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Abstract

Spontaneous symmetry breaking (SSB) is mathematically tied to some limit, but
must physically occur, approximately, before the limit. Approximate SSB has been
independently understood for Schrödinger operators with double well potential in the
classical limit [1, 2] and for quantum spin systems in the thermodynamic limit [3, 4].
We relate these to each other in the context of the Curie–Weiss model, establishing a
remarkable relationship between this model (for finite N) and a discretized Schrödinger
operator with double well potential.
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1 Introduction19

At first sight, spontaneous symmetry breaking (SSB) is a paradoxical phenomenon: in Nature,20

finite quantum systems, such as crystals, evidently display it, yet in Theory it seems forbidden21

in such systems. Indeed, for finite quantum systems the ground state of a generic Hamiltonian22

is unique and hence invariant under whatever symmetry group G it may have.1 Hence SSB,23

in the sense of having a family of asymmetric ground states related by the action of G,24

seems possible only in infinite quantum systems or in classical systems (for both of which25

the arguments proving uniqueness, typically based on the Perron–Frobenius Theorem break26

down, cf. Appendix A). However, both are idealizations, vulnerable to what we call Earman’s27

Principle from the philosophy of physics:28

“While idealizations are useful and, perhaps, even essential to progress in physics,29

a sound principle of interpretation would seem to be that no effect can be counted30

as a genuine physical effect if it disappears when the idealizations are removed.”31

[5]32

As argued in detail in Ref. [6–8], the solution to his paradox lies in Earman’s very principle33

itself, which (contrapositively) implies what we call Butterfield’s Principle:34

“there is a weaker, yet still vivid, novel and robust behaviour that occurs before we35

get to the limit, i.e. for finite N . And it is this weaker behaviour which is physically36

real.” [9]37

Applied to SSB in infinite quantum systems, this means that some approximate and robust38

form of symmetry breaking should already occur in large but finite systems, despite the fact39

that uniqueness of the ground state seems to forbid this. Similarly, SSB in a classical system40

should be foreshadowed in the quantum system whose classical limit it is, at least for tiny but41

positive values of Planck’s constant ħh. To accomplish this, it must be shown that for finite N42

or ħh > 0 the system is not in its ground state, but in some other state having the property43

that as N → ∞ or ħh → 0, it converges in a suitable sense (detailed in Ref. [7], Chapter 844

and Chapter 7, respectively) to a symmetry-broken ground state of the limit system, which45

is either an infinite quantum system or a classical system. Since the symmetry of a state is46

preserved under the limits in question (provided these are taken correctly), this implies that47

the actual physical state at finite N or ħh > 0 must already break the symmetry. The mechanism48

to accomplish this, originating with Anderson [3], is based on forming symmetry-breaking49

linear combinations of low-lying states (sometimes called “Anderson’s tower of states") whose50

energy difference vanishes in the pertinent limit.2 This mechanism has been independently51

1Similarly for equilibrium states at positive temperature, which are always (not just generically) unique.
2It must be admitted that the description in Anderson [3] and even in his textbook [10] is very brief and purely

qualitative, and that in Ref. [10], which he calls “my most complete summary of the theory of broken symmetry in
condensed matter systems" the idea is not even mentioned.
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verified in two different contexts, namely quantum spin systems in the thermodynamic limit,352

and 1d Schrödinger operators with a symmetric double well potential in the classical limit.453

In the absence of cross-references so far, one of our contributions will be to map the specific54

perturbations that play a key role in SSB for Schrödinger operators at ħh> 0 onto quantum spin55

systems.56

To this end, we now briefly recall the main point of Jona-Lasinio [1], later called the “flea on57

the elephant” [2] or, in applications to the measurement problem, the “flea on Schrödinger’s58

Cat” [8]. Consider the Schrödinger operator with symmetric double well, defined on suitable59

domain in H = L2(R) by60

hħh = −ħh2 d2

d x2
+ 1

4λ(x
2 − a2)2, (1.1)

where λ > 0 and a 6= 0. For any ħh > 0 the ground state of this Hamiltonian is unique and61

hence invariant under the Z2-symmetry ψ(x) 7→ ψ(−x); with an appropriate phase choice it62

is real, strictly positive, and doubly peaked above x = ±a. Yet the classical Hamiltonian63

h0(p, q) = p2 + 1
4λ(q

2 − a2)2, (1.2)

defined on the classical phase space R2, has a two-fold degenerate ground state: the point(s)64

(p0, q0) in R2 where h0 takes an absolute minimum are (p0 = 0, q0 = ±a). In the algebraic65

formalism, where states are defined as normalized positive linear functionals on the C*-algebra66

A0 = C0(R2), the (pure) ground states are the asymmetric Dirac measures67

ω±( f ) = f (p = 0, q = ±a). (1.3)

From these, one may construct the mixed symmetric state68

ω0 = 1
2(ω+ +ω−), (1.4)

which in fact is the limit of the (C*-algebraic) ground state ωħh of (1.1) as ħh→ 0, where69

ωħh(a) = 〈ψ
(0)
ħh , aψ(0)ħh 〉, (1.5)

in terms of the usual ground state ψ(0)ħh ∈ L2(R) of hħh (assumed to be a unit vector).5 In order70

to have a quantum “ground-ish" state that converges to either one of the physical classical71

ground states ω+ or ω− rather than to the unphysical mixture ω0, we perturb (1.1) by72

adding an asymmetric term δV (i.e., the “flea”), which, however small it is, under reasonable73

assumptions localizes the ground state ψ(δ)ħh of the perturbed Hamiltonian in such a way that74

ω
(δ)
ħh → ω+ or ω−, depending on the sign and location of δV .6 In particular, the localization75

ofψ(δ)ħh grows exponentially as ħh→ 0 (see §4 for details). In this paper, we adapt this scenario76

to the Curie–Weiss model on a finite lattice Λ ⊂ Zd , with Hamiltonian77

hCW
Λ = − 1

2 |Λ|
−1

∑

x ,y∈Λ
σ3(x)σ3(y)− B

∑

x∈Λ
σ1(x). (1.6)

3See e.g. the reviews [11–14], as well as the original papers [15–25], and, rigorously, [4].
4Three founding papers are [1,2,26]. Since in the context of Schrödinger operators the classical limit “ħh→ 0"

typically means that m→∞ at fixed ħh (where m is the mass occurring in ħh2/2m), one may physically see ħh→ 0
as a special case of N →∞.

5 [7], §7.1. Here ωħh is defined as a normalized positive linear functional on the C*-algebra Aħh = B0(L2(R)) of
compact operators on L2(R). The algebraic formalism is particularly useful for combining classical and quantum
expressions.

6 For example, if δV is positive and is localized to the right, then the relative energy in the left-hand part of the
double well is lowered, so that localization will be to the left. See §4 for details.
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Here we take the spin-spin coupling to be J = 1, and B is an external magnetic field.778

This Hamiltonian has a Z2-symmetry (σ1,σ2,σ3) 7→ (σ1,−σ2,−σ3), which at each site x is79

implemented by u(x) = σ1(x). The ground state of this model is unique for any |Λ| <∞80

and any B 6= 0, and yet, as for the double well potential, in the thermodynamic limit it has81

two degenerate ground states, provided 0 < B < 1. As explained in Ref. [7, 29–31], perhaps82

unexpectedly this limit actually defines a classical theory, with phase space B3 ⊂ R3, i.e. the83

three-sphere with unit radius (and boundary ∂ B3 = S2), seen as a Poisson manifold with84

bracket {x , y}= z etc.), and Hamiltonian85

hCW
0 (x , y, z) = − 1

2 z2 − Bx . (1.7)

The ground states of this Hamiltonian are simply its absolute minima, viz. (~x = (x , y, z)):86

~x± = (B, 0,±
p

1− B2) (0≤ B < 1); (1.8)

~x = (1, 0,0) (B ≥ 1), (1.9)

which lie on the boundary S2 of B3 (note that the points ~x± coalesce as B → 1, where they87

form a saddle point). Thus we seem to face a similar paradox as for the double well.88

To address this, in §2 we first show that due to permutation invariance and strict positivity89

of the ground state of the 1d Curie–Weiss Hamiltonian (for N <∞ and |Λ| = N), which is90

initially defined on the 2N -dimensional Hilbert space HN =
⊗N

n=1C
2, the ground state of this91

Hamiltonian must lie in the range ran(SN ) of the appropriate symmetriser92

SN (v) =
1
N !

∑

σ∈Sn

Lσ(v) (1.10)

on HN ; here v is a vector in the N -fold tensor product and Lσ is given by permuting the factors93

of v, i.e. v1⊗····⊗vn 7→ vσ(1)⊗···⊗vσ(n). Its range is (N+1)-dimensional, and we show that the94

quantum Curie–Weiss Hamiltonian restricted to ran(SN ) becomes a tridiagonal (N+1)×(N+1)95

matrix. Even for large N , this matrix is easy to diagonalize numerically. Using this tridiagonal96

structure, in §3 we show that as N →∞, our restricted Curie–Weiss Hamiltonian (rescaled97

by a factor 1/N) increasingly well approximates a 1d Schrödinger operator with a symmetric98

double well potential defined on the interval [0, 1], in which ħh= 1/N . In §4 we use these ideas99

to find the counterpart of the “flea” perturbation (symmetry breaking field) from the double100

well potential for the Curie–Weiss model, which, analogously to the double well, localizes the101

ground state of the perturbed Hamiltonian (this time, of course, in spin configuration space102

rather than real space).103

Although our physical mechanism for SSB in finite systems is the same as the one studied104

in the condensed matter physics literature (namely Anderson’s), the mathematical form of105

the flea perturbation is a bit different from the usual symmetry-breaking terms for quantum106

spin systems, which in the double well would correspond to breaking the symmetry by simply107

deepening one of the bottoms or changing its curvature, whereas the “flea" is typically localized108

away from the minima, cf. [26]. In the mathematical framework in which we work, our109

approach also has the advantage of making the limits ħh→ 0 and N →∞ quite regular (i.e.,110

continuous, properly understood), as opposed to the alternative view of regarding them as111

singular (e.g. [13,27,28]). This is further discussed in our Conclusion, which also states some112

7 Note that putting J = 1 makes hCW
Λ

dimensionless. This model falls into the class of homogeneous mean-field
theories, see [29–31], which differ from their short-range counterparts (which in this case would be the quantum
Ising model) in that every spin now interacts with every other spin. This also makes the dimension d irrelevant
(which marks a huge difference with short-range quantum spin models), and yet even the apparently simple
Curie–Weiss model is extremely rich in its behaviour; see e.g. [32] for a detailed analysis (along quite different
lines from our study), motivated by the measurement problem.
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open problems and suggestions for further research. This is followed by an appendix on the113

Perron–Frobenius Theorem, which plays a central role in our work, and another appendix114

introducing the discretization techniques we use to non-specialists.115

2 Reduction of the Curie–Weiss Hamiltonian116

Since the spatial dimension is irrelevant, we may as well consider the Curie–Weiss Hamiltonian117

(1.6) in d = 1, so that we may simply write |Λ|= N , and, with hN ≡ hCW
N ,118

hN = − 1
2 N−1

N
∑

x ,y=1

σ3(x)σ3(y)− B
N
∑

x=1

σ1(x). (2.1)

It seems folklore that the Perron-Frobenius theorem yields uniqueness and strict positivity of119

the ground state ψ(0)N of hN for any N <∞ and B 6= 0, but for completeness we provide the120

details in Appendix A. It follows that ψ(0)N is Z2-invariant (see the Introduction), so that on a121

first analysis (to be corrected in what follows!) there is no SSB for any finite N .122

2.1 Tridiagonal form123

Let SN be the standard symmetriser (1.10) on the Hilbert space HN =
⊗N

n=1C
2 on124

which hN acts, so that SN projects onto the subspace ran(SN ) = SymN (C2) of totally125

symmetrised tensors. An orthonormal basis for SymN (C2) is given by the vectors126

{|n+, n−〉| n+ = 0, ..., N , n+ + n− = N}, where |n+, n−〉 is the totally symmetrised unit vector127

in ⊗N
n=1C

2, with n+ spins up and n− = N − n+ spins down. It follows that this space is128

(N + 1)-dimensional. Since hN commutes with all permutations of {1, . . . , N}, in view of its129

uniqueness the ground state ψ(0)N of hN must be invariant under the permutation group and130

hence under SN . Hence we may expand ψ(0)N according to131

ψ
(0)
N =

N
∑

n+=0

c(n+/N)|n+, n−〉, (2.2)

where we conveniently introduce a function c : {0, 1/N , 2/N , ..., (N − 1)/N , 1} → [0,1] that132

satisfies c(n+/N) = c(n−/N) as well as
∑N

n+=0 c2(n+/N) = 1.133

Theorem 2.1. In the basis {|n+〉} ≡ {|n+, N − n+〉}, the operator (2.1) is an (N + 1)× (N + 1)134

tridiagonal matrix:8135

−
1

2N
(2n+ − N)2 on the diagonal; (2.3)

− B
Æ

(N − n+)(n+ + 1) on the upper diagonal; (2.4)

− B
Æ

(N − n+ + 1)n+ on the lower diagonal. (2.5)

Proof. Given two arbitrary vectors |n+〉 and |n′+〉, we have to compute the expression136

〈n+|hCW
N |n

′
+〉, (n+, n′+ = 0, ..., N); (2.6)

8The following relations can also be derived from those in Appendix 2 of Ref. [33].

5

https://scipost.org
https://scipost.org/SciPostPhys.8.2.022


SciPost Phys. 8, 022 (2020)

where we we have used the bra-ket notation in the above expression. By linearity, we may137

separately compute this for the operators138

h(1)N =
N
∑

x ,y=1

σ3(x)σ3(y) =
N
∑

x=1

σ3(x) ·
N
∑

y=1

σ3(y),

h(2)N =
N
∑

x=1

σ1(x). (2.7)

In order to compute (2.6), we need to know how σ3 and σ1 act on the vectors |n+〉. Consider139

the standard basis {e1, e2} for C2 over C. Then {en1
⊗ ...⊗ enN

}2n1=1,...,nN=1 is the standard basis140

for
⊗N

n=1C
2. Note that σ3(x) = 1⊗ ...⊗ 1⊗σ3 ⊗ 1...⊗ 1, where σ3 acts on the x th position141

and similarly for σ1(x). It follows that for all x , y ∈ {1, ..., N},142

σ3(x)(en1
⊗ ...⊗ enN

) =

1(en1
)⊗ ...⊗ 1(enx−1

)⊗σ3(enx
)⊗ 1(enx+1

)⊗ ...⊗ 1(enN
) =



















+(en1
⊗ ...⊗ enN

), if enx
=

�

1

0

�

−(en1
⊗ ...⊗ enN

), if enx
=

�

0

1

�

.

(2.8)

We have σ3(y)σ3(x)(en1
⊗ ...⊗ enN

) = ±(en1
⊗ ...⊗ enN

), where the minus sign appears only143

if enx
6= eny

. We conclude that the standard basis for the N -fold tensor product is a set of144

eigenvectors for σ3(y)σ3(x) with eigenvalues ±1. Thus we know that
∑

x ,y σ3(x)σ3(y) is a145

diagonal matrix with respect to this standard basis. Note that |n+〉 is a (normalized) sum of146

permutations of such basis vectors, with n+ times the vector e1 and N − n+ times the vector147

e2. Since
∑

x ,y σ3(y)σ3(x) acts diagonally on any of these vectors, and it is also permutation148

invariant, it follows that in the inner product any vector with itself yields the same contribution,149

namely150

〈e1 ⊗ · · · ⊗ e1 ⊗ e2 · · · ⊗e2|
∑

x ,y

σ3(y)σ3(x)|e1 ⊗ · · · ⊗ e1 ⊗ e2 · · · ⊗e2〉, (2.9)

where e1 occurs n+ times and e2 occurs N − n+ times. The above expression equals

(n+ − (N − n+))
2 = (2n+ − N)2,

since there are 2n+(N − n+) minus signs and hence N2 − 2n+(N − n+) = n2
+ + (N − n+)2 plus151

signs, so that in total the correct value is indeed given by152

n2
+ + (N − n+)

2 − 2n+(N − n+) = (2n+ − N)2. (2.10)

This shows that the contribution to the diagonal is given by (2.3).153

154

In order to compute the off-diagonal contribution (2.6) with (2.7), we use an explicit155

expression for the symmetric basis vector |n+〉. Using (1.10), it is easy to show that156

|n+〉=
1

Ç

� N
n+

�

( N
n+)
∑

l=1

βn+,l , (2.11)
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where the subindex l in βn+,l labels the possible permutations of the factors in the basis vector157

βn+,l . Since there are
� N

n+

�

such permutations, the subindex indeed goes from 1 to
� N

n+

�

. We fix158

N and n+, and put159

W 1
n+
= {y ∈ {1, ..., N}| βn+ has e1 on position y }, and

W 2
n+
= {y ∈ {1, ..., N}| βn+ has e2 on position y }. (2.12)

Then160

#W 1
n+
+#W 2

n+
= n+ + (N − n+) = n+ + n− = N . (2.13)

Both sets are clearly disjoint. Then we compute161

1
Ç

� N
n+

�

1
r

� N
n′+

�

( N
n+)
∑

l=1

( N
n′+
)

∑

k=1

〈βn+,l |h
(2)
N |βn′+,k〉=

1
Ç

� N
n+

�

1
r

� N
n′+

�

( N
n+)
∑

l=1

( N
n′+
)

∑

k=1

〈βn+,l |
N
∑

x=1

σ1(x)|βn′+,k〉

=
1

Ç

� N
n+

�

1
r

� N
n′+

�

( N
n+)
∑

l=1

( N
n′+
)

∑

k=1

〈βn+,l |
�

∑

x∈W 1
n′+

+
∑

x∈W 2
n′+

σ1(x)
�

|βn′+,k〉=

1
Ç

� N
n+

�

1
r

� N
n′+

�

��

N
n+

�

(N − n+)〈βn+,l |βn′+−1,k〉+
�

N
N − n+

�

n+〈βn+,l |βn′++1,k〉
�

=

Æ

(N − n+)(n+ + 1)δn+,n′+−1 +
Æ

n+(n− + 1)δn+,n′++1. (2.14)

We used the fact that the vectors βn′+,l are orthonormal, that162

1
Ç

� N
n+

�

1
r

� N
n′+

�

�

N
n+

�

(N − n+) =
Æ

(N − n+)(n+ + 1), (2.15)

with n′+ − 1= n+, and that163

1
Ç

� N
n+

�

1
r

� N
n′+

�

�

N
N − n+

�

n+ =
Æ

n+(N − n+ + 1), (2.16)

with n′+ + 1 = n+. Hence the matrix entries of h(2)N written with respect to the symmetric164

basis vectors |n+, N − n+〉, are given by
p

(N − n+)(n+ + 1) on the upper diagonal and by165
p

n+(N − n+ + 1) on the lower diagonal (see also [34], §3.1).166

From now on we will denote the Curie–Weiss Hamiltonian (2.1) represented in the symmetric167

basis by JN+1.168

2.2 Numerical simulations169

In the next section we will argue that for 0 < B < 1 the above (N + 1)-dimensional matrix,170

denoted by JN+1, can be linked to a Schrödinger operator with a symmetric double well171

on L2([0, 1]), for N sufficiently large.9 Since for a sufficiently high and broad enough172

9Mapping quantum spin systems onto Schrödinger operators is not new, see e.g. [35,36]. Schrödinger operators
and quantum spin systems also meet in the large research field of Anderson localization and more generally random
Schrödinger operators, see e.g. [37] for a rigorous approach.
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Figure 1: Ground state eigenfunction of hCW
N , computed from the tridiagonal matrix

JN+1 for N = 60, J = 1 and B = 1/2. The grid points on the horizontal axis are labeled
by x i = i/N for i = 0, ..., N.

Figure 2: First excited state of hCW
N , computed from the tridiagonal matrix JN+1 for

N = 60, J = 1 and B = 1/2. The grid points on the horizontal axis are indicated by
x i = i/N for i = 0, ..., N.

potential barrier the ground state of such a Schrödinger operator is approximately given by173

two Gaussians, each of them located in one of the wells of the potential, we might expect the174

same result for JN+1. In fact, the first two eigenfunctions of this Schrödinger operator are175

approximately given by176

ψ(0) ∼=
Ta(ϕ0) + T−a(ϕ0)p

2
; ψ(1) ∼=

Ta(ϕ0)− T−a(ϕ0)p
2

, (2.17)

where T±a is the translation operator over distance a (i.e., (T±aϕ0)(x) = ϕ0(x ± a)),177

where ±a denotes the minima of the potential well. The functions ϕn are the weighted178
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Hermite polynomials given by ϕn(x) = e−x2/2Hn(x), with Hn the Hermite polynomials. We179

diagonalized the operator JN+1 and plotted the first two (discrete) eigenfunctions ψ(0)N and180

ψ
(1)
N . For convenience, we scaled the grid to unity. See Figures 1 and 2. From these two181

plots, it is quite clear that both eigenvectors of hCW
N are approximately given by (2.17). In the182

following discussion about numerical (in)accuracy, we assume that not only the ground state183

ψ
(0)
N (for which the claim is a theorem) but also the first excited stateψ(1)N lies in the symmetric184

subspace SymN (C2).10 For N ≤ 60 (a number that obviously depends on the machine precision

Figure 3: Energy splitting d = |ε(0)N − ε
(1)
N | between the first two eigenvalues ε(0)N and

ε
(1)
N of the tridiagonal matrix JN+1, for different values of N on a log scale. From about

N = 80 onwards, the energy splitting is in the order of the maximum achievable accuracy
of the eigenvalues, so that the first two eigenvalues become numerically degenerate.

185

of the computer used to perform the numerical simulations) our simulations accurately reflect186

the uniqueness of the ground state, proved from general principles. However, for larger values187

of N , clearly visible from about N ≥ 80 (see Figure 3), up to numerical precision the exact188

(and unique) ground state is joined by a degenerate state, and the selection of any specific189

linear combination of those as the numerically obtained “ground state" is implicitly made190

by numerical noise playing a role similar to some symmetry-breaking perturbation (be it the191

flea perturbation in section 4 or a more traditional symmetry-breaking field typically used in192

quantum spin systems); this noise then localizes the ground state purely due to the inaccuracy193

of the computation.194

Consequently, plotting the ground state and the first excited state of hCW
N (at B = 1/2 and195

J = 1) for N ≥ 80 gives a Gaussian curve, located in one of the wells.11 Specifically, the new196

10This second claim is not essential for our results themselves but is helpful for the following explanation thereof.
The point is that the first excited state computed from the tridiagonal matrix JN+1 might not the same as the one
from the original Hamiltonian hCW

N , in which case Figure 2 would be misleading. Fortunately, we have shown

numerically that up to N = 12 the first excited state of hCW
N represented as a matrix on C2N

is the same as the one
corresponding to the tridiagonal matrix JN+1. For N > 12 this computation became unfeasible, as the dimension
of the relevant subspace grows exponentially with N .

11We checked this numerically, but omitted the plots. Moreover, we observed that for increasing N these two
numerical degenerate states were randomly localized in (one of the) both wells.
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(numerically) degenerate ground state eigenvectors are given by the functions197

χ+ =
ψ
(0)
N +ψ

(1)
Np

2
; χ− =

ψ
(0)
N −ψ

(1)
Np

2
. (2.18)

Using this result and equation (2.17), it follows by a simple calculation that198

χ+
∼= Taϕ0; χ−

∼= T−aϕ0, (2.19)

where the functions ϕn(x) now have to be understood as functions on a discrete grid. Once199

again, for N = 60, the fact that ψ(0)N (rather than rather than χ±) is the (doubly peaked)200

ground state is confirmed by the numerical simulations summarized in Figure 1.201

3 The Curie–Weiss Hamiltonian as a Schrödinger operator202

Discretization is the process of approximating the derivatives in (partial) differential equations203

by linear combinations of function values f at so-called grid points. The idea is to discretize204

the domain, with N of such grid points, collectively called a grid. We give an example in one205

dimension:206

Ω= [0, X ], fi ≈ f (x i), (i = 0, .., N), (3.1)

with grid points x i = i∆ and grid size∆= X/N . The symbol∆ is called the grid spacing. Note207

this the grid spacing is chosen to be constant or uniform in this specific example. For the first208

order derivatives we have209

∂ f
∂ x
( x̄) = lim

∆x→0

f ( x̄ +∆x)− f ( x̄)
∆x

= lim
∆x→0

f ( x̄)− f ( x̄ −∆x)
∆x

= lim
∆x→0

f ( x̄ +∆x)− f ( x̄ −∆x)
2∆x

.

(3.2)

These derivatives are approximated with finite differences. There are basically three types of210

such approximations:211

�

∂ f
∂ x

�

i
≈

fi+1 − fi

∆x
(forward difference)

�

∂ f
∂ x

�

i
≈

fi − fi−1

∆x
(backward difference)

�

∂ f
∂ x

�

i
≈

fi+1 − fi−1

2∆x
(central difference). (3.3)

Since it is more accurate in our case, will focus on the central difference approximation method212

and apply this to the second order differential operator d2/d x2.213

3.1 Locally uniform discretization214

In the example above, the grid spacing was chosen to be uniform. Now reconsider this example215

on the domain Ω = [0, 1] with uniform grid spacing ∆ = 1/N . The second order derivative216

operator is approximately given by217

f ′′i =
fi−1 − 2 fi + fi+1

∆2
+O(∆2) (i = 1, ..., N − 1). (3.4)
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By throwing away the error term O(∆2) in the above equation, it follows that we can218

approximate the second derivative operator in matrix form219

1
∆2















−2 1

1 −2 1 0
. . . . . . . . .

0 1 −2 1
1 −2















. (3.5)

This matrix is the standard discretization of the second order derivative on a uniform grid220

consisting of N points of length ∆ · N , with uniform grid spacing ∆. In this specific case, we221

have ∆= 1/N . We denote this matrix also by 1
∆2 [· · ·1 −2 1 · ··]N .222

Suppose now that we are given a symmetric tridiagonal matrix A of dimension N with constant223

off- and diagonal elements:224

A=















b a

a b a 0
. . . . . . . . .

0 a b a
a b















. (3.6)

We are going to extract a kinetic and a potential energy from this matrix. We write225

A= a[· · ·1
b
a

1 · ··]N = a[· · ·1 −2 1 · ··]N + diag(b+ 2a), (3.7)

where the latter matrix is a diagonal matrix with the element b+2a on the diagonal. It follows226

that227

A= T + V, (3.8)

for T = a[···1 −2 1···]N , and V = diag(b+2a). In view of the above, the matrix T corresponds228

to a second order differential operator. This matrix plays the role of (3.5), but with uniform229

grid spacing 1/
p

a on the grid of length N/
p

a. Since the matrix V is diagonal, it can be seen230

as a multiplication operator. Therefore, given such a symmetric tridiagonal matix A, we can231

derive an operator that is the sum of a discretization of a second order differential operator232

and a multiplication operator. The latter operator is identified with the potential energy of the233

system. Hence we can identify A with a discretization of a Schrödinger operator.12
234

The next step is to understand what happens in the case where we are given a symmetric235

tridiagonal matrix with non-constant off- and on-diagonal elements. This is important as we236

will see, since the Curie–Weiss Hamiltonian, written with respect to the canonical symmetric237

basis for the subspace SymN (C2) of C2N
'
⊗N

n=1C
2, is precisely an example of such a matrix.238

The question we ask ourselves is if we can link such a matrix to a discretization of a Schrödinger239

operator as well (see Appendix B for background).240

Writing T = JN+1, consider the ratios241

ρ j =
h j−1

h j
=

T j+1

T j−1
( j = 1, ..., N), (3.9)

12Strictly speaking we have to put a minus sign in front of T , as the kinetic energy is defined as − d2

d x2 .
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with non-uniform grid spacing h j and h j−1. We divide the original tridiagonal matrix JN+1 by242

N for scaling. Thus, we consider JN+1/N . If we then compute the distances h j , we see that243

they are almost all of O(1), except at the boundaries. We will see later that the corresponding244

Schrödinger operator analog of the matrix JN+1/N will be an operator on a domain of length245

L = 1
N

∑N
j=1 h j .246

First, we compute the ratios ρ j:247

ρ j =
T j+1

T j−1
=

p

(N − j)( j + 1)
p

(N − j + 1) j
=

√

√ N − j
N − j + 1

√

√ j + 1
j
=

√

√

√

1

1+ 1
N− j

√

√

1+
1
j
. (3.10)

Use the following approximations248

√

√

1+
1
j
≈ 1+O

�

1
2 j

�

= 1+O(1/ j) and (3.11)

√

√ 1
1+ 1/(N − j)

≈ 1−O
�

1
2(N − j)

�

= 1+O
�

1
N − j

�

, (3.12)

and observe that for j >> 1 and N − j >> 1, we have249

√

√

1+
1
j
≈ O(1) and (3.13)

√

√ 1
1+ 1/(N − j)

≈ O(1). (3.14)

Moreover, we see that the ratio satisfies250

ρ j ≈ 1+O(1/ j) +O
�

1
N − j

�

, (3.15)

using the fact that that the big-O notation respects the product, that O(1
j

1
N− j ) ≤ O(1/ j), and251

also O(1
j

1
N− j )≤ O( 1

N− j ).252

In the next subsection, we will see from numerical simulations that to a good approximation253

the ground state eigenfunction is a double peaked Gaussian with maxima centered in the254

minima of some double well potential that we are going to determine. This potential occurs in a255

discrete Schrödinger operator analog of the matrix JN+1/N for N large, i.e., in the semiclassical256

limit. Furthermore, we showed by numerical simulations (Figure 4 below) that the width σ257

of each Gaussian-shaped13 ground state of JN+1 located at one of minima of the potential258

is of order
p

N , and hence that each peak rapidly decays to zero, so that the ground state259

eigenfunction is approximately zero at both boundaries. In particular, the size of the domain260

where the peak is non-zero contains O(
p

N) grid points, as we clearly observe from the figure.261

This is an approximation, since we neglect the (relatively small) function values of the Gaussian262

that are more than O(
p

N) away from the central maximum. However, this approximation is263

highly accurate, as the Gaussian decays to zero exponentially. This observation is extremely264

important, as we will now see.265

Let us first focus on the left-located Gaussian. For a point x j = j/N , clearly j ∈ O(N).266

Therefore, for N large enough,267

ρ j = 1+O(1/N), (3.16)

13We mean that if we plot the discrete points and draw a line through these points, then the corresponding graph
has the shape of a Gaussian.
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Figure 4: Width at half height of the ground state eigenvector of JN+1 (B = 1/2 and
J = 1) against N, for N = 100 : 50 : 1500 on a log scale. The slope of the line is about
0.5, which means that the width σ goes like

p
N.

since for these values of j < N − j we have O( 1
N− j ) ≤ O(1/ j). For the right-located peak, we268

have N − j < j, so that in this case O(1/ j)≤ O( 1
N− j ), and we find269

ρ j = 1+O
�

1
N − j

�

. (3.17)

We will now show that, in the present context where we work on a domain of order L (i.e.270

[0, L]), we indeed have uniform discretization on a subinterval of this domain corresponding271

to a matrix segment of O(
p

N) entries. We start with the peak on the left. Since the error272

per step that we make equals ρ j , it follows that the error on a matrix segment of length of273

order σ equals ρσj ≈ (1+
1
N )
σ for j < N − j and N large. Denoting the off-diagonal element274

corresponding to the minimum x j0 of the potential well by T j0 , for the off-diagonal elements275

within a range of order σ, we derive the next estimate:276

|T j0 − T j0+σ| ≈ |T j0 −O
�

(1+
1
N
)σ
�

T j0 |= T j0 |1−O
�

(1+
1
N
)σ
�

| ≤ C
σ

N
, (3.18)

where we used the inequality (1+ 1/N)σ ≤ 1+ C σN as well as the fact that T j0 is of order 1.277

Here, C > 1 is a constant independent of N . Since the left peak of the Gaussian eigenfunction278

is approximately non-zero corresponding to a matrix segment of length of order
p

N , we279

apply the above estimate to σ ≈
p

N . We see immediately that |T j0 − T j0+σ| goes to zero.280

Therefore, on matrix segment of length of order
p

N centered around the left minimum x j0281

of the potential, the off-diagonal elements coincide in the limit N → ∞. This means that282

the grid spacing becomes constant and hence that we have locally uniform discretization of283

the domain. By symmetry, the same is true for the peak located on the right of the well. We284

conclude that for large N the tridiagonal matrix locally behaves like a kinetic energy, and285

therefore like a discretized Schrödinger operator. All this will be explained in more detail in286

the next subsection.287

3.2 Link with a Schrödinger operator288

Our aim is to show that for N large enough, the matrix JN+1/N obtained from the Curie–Weiss289

Hamiltonian by reduction (see §2) locally approximates a discretization matrix representing290

a Schrödinger operator describing a particle moving in a symmetric double well. This means291
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that there exists a sub-block of JN+1/N that has a form approximately given by the sum of292

− 1
h2 [· · ·1 −2 1 · ··]N+1 (for a certain h) and a diagonal matrix playing the role of a potential.293

We started with the symmetric tridiagonal matrix JN+1/N with non-constant entries. In order294

to link this matrix to a second derivative and a multiplication operator, we needed to apply295

the non-uniform discretization procedure.296

At first sight the off-diagonal matrix entries of JN+1/N cannot immediately be identified297

with a second order derivative operator, but we have seen that in the limit N → ∞ we do298

have uniform discretization on some interval of a length scale corresponding to a segment299

of O(
p

N) matrix entries. Consequently, for sufficiently large N this discretization becomes300

approximately uniform on this length scale. From this, we are now going to extract a matrix301

of the form (3.6) corresponding to a Schrödinger operator on L2([0, 1]). We first consider the302

(N × N)-matrix HN , defined by303

HN = TN + VN , (3.19)

where at x = n+/N we define304

TN (x) = −
1

d(x)2
[· · ·1 −2 1 · ··]N , (3.20)

keeping in mind that d(x) varies per entry, and d(x) is defined by305

d(x) =
1
p

B

1
((1− x)x)1/4

. (3.21)

VN is a diagonal matrix (and hence a multiplication operator, as in the continuum) given by306

VN (x) = −
1
2
(2x − 1)2 − B

�

√

√

(1− x)(x +
1
N
) +

√

√

(1− x +
1
N
)x)
�

. (3.22)

Note that d(x) corresponds to the non-uniform grid spacing. We rewrite:307

HN = −
1

N2

1
(d(x)/N)2

[· · ·1 −2 1 · ··]N + VN (3.23)

and hence the total length of the interval is given by 1
N

∑

n+
d(n+/N). So if N →∞, it follows308

that309

L :=

∫ 1

0

d(t)d t =

∫ 1

0

1
p

B

1
((1− t)t)1/4

d t =
2Γ [3/4]2
p

B
p
π

. (3.24)

Moreover, the interval coordinate is then given by310

D(x) =

∫ x

0

d(t)d t ∈ [0, L], for x ∈ [0, 1]. (3.25)

It follows that on each matrix segment of
p

N entries (for N large), the matrix HN is311

an approximation of the following Schrödinger operator on L2([0, L]) with the familiar312

substitution ħh= 1
N :313

h1 = −
1

N2
∆+ VN (x), (3.26)

where x is chosen appropriately and the segment describes an interval of length d(x)
p

N
N = d(x)p

N
,314

at location315

D(x) =

∫ x

0

1
p

B

1
((1− t)t)1/4

d t, x ∈ [0,1]; (3.27)
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in the total interval of length L.14 We saw in the previous section that on length scales of order316

d(x)/
p

N , the function d(x) is approximately constant so that TN can be seen as a locally317

uniform discretization of the second order derivative ∆ on the sub interval approximately318

given by [D(x)− d(x)/
p

N , D(x)+ d(x)/
p

N]. Therefore, on these length scales the operator319

∆ indeed corresponds to a uniform part of 1
(d(x)/N)2 [· · ·1 −2 1 · ··]N .320

We see in this section that to a very good approximation the spectral properties of both (a321

priori different) matrices JN+1/N and H̃N+1, defined in (3.34) below, coincide, improving322

with increasing N . Rescaling the interval [0, L] to unity yields a Schrödinger operator h, but323

now defined on L2([0,1]). Hence h is given by324

h= −
1

L2N2
∆y + ṼN (y) (y ∈ [0, 1]), (3.28)

where, via the potential VN defined in (3.22), the potential ṼN is defined by325

ṼN (y) = VN (D
−1(y L)) y ∈ [0,1]. (3.29)

Let us now consider the scaled tridiagonal matrix JN+1/N . By definition it follows that the326

elements on the diagonal, the lower diagonal, and the upper diagonal are given by327

−
1
2
(2

n+
N
− 1)2, −B

√

√

(1−
n+
N
+

1
N
)
n+
N

, −B

√

√

(1−
n+
N
)(

n+
N
+

1
N
), (3.30)

respectively. The idea is to split the matrix JN+1/N into two parts, one corresponding to the328

kinetic energy and the other to the potential energy. However, since the off-diagonal elements329

of JN+1/N are non-constant and not an even function around x = 1/2, we cannot isolate these330

elements and decompose JN+1/N into two parts. Therefore, we approximate the off-diagonal331

elements by the function (3.21), which is even in 1/2. This approximation makes perfect sense332

in the semi-classical limit, and from this it is clear that JN+1/N ≈ HN+1, where HN is defined333

by (3.19). In the limit N →∞ we pass to the continuum, so that the discrete points n+/N are334

understood as real numbers in [0, 1]. Therefore, equations (3.21) and (3.25) make sense on335

[0,1]. The operator (3.26) is a Schrödinger operator defined on the space [0, L], whereas the336

operator (3.28) is obtained by rescaling to the unit interval. Therefore, scaling HN to unity337

yields the matrix338

−
1

L2N2

1

( d(x)
LN )2

[· · ·1 −2 1 · ··]N + VN (D
−1(y L)), (3.31)

where each segment with order
p

N matrix entries now describes an interval of length339

d(x)/(L
p

N) at location y = D(x)/L in [0,1], approximating the Schrödinger operator340

−
1

L2N2
∆+ VN (x) with x = D−1(y L), (3.32)

which indeed coincides with (3.28). The matrix (3.31) corresponds to a non-uniform341

discretization of h, in such a way that it is locally uniform, namely on length scales of order342 p
N . Finally, discretizing ∆y on the unit interval with uniform grid spacing 1/N yields the343

following discretization matrix:344

KN = −
1

L2N2

1

( 1
N )2
[· · ·1 −2 1 · ··]N = −

1
L2
[· · ·1 −2 1 · ··]N . (3.33)

14Namely, if z ∈ [0, L], then x = D−1(z). Hence the coordinate z corresponds to a location in the interval [0, L],
whilst x plays the role of the ‘argument’ of a matrix entry of V , e.g. if x = n+/N , then V (x) = V (n+/N)≡ Vn+ .
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Using this discretization of − 1
L2N2∆y , we show that for N →∞ the spectrum of the matrix345

JN+1/N approximates the spectrum of the matrix346

H̃N = KN + ṼN . (3.34)

Using the fact that H̃N is a discretization of (3.28), this indeed establishes a link between the347

compressed Curie–Weiss Hamiltonian and a Schrödinger operator.15
348

Remark. Consider the Schrödinger operator with a symmetric double well potential, given by349

(1.1). Recall from §2.2 that for a sufficiently high and broad potential well, the ground state350

of such a Schrödinger operator is approximately given by two Gaussians, each of them located351

in one of the wells of the potential (see [38]). This fact will be useful for the next round of352

observations.353

We will now show that the Gaussian-shaped ground state of JN+1/N , indeed localizes in both354

minima of the potential well ṼN . To this end, we have made a plot of the scaled potential355

ṼN from equation (3.29) on a domain of length 1, for B = 1/2 and J = 1. See Figure356

5. We immediately recognize the shape of a symmetric double well potential. The points357

in its domain are given by y j = j/N for j = 0, ..., N , and the argument of the potential358

is given by D−1(y j L), as explained before. Then we diagonalized the matrix JN+1/N and359

computed the ground state eigenvector. We plot this together with the potential in Figure360

5. One should mention that only one Gaussian peak is visible, not two. As we have seen in361

§2.2, this must be due to the finite precision of the computer i.e., the first two eigenvalues are362

already numerically degenerate. Thus the computer picks a linear combination of the first two363

eigenvectors as ground state (viz. (2.18)), even though we know from the Perron-Frobenius364

Theorem (Appendix A) that the ground state is always unique for any finite N .16 We also365

observe that the maxima of the Gaussian ground state peaks are precisely centered in the366

minima of these two wells (as should be the case). It is clear from this figure that the ground367

state is localized in (one of) the minima of the double well.368

One might suggest that there would be some critical value of N for which the eigenvalues are369

not yet degenerate for the computer. We have seen in Figure 3 that this value of N (depending370

on our machine) is about N = 80. Figure 6 is a similar plot for the ground state for N = 60, on371

a par with Figure 1 in §2.2. We recognize the well-known doubly peaked Gaussian shape, but372

now it is localized in both minima of the potential well. This is displayed in Figure 6. These373

figures show that there is a convincing relation between the matrix JN+1/N and a Schrödinger374

operator describing a particle in a double well. The double well shaped potential is a result of375

the choice B = 1/2. The value of the magnetic field needs to be within [0,1) in order to get376

spontaneous symmetry breaking of the ground state in the classical limit N →∞. For B ≥ 1377

the Curie–Weiss model will not display SSB, not even in the classical limit. For these values of378

B, the well will be a single potential, as depicted in Figure 7 for B = 2.379

In view of the corresponding Schrödinger operator, the ground state in the classical limit will380

not break the symmetry for a single potential well, and is therefore also compatible with the381

Curie–Weiss model for B ≥ 1. We now return to the regime 0 ≤ B < 1. One can compute382

the spectral properties of the matrix JN+1/N and compare them with those of the matrix H̃N383

corresponding to the sum of the uniform discretization KN of the second order derivative (viz.384

(3.33)) and ṼN (viz. (3.29)). We will see that to a very good approximation the spectral385

properties of both matrices coincide and get better with increasing N . We have programmed386

the matrix H̃N in MATLAB. The matrix has been diagonalized. The spectral properties have387

15Note that the matrix H̃N corresponding to (3.28) is by definition a discretization of the Schrödinger operator
on the whole of [0, 1], and not only for subintervals of length d(x)/L

p
N .

16Due to this degeneracy, the computer picks or the symmetric combination χ+, or the anti-symmetric
combination χ−, which depends on the algorithm. We changed N and observed that the location of the peak
changed as well. This suggests that random superpositions of the two degenerate states are formed.
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Figure 5: Scaled potential VN := ṼN and the ground state eigenfunction corresponding
to JN+1/N for N = 1000 on the unit interval [0, 1], plotted on uniform grid points.
The potential is shifted so that its minimum is zero, and is plotted on the grid points x
corresponding to the solution of y = D(x)/L, as explained in the main text.

Figure 6: Scaled and shifted potential VN := ṼN for B = 1/2 and J = 1, plotted on grid
points that are solution of the equation y = D(x)/L, and the ground state eigenfunction
corresponding to JN+1/N for N = 60, plotted on uniform grid points.

been compared to those of JN+1/N (Table 1). We computed the first ten eigenvalues of the388

matrix JN+1/N , denoted by εn, and those of H̃N , denoted by λn. In the left column the389

eigenvalues εn are displayed. In the right column the absolute difference |λn−εn| is displayed.390

The number N = 1000 is fixed (the numerical eigenvalues in the table are dimensionless, since391

we put J = 1, cf. footnote 7).392
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Figure 7: Scaled and shifted potential VN := ṼN for B = 2 and J = 1, and the ground
state eigenfunction corresponding to JN+1/N for N = 60. The single well is clearly
visible. The ground state is plotted on the uniform grid corresponding to [0,1], and also
now the ground state eigenvector is normalized to 1.

Table 1. Eigenvalues and absolute differences (J = 1, B = 1/2)

n εn |λn − εn|
0 -0.6251 7.6038× 10−7

1 -0.6251 7.6038× 10−7

2 -0.6234 2.2446× 10−6

3 -0.6234 2.2446× 10−6

4 -0.6217 4.8378× 10−6

5 -0.6217 4.8378× 10−6

6 -0.6200 7.0222× 10−6

7 -0.6200 7.0222× 10−6

8 -0.6183 8.8010× 10−6

9 -0.6183 8.8010× 10−6

393

We see that the first ten eigenvalues for both matrices are the same up to at least six decimals. It394

is also clear that these eigenvalues are doubly degenerate, at least up to six decimals. Moreover,395

we plotted all the eigenvalues εn and λn corresponding to the bound states, i.e., the energy396

levels within the well. This is depicted in Figure 8 below.397

It follows that the energies of both systems are approximately the same. Moreover, we398

compared a plot of the ground state eigenvector of JN+1/N with the one corresponding to399

H̃N , Completely analogously to JN+1/N , we observed also now that the ground state of H̃N400

is located in the minima of the potential well, only concentrates on length scales of order401 p
N , and exponentially decays to zero. This is in agreement with the theory of Schrödinger402

operators, since H̃N represents a discretization of a Schrödinger operator as we have seen in403

the beginning of this section. Table 1, Figure 8 and this observation show that we have strong404

numerical evidence that the original tridiagonal matrix is related to H̃N , which was a priori405

not clear since the off-diagonal elements of JN+1/N are non-constant.406

Remark. It is well known that the ground state of the operator h for finite N looks approximately407

like a doubly peaked Gaussian, where each peak is centered in one of the minima of the408
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Figure 8: Spectrum of the bound states in the unscaled potential ṼN for B = 1/2, J = 1,
and N = 1000; εn corresponds to the eigenvalues of JN+1/N and λn to those of H̃N .

potential. For infinite N , these peaks will behave like delta distributions. Moreover, numerical409

simulations (Figure 4) show that the eigenfunctions of H̃N live approximately on a grid of410

order
p

N points on the interval [0,1]. Using the above discretization, we then have about411 p
N steps of 1/N each, so that in particular the ground state Gaussian has a width of 1/

p
N .412

On the one hand, it is clear that this width will go to zero as N →∞. On the other hand, also413

the unit interval depends on N , as the latter has to be discretized with N+1 points. Therefore,414

the total number of grid points in the ground state peak living on a subset of order
p

N is415

1/
p

N
1/N

=
p

N . (3.35)

In fact, due to the discretization of the grid we have a better approximation of the Gaussian416

ground state when N increases.417

We have computed the minimum of the potential, and subtracted this minimum from the418

lowest eigenvalues. Then, we have set the potential minimum to zero. These shifted419

eigenvalues then live in a positive potential well. For JN+1/N with N = 1000, we now420

consider its eigenvalues εn. We have already seen above that the lowest eigenvalues of JN+1/N421

become doubly degenerate. Therefore, we identify these approximately doubly degenerate422

eigenstates with one single state that we denote by n. It follows that each n corresponds to423

two (approximately) degenerate eigenvalues, e.g., n = 0 corresponds to the ground state as424

well as the first excited state of JN+1/N , n= 1 corresponds to the second and the third excited425

state, and so on. This is displayed in table 2 below.426

Table 2. Shifted eigenvalues for odd values of n (J = 1, B = 1/2)

n εn

0 0.000863
1 0.002591
2 0.004310
3 0.006013
4 0.007710

427

Using this table, we deduce that when N is large enough the energy splitting is approximately428

given by
p

3/N . The ground state (shifted) eigenvalue (which is approximately doubly429
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degenerate) is then given by 1/2
p

3
N , the first excited state (also approximately doubly430

degenerate) is 3/2
p

3
N , the second excited state is 5/2

p
3

N etc. Therefore, there is excellent431

numerical evidence that for sufficiently large N and J = 1, B = 1/2 the (approximately) doubly432

degenerate shifted spectrum of JN+1/N is given by433

(n+ 1/2)
p

3
N

, (n= 0,1, 2, ...). (3.36)

This firstly shows that for large N the wells approximately decouple since tunneling is434

suppressed in the limit, and secondly that each well of the double well potential is locally435

quadratic and therefore approximately has the spectrum of a harmonic oscillator (the latter436

approximation increasingly breaks down at higher excitation energies, however).437

Finally, both tables have been computed for fixed N , but also different values of N need to be438

considered. Table 3 shows the ground state eigenvalue εN
0 of the matrix JN+1/N .439

Table 3. NεN
0 for increasing N (J = 1, B = 1/2)

N NεN
0

100 0.8473
1000 0.8633
2500 0.8653
5000 0.8655

440

Thus εN
0 will approximate 1/2

p
3

N when N increases, which confirms (3.36).441

4 Symmetry breaking in the Curie–Weiss model442

In this section we introduce a perturbation in the quantum Curie–Weiss model hCW
N such443

that the symmetric and hence delocalized ground state as displayed in Figure 1 breaks the444

Z2 symmetry and hence localizes already for finite (but large) N . To find the appropriate445

perturbation of the Curie–Weiss Hamiltonian, let us first continue the discussion in the446

Introduction by reviewing the flea perturbation of the symmetric double well potential,447

following Ref. [1,2,26].448

4.1 Review of the “flea" perturbation on the double well potential449

Generalizing (1.2), consider a one-dimensional Schrödinger operator450

hħh = −ħh2 d2

d x2
+ V (x), (4.1)

where the potential V is C∞, non-negative, strictly positive at∞, zero at two points m1 and451

m2 > m1, and Z2-symmetric. Then consider the Agmon metric dV on R, defined by452

dV (x , y) =

∫ y

x

Æ

V (s)ds. (4.2)

A flea perturbation δV is C∞, non-negative, bounded, and such that δV (x) = 0 in453

neighbourhoods of the minima m1 and m2 of V . Nonetheless, its support should be close454

to one of these minima, in the following sense. We use the following notation:455

• d0 = dV (m1, m2) is the Agmon distance between the two minima of V ;456
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• d1 = 2min{dV (m1, suppδV ), dV (m2, suppδV )} is twice the Agmon distance between457

the support of δV and the minimum that is closest to to this support;458

• d2 = 2 max{dV (m1, suppδV ), dV (m2, suppδV )} is twice the Agmon distance between459

the support of δV and the minimum that is furthest away from this support.460

Finally, and perhaps most crucially, as ħh → 0 the perturbation should dominate the energy461

difference ∆(E)ħh = E1(ħh)− E0(ħh) between the ground state of the unperturbed Hamiltonian462

(4.1) and the first excited state. But since ∆(E)ħh ∼ exp(−d0/ħh), satisfying this condition is a463

piece of cake. Detailed analysis [2] then shows that:464

• If d0 < d1 ≤ d2 there is no localization of the ground state.465

• If d1 < d0 ≤ d2 the ground state localizes near the minimum mi furthest from the support466

of δV (if δV were negative, it would localize closest to the support of δV );467

• If d1 < d2 < d0 the ground state localizes as in the previous case.468

Though perhaps surprising at first sight, this is actually easy to understand, either from469

energetic considerations or from a 2 × 2 matrix analogy [2, 7]. First, the ground state tries470

to minimize its energy according to the rules:471

• The cost of localization (if δV = 0) is O(e−d0/ħh).472

• The cost of turning on δV is O(e−d1/ħh) when the wave-function is delocalized.473

• The cost of turning on δV is O(e−d2/ħh) when the wave-function is localized in the well474

around x0 = mi for which dV (mi , supp δV ) = d2 (i = 1, 2).475

For the latter, define a 2-level Hamiltonian476

h(2)ħh = 1
2

�

0 −∆(E)ħh
−∆(E)ħh 0

�

. (4.3)

The eigenvalues and eigenvectors of h(2)ħh , respectively, are given by477

E0(ħh) = − 1
2∆(E)ħh ϕ(0) =

1
p

2

�

1
1

�

; (4.4)

E1(ħh) = − 1
2∆(E)ħh ϕ(0) =

1
p

2

�

1
−1

�

. (4.5)

Hence E1(ħh)− E0(ħh) =∆(E)ħh, and the (metaphorically) localized states would be478

ϕ+ ≡ 1
2

�

ϕ(0) +ϕ(1)
�

=

�

0
1

�

, ϕ− ≡ 1
2(ϕ

(0) −ϕ(1)) =
�

1
0

�

. (4.6)

Now take δ > 0 and introduce a “flea” perturbation by changing h(2)ħh to h(2)ħh +δ
(2)V , where479

δ(2)V =

�

0 0
0 δ

�

. (4.7)

The eigenvalues of h(2)ħh +δ
(2)V then shift from (E0(ħh), E1(ħh)) to (E−(ħh), E+(ħh)), where480

E±(ħh) = 1
2

�

δ±
Ç

δ2 +∆(E)2ħh

�

, (4.8)
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with corresponding normalized eigenvectors (ψ−ħh ,ψ+ħh ) given by481

ψ−ħh =
1
p

2

�

δ2 +∆(E)2ħh +δ
Ç

δ2 +∆(E)2ħh

�−1/2
�

∆(E)ħh
δ+

q

δ2 +∆(E)2ħh

�

; (4.9)

ψ+ħh =
1
p

2

�

δ2 +∆(E)2ħh −δ
Ç

δ2 +∆(E)2ħh

�−1/2
�

∆(E)ħh
δ−

q

δ2 +∆(E)2ħh

�

. (4.10)

As long as limħh→0∆(E)ħh/δ = 0, we have482

lim
ħh→0

ψ±ħh = ϕ
±, (4.11)

so that under the influence of the flea perturbation the ground state localizes as ħh→ 0. There483

is no need for a separate limit δ→ 0, since it follows from the limit ħh→ 0.484

Returning to the real thing, a (mathematically) very natural flea-like perturbation δV for the485

Schrödinger operator hħh, and the one we shall mimic for the Curie–Weiss model, is486

δVb,c,d(x) =







d exp
�

1
c2 − 1

c2−(x−b)2

�

if |x − b|< c

0 if |x − b| ≥ c
, (4.12)

where the parameters (b, c, d) represent the location of its center b, its width 2c and its height487

d, respectively. Tuning these, the conditions above can be satisfied in many ways: for example,488

if b > c > m2 the condition d1 < d0 ≤ d2 for asymmetric localization reads489

2

∫ b−c

m2

Æ

V (s)<

∫ m2

m1

Æ

V (s)ds ≤ 2

∫ b−c

m1

Æ

V (s), (4.13)

which can be satisfied by putting b close to m2 (depending on the central height of V ).490

4.2 Peturbation of the Curie–Weiss Hamiltonian491

The next step in our analysis, then, is to find an analogous perturbation to (4.12) but492

now for the Curie–Weiss Hamiltonian, using the fact that the Curie–Weiss model is related493

to a Schrödinger operator (see previous section). To this end, recall the symmetriser SN494

defined in (1.10), which is a projection onto the space of all totally symmetric vectors. As495

we have seen, a basis for the space of totally symmetric vectors is given by the vectors496

{|n+, n−〉| n+ = 0, ..., N}, which spans the subspace SymN (C2). In order to define the497

symmetry-breaking flea perturbation, again we may pick a basis for HN and define the498

perturbation on a basis for HN . Since the original Hamiltonian was defined on the standard499

basis β , we do the same for the perturbation. In the proof of Theorem 2.1, we have seen there500

is a bijection between the number of orbits and the dimension of SymN (C2), namely501

Ok↔|N − k, k〉, (4.14)

where k in |N − k, k〉 labels the number of occurrences of the vector e2 in any of the basis502

vectors βi ∈ β , and likewise N − k in |N − k, k〉 labels the number of occurrences of the vector503

e1 in βi , so that N − k stands for the number of spins in the up direction whereas the second504

position k denotes the number of down spins. By definition, SN maps any basis vector βk ∈ β505

in a given orbit Ok to the same vector in SymN (C2), which equals506

1
Ç

�N
k

�

(Nk)
∑

l=1

βkl
. (4.15)
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Here the suffix l in βkl
labels the basis vector βk ∈ β within the same orbit Ok. So for each507

orbit Ok, we have
�N

k

�

vectors βk. Hence for each l = 1, ...,
�N

k

�

the image SN (βkl
) under SN is508

always the same, namely the coordinate vector written with respect to β .509

The perturbation we are going to define is very similar to the symmetriser SN . Of course, since510

we have expressed our original Curie–Weiss Hamiltonian with respect to this |n+, n−〉 basis,511

we need to do the same for the perturbation. Since we have a partition of our 2N -dimensional512

basis β into N + 1 orbits, we define our perturbation ∆VN by513

∆VN (β) = δVb,c,d

�

k
N

�

SN (β), (4.16)

where k ∈ {0, ..., N} is the unique number such that β ∈ Ok, and δVb,c,d is defined by (4.12).514

We will see that a specific choice of parameters results in localization of the ground state515

as N → ∞. First, note that when we transform the matrix [∆VN ]β in the β basis to the516

corresponding matrix in the |n+, n−〉 basis, it is obvious that it becomes a diagonal matrix with517

the value ∆Vk ≡ δVb,c,d(k/N) at entry (k, k), since all basis vectors within the same orbit are518

mapped to the same vector under ∆VN . If we can show that519

[SN ,∆VN ] = 0, (4.17)

and that the ground state eigenfunction of the perturbed Hamiltonian hN +∆VN is unique520

and positive,17 then we may conclude that the ground state lies in the subspace SymN (C2).521

The reason for this is the same as for the unperturbed Curie–Weiss Hamiltonian: these522

properties push this eigenvector into the subspace ran(SN ) = SymN (C2), so that we may523

diagonalize this Hamiltonian represented as a matrix that can be written with respect to524

the symmetric subspace, which will be a tridiagonal matrix of dimension N + 1 as well.525

This makes computations much easier, and allows one to compare the unperturbed system526

with the perturbed one. Similarly as for the Curie–Weiss model, a sufficient condition for527

uniqueness and positivity of the ground state of the perturbed matrix, originally written with528

respect to the standard basis for HN , is non-negativity and irreducibility, so that we can apply529

the Perron–Frobenius Theorem, as explained in Appendix A. This depends, of course, on the530

parameters of the perturbation∆VN . We will come back to this later. In order to prove (4.17),531

it suffices to do so on a basis, for which we take the standard basis β of the N -fold tensor532

product. Fix a basis vector β in Ok. Then we immediately find533

∆VN SN (β) = δVb,c,d(k)S
2
N (β) = SNδVb,c,d(k)SN (β) = SN∆VN (β), (4.18)

which proves (4.17). The last step is to show that the Hamiltonian −(hN + ∆VN ), written534

with respect to the standard basis β for HN , is a non-negative and irreducible matrix. Since535

the off-diagonal elements are completely determined by the unperturbed Hamiltonian and are536

never zero, the matrix can never be decomposed into two blocks, so that it remains irreducible.537

Non-negativity is achieved when538

J
2N
(2n+ − N)2 −∆Vn+ ≥ 0, (4.19)

which is clearly satisfied for positive d. Therefore, taking d > 0 together with the fact that539

hN+∆VN commutes with SN , shows in the same way as for the unperturbed Curie–Weiss model540

17Equivalently, without using positivity of the eigenfunction one would reach the same conclusion by showing
that the ground state is unique and ∆VN commutes with the entire permutation group on N elements (like the
unperturbed Hamiltonian). Given positivity, it is enough to check commutativity merely with the projection SN ,
because all nontrivial permutations would transform the ground state wavefunction into a function that is no
longer strictly positive. We are indebted to Valter Moretti for this comment.
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Figure 9: Perturbed potential computed from the tridiagonal matrix hCW
N +∆VN in the

symmetric basis for N = 65, b = (N − 9)/N, c = 1/45, d = 0.4, J = 1 and B = 1/2.
This potential has a ‘flea’ on the right side of the well due the perturbation ∆VN .

that the ground state of the perturbed Hamiltonian is unique and positive, and therefore lies541

in ran(SN ) = SymN (C2), where it can be diagonalized.542

Recall that in §2.2 the ground state ψ
(0)
N of the unperturbed Hamiltonian hCW

N was543

approximately given by two Gaussians (for N large), each of them located in one of the wells544

of the potential, and was given by545

ψ
(0)
N
∼=

Ta(ϕ0) + T−a(ϕ0)p
2

. (4.20)

We now show numerically that our flea perturbation ∆VN forces the ground state to localize546

for large N , leaving an analytic proof à la Simon (1985) to the future.547

As in section 3, we extract the potential corresponding to the perturbed Hamiltonian hN+∆VN ,548

written with respect to the symmetric basis, scale this Hamiltonian by 1/N , and translate549

the potential so that its minima are set to zero. We plot this perturbed potential on the unit550

interval in Figure 9, where for convenience we scale the domain to the unit interval. Moreover,551

we plot the ground state of this Hamiltonian and the one corresponding to the unperturbed552

one in Figure 10, observing localization of the ground state in the left sided well. Numerical553

simulations show that the eigenvalues of the perturbed Hamiltonian are non-degenerate, so554

that the ground state is unique, and hence localization is not a result of numerical degeneracy555

but is genuinely caused by the perturbation. A similar simulation for flea perturbation, but556

now located on the left site of the barrier, is shown in Figure 11. As expected, we now see a557

localization of the ground state to the right side of the barrier (Figure 12).558

Our conclusion is that due to the flea perturbation, the ground state will localize in one of559

the wells depending on where the flea is put. As in the continuous Schrödinger operator560

case, this localization may be understood from energetic considerations: for example, if the561

perturbation is located on the right, then the relative energy in the left-hand part of the double562

well is lowered, so that localization will be to the left. This even happens if the perturbation563

vanishes in the limit N →∞. We have seen that our (unscaled) tridiagonal matrix JN+1 to a564
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Figure 10: Corresponding ground state (in red) of the perturbed Hamiltonian
hCW

N + ∆VN is already localized for N = 65, b = (N − 9)/N, c = 1/45, d = 0.4,
J = 1 and B = 1/2. Localization takes place on the left side of the well, since the flea
raises the potential on the right side.

very good approximation, is a discretization of the operator Nh, where565

h= −
1

N2 L2
∆y + V, (4.21)

where ∆y = d2/d y2 and V the double well potential. It follows that for the perturbed566

Hamiltonian (where ∆VN = O(1) fixed, as in our case)567

JN +∆VN ≈ N
�

−
1

(N L)2
∆y + V

�

+∆VN

= N
�

−
1

(N L)2
∆y + V +∆VN/N

�

, (4.22)

which implies that the perturbation ∆VN/N effectively disappears as N →∞. According to568

Jona-Lasinio et al (1981) and Graffi et al (1984), we can even take569

∆VN = O(1/N); (4.23)

∆VN/N = O(1/N2), (4.24)

and also in this case a collapse of the ground state takes place. This is also clear from the 2×2570

matrix argument given in the previous section.571

25

https://scipost.org
https://scipost.org/SciPostPhys.8.2.022


SciPost Phys. 8, 022 (2020)

Figure 11: Perturbed potential computed from the tridiagonal matrix hCW
N +∆VN in the

symmetric basis for N = 65, b = 9/N, c = 1/45, d = 0.4, J = 1 and B = 1/2. This
potential has a ‘flea’ on the left side of well due the perturbation ∆VN .

Figure 12: Corresponding ground state (in red) of the perturbed Hamiltonian
hCW

N + ∆VN is already localized for N = 65, b = 9/N, c = 1/45, d = 0.4, J = 1
and B = 1/2. Localization takes place on the right side of the well, since the flea raises
the potential on the left side.

5 Conclusion572

We have established a link between the quantum Curie–Weiss Hamiltonian and a 1d573

Schrödinger operator describing a particle in a symmetric double well potential for ħh > 0,574

where ħh = 1/N . We have shown that the scaled quantum Curie–Weiss Hamiltonian575

restricted to the (N+1)-dimensional subspace SymN (C2) approximates a discretization matrix576

corresponding to this Schrödinger operator, defined on L2([0, 1]). Subsequently, we have577

shown that due to a small perturbation a Z2-symmetry of the Curie–Weiss model can already578
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be explicitly broken for finite N , resulting in a pure ground state in the classical limit. This579

confirms Anderson’s mechanism for SSB in finite quantum systems (cf. the Introduction), but580

our specific “flea" perturbation came from similar results for Schrödinger operators with a581

symmetric double well potential in the classical limit ħh → 0 [1, 2, 26]. The results in these582

papers, which were obtained analytically, precisely match ours, obtained numerically, but this583

stil leaves the challenge of finding analytic proofs of our results. Furthermore, our approach,584

and especially the specific perturbations we use, should be extended to the case of continuous585

symmetries, where the relevant low-lying states (which for continuous symmetries are infinite586

in number as N → ∞) now seem to be completely understood [4]. The dynamics of the587

transition from a localized ground state of the unperturbed Hamiltonian to a delocalized588

ground state of the perturbed Hamiltonian as N → ∞ remains to be understood (this is589

an understatement); once achieved, it would perhaps also contribute to the solution of the590

measurement problem or Schrödinger Cat problem along similar lines [7,8].591

We finally discuss some of the correspondences as well as differences between the592

symmetry-breaking perturbations we used and those considered in the condensed matter593

physics literature. The key physical idea is the same in both cases:18
594

“The general idea behind spontaneous symmetry breaking is easily formulated: as595

a collection of quantum particles becomes larger, the symmetry of the system as a596

whole becomes more unstable against small perturbations,"597

where we add that the same is true as ħh becomes smaller at fixed system size, cf. [7] and598

references therein, and that the precise form of the instability is that for small N or large ħh the599

perturbation plays almost no role (in either the spectral properties of the Hamiltonian or in its600

eigenfunctions), whereas for large N or small ħh it metaphorically601

“can irritate the elephant enough so that it shifts its weight, i.e., we will see602

that the ground state, instead of being asymptotically in both wells, may reside603

asymptotically in only one well".604

As explained in the Introduction, this accounts for the fact that real materials (which are605

described by the quantum theory of finite systems) do display SSB, even though the theory606

seems to forbid this. As we (and most condensed matter physicists) see it, these perturbations607

should arise naturally and might correspond either to imperfections of the material or608

contributions to the Hamiltonian from the (otherwise ignored) environment.609

Mathematically, though, there are some differences between our mathematical physics610

approach to SSB in finite quantum systems and the standard theoretical physics one.19 These611

differences are perhaps best explained by starting with the very definition of SSB. High612

sensitivity to small perturbations in the relevant regime are common to both approaches613

(as they are to the classical theory of critical phenomena and phase transitions, and even614

to complexity theory, which is full of bifurcations and tipping points, cf. [39]. In the physics615

literature this sensitivity to small perturbations is usually taken into account by adding an616

“infinitesimal" symmetry-breaking term like617

δhN = ε
N
∑

x=1

σ3(x) (5.25)

to the Curie–Weiss Hamiltonian (2.1) and arguing that the correct order of the limits in618

question is limε→0 limN→∞, which gives SSB by one of the two pure ground states on the619

18The first quotation is from Ref. [13] and the second one is from Ref. [2].
19See references in footnote 3.
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limit algebra, the sign of ε determining the direction of symmetry breaking. In contrast, the620

opposite order limN→∞ limε→0 gives a symmetric but mixed and hence unstable or unphysical621

ground state on the limit algebra.20 Thus whenever there is difference622

lim
ε→0

lim
N→∞

6= lim
N→∞

lim
ε→0

, (5.26)

this is taken to be a defining property SSB. This is valid, but it feeds the idea that, if SSB occurs,623

the limit N →∞ is “singular" (e.g. [13, 27, 28]), an idea that is increasingly challenged in624

the philosophical literature [9] and has almost disappeared from the mathematical physics625

literature.626

Instead, we work with a definition of SSB that is standard in mathematical physics and applies627

equally to finite and infinite systems (provided these are described correctly), and to classical628

and quantum systems, namely that the ground state (suitably defined) of a system with629

G-invariant dynamics (where G is some group, typically a discrete group or a Lie group) is630

either pure but not G-invariant, or G-invariant but mixed.21 Accordingly, what is singular631

about the thermodynamic limit of systems with SSB is the fact that the exact pure ground state632

of a finite quantum system converges to a mixed state on the limit system.22 However, this633

singular behaviour is exactly what is avoided by Anderson’s tower of states triggered by the634

right perturbations, where a single limit (i.e. either ħh→ 0 or N →∞) suffices,23 in which the635

(still) pure ground state of the perturbed Hamiltonian (which is a symmetry-breaking linear636

combination of low-lying states) converges to some symmetry-breaking pure ground state on637

the limit system (be it a classical system or an infinite quantum system). The ensuing limit is638

then duly continuous in an appropriate meaning of the word (which it would not be without639

the perturbation mechanism).24
640

Of course, in order for this symmetry breaking to be spontaneous rather than explicit, the641

perturbation should be small to begin with, and should disappear in the pertinent limit.25
642

As we have seen, it is easy to endow the “flea" δV with these properties; for symmetry breaking643

in the double well potential all we need is that ∆E → 0 more rapidly than δV → 0 as ħh→ 0,644

cf. (4.22) - (4.24), and for symmetry breaking in the Curie–Weiss model the same holds for645

N →∞. Since in these models∆E vanishes exponentially in−1/ħh or−N as ħh→ 0 or N →∞646

(a fact about the spectrum that has nothing to do with the perturbations), this can hardly go647

wrong.648

In this light, the following may help explain the relationship between our approach and the649

traditional one based on the non-commuting limits (5.26). For the latter, consider the (x , y)650

plane with x = 1/N (or x = ħh) and y = ε, and for the argument in the previous paragraph,651

20This procedure goes back at least to Bogoliubov [40], see also [41].
21See e.g. [7], Definition 10.3, page 379, and [42]. It may seem more natural to just require that the ground state

fails to be G-invariant, but in the C*-algebraic formalism we rely on ground states that are not necessarily pure,
which leaves the possibility of forming G-invariant mixtures of non-invariant states that lose the purity properties
one expects physical ground states to have. Similarly for equilibrium states, where ‘pure’ is replaced by ‘primary’,
which is a mathematical property of a pure thermodynamical phase. Order parameters follow from this definition,
cf. §10.3, loc. cit.

22And similarly for the limit ħh of the symmetric double well system, where, as pointed out in the Introduction, the
ħh= 0 limit of the ground state is the mixed state (1.4), as opposed to, for example, a Dirac delta-function located
between the wells (i.e. at q = 0). See also Refs. [2,43]. This also explains the fact that the flea perturbations even
work if their support is localized away from the bottoms of the two wells (or, equivalently, from the two peaks of
the unperturbed ground state); see especially Ref. [26] for a detailed explanation of this point.

23This can also be achieved by letting ε depend on N in some suitable way, but if one does so one might as well
drop the factorized form of perturbations like (5.25) altogether and admit more general expressions similar to the
flea. Some literature indeed seems to do this, though not in a mathematically precise way.

24This is described via continuous fields of C*-algebras and states ( [7], Chapters 7–10).
25This must be taken to be a purely mathematical criterion, for real systems have ħh > 0 and N <∞, so that

strictly speaking any form of symmetry breaking in Nature is explicit rather than spontaneous.
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take x = δV and y = ∆E. In case of SSB, certain physical quantities m(x , y) (like the652

magnetization) are discontinuous at (0, 0) and hence their value at (0, 0) depends on the653

path towards the origin. Eq. (5.26) expresses this path dependence in a crude way, which654

is captured by perturbations like (5.25), but the perturbations we consider follow specific655

parametrized paths towards (0, 0). This explains why we are able to work with a single656

limit ħh → 0, since in our models ∆E = ∆E(ħh) is given (by the double well or Curie–Weiss657

Hamiltonian) and δV = δV (ħh) can be freely chosen, subject to the condition just mentioned,658

i.e. that the approach ∆E(ħh)→ 0 (as ħh→ 0) must be quicker than δV (ħh).659

The wealth of possible flea perturbations, as opposed to the more straightforward660

symmetry-breaking perturbations à la (5.25) considered in the condensed matter physics661

literature (i.e. coupling to a small constant external magnetic field) also weakens the662

critique expressed by Wallace [44], to the effect that cooling e.g. ferromagnets (but663

also antiferromagnets, (anti)ferroelectrics, ferroelastics, and superconductors) does not,664

experimentally, lead to a ground state in which the spins are all aligned with the external field,665

but rather to a state with various domains in which the spins are merely aligned locally but666

may differ quite randomly from domain to domain ( [45], pp. 346–354). Obtaining the right667

domain sizes admittedly requires fairly special fleas (as Wallace points out), but in the absence668

of any dynamical theory of cooling any argument in this direction, including this critique, is669

speculative. Wallace’s suggestion that the formation of domains with specific sizes has already670

been explained by energetic considerations of the kind presented by Kittel (loc. cit., attributed671

to Landau and Lifshitz), which even require the absence of constant external magnetic fields,672

is not effective against flea perturbations, which indeed are required to explain why specific673

domains in a given specimen (as opposed to general domains in generic materials) are formed;674

the problem is quite analogous to explaining SSB. Kittel also draws attention to the importance675

of singe-domain regions, e.g. for magnetic recording devices, but also in sedimentary rock676

formations.677

Another objection to our approach to SSB, which equally well applies to the standard approach678

in condensed matter physics, is that a mechanism based on symmetry-breaking perturbations679

cannot be applied to gauge theories and hence cannot explain the Higgs mechanism. However,680

it is not local gauge symmetry that is broken in the Higgs mechanism, but a global symmetry,681

and by choosing gauge-invariant observables it is even possible to describe it without any682

reference to SSB, see Ref. [7], §10.10.683

A Perron–Frobenius Theorem684

In this appendix we provide the machinery for proving uniqueness and strict positivity of685

the ground state of the Curie–Weiss model for any finite N , based on the Perron-Frobenius686

Theorem. Though the result is well known, the precise combination of arguments is hard to687

find in the literature.688

We start with some definitions and basis facts.689

Definition A.1. 1. A square matrix is called non-negative if all its entries are non-negative.690

It is called strictly positive if all its entries are strictly positive.691

2. A non-negative matrix a is called irreducible if for every pair indices i and j there exists a692

natural number m such that (am)i j is not equal to zero. If the matrix is not irreducible, it693

is said to be reducible.694

3. A directed graph is a graph G = (V, E) with vertices V and edges E such that the vertices695

are connected by the edges, and where the edges have a direction. A directed graph is also696

called a digraph.697
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4. A digraph is called strongly connected if there is a directed path x to y between any two698

vertices x , y.699

We use the notion of the directed graph or digraph of a square N -dimensional matrix a,700

denoted by G(a). We say that the digraph of a is the digraph with701

V = {1, 2, ..., N},
E = {(i, j)| ai j 6= 0}.

The following result links irreducibility of a non-negative matrix to strongly connectedness of702

its corresponding digraph. The proof is easy and therefore omitted.703

Lemma A.2. A non-negative square matrix a is irreducible if and only if the digraph of a is704

strongly connected.705

We now come to the Perron-Frobenius Theorem. There are two versions of this theorem: one706

for strictly positive matrices, and the other for irreducible matrices. We use the version for707

irreducible matrices since the Curie–Weiss Hamiltonian −hCW
N , represented with respect to the708

standard basis for
⊗N

n=1C
2, is a non-negative and irreducible matrix of dimension 2N , as we709

will see below.710

Theorem A.3. Let a be an N ×N real-valued non-negative matrix, and denote its spectral radius711

by r(a) = λ . If a is irreducible, then λ = r(a) is an eigenvalue of a, which is positive, simple,712

and corresponds to a strictly positive eigenvector.713

This theorem is based on properties of a matrix relative to some basis, so that the714

Perron-Frobenius Theorem is valid if there exists a basis such that the matrix representation715

of the operator in this basis satisfies the assumptions of the theorem. Note that multiplying716

−hCW
N by −1, the eigenvalues will change sign and we find instead that the smallest eigenvalue717

(i.e. the ground state) of hCW
N is simple and corresponds to a strictly positive eigenvector. As a718

case in point, we are now going to prove a statement about our Hamiltonian −hCW
N , relative to719

the standard basis of C2 extended to a basis of the tensor product
⊗N

n=1C
2 in the usual way.720

Theorem A.4. The Curie–Weiss Hamiltonian−hCW
N from (1.6), represented in the standard basis721

for
⊗N

n=1C
2, is non-negative and irreducible.722

Proof. Since all constant factors in −hCW
N are strictly positive, we only have to consider both723

terms containing sums. We show that724

∑

x ,y∈ΛN

σ3(x)σ3(y) and
∑

x∈ΛN

σ1(x) (A.1)

are non-negative. We have seen in the proof of Theorem 2.1 that the operator725
∑

x ,y∈ΛN
σ3(x)σ3(y) is a diagonal matrix with respect to the standard basis726

{en1
⊗ ...⊗ enN

}2n1=1,...,nN=1 for
⊗N

n=1C
2. For non-negativity we must prove, independently of727

the basis vectors, that there are at least as many plus signs as there are minus signs, i.e., we728

have to show that729

N2 − 2n+(N − n+)≥ 2n+(N − n+). (A.2)

This gives N2 − 4n+(N − n+)≥ 0 if and only if N2 − 4Nn+ + 4n2
+ ≥ 0. The parabola730

n+ 7→ N2 − 4n+N + 4n2
+ (A.3)
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attains its minimum in n+ = N/2, which is given by N2 − 4 N
2 n+ 4(N

2 )
2 = 0. So indeed, there731

are at least as many plus signs as minus signs, so that the corresponding diagonal term is732

non-negative. The other term
∑

x∈ΛN
σ1(x) does not contain any negative entries at all, so if733

we apply this to any basis vector {en1
⊗ ...⊗ enN

}, we get a non-negative matrix. It follows that734

both operators in (A.1) are non-negative in the basis under consideration.735

Now we show that the matrix corresponding to the Curie–Weiss Hamiltonian is irreducible.736

Note that irreducibility of a matrix does not depend on the basis in which the operator737

is represented, since similar matrices define equivalent representations which preserve738

irreducibility. We use Lemma A.2 to show that there is a direct path between any two vertices.739

But this is obvious: the operator
∑

x σ1(x) flips the spins one by one, and therefore the740

associated digraph is clearly strongly connected as we can find a directed path between any741

two vertices.26
742

By the Perron-Frobenius Theorem, the largest eigenvalue of the Curie–Weiss Hamiltonian743

−hCW
N is positive, simple and corresponds to a strictly positive eigenvector. This in turn implies744

that that the ground state eigenvalue of hCW
N is positive, simple, and has a strictly positive745

eigenvector.746

B Discretization747

This information provided in this appendix is based on Refs. [46–49]. These results are748

used above in §3.1. Recall from calculus that the following approximations are valid for749

the derivative of single-variable functions f (x). The first one is called the forward difference750

approximation and is an expression of the form751

f ′(x) =
f (x + h)− f (x)

h
+O(h) (h> 0). (B.1)

The backward difference approximation is of the form752

f ′(x) =
f (x)− f (x − h)

h
+O(h) (h> 0). (B.2)

Furthermore, the central difference approximation is753

f ′(x) =
f (x + h)− f (x − h)

2h
+O(h2) (h> 0). (B.3)

The approximations are obtained by neglecting the error terms indicated by the O-notation.754

These formulas can be derived from a Taylor series expansion around x ,755

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) + ...=

∞
∑

n=0

hn

n!
f (n)(x), (B.4)

and756

f (x + h) = f (x)− hf ′(x) +
h2

2
f ′′(x) + ...=

∞
∑

n=0

(−1)n
hn

n!
f (n)(x), (B.5)

where f (n) is the nth order derivative of f . Subtracting f (x) from both sides of the above two757

equations and dividing by h respectively −h leads to he forward difference respectively the758

26A different proof is given in Ref. [34], §5.3, p.78.
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backward difference. The central difference is obtained by subtracting equation (B.5) from759

equation (B.4) and then dividing by 2h.760

The question is how small h has to be in order for the algebraic difference f (x+h)− f (x)
h (i.e. in761

this case the forward difference approximation) to be good approximation of the derivative.762

It is clear from the above formulas that the error for the central difference formula is O(h2).763

Thus, central differences are significantly better than forward and backward differences.764

Higher order derivatives can be approximated using the Taylor series about the value x765

f (x + 2h) =
∞
∑

n=0

(2h)n

n!
f (n)(x) (B.6)

and766

f (x − 2h) =
∞
∑

n=0

(−1)n
(2h)n

n!
f (n)(x). (B.7)

A forward difference approximation to f ′′(x) is then767

f (x + 2h)− 2 f (x + h) + f (x)
h2

+O(h), (B.8)

and a centered difference approximation is for example768

f (x + h)− 2 f (x) + f (x + h)
h2

+O(h2). (B.9)

Now we discretize the kinetic and potential energy operator. For simplicity, consider the769

one-dimensional case. We first discretize the interval [0,1] using a uniform grid of N points770

x i = ih, h = 1
N , i = 0, 1, ..., N . It follows that f (x) 7→ f (x i) =: fi . The Taylor series expansion771

of a function about a point x i becomes772

fi+k = fi +
∞
∑

n=0

(−1)n
(kh)n

n!
f (n)(x), (B.10)

where k = ±1,±2, ...,±N . Similar as above, we can find central difference formulas for f ′j , f ′′j ,773

namely774

f ′j =
− f j−1 + f j+1

2h
+O(h2) (B.11)

f ′′j =
f j−1 − 2 f j + f j+1

h2
+O(h2). (B.12)

The approximations are again obtained by neglecting the error terms.775

Using this uniform grid with grid spacing h = 1/N , it follows that the second derivative776

operator in one dimension is given by the tridiagonal matrix 1
h2 [· · ·1 −2 1 · ··]N and the777

potential which acts as multiplication, is given by a diagonal matrix. With the notation778
1
h2 [· · ·1 −2 1 · ··]N , we mean the N -dimensional matrix779

780

1
h2















−2 1

1 −2 1 0
. . . . . . . . .

0 1 −2 1
1 −2















.
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Now suppose that the values of the kinetic energy operator T are non-uniformly dependent781

of the positions in space. Then one needs to use a non-uniform grid in order to get a782

good description of the second derivative. We use the central difference approximation and783

approach f by a Taylor series.784

Denote x j by the j th grid point and fk = f (xk). Then the Taylor series of f at x j can be written785

as786

fk = f j +
∞
∑

m=1

(xk − x j)m

m!
f (m)j . (B.13)

If we let h j = x j+1− x j , then similarly as above, for a three-point finite-difference formula i.e.,787

only fi+1, fi , fi−1 are used, we find that788

f j+1 = f j + h j f ′j +
h2

j

2
f ′′j +

h3
j

6
f (3)j + ... (B.14)

and similarly one can write x j−1 = x j − h j−1, so that we find789

f j−1 = f j − h j−1 f ′j +
h2

j−1

2
f ′′j −

h3
j−1

6
f (3)j + ... (B.15)

Both expressions can be used to eliminate f ′j to derive an expression for the second derivative:790

f ′′j =
2 f j−1

h j−1(h j−1 + h j)
−

2 f j

h j−1h j
+

2 f j+1

h j(h j−1 + h j)
+

h j − h j−1

3
f (3)j +O(h2). (B.16)

This is the central difference approximation for the non-uniform grid. If we assume that791

h j − h j−1 is small, we may neglect the last term, and we get precisely that792

2
h j−1(h j−1 + h j)

= T j, j−1, (B.17)

−2
h j−1h j

= T j, j , (B.18)

2
h j(h j−1 + h j)

= T j, j+1. (B.19)

Therefore we find that the ratio, say ρ j , equals793

ρ j =
T j, j+1

T j, j−1
=

h j−1

h j
. (B.20)

Thus794

h j−1 = ρ jh j . (B.21)

We derive from this combined with the above three equations that795

h2
j =

2
T j, j−1ρ j(1+ρ j)

, (B.22)

or h2
j =

2
T j, j+1(1+ρ j)

. (B.23)
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