Q)x × USp(2Q)y . For example, we have the
mesons

�

Tr2n d(n)d(n)
�

αβ
= J (n)i j d(n) jαd(n)iβ . (20)

These are in the antisymmetric representation of SU(2)yn
, so they are actually singlets.

They also have charges n−Q and +2 under U(1)t and U(1)c respectively and trial R-
charge 0. Moreover, because of the equations of motions of the gauge singlets bn, they
are subjected to the following classical relation:

Tr2

�

Tr2n d(n)d(n)
�

= 0 . (21)

To summarize, the main gauge invariant operators and their charges under the global
symmetry are
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USp(2Q)x USp(2Q)y U(1)t U(1)c U(1)R0

Ax antisymm. 1 −1 0 2
Ay 1 antisymm. −1 0 2
Π � � 0 +1 0
bn 1 1 Q− n −2 2

The supersymmetric index of E[USp(2Q)]

The supersymmetric index [28–30] of the E[USp(2Q)] theory can be expressed with the fol-
lowing recursive definition (our notations and defintions are collected in Appendix B):

IE[USp(2Q)](xn, yn, t, c) =

∏Q
n=1 Γe

�

c y±1
Q x±1

n

�

Γe (c2) Γe (t)
Q−1∏Q

n<m Γe
�

t x±1
n x±1

m

�
×

×
∮

d~zQ−1

IE[USp(2(Q−1))](z1, · · · , zQ−1, y1, · · · , yQ−1, t, t−1/2c)

Γe (t)
∏Q−1

i< j Γe

�

z±1
i z±1

j

�

∏Q−1
i=1 Γe

�

z±2
i

�

×

×

∏Q−1
i=1

∏Q
n=1 Γe

�

t1/2z±1
i x±1

n

�

∏Q−1
i=1 Γe

�

t1/2c y±1
Q z±1

i

� ,

(22)

where we defined the integration measure as

d~zn =
[(p; p)(q; q)]n

2nn!

n
∏

i=1

dzi

2πi zi
. (23)

To define the index we use the assignment of R-charges as depicted in Figure 4. If one wishes
to use the superconformal assignment of R-charges then the parameters should be redefined
as,

c→ c (pq)c/2, t → t (pq)t/2 , (24)

where c and t are the mixing coefficients appearing in eq. (10).
This expression coincides with the interpolation kernelKc(x , y) recently introduced in [32]

as an analytic continuation of the elliptic interpolation functions.7

3.2 IR dualities

The kernel Kc(x , y) satisfies various remarkable properties leading to integral identities which
below we reinterpret as highly non-trivial dualities for the E[USp(2Q)] theory.

Duality I: self-duality

The first duality involving the E[USp(2Q)] theory is actually a self-duality. Rains has proven
in [32] that the supersymmetric index of E[USp(2Q)] first satisfies the property that the fugac-
ities of the SU(2)Qy symmetry are actually forming always characters of USp(2Q)y symmetry
suggesting the enhancement of symmetry. Second, the index is invariant under exchanging
the USp(2Q)x and the USp(2Q)y fugacities suggesting a self-duality of the theory. This duality

7Notice that the antisymmetric of the USp(2Q)x flavor symmetry is traceless. However at each step of the
iteration we complete the antisymmetric of the gauged USp(2(Q − 1)) symmetry with a singlet corresponding to
its trace. This differs slightly from the recursive definition of Kc(x , y) in [32], where each USp(2n) node, including
the last ungauged node, has a full antisymmetric.
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acts by exchanging the operators charged under the USp(2Q)x and the enhanced USp(2Q)y
symmetries

Ax ↔ Ay ,

Π ↔ Π† . (25)

At the level of the index we have the following identity:

IE[USp(2Q)](xn, yn, t, c) = IE[USp(2Q)](yn, xn, t, c) , (26)

which has been proven in Theorem 3.1 of [32]. Again, from this duality we can clearly see
the symmetry enhancement, since the supersymmetric index is invariant under the exchange
of the fugacities of USp(2Q)x and

∏Q
n=1 SU(2)yn

.

Duality II: flip-flip duality

The E[USp(2Q)] theory also enjoys another duality that maps it to another E[USp(2Q)]
theory with two extra sets of singlets Fx and Fy in the traceless antisymmetric representa-
tion of USp(2Q)x and USp(2Q)y respectively, which flip the gauge invariant operators Ax and
Ay

δW = Tr2Q

�

FxAx + FyAy

�

. (27)

Notice that since Ax is a fundamental field in the UV description, Ax and Fx are massive and
can be integrated out. We end up with E[USp(2Q)] with a gauge singlet Fy in the antisym-
metric representation of USp(2Q)y rather then Ax in the antisymmetric of USp(2Q)x and
superpotential

W = Tr2

�

A(1)M(1)R

�

+
Q−1
∑

n=2

Tr2n

�

A(n)
�

M(n)R −M
(n)
L

��

− Tr2Q

�

FyAy

�

+

+
Q−1
∑

n=1

Tr2 Tr2n Tr2(n+1)
�

v(n)q(n,n+1)d(n+1)
�

+
N
∑

n=1

bn Tr2 Tr2n

�

d(n)d(n)
�

. (28)

The duality acts leaving unchanged the two USp(2Q) symmetries as well as U(1)c , while
inverting the fugacities of the U(1)t symmetry with its mixing coefficient t changing to 2− t.
Accordingly, operators are mapped across the duality as follows:

Ax ↔ M(N)L ,

Ay ↔ Fy ,

Π ↔ Π . (29)

This duality is reminiscent of the flip-flip duality of the F T[SU(Q)] theory discussed in [26].
Indeed, as we will see in section 5, E[USp(2Q)] reduces to F T[SU(Q)] upon 3d compactifica-
tion and a consecutive real mass flow. It should be possible to derive this duality by sequentially
applying Intriligator-Pouliot duality [54] starting from the first node.

At the level of the supersymmetric index, the flip-flip duality is encoded in the following
integral identity:

IE[USp(2Q)](xn, yn, pq/t, c) = Γe (t)
2(Q−1)

Q
∏

n<m

Γe
�

t x±1
n x±1

m

�

Γe
�

t y±1
n y±1

m

�

×

× IE[USp(2Q)](xn, yn, t, c) , (30)

which is proven in Proposition 3.5 of [32]. This duality will play an important role in the
relation to E-string compactifications in the next section. In particular we will see that the
U(1)t symmetry is related to the Cartan of the SU(2)L symmetry factor of rank Q E-string and
the duality is the statement that the U(1)t symmetry enhances to SU(2)L in that context.
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3.3 Interesting properties under RG flows

In addition to dualities the E[USp(2Q)] theory enjoys interesting properties under RG flows
triggered by turning on vacuum expectation values to various operators.

E[USp(2Q)] to E[USp(2(Q− 1))]

The E[USp(2Q)] quiver theory reduces to a smaller quiver tail when a suitable deformation
that breaks USp(2Q)x × USp(2Q)y → USp(2(Q − 1))x × USp(2(Q − 1))y is taken. More
precisely, the deformation in question corresponds to a minimal VEV for the operator Π, i.e.
〈Π2Q,2Q〉 6= 0. This can be achieved by introducing an additional singlet field that flips this
operator and turning on such singlet linearly in the superpotential. The equations of motion
of the singlet then imply that the operator acquired a non-vanishing VEV.

At the level of the supersymmetric index, this deformation implies the constraint xQ = c yQ,
for which we have (see Lemma 3.1 of [32])

lim
xQ→c yQ

IE[USp(2Q)](xn, yn, t, c)
Γe (t) Γe

�

c2
�

Γe

�

c x±1
Q y±1

Q

� =

=
Q
∏

n=1

Γe
�

c yQ x±1
n

�

Γe

�

y−1
Q y±1

n

�

Γe
�

t c yQ x±1
n

�

Γe

�

t y−1
Q y±1

n

�IE[USp(2(Q−1))](xn, yn, t, c) . (31)

E[USp(2Q)] to WZ

If we add a linear term δW = bQ−1 to the superpotential, the second last diagonal flavor
d(Q−1) takes a VEV and the last gauge node is partially Higgsed. The E[USp(2Q)] theory
reduces to a bifundamental of USp(2Q)y × USp(2Q)x with the two flavor nodes flipped by
traceless antisymmetric representations.

It is easy how this work in the Q = 2 case, where the index is given by:

IE[USp(4)](x1, x2, y1, y2, t, c) =

=

∏2
n=1 Γe

�

c y±1
2 x±1

n

�

Γe (c2) Γe (t−1c2) Γe (t)
2 Γe

�

t x±1
1 x±1

2

� ×

×
∮

dz1

Γe
�

t−1/2c z±1 y±1
1

�∏2
n=1 Γe

�

t1/2z±1 x±1
n

�

Γe(z±2)Γe(t1/2c z±1 y±1
2 )

. (32)

(33)

The condition of b1 entering the superpotential corresponds to c→
p

t. In this limit the poles
of the integrand at z = t1/2c−1 y±1 and z = t−1/2c y±1 pinch the integration contour in two
points and we can evaluate the index by taking the residue at these two points as in [55].
Both poles give the same contribution to the index and we get:

lim
c→
p

t
IE[USp(4)](xn, yn, t, c) =

∏2
n,m=1 Γe(

p
t x±n y±m)

Γe (t)
2 Γe(t x±1 x±2 )Γ2(t y±1 y±2 )

. (34)

At higher rank, the condition of bQ−1 entering the superpotential still corresponds to
c→
p

t and the reduction of the index follows by Proposition 3.5 in [32]:

lim
c→
p

t
IE[USp(2Q)](xn, yn, t, c) =

∏Q
n,m=1 Γe(

p
t x±n y±m)

Γe (t)
2(Q−1)∏Q

n<m Γe(t x±n x±m)Γe(t y±n y±m)
. (35)
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f O L OR

c d cd

c−1d−1 d−1
c−1

Figure 7: Schematic representation of the braid relation.

3.4 Braid relation: generalized Seiberg duality

The E[USp(2Q)] theory has another interesting property. If we glue two E[USp(2Q)] blocks
by gauging one of the two USp(2Q) symmetries of each tail together with an extra flavor f
charged under this gauge symmetry we re-obtain E[USp(2Q)] plus two extra sets of singlets
OL and OR, as depicted in Figure 7. Notice that for Q = 1 the braid relation reduces to Seiberg
duality for SU(2) with 3 flavors, which is dual to a WZ model.

At the level of the index this duality is encoded in the following braid relation given in
Proposition 2.12 of [32]:

∮

d~zQ IE[USp(2Q)](xn, zn, t, c)IE[USp(2Q)](zn, yn, t, d)
Γe (t)

Q−1∏Q
n<m Γe

�

t z±1
n z±1

m

�

∏Q
n=1 Γe

�

z±2
n

�∏Q
n<m Γe

�

z±1
n z±1

m

�
×

×
Q
∏

n=1

Γe
�

u0z±1
n , u1z±1

n

�

= (36)

=
Q
∏

n=1

Γe
�

c u0 x±1
n , c u1 x±1

n , d u0 y±1
n , d u1 y±1

n

�

IE[USp(2Q)](xn, yn, t, cd) ,

(37)

which holds if the following balancing condition is satisfied:

u0u1 =
pq

c2d2
. (38)

Let’s discuss in more details the superpotential of the dual theories and their gauge invari-
ant operators. We first consider the l.h.s. of the duality where we glue two E[USp(2Q)] blocks.
We name the fields as in Figure 8.

In this case the superpotential is the one of the two E[USp(2Q)] tails

W = W L
E[USp(2Q)] +WR

E[USp(2Q)] , (39)

where in the middle USp(2Q) gauge node we have only one traceless antisymmetric that
couples both to q(Q−1,Q)

L and q(Q−1,Q)
L , so in (39) we have to identify A(Q)L = A(Q)R .

The balancing condition here follows by requiring U(1)R to be non-anomalous at the cen-
tral USp(2Q) node:8

Q+ 1+ (Q− 1)(1− t) + 2(Q− 1)(
t

2
− 1) + (d− 1) + (c− 1) + 1

2(u0 + u1 − 1) = 0. (40)

8The relation between t, c, d, u0, u1 and t, c,d,u0,u1 is as in eq. (24).
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Figure 8: Fields appearing in the lhs of the braid relation.

If we rescale the fugacities for the two chirals f1, f2 as

u0→ u0

p
pq

cd
, u1→ u1

p
pq

cd
, (41)

we can see that the balancing condition (38) becomes the standard tracelessness condition
u0u1 = 1 for the SU(2) symmetry rotating them. Hence, the (enhanced) global symmetry is

USp(2Q)x × USp(2Q)y × U(1)t × U(1)c × U(1)d × SU(2)u . (42)

The gauge invariant operators are constructed starting from those of the two
E[USp(2Q)] tails:

• operators AL
x , AR

y constructed as in (18) using the diagonal, vertical and bifundamental
chirals of the left and right E[USp(2Q)] blocks respectively;

• operator Ξ constructed starting from one of the diagonals of the left E[USp(2Q)] and
terminating on a diagonal of the right E[USp(2Q)] including bifundamentals. For Q = 2
this is given by:

Ξ =

 

Tr2,L Tr2,R

�

d(1)L Tr4

�

q(1,2)†
L q(1,2)

R

�

d(1)†R

�

Tr2,L

�

d(1)L Tr4

�

q(1,2)†
L d(2)†R

��

Tr2,R

�

Tr4

�

d(2)L q(1,2)
R

�

d(1)†R

�

Tr4

�

d(2)L d(2)†R

�

!

;

(43)

• operators ΩL ,ΩR constructed by joining the operators ΠL and ΠR in the bifundamental
representation of USp(2Q)x × USp(2Q)z and USp(2Q)y × USp(2Q)z respectively with
the two fundamental chirals fi

ΩL = Tr2Q

�

ΠL f
�

, ΩR = Tr2Q

�

ΠR f
�

; (44)

• long mesons constructed with the bifundamentals and the chirals fi

Θn = Tr2 Tr2n

�

Tr2Q

�

f †
Q−1
∏

a=n

q(a,a+1)†
L/R

�

Tr2Q

�

f
Q−1
∏

a=n

q(a,a+1)
L/R

��

, (45)

where L/R means that we can construct two sets of operators of this form with the
bifunamentals of the left or the right tail respectively, but they actually coincide in pairs
in the chiral ring;

• flipping fields bL
n , bR

n of the diagonal mesons on the left and right E[USp(2Q)] tails.
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USp(2Q)x USp(2Q)y U(1)t U(1)c U(1)d SU(2)u U(1)R0

AL
x antisymm. 1 −1 0 0 1 2

AR
y 1 antisymm. −1 0 0 1 2
Ξ � � 0 1 1 1 0
ΩL � 1 0 −1 0 � 1
ΩR 1 � 0 0 −1 � 1
bL

n 1 1 Q− n −2 0 1 2
bR

n 1 1 Q− n 0 −2 1 2
Θn 1 1 Q− n −2 −2 1 2

The charges of these operators under the global symmetries are summarized in the following
table:

On the r.h.s. we have E[USp(2Q)] with two sets of chiral singlets OL and OR in the bifun-
damental representation of the global USp(2Q)x×SU(2)u and SU(2)u×USp(2Q)y symmetries
respectively, which interact with the E[USp(2Q)] block through the superpotential

W =WE[USp(2Q)] + Tr2 Tr2Qx
Tr2Q y

OLΠOR . (46)

Because of this superpotential, the global symmetry of the theory precisely matches with (42).
The gauge invariant operators are the same of E[USp(2Q)] with the addition of the two

sets of singlets OL and OR. Moreover, we can construct some long mesons of the form

ΘR
n = Tr2 Tr2n

�

Tr2Q

�

O†
R

Q−1
∏

a=n

q(a,a+1)†

�

Tr2Q

�

OR

Q−1
∏

a=n

q(a,a+1)

��

(47)

and similar ones ΘL
n involving OL which have not a simple expression in terms of fundamental

fields but whose existence is guaranteed by the self-duality of the E[USp(2Q)] block. Their
charges under the global symmetries are

USp(2Q)x USp(2Q)y U(1)t U(1)c U(1)d SU(2)u U(1)R0

Ax antisymm. 1 −1 0 0 1 2
Ay 1 antisymm. −1 0 0 1 2
Π � � 0 1 1 1 0
bn 1 1 Q− n −2 −2 1 2
OL � 1 0 0 −1 � 1
OR 1 � 0 −1 0 � 1
ΘR

n 1 1 Q− n −2 0 1 2
ΘL

n 1 1 Q− n 0 −2 1 2

The operator map across the duality is then

AL
x ↔ Ax ,

AR
y ↔ Ay ,

Ξ ↔ Π ,

ΩL ↔ OL , (48)

ΩR ↔ OR ,

Θn ↔ bn ,

bR
n ↔ ΘL

n ,

bL
n ↔ ΘR

n .
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4 Rank Q E-string on tubes and tori

We are interested in constructing four dimensional theories which flow to theories one would
obtain by compactifying the rank Q E-string theory either on a two punctured sphere or a torus
with some flux in the abelian subgroups of the E8 symmetry factor of the six dimensional theory.
We have already discussed some general expectations from such theories, such as symmetries
and anomalies, in section 2.1. We will show in this section that such four dimensional theories
can be constructed using E[USp(2Q)] as an essential basic building block.

Theories corresponding to tubes and tori can be constructed by gluing together theories
corresponding to compactifications on tubes with some minimal value of flux, which we will
refer to as the tube model. The precise meaning of this statement will be discussed next. We
note that the following discussion is an abstraction of rules that were observed to work in
various examples, notably the rank 1 E-string [1], and some of its generalizations [16]. While
there are arguments in favor of this picture, it is ultimately motivated mostly by observation.

4.1 The basic tube and gluing

Let us start from a geometric definition of the tube model. The tube model we discuss here is
a four dimensional theory corresponding to the compactification of the 6d E-string theory on
a two punctured sphere with some particular value of flux for the E8 symmetry. The punctures
have USp(2Q) symmetry associated to them and they come in different types. These come
about since the punctures are expected to break the E8 global symmetry to SO(16), and we
have some freedom in how the SO(16) is embedded inside the E8. Specifically, we are free to
act with any inner automorphism of E8, which are just the Weyl transformations, to potentially
get different embeddings. Likewise the flux, being a vector in the root lattice of E8, is also
affected by Weyl transformations. Thus, given a tube we can generate an equivalent tube by
acting with an E8 Weyl transformation. Tubes differing in this way are ultimately the same
tube, but the gluing of two tubes is affected if these differ by a relative Weyl group action.
When we glue two punctures together the associated flux for the combined tube is the sum
with appropriate signs, as we shall see, of their fluxes.

Now we need to define the tube and gluing at the level of the physical theories. In a tube
theory each puncture comes equipped with an octet of fundamental operators of USp(2Q),
Mi , which we will refer to by an abuse of notation as moment maps. These moment map
operators are charged under the U(1) symmetries comprising the Cartan generators of the
E8. Different types of punctures have moment map operators charged differently under these
symmetries. Again, the difference of the charges can be associated to an action of the Weyl
group of E8. Consider fixing a specific SO(16) subgroup of E8, as we have done when we chose
an SO(16) flux basis. Then for simplicity, when we glue two punctures together we can first
limit ourselves to only gluing punctures of the same type up to the action of the Weyl group
of the chosen SO(16) subgroup of E8 (a more general gluing will be discussed in section 4.4).
The Weyl group of SO(16) is comprised of permutations of eight elements and of flips of any
even number of them. In particular it means that the moment map operators Mi and M ′i of
the two punctures we are gluing have same charges under the Cartan symmetries of E8 up to
permutations of the indices and flips of signs for even number of components. Let us denote
the permutation by σ and the set of indices with flipped signs by F. The punctures also have
operators A in the antisymmetric traceless representation of USp(2Q). We glue punctures by
gauging a diagonal combination of the two USp(2Q) symmetries and by introducing a chiral
field, Â, in the traceless antisymmetric representation of USp(2Q) and a set of fundamental
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Figure 9: The basic tube with E7 flux F = (1
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2). The squares denote
USp groups and double squares SU groups.

fields, Φi for i /∈ F, which couple to the moment map operators through a superpotential,

W =
∑

j /∈F

(M j −M ′
σ( j))Φ

j +
∑

j∈F
M j M

′
σ( j) + (A− A′)Â . (49)

The first type of superpotential terms was referred to as Φ gluing and the second ones as S
gluing in [1, 17]. The third term only appears for higher rank E-string as for rank one we
do not have traceless antisymmetric representations. Physically the restriction to only having
even number of flipped charges is related to Witten global anomaly obstruction [56]. We will
be gauging the USp(2Q) symmetry and the absence of the Witten anomaly implies that the
number of chiral fields in the fundamental representation here is even. Finally if the fluxes of
the theories we are gluing are F and F ′, the flux of the combined theory, F glued , will be given
by

i /∈ F : F glued
i = Fi +F ′

σ(i) , i ∈ F : F glued
i = Fi −F ′

σ(i) . (50)

Next we need to define at least one tube model from which we can build other tubes
and torus theories. The simplest tube, depicted in Figure 9, is constructed by coupling the
E[USp(2Q)] block to two octets M , M ′ with superpotential

W =
8
∑

a=1

M aΠM ′a . (51)

This tube model is associated to a flux breaking E8→ U(1)c×E7 which in the SO(2)8 ⊂ SO(16)
basis corresponds to the vector,

F =
�

1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

�

. (52)

The basic tube theory has global symmetry USp(2Q)×USp(2Q)×U(1)t×U(1)c×SU(8)×U(1)A.
The U(1)t symmetry is hidden inside the block and when we glue tubes into tori it will enhance
to the SU(2)L symmetry of the E-string. The U(1)A symmetry, when we glue tubes into tori,
always disappears because of anomalies and superpotential constraints. For this reason we
will omit it from our discussion as it appears to be accidental from the six dimensional point
of view. We use the U(1)c fugacity to define charges of the moment maps on the right as
ai = c−1/2ui , where ui are SU(8) fugacities satisfying

∏8
i=1 ui = 1. On the left the fugacities
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Figure 10: Gluing two basic tubes together with a trivial element of the Weyl group
we obtain tube with flux (1,1, 1,1, 1,1, 1,1).

are a′i = c−1/2u−1
i . The map between ai to a′i consists of charge conjugation for the SU(8),

but without acting on U(1)c . This is not a Weyl group element of SO(16), which contains
charge conjugation for both groups, but not for each one separately. However, as we explain
in appendix A, it is an element of the E7 ⊂ E8 Weyl symmetry group.

Let us illustrate how we glue two such tubes together with concrete examples. We can
glue two basic tubes with a trivial identification of the moment maps as depicted in Figure 10.
If we assign fugacities ai to moment maps of one glued puncture and bi to the other glued
puncture, we identify the charges with a trivial action of the SO(16) Weyl symmetry group:

i = 1 . . . 8 : ai = bi . (53)

The two basic tubes then are glued with the superpotential

W =
8
∑

j=1

(M j −M ′
σ( j))Φ

j + (A− A′)Â . (54)

Integrating out the massive fields, the fields M j and M ′
σ( j) are identified and we get the quiver

on the right of Figure 10. The flux of the combined model is obtained summing the fluxes F
and F ′ of the two glued theories. Since in this case there are no flips of fugacities the tube
model which we obtain has flux

(F1 +F ′1,F2 +F ′2,F3 +F ′3,F4 +F ′4,F5 +F ′5,F6 +F ′6,F7 +F ′7,F8 +F ′8) = (55)

= (1, 1,1, 1,1, 1,1, 1) ,

which corresponds to a unit of flux z = 1 for the U(1) whose commutant in E8 is E7.
We can also glue two basic tubes with a non-trivial identification of the moment maps.

Denoting again as ai and bi the fugacities of the punctures we are gluing, we identify the
charges with an action of the SO(16) Weyl symmetry group,

i = 1 . . . 4 : ai = bi , (56)

i = 5 . . . 8 : ai = 1/bi .

We decompose the SU(8)×U(1)c fugacities of our basic tube into SU(4)×SU(4)×U(1)s×U(1)c
fugacities taking for the first moment map fugacities ai = c−

1
2 s−

1
2 vi for i = 1 . . . 4 and

ai = c−
1
2 s

1
2 wi for i = 5 . . . 8, with

∏4
i=1 vi =

∏8
i=5 wi = 1. Analogously for the second moment

map we take bi = c′−
1
2 s′−

1
2 v′i for i = 1 . . . 4 and bi = c′−

1
2 s′

1
2 w′i for i = 5 . . . 8. The identification

above then sets c = s′, s = c′, vi = v′i , and wi = 1/w′i . The gluing of the two tubes is depicted
in Figure 11. The two basic tubes are now glued with the superpotential

W =
4
∑

j=1

(M j −M ′
σ( j))Φ

j +
8
∑

j=5

M j M
′
σ( j) + (A− A′)Â . (57)
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Figure 11: Example of gluing two basic tubes together with a non-trivial element of
the Weyl group of SO(16). The resulting tube will have flux (1, 1,1, 1,0, 0,0, 0).
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Figure 12: Gluing two (1,1, 1,1, 0,0, 0,0) tubes together with a trivial element of the
Weyl group of SO(16) we obtain a tube with flux (2,2, 2,2, 0,0, 0,0).

Now half of the fugacities are flipped and consequently the tube model we obtain has flux

(F1 +F ′1,F2 +F ′2,F3 +F ′3,F4 +F ′4,F5 −F ′5,F6 −F ′6,F7 −F ′7,F8 −F ′8)
= (1, 1,1, 1,0, 0,0, 0) , (58)

which corresponds to half a unit of flux z = 1
2 for the U(1) whose commutant in E8 is SO(14).

We can further glue these tubes. For example, by gluing two (1,1, 1,1, 0,0, 0,0) tubes with
a trivial action of the SO(16) Weyl symmetry group, adding eight Φi fundamentals, as shown
in Figure 12, we obtain a tube with flux (2, 2,2, 2,0, 0,0,0) which corresponds to a unit of flux
z = 1 for the U(1) whose commutant in E8 is SO(14).

Using these simple definitions we will now construct a large set of models with interesting
properties. Before doing this we will verify that the ’t Hooft anomalies under all the symmetries
of the conjectured tube theory match the six dimensional predictions (1), (3), (4), and (5).

Let us also note here that the RG flow between E[USp(2Q)] to E[USp(2(Q − 1))] of
E[USp(2Q)] that we have discussed in section 3.3 has a 6d meaning. This flow corresponds
to separating one M5 brane from the rest and flowing to a lower rank E-string theory. Note
that such a flow keeps the six dimensional symmetry E8 × SU(2)L intact. However as the
symmetries corresponding to the punctures in the E[USp(2Q)] and E[USp(2(Q−1))] are dif-
ferent, the VEV breaks USp(2Q) down to USp(2(Q − 1)). We also note that the flow to WZ
model discussed in 3.3 was considered in the context of rank Q E-string compactification in
Appendix B of [1] and corresponds to some relevant deformation of the theories obtained in
the compactifications.
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4.2 Anomalies of the basic tube

Let us compute various anomalies of the tube theory. We have defined the basic model using
a certain R symmetry and definition of U(1)c and U(1)t using which the charges of various
fields take the simplest form. Also these are the definitions used by Rains in [32]. However,
to compare with 6d computation we need to perform slight redefinitions. In general, as we
mentioned before, different choices of R-symmetry are related by admixture of abelian sym-
metries

R= R0 + cqc + tqt .

Here we will use the six dimensional R-symmetry, which we will denote by R̂, which corre-
sponds to taking c= 0 and t= 1 so R̂= R0+qt . Using this R-symmetry we find that the linear
anomalies are

Tr U(1)R̂ = −Q(1+ 2Q) , Tr U(1)t = 1+Q− 2Q2 , Tr U(1)c = −14Q . (59)

Next consider anomalies with puncture symmetries

Tr U(1)R̂USp(2Q)2 = −
1+Q

2
, Tr U(1)cUSp(2Q)2 = −1 , Tr U(1)t USp(2Q)2 =

1−Q
2

.

(60)

Then we have cubic anomalies involving a single symmetry

Tr U(1)3
R̂
= −Q(1+ 2Q) , Tr U(1)3t = 1+Q− 2Q2 , Tr U(1)3c = −8Q . (61)

Finally we have cubic anomalies involving several U(1) symmetries

Tr U(1)R̂U(1)2t = 0 , Tr U(1)R̂U(1)2c = 0 , Tr U(1)cU(1)
2
t = −Q(Q− 1) , (62)

Tr U(1)t U(1)
2
c = 0 , Tr U(1)2

R̂
U(1)t = 0 , Tr U(1)2

R̂
U(1)c =Q(Q+ 1) .

To compare with the six dimensional prediction we have to sum the bulk contribution to
the inflow contribution of the two punctures with z = 1/2, ξG = 1, q = −1/2 and qa = −1/2
for a = 1, · · ·8. For example

Tr U(1)c = −12× (1/2)× 1Q
︸ ︷︷ ︸

geometric

+2× 8× (−1/2)Q
︸ ︷︷ ︸

inflow

= −14Q,

Tr U(1)3c = −12× (1/2)× 12 Q
︸ ︷︷ ︸

geometric

+2× 8× (−1/2)3 Q
︸ ︷︷ ︸

inflow

= −8Q , (63)

and farther, taking contributions from the punctures only,

Tr U(1)L = −
2Q2 −Q− 1

2

Tr U(1)3L = −
2Q2 −Q− 1

8

Tr(U(1)cSU(2)2L) = −
Q(Q− 1)

4
. (64)

In order to match the anomalies (64) with the ones computed in 4d we also need to redefine
qt →

1
2qt ≡ q t̂ . In this normalization for the U(1) t̂ charges the character of the fundamental

representation of SU(2)L is t̂
1
2 + t̂−

1
2 and thus Tr U(1)SU(2)2L = Tr U(1)U(1)2

t̂
. In particular,

Tr U(1) t̂ =
1
2

Tr U(1)t = −
2Q2 −Q− 1

2

Tr U(1)3t̂ =
1
8

Tr U(1)3t = −
2Q2 −Q− 1

8

Tr U(1)cU(1)
2
t̂ =

1
4

Tr U(1)cU(1)
2
t = −

Q(Q− 1)
4

. (65)
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Figure 13: Gluing 2n (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2) tubes we obtain a torus with n units of
flux preserving SU(2)t × E7 × U(1). Here we have n= 2.

4.3 Tori with F = (n, n, n, n, n, n, n, n)

The simplest tori models we can build are obtained by combining the basic E7 tubes together
with a trivial action of the Weyl group. Taking an even number of such tubes we do not break
any of the symmetries. In particular combining 2n tubes we obtain the torus compactification
of the E-string with n units of flux for the U(1) whose commutant in E8 is E7 (see Figure 13).
Anomalies:

We compute some of the anomalies of this torus theory. It is convenient to package
the anomalies of abelian symmetries into trial a and c anomalies. Using the trial R-charge
R0 + tqt + cqc we first calculate the trial a and c anomalies of E[USp(2Q)]

aE[USp(2Q)](c, t) =
3

32
Q
�

−12c3 + c(16− 9(Q− 1)(t− 2)t)− (2Q− 1)t(3(t− 3)t+ 8)− 4
�

+

−
3
32

�

3(1− t)3 − (1− t)
�

, (66)

cE[USp(2Q)](c, t) =
1

32
Q
�

−36c3 + c(44− 27(Q− 1)(t− 2)t)− (2Q− 1)t(9(t− 3)t+ 22)− 8
�

+

−
1
32

�

9(1− t)3 − 5(1− t)
�

.

When we glue the tubes to a torus we add an octet of fundamental fields Φ j , the antisymmetric
field Â, and gauge the USp(2Q) symmetry. The contribution of the gluing to the anomaly is
then,

aglue (8,0)(c, t) =
3

32

�

−6c3n+ 8cn− (n(2n− 1)− 1)
�

−3(t− 1)3 + t− 1
�

+ 2(2n+ 1)n
�

,

cglue (8,0)(c, t) =
1
32

�

2c
�

20− 9c2
�

n+
�

2n2 − n− 1
� �

9t3 − 27t2 + 22t− 4
�

+ 4(2n+ 1)n
�

.

(67)

Here the label (8, 0) denotes the fact that we glue with an octet of Φi as opposed to gluing
with less than 8 fields, as we do when we consider a non-trivial identification with the action
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of Weyl symmetry group. The total anomaly is given by

aE7,2n(c, t) = 2n(aE[USp(2Q)](c, t) + aglue (8,0)(c, t)) ,

aE7,2n(c, t) = 2n(cE[USp(2Q)](c, t) + cglue (8,0)(c, t)) .

(68)

We can maximize aE7,2n with respect to c and t and obtain,

c=
2
p

2
3

p

3Q+ 5, t= 0 , (69)

for which we get,

a =
p

2Q(3Q+ 5)
3
2

16
z , c =

p

2(3Q+ 5)Q(3Q+ 7)
16

z , (70)

which matches the six dimensional prediction (2) with z = n and ξG = 1, the value corre-
sponding to flux preserving U(1)× E7. We can also match the abelian anomalies. For example
from the 4d theory we extract

Tr U(1)c = −12Qn , Tr U(1)3c = −12Qn, (71)

which perfectly match the 6d prediction.
Index:

Next we can compute the index of the torus theory and check whether the ex-
pected symmetry makes an appearance. The index for the basic tube theory with flux
F =

�1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

�

is given by

I(z=
1
2)

tube (~x , ~y , c, t,u) =
Q
∏

n=1

8
∏

i=1

Γe

�

(pq)
1
2 c−

1
2 ui x

±1
n

�

Γe

�

(pq)
1
2 c−

1
2 u−1

i y±1
n

�

IE[USp(2Q)](xn, yn, c, t) .

(72)

We also define the contribution of the gluing as,

∆Q(~z;u, c, t) =
Q
∏

n=1

8
∏

i=1

Γe

�

(qp)
1
2 c

1
2 u−1

i z±1
n

�

∆Q(z, t) ,

where the contribution of the vector and the traceless antisymmetric of USp(2Q) is

∆Q(z, t) =
Γe (t)

Q−1∏Q
n<m Γe

�

t z±1
n z±1

m

�

∏Q
n=1 Γe

�

z±2
n

�∏Q
n<m Γe

�

z±1
n z±1

m

�
. (73)

Then the index of the torus with z = n units of flux has the following index,

I(z=n)
Q =

∮

d~z(1)Q

2πi~z(1)Q

· · ·
∮

d~z(2n)
Q

2πi~z(2n)
Q

2n
∏

i=1

I(z=
1
2)

tube (~z
(i), ~z(i+1), c, t,u)∆Q(~z

(i+1);u, c, t) . (74)

In order to analyze the symmetries of the theory we expand the index using the 6d R-symmetry
R̂. The case of Q = 1 was discussed in detail in [1], here we give the result for Q = 2 and generic
value of z 9. With the 6d R-symmetry R̂ and with t = t̂

1
2 we obtain for flux z > 1

I(z=n)
Q=2 = 1+ c2z + c4z + · · ·+ qp(z56c−1 − z56c + 2zc−2) + (75)

qp(q+ p)(z56c−1 + 2zc−2) + (qp)
3
2 (z56c−1 + 2zc−2)( t̂

1
2 + t̂−

1
2 ) + · · · .

9For low values of flux there can be additional operators with low charges contributing in low orders of the
expansion of the index.
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We see that the representations of SU(8) enhance to E7. In particular 28 + 28 → 56.
The fugacity t̂

1
2 is the Cartan of SU(2)L . We can easily identify some of these operators in

the quiver. For example, the operators charged c2z are
∏2n

i=1Π(i) where Π(i) is the Π operator
defined as in (19) for the ith E[USp(2Q)] block. The operators in the 28 and 28 are built from
the octects fields as Tr Mi Mi . Note as half of Mi are in fundamental and half in antifundamental
of SU(8) we get exactly n 56s.

We will now compare the 4d spectrum that we see from the index with what we expect from
the 6d construction. It is expected [57] (see also [58] and appendix E of [1]) that the lowest
BPS operators contributing to the index of the 4d theory come from 6d conserved currents
and the energy momentum tensor. Since we are considering torus compactifications with flux
breaking E8→ U(1)c × E7 we expect that the contribution to the index of these operators will
be in the representations appearing in the branching rule for the decomposition of the adjoint
of E8→ U(1)c × E7:

248→ 1±2 ⊕ 10 ⊕ 1330 ⊕ 56±1 , (76)

where the subscripts indicate the U(1)c charges. The multiplicity on which these operator
contribute depends on the charges and flux z. For example an operator with charges +1 under
the symmetry will be a fermion and contribute with multiplicity −z to the index, while an
operator charged −2 will be a boson and will contribute with multiplicity +2z to the index.
These operators will appear at order pq in the expansion of the 4d index when the 6d R-
charge R̂ is chosen. This is the expected pattern. Indeed we see that in (75) at order pq
we have operators in the 56± and 12. However, we are missing the 1−2 operator. It is not
clear what eliminates it from the 4d theory, and it will be interesting to figure this out. One
possibility is that it get canceled against defect operators wrapping the torus.

We then can think of 0 = 10 + 1330 + 30
SU(2)L

− (10 + 1330 + 30
SU(2)L

) as the cancellation
of marginal operators and conserved currents. So we would conclude that the conformal
manifold, having dimension 8, is big enough to accommodate the E7 symmetry enhancement.

Another property that we immediately see is that the index is invariant under exchange of t̂
with t̂−1. This is consistent with the expectation that t̂

1
2 is an SU(2)L fugacity as the operation

of flipping t̂ is the Weyl operation of the SU(2). This property follows directly from the flip-
flip duality of E[USp(2Q)] and in particular from (30). Note that, as we always introduce the
antisymmetric field Â for each gluing (30), this will guarantee that the index is invariant under
the Weyl transformation of SU(2)L for tori with any choice of flux. This is not true for tubes
however as the punctures break the SU(2)L symmetry to U(1) t̂ .

4.4 Tori with F =
�

k
2 , k

2 , k
2 , k

2 , k
2 , k

2 , k
2 , k

2

�

If we glue odd number of basic tubes we obtain theories with half-integer fluxes
F =

� k
2 , k

2 , k
2 , k

2 , k
2 , k

2 , k
2 , k

2

�

, with k an odd integer. This choice will in general break the E7
symmetry to U(1)4, but we may expect this to further enhance at most to F4 [1].

Tori with half-integer fluxes can be obtained by gluing an odd number of copies of the tube.
We focus on the case of a single tube self-glued to give a torus with F =

�1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

�

.
Recall that the two punctures of the tube are of types that are not related by an action of the
Weyl group of SO(16). Hence, we can’t perform a gluing that preserves the SU(8) symmetry,
as expected. Instead, we will perform a gauging that explicitly breaks the SU(8) symmetry
to SU(4) × U(1), which actually enhances to SO(8) in the Lagrangian and then discuss the
possibility for this to further enhance to F4.
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Figure 14: Self-gluing of the minimal tube yields the torus with flux
�1

2 , 1
2 , 1

2 , 1
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2 , 1
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2 , 1
2

�

. The shaded nodes indicate the gauging which identifies the
USp(2Q) symmetries of the basic tube.

More precisely, we start from the tube theory of Figure 9 and we split the octets of chiral
fields in two groups, as depicted on the left of Figure 14. This corresponds to the group
decomposition SU(8)u→ SU(4)v × SU(4)w × U(1)s. We also rewrite the superpotential as

W =
4
∑

a=1

M aΠM ′a +
8
∑

i=5

M iΠM ′i . (77)

We perform a gauging that breaks the upper SU(4) symmetry by identifying the two
USp(2Q) symmetries and adding a pair Φ, Φ′ of bifundamental and anti-bifundamental of
SU(4)× USp(2Q) and an USp(2Q) traceless antisymmetric Â with superpotential

W =
4
∑

i=1

M iΠM ′i +
8
∑

a=5

M aΠM ′a +
8
∑

a=5

�

M aΦa +M ′aΦ
′a�+ Â(Ax − Ay) . (78)

Integrating out the massive fields we get the quiver on the right of Figure 14 with superpoten-
tial

W =
4
∑

i=1

M iΠM ′i , (79)

where the global symmetry is actually SO(8). This is the theory corresponding to a torus with
flux F =

�1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

�

.
In order to discuss the possible enhancement of the SO(8) symmetry to F4, we consider

the superconformal index of this theory

I(z=
1
2)

torus (c, t, ua) =

∮

d~zQ∆Q(z, t)
Q
∏

n=1

8
∏

a=5

Γe

�

(pq)
1
2 c

1
2
�

s−1wa

�±1
z±1

n

�

I(z=
1
2)

tube (zn, zn, c, t, ui) =

=

∮

d~zQ∆Q(z, t)
Q
∏

n=1

4
∏

i=1

Γe

�

(pq)
1
2 c−

1
2 (s vi)

±1 z±1
n

�

IE[USp(2Q)](zn, zn, c, t) ,
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Figure 15: Gluing three basic tubes to form a tube with flux
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2 , 3
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�

.

where we decomposed the SU(8)u fugacities into SU(4)v×SU(4)w×U(1)s fugacities according
to

ui = s vi , ua = s−1wa, (80)

with the constraints
∏4

i=1 vi =
∏8

a=5 wa = 1. Notice that the index is manifestly SO(8) invari-
ant in the variables ui = s vi . It is also secretly F4 invariant, since according to Theorem 3.22
of [32] it is invariant under

ua→
uapu1u2u3u4

. (81)

This implies that if we expand the index in powers of p and q, the characters of SO(8) should
actually re-arrange into characters of F4. Indeed, using the 6d R-charge R̂ and rescaling t = t̂

1
2

we find

I(z=
1
2)

torus = 1+ c + 2c2 + · · ·+ qp
�

28+ 1+ c−2 + (28+ 1)c−1 + c
�

+ (82)

qp(p+ q)
�

28+ 2+ c−2 + (28+ 1)c−1 + (28+ 2)c
�

+

(qp)
3
2
�

c−2 + 28c−1 − 28c
�

( t̂
1
2 + t̂−

1
2 ) + · · · ,

where 28 is the representation of SO(8), which can also be thought of as the representations
26 + 1 + 1 of F4. From this expression we can see that if we compute the index with the
4d superconformal R-charge we get a qp term equal to (28 + 1)qp, which doesn’t contain a
conserved current for F4. If we assume a cancellation of the current due to marginal operators,
we find that the conformal manifold is bigger than the one predicted from 6d. The expansion
of the index then can be re-arranged into characters of F4 and there is no a priori contradiction
with the conformal manifold having a locus on which the symmetry enhances to F4. This is to
be contrasted with the Q = 1 case where with minimal flux z = 1

2 the conformal manifold did
not contain an F4 locus [1].

We can also consider the theory corresponding to higher half-integer flux z > 1
2 (see Figure

15)

I(z=
n
2 )

torus = 1+ c2z + 2c4z + · · ·+ qp
�

2z(28− 1)c2 − 2z(28− 1)c + 2z28c−1 + 2zc−2
�

+

+qp(p+ q)
�

2z28c−1 + 2zc−2 − 2z(28− 1)c
�

+

+(qp)
3
2
�

2z28c−1 + 2zc−2 − 2z28c
�

( t̂
1
2 + t̂−

1
2 ) + · · · . (83)
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Figure 16: Gluing two basic tubes to form a tube with flux (1, 1,1, 1,1, 1,0, 0). We
avoid drawing arrows for lines connecting USp(2Q) nodes to SU(2) nodes.

We notice that in this case there is no qp term corresponding to an operator uncharged under
c. This means that computing the index with the 4d superconformal R-charge the qp term
vanishes. Hence, we find no contradiction with the enhancement to F4 on some point of the
conformal manifold. Moreover, given that the mixing coefficient with U(1)c (69) is positive,
computing the index with the 4d superconformal R-charge there will be no contribution from
relevant fermionic operators [59].

4.5 Tori with F = (2n, 2n, 2n, 2n, 2n, 2n, 0, 0)

Let us consider gluing two basic tubes with the element of Weyl symmetry group which flips
two elements. That is

i = 1 . . . 6 : ai = bi , i = 7, 8 : ai = 1/bi . (84)

We split the fugacities into SU(6)u × SU(2)v × U(1)s × U(1)c as,

i = 1 . . . 6 : ai = s
1
2 c−

1
2 ui , i = 7,8 : ai = s−

3
2 c−

1
2 vi , (85)

i = 1 . . . 6 : bi = s′
1
2 c′−

1
2 u′i , i = 7, 8 : bi = s′−

3
2 c′−

1
2 v′i , (86)

with
∏6

i=1 ui =
∏6

i=1 u′i =
∏8

i=7 vi =
∏8

i=7 vi = 1. Then the map between the charges (84)

implies c′ = s−
3
2 c

1
2 , s′ = s−

1
2 c−

1
2 , with ui = u′i and vi = 1/v′i .

Since only two fugacities are flipped the gluing will involve six USp(2Q) fundamentals Φi ,
i = 1, · · · , 6 as shown in Figure 16 and flux associated to this tube will be:

�

1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

�

+
�

1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,−
1
2

,−
1
2

�

= (1, 1,1,1, 1,1, 0,0) , (87)

corresponding to half a unit of flux z = 1
2 for the U(1) whose commutant in E8 is E6 × SU(2).

If we now glue 2n such tubes with a trivial element of the SO(16) Weyl group we ob-
tain the theory corresponding to the compactification on a torus with z = n units of flux
in this U(1) and we expect the symmetry on some locus of the conformal manifold to be
SU(2)L×E6×SU(2)×U(1). The torus theory is depicted in Figure 17. We proceed to perform
some checks of the proposal.
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Figure 17: Gluing 2n (1,1, 1,1, 1,1, 0,0) tubes we obtain a torus with n units of flux
preserving SU(2)t × E6 × SU(2)× U(1). Here we have n= 1.

Anomalies:
We first calculate the conformal anomalies for this torus theory and obtain:

a =
1
8

√

√3
2

zQ(3Q+ 5)3/2 , c =
1
8

√

√3
2

zQ
p

3Q+ 5(3Q+ 7) . (88)

This matches the six dimensional prediction (2) for SU(2)× E6 preserving n units of flux, that
is with ξG = 3 and z = n.
Index:

We can compute the index. Again we will consider the case with rank Q = 2 and arbitrary
flux z = n for simplicity (for the case Q = 1 see [1]). Using the six dimensional R-charge R̂
and rescaling t = t̂

1
2 we find

I(z=n)
Q=2 =1+ · · ·+

qp
�

3z(2,1)m−3 + 2z(1,27)m−2 + z(2,27)m−1 − 2z(1,27)m2 − z(2,27)m
�

+

qp(q+ p)(3z(2,1)m−3 + 2z(1,27)m−2 + z(2,27)m−1 − z(2,27)m)+

(qp)
3
2 (3z(2,1)m−3 + 2z(1,27)m−2 + z(2,27)m−1 − z(2,27)m)( t̂

1
2 + t̂−

1
2 ) + · · · ,

(89)

where we redefined the fugacities for the abelian symmetries with respect to the ones used in
Figure 16 according to

c = m
3
2 w−1, s = m−

1
2 w−1 , (90)

to isolate U(1)w which is the one enhancing to SU(2). In (89) we indicate by (·, ·) the char-
acters of SU(2) × E6, for example (2,1) = w2 + w−2. Then the SU(2)v × SU(6)u fugacities
re-organize in the index in terms of characters of E6 according to the branching rules

(1,27) = (2,6)SU(2)v×SU(6)u ⊕ (1,15)SU(2)v×SU(6)u . (91)
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Figure 18: Gluing 2n (1, 1,1, 1,0, 0,0, 0) tubes we obtain a torus with z = n units of
flux preserving SU(2)t × SO(14)× U(1). Here we have n= 1.

We can also use the index result to compare with the 6d prediction of the spectrum. Since
we are considering torus compactifications with flux breaking E8 → U(1)v × SU(2) × E6 we
expect that the contribution to the index corresponding to the 6d conserved currents and en-
ergy momentum tensor will appear in the pq term of the index in the representations involved
in the branching rule

248→ (1,1)0 ⊕ (3,1)0 ⊕ (1,78)0 ⊕ (1,27)2 ⊕ (1,27)−2 ⊕ (2,27)−1 ⊕ (2,27)1 ⊕ (2,1)±3 ,

(92)

where the subscripts indicate the U(1)v charges. Indeed we see that in (89) at order pq we
have operators in the (1,27)2, (1,27)−2, (2,27)−1, (2,27)1 and (2,1)3. In particular, these
appear with a coefficient determined by the value of the flux z = n and their charge under
U(1)v . We again can think of

0= (1,1)0 + (3,1)0 + (1,78)0 + 30
SU(2)L

−
�

(1,1)0 + (3,1)0 + (1,78)0 + 30
SU(2)L

�

as the cancellation of marginal operators and 4d conserved currents, which is compatible with
the dimension of the conformal manifold predicted from 6d. We are again missing the (2,1)−3

operator, and it will be interesting to understand the mechanism causing this.

4.6 Tori with F = (2n, 2n, 2n, 2n, 0, 0, 0, 0)

We can glue 2n tubes with (1, 1,1, 1,0, 0,0, 0) fluxes given in Figure 11, with a trivial action of
the SO(16)Weyl group to construct tori with z = n units of flux for the U(1)whose commutant
in E8 is SO(14) as shown in Figure 18.
Anomalies:

The conformal anomalies are given by:

a =
1
8

zQ(3Q+ 5)3/2 , c =
1
8

zQ
p

3Q+ 5(3Q+ 7) . (93)
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This matches the six dimensional prediction (2) for SO(14) preserving n units of flux, that is
with ξG = 2 and z = n.
Index:

Again we compute the index in the case with rank Q = 2 for simplicity (for the case Q = 1
see [1]) and generic flux. We use the six dimensional R-charge R̂ and rescale t = t̂

1
2

I(z=n)
Q=2 = 1+ · · ·+ qp(2z14m−2 + z64m−1 − z64m) + (94)

qp(q+ p)(2z14m−2 + z64m−1) + (qp)
3
2 (2z14m−2 + z64m−1)( t̂

1
2 + t̂−

1
2 ) + · · · ,

where we redefined the fugacities for the abelian symmetries with respect to the ones used in
Figure 11 according to

c = m w−1, s = m w , (95)

which is useful since the U(1)w symmetry is the one contributing to the enhancement to SO(14)
together with the two SU(4) symmmetries. Indeed, the corresponding fugacities re-organize
in the index in terms of characters of SO(14) according to the branching rules

14= (1,1)±2 ⊕ (6,1)0 ⊕ (1,6)0,

64= (4,4)±1 ⊕ (4,4)±1 . (96)

We can also use the index result to compare with the 6d prediction of the spectrum. Since we
are considering torus compactifications with flux breaking E8 → U(1)v × SO(14) we expect
that the contribution to the index of these operators will be in the representations appearing
in

248→ 10 ⊕ 910 ⊕ 14±2 ⊕ 64− ⊕ 64
1

, (97)

where the subscripts indicate the U(1)v charges. Indeed we see that in (95) at order pq we

have operators in the 142, 64
1

and 64−1. We again can think of

0= 10 + 910 + 30
SU(2)L

−
�

10 + 910 + 30
SU(2)L

�

as the cancellation of marginal operators and conserved currents.

4.7 Tori with F = (2n, 2n, 0, 0, 0, 0, 0, 0) and the braid relation

Let us consider gluing two basic tubes with the element of Weyl symmetry group which flips
six elements. That is

i = 1,2 : ai = bi , i = 3, . . . 8 : ai = 1/bi . (98)

We split the fugacities into SU(2)× SU(6)× U(1)s × U(1)c as,

i = 1, 2 : ai = s−
3
2 c−

1
2 ui , i = 3 . . . 8 : ai = s

3
2 c−

1
2 vi , (99)

i = 1, 2 : bi = s′−
3
2 c′

1
2 u′i , i = 3 . . . 8 : bi = s′

3
2 c′−

1
2 v′i , (100)

with
∏2

i=1 ui =
∏2

i=1 u′i =
∏8

i=3 vi =
∏8

i=3 vi = 1. Then the map between the charges implies

c′ = s
3
2 c−

1
2 , s′ = s

1
2 c

1
2 , with ui = u′i and vi = 1/v′i . Now six fugacities are flipped so the gluing

will involve only two USp(2Q) fundamentals Φi , i = 1, 2, as shown in Figure 19.
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Figure 19: Gluing two basic tubes to form a tube with flux (1, 1,0, 0,0, 0,0, 0).

2Q

2Q 2Q

2Q

2

6

s−1 /2 c−1/2 s−1

s3 /2 c−1 /2

s−3/2 c−1/2

s−3/2 c−1/2

s3 /2 c−1 /2c

c

c

s3 /2c−1 /2
2Q 2Q2

6

s−1 /2 c−1/2 s−1s3/2c1/2

c−1

s−3/2 c1 /2

s3 /2 c1 /2

BRAID
TWICE

REDEFINE
FUGACITIES

2Q 2Q8
d−1 /2

d

d

d−1 /2
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braid relation to obtain the quiver in the middle. Finally by redefining the fugacities
we obtain the quiver on the rhs corresponding to flux (1,1, 1,1, 1,1, 1,1).

Note that the flux is
�

1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

�

+
�

1
2

,
1
2

,−
1
2

,−
1
2

,−
1
2

,−
1
2

,−
1
2

,−
1
2

�

= (1, 1,0, 0,0, 0,0, 0) .

(101)

This is also an E7 flux related to (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2) by the action of the Weyl symmetry (see
appendix A). Thus in order for the picture to be consistent torus theories obtained by gluing
either type of tubes have to be equivalent. This is indeed the case due to the braid relation
discussed in section 3.4.

For example, as shown in Figure 20, if we glue two (1,1, 0,0, 0,0, 0,0) tubes and apply
twice the braid relation we obtain the torus with (1, 1,1, 1,1, 1,1, 1) flux, provided we redefine
the fugacities as

vi = ṽis
−1/4c1/4 , u j = ũ js

3/4c−3/4 , (102)

which recombine into the SU(8) fugacities x i = ũi for i = 1,2 and x i = ṽi for i = 3, · · ·8
satisfying

∏8
i=1 x i = 1, and we define the remaining U(1) fugacity d = s3/2c1/2.

Anomalies:
Gluing 2n tubes together we can easily compute the conformal anomalies and obtain that
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they give us,

a =
1
8

√

√1
2

zQ(3Q+ 5)3/2 , c =
1
8

√

√1
2

zQ
p

3Q+ 5(3Q+ 7) . (103)

This matches the six dimensional prediction (2) for E7 preserving n units of flux, that is with
ξG = 1 and z = n.
Index: As we have seen the braid relation (37) guarantees that the index of this theory is the
same as the one of the E7 torus.

5 Flowing to 3d

In this section we study the dimensional reduction to 3d of E[USp(2Q)] and various real mass
flows which connect it to well known 3d theories.

Compactification to T[USp(2Q)]

If we compactify the E[USp(2Q)] theory on a circle we obtain a 3d N = 2 quiver theory we
denote as T[USp(2Q)] which has the same gauge and matter content and superpotential

WT USp(2Q)] =WE[USp(2Q)] +Wmon , (104)

where Wmon is the contribution of KK monopoles turned on for each gauge node which
are generated in the reduction as in [60]. This monopole superpotential ensures that the
T[USp(2Q)] and E[USp(2Q)] have the same global symmetry,

USp(2Q)M × USp(2Q)T × U(1)mA
× U(1)∆ , (105)

since the condition of marginality of the USp(2n)monopoles in 3d is equivalent to the require-
ment that U(1)R is non-anomalous in 4d. The gauge invariant operators of T[USp(2Q)] can
be constructed in the same way as those of E[USp(2Q)] since the monopole superpotential
also implies that the monopole operators are not in the chiral ring.

We can implement the 3d limit on the S3×S1 supersymmetric index [60–62] by rescaling
the global and gauge fugacities with the S1 radius r as

xn→ e2πirMn , yn→ e2πirTn , c→ e2πir∆, t → e2πir(iω−2mA), z(i)α → e2πirz(i)α , (106)

where i = 1, · · · ,Q− 1 and α = 1, · · · , i and taking the hyperbolic limit of the elliptic Gamma
function:

lim
r→0
Γe

�

e2πir x ; e−2πr b, e−2πr b−1
�

= e
iπ
6r (i ω2 −x)sb

�

i
ω

2
− x

�

, (107)

with ω= b+ b−1. By doing so we find:

lim
r→0

IE[USp(2Q)](xn, yn, t, c) = C3d
Q (mA,∆, r)ZT[USp(2Q)](Mn, Tn, mA,∆) , (108)
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where

ZT[USp(2Q)](Mn, Tn, mA,∆) = sb

�

−i
ω

2
+ 2∆

�

sb

�

i
ω

2
− 2mA

�Q−1
×

×
Q
∏

n<m

sb

�

i
ω

2
±Mn ±Mm − 2mA

�
Q
∏

n=1

sb

�

i
ω

2
± TQ ±Mn −∆

�

×

×
∫

d~zQ−1

∏Q−1
i=1 sb

�

±TQ ± zi −mA+∆
�∏Q

n=1 sb (±zi ±Mn +mA)

sb

�

−iω2 + 2mA

�∏Q−1
i< j sb

�

iω2 ± zi ± z j

�∏Q−1
i=1 sb

�

iω2 ± 2zi

�
×

×ZT[USp(2(Q−1))]

�

z1, · · · , zQ−1, T1, · · · , TQ−1, mA,∆+ma − i
ω

2

�

,

(109)

is the partition function of the T[USp(2Q)] theory on S3b [63–66]. The integration measure is
defined now as

d~zn =
1

2nn!

n
∏

i=1

dzi , (110)

and the prefactor is

C3d
Q (mA,∆, r) =

�

r(e−2πr b; e−2πr b)∞(e
−2πr b−1

; e−2πr b−1
)∞
�

Q(Q−1)
2 ×

× e
iπ
6r (Q(9Q−1)i ω4 −2Q(2Q−1)mA−2Q∆).

(111)

For example explicitly in the Q = 2 case we get

lim
r→0

IE[USp(4)](xn, yn, t, c) = C3d
2 sb

�

−i
ω

2
+ 2∆

�

sb

�

−
3
2

iω+ 2mA+ 2∆
�

×

×sb

�

i
ω

2
− 2mA

�2
sb

�

i
ω

2
±M1 ±M2 − 2mA

�
2
∏

n=1

sb

�

i
ω

2
± T2 ±Mn

�

×

×
∫

dz1
sb (iω± z ± T1 −mA−∆)

∏2
n=1 sb (±z ±Mn +mA)

sb

�

iω2 ± 2z
�

sb (±z ± T2 +mA−∆)
=

= C3d
2 ZT[USp(4)](Mn, Tn, mA,∆) , (112)

where now the integration measure is

dz1 =
dz
2

. (113)

The divergent prefactor is in this case

C3d
2 = r(e−2πr b; e−2πr b)∞(e

−2πr b−1
; e−2πr b−1

)∞e
iπ
6r ( 17

2 iω−12mA−4∆) . (114)

It is then easy to use the recursive definition of E[USp(2Q)] and of T[USp(2Q)] to obtain
(108), (109).

Notice that T[USp(2Q)] inherits the dualities of the mother E[USp(2Q)] theory. In partic-
ular it is self-dual under the duality swapping the two USp(2N) groups. Indeed we see that if
we take the 3d limit of the self-duality identity (26) the divergent prefactor C3d

N (mA,∆, r),
which is independent from Ma and Ta, cancels out yielding the self-duality identity for
T[USp(2Q)]

ZT[USp(2Q)](Mn, Tn, mA,∆) = ZT[USp(2Q)](Tn, Mn, mA,∆) . (115)
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11 1

Q−1

1

…

…
1 2

M + M -+ M + M -+ M + M -+

Q

Figure 21: Quiver diagram of the three-dimensional F M[U(Q)] theory. Both square
and circular nodes denote U(n) symmetries. Double-lines connecting two nodes rep-
resent pairs of bifundamental chirals in conjugate representations with respect to the
corresponding symmetries. Lines that start and end on the same node correspond to
chirals in the adjoint representation.

Flow to F M[SU(Q)]

We can now perform some real mass flows to other 3d quiver theories. For example we can
proceed as in [67] and a perform a real mass deformation that breaks the gauge groups as well
as the two USp(2Q) global symmetries to U(n) groups. This can be achieved by considering a
real mass deformation of T[USp(2Q)] for the Cartans of the two USp(2Q) global symmetries.
All the flavors become massive in the trivial vacuum but we can go to a vacuum far from the
origin of the Coulomb branch where each USp(2n) gauge group is broken to U(n) and has
2n+ 2 flavors that remain light.

This flow has the effect of generating non-perturbative contributions due to the breaking
of the gauge groups. These contributions together with the original KK monopoles combine
in a contribution to superpotential consisting in the sum of the two fundamental monopole
operators of opposite magnetic charge at each gauge node M+ +M−. The final theory we
reach is the F M[SU(Q)] quiver theory which has been studied recently in [24]. In that context,
it was obtained by uplifting free field correlators for 2d CFT, following the strategy discussed
in [45]. Here instead we found a 4d origin of the F M[SU(Q)] theory.

The content of the theory is specified by the quiver of Figure 21. The superpotential consists
of three main parts. One is a cubic superpotential coupling the bifundamentals and the adjoint
chirals. The second one is another cubic superpotential, but this time between the chirals in
each triangle of the quiver. Finally, we have a monopole superpotential. As a consequence of
this superpotential, the global symmetry of the theory is

SU(Q)T × SU(Q)M × U(1)A× U(1)∆ . (116)

At the level of the sphere partition function this real mass deformation is implemented
[60,68] by taking

Mn→ Mn + s, Tn→ Tn + s, s→ +∞ (117)

and by shifting all the integration variables

z(i)α → z(i)α + s . (118)
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Notice that for each node since the integrands are symmetric we can rewrite the integrals as:
∫ +∞

−∞

n
∏

i=1

dzi f (zi) = 2n

∫ +∞

0

n
∏

i=1

dzi f (zi) = 2n

∫ +∞

−s

n
∏

i=1

dzi f (zi + s) . (119)

This has the effect of cancelling the 2n factor in the USp(2n) measure.
The real mass deformation is implemented using

lim
x→±∞

sb (x) = e±i π2 x2
, (120)

and we obtain:

lim
s→+∞

ZT[USp(2Q)](Mn + s, Tn + s, mA,∆) = CQ(Mn, Tn, mA,∆, s)sb

�

−i
ω

2
+ 2mA

�

×
Q
∏

j=1

sb

�

−i
ω

2
+ 2∆+ 2( j − 1)(mA− i

ω

2
)
�

ZF M[U(Q)](Mn, Tn, mA,∆) ,

(121)

where the partition function of F M[U(Q)] is

ZF M[U(Q)](Mn, Tn, mA,∆) =
Q
∏

n,m=1

sb

�

i
ω

2
+ (Mn −Mm)− 2mA

�

×

×
Q
∏

n=1

sb

�

i
ω

2
± (Mn − TQ)−∆

�

∫

dxQ−1
∏Q−1

i< j sb
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i − x (Q−1)

j )
� ×

×
Q−1
∏

i=1

sb

�

±(x (Q−1)
i − TQ) +∆−mA

�

Q
∏

n=1

sb

�

±(x (Q−1)
i −Mn) +mA

�

×

×ZF M[U(Q−1)]

�

x (Q−1)
1 , · · · , x (Q−1)

Q−1 , T1, · · · , TQ−1, mA,∆+mA− i
ω

2

�

,

(122)

with integration measure

dxk =
1
k!

k
∏

i=1

dx (k)i , (123)

while the prefactor is

CQ(Mn, Tn, mA,∆, s) = e2πi(i ω2 −∆+(Q−1)(i ω2 −mA))
�

2Qs+
∑Q

n=1(Mn+Tn)
�

. (124)

The other prefactors in (122) are flipping fields of the diagonal mesons.
For example explicitly for the Q = 2 case we find

lim
s→+∞

ZT[USp(4)](Mn + s, Tn + s, mA,∆) = C2 sb

�

−i
ω

2
+ 2∆

�

sb

�

−
3
2

iω+ 2mA+ 2∆
�

×

× sb

�

i
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2
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� 2
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sb

�

i
ω

2
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�
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2
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×

×
∫

dx sb (iω± (x − T1)−∆−mA)× sb (±(x − T2) +∆−mA)
2
∏

n=1

sb (±(x −Mn) +mA) =

= C2 sb

�

−i
ω

2
+ 2mA

�

sb

�

−i
ω

2
+ 2∆

�

sb

�

−
3
2

iω+ 2mA+ 2∆
�

ZF M[U(2)](Mn, Tn, mA,∆),

(125)
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with

C2 = e2πi(iω−∆−mA)(4s+
∑

n(Mn+Tn)). (126)

Again, one can easily prove that (121) holds for any Q by induction using the recursive defi-
nitions (109) and (122).

The partition function of F M[SU(Q)] is obtained from ZF M[U(Q)](Mn, Tn, mA,∆) by impos-
ing the constraint on the real masses corresponding to the tracelessness conditions of SU(N)M
and SU(N)T

Q
∑

n=1

Mn =
Q
∑

n=1

Tn = 0 . (127)

The F M[SU(Q)] has been studied in detail in [24], where in particular it was discussed
that it is self-dual under a duality that swaps the two SU(Q)M and SU(Q)T symmetries.
Here we see a different perspective of this self-duality as a consequence of the self-duality
of T[USp(2Q)] which is inherited by E[USp(2Q)]. Indeed, we can easily see that by taking
the limit (121) on both sides of the T[USp(2Q)] self-duality (115), we get

ZF M[SU(Q)](Mn, Tn, mA,∆) = ZF M[SU(Q)](Tn, Mn, mA,∆) , (128)

where the prefactors CQ as well as the contribution of the flipping singlets cancel out between
the two sides of the identity since they are symmetric under Mn↔ Tn.

Flow to F T[SU(Q)]

As observed in [24] a real mass deformation for the U(1)∆ symmetry triggers an RG flow which
takes the F M[SU(Q)] to the F T[SU(Q)] theory which is the T[SU(Q)] of Gaiotto–Witten [27]
with an extra set of singlets flipping the Higgs branch moment map [26].

It is easy to see indeed when this real mass deformation is turned on all the diagonal
and vertical flavors become massive and when interarted out they generate mixed Chern-
Simons couplings and restore the topological symmetry at each node lifting the monopole
superpotential.

The Dotsenko–Fateev integral kernel

As noticed in [24] the F M[SU(Q)] theory is related to yet another interesting object, the kernel
function K(Q)∆ (x , y) for complex Dotsenko–Fateev (DF) integrals.

Dotsenko-Fateev (DF) integrals appear in the study of 2d CFTs as for example in Liouville
or Toda theories. When the momenta of the vertex operators in a correlator satisfy the so-called
screeining condition (meaning that their sum is proportional to an integer Q) the correlator
in the interacting CFT develops a pole and its residue coincides with a correlator in the free
theory (free field) in presence of Q screening charges [69].

The goal is to evaluate the free field DF correlator and perform analytic continuation in Q
so to lift the screening condition and reconstruct the correlator with generic momenta in the
interacting theory. Typically implementing this procedure is very hard but sometimes this is
possible and the kernel function was introduced for this purpose [46,70]. The kernel function
is a complex integral which can be recursively defined as:
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K(Q)∆ (x1, · · · xQ, y1 · · · yQ) =
γ(−Qb2)
γ(−b2)Q

Q
∏

i< j

|x i − x j|2+4b2
Q
∏

k=1

|xk − y1|2∆ ×

∫

d~z2
Q−1

Q−1
∏

i< j

|zi − z j|2
Q−1
∏

j=1

|z j − y1|−2∆+2b2
Q
∏

k=1

|z j − xk|−2−2b2
K(Q−1)
∆+b2 (z1, · · · zQ−1, y2 · · · yQ) ,

(129)

where

d~z2
n =

1
πnn!

n
∏

i=1

dz2
i , (130)

and the parameter b here is related to the central charge.
As shown in [24,45] the integral expression above can be obtained from the S2×S1 parti-

tion function of the F M[SU(Q)] theory by taking a limit in which the 3d real mass parameters
are scaled with the S1 radius. The sum over fluxes plus contour integrals are then traded for
an integral in the complex plane.

The kernel function K(Q)∆ (x1, · · · xQ, y1 · · · yQ) satisfies remarkable properties and it appears
in various identities and manipulation of complex Dotesenko-Fateev integrals. In [24] these
properties where reinterpreted as dualities for 3d N = 2 theories.

6 Discussion

Let us briefly discuss our main findings and some open questions. In this paper we have de-
fined a four dimensional model E[USp(2Q)] which has several interesting properties. First,
the dynamics of the model is rather intricate leading to symmetry enhancement in the IR. Sec-
ond, combining E[USp(2Q)] models together and studying RG flows one can deduce various
dualities and connections to other well studied theories. Finally, the model appears as a build-
ing block for constructing four dimensional models obtained by reducing the rank Q E-string
on a torus with flux in the abelian subgroups of the E8 global symmetry of the six dimensional
theory. To obtain these four dimensional models we had to gauge the emergent symmetry thus
making the models intrinsically strongly coupled.

The six dimensional rank Q > 1 E-string theory has E8 × SU(2)L symmetry and an inter-
esting open question is to find models corresponding to compactifications with flux (also) in
the Cartan of the SU(2)L symmetry. This goes beyond what we have discussed. Also it would
be interesting to understand compactifications on general Riemann surface, as it was done for
Q = 1 case [1,71], and not just the torus.

Another interesting question is to relate the E[USp(2Q)] model to domain wall theories
in five dimensions. In quite a few examples by now [1,16,17,21] the four dimensional theo-
ries corresponding to compactifications of six dimensional SCFTs on a cylinder with flux have
been related to four dimensional domain wall theories in five dimensions. These domain wall
models interpolate between effective five dimensional gauge theories obtained by reduction of
six dimensional SCFTs on a circle with different values of holonomies for global symmetries.
Moreover, as we have seen, the E[USp(2Q)] theory by dimensional reduction and flows is
related to (up to flip fields) to the T[SU(Q)] theory which is an S-duality domain wall in four
dimensions [27]. It would be very interesting to understand better a systematics of derivation
of such domain wall models. This would facilitate the derivation of four dimensional theories
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for general flux compactifications on tubes, understanding which is lacking even in the sim-
plest case of class S. For an example of some recent progress on understanding domain walls,
and other higher dimensional supersymmetric defects, in lower dimensions see [72].

It would also be interesting to further explore the connection between the Rains inter-
polation kernel Kc whose integral form coincides with the index of the E[USp(2Q)] theory
IE[USp(2Q)] and the kernel function for complex DF integrals. One way to connect to the
two would be to consider the lens index [73–75], or S1 × S3/Zp partition function, of the

E[USp(2Q)] theory I(p)E[USp(2Q)]. The lens index reduces in the p →∞ limit to the 3d index

S2 × S1 [73]. In this way we could directly connect

I(p)E[USp(2Q)] −−−→p→∞
ZT[USp(2Q)] −−−−−→

real mass
ZF M[U(Q)] −−−−→

2d limit
K(Q)∆ .

This suggests the existence of a lens generalization of the interpolation functions of [32] from
which the elliptic kernel was derived.
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A Flux basis and global symmetry

In this appendix we summarize various conventions and properties associated with fluxes.
The fluxes are vectors in the root lattice of E8, and we first need to choose a basis of Cartan
generators to use for it. For this we use the SO(16) subgroup of E8 under which the adjoint of
E8 decomposes as,

248E8
→ 120SO(16) + 128SO(16) ,

where the 120SO(16) is the adjoint of SO(16) and the 128SO(16) is one of its chiral spinors.10

We next choose to span the Cartan of SO(16) in a basis such that:

16SO(16) = a1 +
1
a1
+ a2 +

1
a2
+ ...+ a8 +

1
a8

, (131)

where ai are the fugacities for the chosen Cartans. The flux is then given by the eight number
(n1, n2, ..., n8), where ni is the flux in the Cartan associated with ai . Different values of ni
correspond to different fluxes with some notable exceptions. Specifically, fluxes related by
Weyl transformations actually represent the same flux. Here, as we are using an SO(16) basis,

10At the group level then the subgroup of E8 is actually Spin(16)/Z2, where we mod by the center element acting
non-trivially on the vector and the other chiral spinor. Nevertheless, we shall be cavalier about the group structure
here and refer to it simply as SO(16).
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the Weyl symmetry of SO(16) is explicitly manifest and is given by permutations of ni ’s and
reflections, ni → −ni , for any even number of nis. Note that reflections for odd number of
ni ’s are an outer, rather than inner, automorphism and as the roots of E8 contain the weight
of a chiral spinor of SO(16), vectors differing by this transformation describe different fluxes.
Additionally we also have the E8 Weyl group elements that are not contained in the SO(16)
Weyl group. These map some of the roots of SO(16) to the weights of its spinor representation.
We shall delay the explanation of how these act on the flux to later in this appendix.

As this basis is used to span the root space, we can also use it to write the various roots,
and with some abuse of notations also the weights of various representations. This will be
useful later when we discuss the symmetry preserved by the flux. First we consider the vec-
tor representation of SO(16), which in this basis is given by (±1, 0,0, 0,0, 0,0, 0)+ permu-
tations. The non-zero weights of the adjoint of SO(16), which are the roots, are given by
(±1,±1, 0,0, 0,0, 0,0) + permutations. Finally the weights of the spinor representations are
(±1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2), with even number of minus signs corresponding to one chi-

rality and odd number to the other. The roots of E8 in this basis then are given by the roots of
SO(16) plus the weights of one of its chiral spinors, which we shall choose to be the one with
an even number of minus signs.

We next want to consider what is the symmetry preserved by a given flux. Specifically, the
flux breaks the E8 symmetry to a subgroup. For generic values this subgroup is just the Cartan
of E8, but for special values, it is possible to preserve more symmetry. We next describe how
the subgroup preserved by a given flux can be determined.

The property of the preserved symmetry that we will use here is that its Weyl group fixes
the chosen vector. Since Weyl groups are generated by reflections in the plane defined by the
associated root vector, the Weyl element associated to a given root will fix the flux vector if
and only if the flux vector is orthogonal to the associated root. Therefore, the roots of the
preserved symmetry are the subset of all E8 roots orthogonal to the flux vector.

It is convenient in these considerations to look at various subsets of roots and weights of
the E8 roots. Specifically we mentioned that the roots of the form (±1,±1,0, 0,0, 0,0, 0)+ per-
mutations build the SO(16) subgroup of E8. More generally, roots of the same form, but with p
terms forced to be zero build the SO(16−2p) subgroup. We can also consider the roots of the
form (1, 1,0, 0,0, 0,0, 0)+(−1,−1,0, 0,0, 0,0, 0)+ permutations or (1,−1,0, 0,0, 0,0, 0)+ per-
mutations, which build an SU(8) subgroup of SO(16). Similarly we can also build SU(8− p)
subgroups of SO(16− 2p).

We need also to consider how the spinor weights decompose in terms of these subgroups.
Under the decomposition of SO(16) → SO(16 − 2p) × SO(2p), the spinor decomposes to
bispinors of the two groups. Under the decompositions of SO(16) → U(1) × SU(8), the
spinors decompose to all the rank q antisymmetric representations, where for one chiral-
ity q is even while for the other it is odd. In our case we have the spinor of the form
(±1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2) with even number of minus signs. Under the SU(8) sub-

group each group with a different number of minus signs form a different representation of
SU(8) 11. Specifically, weights with l minus signs span the rank l antisymmetric representation
of SU(8). A similar statement also holds for the SU(8− p) subgroups.

Finally, we want to consider some examples. First, consider the flux vector

F = (1,1, 0,0, 0,0, 0,0) .

The SO(16) roots orthogonal to it are of the form (1,−1,0, 0,0, 0,0, 0), (−1, 1,0,0, 0,0, 0,0)
and (0, 0,±1,±1,0, 0,0, 0) + permutations of the last six. The roots (1,−1, 0,0, 0,0, 0,0)
and (−1,1, 0,0, 0,0, 0,0) span an SU(2) and the ones of the form (0,0,±1,±1,0, 0,0, 0)

11The Weyl group of SU(8) preserves the permutation symmetry of the SO(16)Weyl group, but not the reflection
symmetry. As a result weight related by reflections span different representations in SU(8).
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plus permutations of the last six entries span an SO(12) so this flux breaks SO(16)
to U(1) × SU(2) × SO(12). The spinor roots orthogonal to F are of the form
(1

2 ,−1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2), (−

1
2 , 1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2 ,±1
2 ,±1

2) + permutations of the last
six, where the total number of minus signs is even. The last six terms span a chiral spinor
of SO(12) while the first two span the fundamental of the SU(2). Therefore the preserved
symmetry has a U(1) × SU(2) × SO(12) subgroup with additional roots transforming in the
(2SU(2),32SO(12)). This span the root system of U(1)× E7, which is the preserved group.

As another example, consider the flux vector (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2). From the SO(16) roots
only the ones of the form (1,−1, 0,0, 0,0, 0,0)+permutations are orthogonal. These spans the
adjoint of SU(8) so this chosen flux breaks SO(16) to U(1)× SU(8). From the spinor roots,
only the ones of the form (1

2 , 1
2 , 1

2 , 1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2) + permutations are orthogonal. As there

are four minus signs, these span the 4-index antisymmetric representation of SU(8). The
roots of the preserved symmetry then are those of U(1)× SU(8)+ the weights of the 4-index
antisymmetric representation of the SU(8), which gives the roots of U(1)× E7.

We see that the two fluxes preserve the same symmetry. This is no coincidence as
both are roots of E8 and there is a Weyl element of E8 that maps them to one another.
This element is not contained in the Weyl group of the SO(16) we use as a basis and
we shall end this section by detailing its action. For this we return to the decompo-
sition of SO(16) to U(1) × SU(8) we used previously. We remind the reader that un-

der that decomposition we have 120SO(16) → 630
SU(8) + 282

SU(8) + 28
−2
SU(8) + 10

SU(8) and

128SO(16)→ 700
SU(8)+28−2

SU(8)+28
2
SU(8)+14

SU(8)+1−4
SU(8). An important thing to notice here is

that while each representation is only invariant under the charge conjugation of both SU(8)
and U(1), the combination of both is invariant under the charge conjugation of each individu-
ally. The former is an element of the Weyl group of SO(16), but the latter describes an element
of the Weyl group of E8 that is not in the Weyl group of the chosen SO(16) subgroup, as the
combination of both representations give the decomposition of the fundamental representa-
tion of E8.

An alternative way to see this is to embed U(1)×SU(8) ⊂ SU(2)×E7 ⊂ E8, where the U(1)
is the Cartan of the SU(2) and the SU(8) is a maximal subgroup of E7. It is straightforward
to show that the adjoint of E8 decomposes as in the previous paragraph so this gives the same
embedding of U(1)× SU(8). The charge conjugation of the SU(8) is part of the Weyl group
of E7, and the charge conjugation of the U(1) is the Weyl group of SU(2), and as these are in
a direct product, these transformations can be done independently.

Having understood how this element acts, we can now use it to generate equivalent fluxes.
For this we separate the flux part in the U(1) and SU(8) parts and reflect the latter. The U(1) is
spanned by the vector (1, 1,1, 1,1, 1,1,1), and the remaining seven linearly independent vec-
tors span the Cartan of the SU(8). As an example consider the flux vector (1,1, 0,0, 0,0, 0,0),
then we can implement this Weyl transformation as:

(1, 1,0,0, 0,0, 0,0) =
1
4
(1,1, 1,1, 1,1, 1,1) +

1
4
(3,3,−1,−1,−1,−1,−1,−1)→ (132)

1
4
(1,1, 1,1, 1,1, 1,1)−

1
4
(3, 3,−1,−1,−1,−1,−1,−1) = (−

1
2

,−
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2
).

So we see that indeed this element maps some of the roots of SO(16) to the weights
of its spinor representation. Overall, one can show that this element map the 28 SO(16)
roots of the form (1, 1,0, 0,0, 0,0, 0) + permutations to the 28 spinor weights of the form
(−1

2 ,−1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2) + permutations, and similarly for the 28 opposite roots and 28 op-

posite spinor weights. The 56 SO(16) roots of the form (1,−1, 0,0, 0,0, 0,0) + permutations
and the 70 spinor weights of the form (−1

2 ,−1
2 ,−1

2 ,−1
2 , 1

2 , 1
2 , 1

2 , 1
2) + permutations are inside
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the SU(8) and so are mapped to minus themselves. Finally the two spinor weights of the form
±(1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2) are inside the U(1) and so are invariant under this transformation.

We can combine this element with the Weyl elements of the chosen SO(16) to generate
many other elements of the E8 Weyl group. By acting with these on chosen fluxes, it is possible
to generate many equivalent fluxes.

B Supersymmetric index definitions

Let us summarize the basic notations used to compute the N = 1 superconformal index [28,
29]. For more comprehensive explanations and definitions see [31]. The index of a given SCFT
in four space-time dimensions is a refined Witten index of the theory quantized on S3 ×R,

I = Tr(−1)F e−βδe−µiMi , (133)

here δ = 1
2

�

Q,Q†
	

, with Q one of the Poincaré supercharges, and Q† = S it’s conjugate
conformal supercharge, Mi are Q-closed conserved charges and µi their associated chemical
potentials. All the states contributing to the index with non vanishing weight have δ = 0
which makes the index independent on β .

For N = 1, the supercharges are
�

Qα, Sα =Q†α, eQα̇, eS α̇ = eQ†α̇
	

, with α = ±
and α̇ = ±̇ the respective SU(2)1 and SU(2)2 indices of the isometry group of S3

(Spin(4) = SU(2)1 × SU(2)2). We choose without loss of generality Q = eQ−̇ to define the
index. With this particular choice it is common to define the index to depend on the following
specific fugacities,

I (p, q) = Tr(−1)F p j1+ j2+
1
2 rq j2− j1+

1
2 r , (134)

where p and q are fugacities associated with the supersymmetry preserving squashing of the
S3 [30]. j1 and j2 are the Cartan generators of SU(2)1 and SU(2)2, and r is the generator of
the U(1)r R-symmetry.

The index is computed by listing all gauge invariant operators one can construct from
modes of the fields. The modes and operators are conventionally called "letters" and "words",
respectively. The single-letter index for a vector multiplet and a chiral multiplet transforming
in the R representation of the gauge×flavor group is

iV (p, q, U) =
2pq− p− q
(1− p)(1− q)

χad j (U) ,

iχ(r) (p, q, U , V ) =
(pq)

1
2 rχR (U , V )− (pq)

2−r
2 χR̄ (U , V )

(1− p)(1− q)
, (135)

where χR (U , V ) and χR̄ (U , V ) denote the characters of R and the conjugate representation
R̄, with U and V gauge and flavor group matrices, respectively.

With the single letter indices at hand, we can write the full index by listing all the words
and projecting them to gauge singlets by integrating over the Haar measure of the gauge group.
This takes the general form

I (p, q, V ) =

∫

[dU]
∏

k

PE [ik (p, q, U , V )] , (136)

where k labels the different multiplets in the theory, and PE[ik] is the plethystic exponent of
the single-letter index of the k-th multiplet, responsible for listing all the words. The plethystic
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exponent is defined by

PE [ik (p, q, U , V )] = exp

¨∞
∑

n=1

1
n

ik (p
n, qn, Un, V n)

«

. (137)

Let us now specialize to the case of USp(2Nc) gauge group. The full contribution for a chiral
superfield in the fundamental representation of USp(2Nc) with R-charge r can be written in
terms of elliptic gamma functions, as follows

PE [ik (p, q, U)] ≡
Nc
∏

i=1

Γe

�

(pq)
1
2 rzi

�

Γe

�

(pq)
1
2 rz−1

i

�

,

Γe(z)≡ Γ (z; p, q) ≡
∞
∏

n,m=0

1− pn+1qm+1/z
1− pnqmz

, (138)

where {zi} with i = 1, ..., Nc are the fugacities parameterizing the Cartan subalgebra of
USp(2Nc) and are the eigenvalues of the matrix U . In addition, in many occasions we will
use the shorten notation

Γe
�

uz±n
�

= Γe (uzn) Γe
�

uz−n
�

. (139)

In a similar manner we can write the full contribution of the vector multiplet in the adjoint
of USp(2Nc), together with the matching Haar measure and projection to gauge singlets as

κNc

2Nc Nc!

∮

TNc

Nc
∏

i=1

dzi

2πizi

Nc
∏

k<`

1

Γe(z±1
k z±1

`
)

Nc
∏

k=1

1

Γe(z±2
k )
· · · , (140)

where the dots denote that it will be used in addition to the full matter multiplets transform-
ing in representations of the gauge group. The integration is a contour integration over the
maximal torus of the gauge group and κ is the index of U(1) free vector multiplet defined as

κ= (p; p)(q; q), (141)

with

(a; b) =
∞
∏

n=0

(1− abn) (142)

is the q-Pochhammer symbol.
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