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Abstract

Certain patterns of symmetry fractionalization in topologically ordered phases of matter
are anomalous, in the sense that they can only occur at the surface of a higher dimen-
sional symmetry-protected topological (SPT) state. An important question is to deter-
mine how to compute this anomaly, which means determining which SPT hosts a given
symmetry-enriched topological order at its surface. While special cases are known, a gen-
eral method to compute the anomaly has so far been lacking. In this paper we propose
a general method to compute relative anomalies between different symmetry fraction-
alization classes of a given (2+1)D topological order. This method applies to all types
of symmetry actions, including anyon-permuting symmetries and general space-time re-
flection symmetries. We demonstrate compatibility of the relative anomaly formula with
previous results for diagnosing anomalies for ZT

2 space-time reflection symmetry (e.g.
where time-reversal squares to the identity) and mixed anomalies for U(1) × ZT

2 and
U(1)⋊ZT

2 symmetries. We also study a number of additional examples, including cases
where space-time reflection symmetries are intertwined in non-trivial ways with unitary
symmetries, such as ZT

4 and mixed anomalies for Z2×ZT
2 symmetry, and unitary Z2×Z2

symmetry with non-trivial anyon permutations.
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1 Introduction

The last few years in condensed matter physics have seen major progress in our understanding
of symmetry and its interplay with topological degrees of freedom in gapped quantum many-
body systems. In the context of quantum field theory, these results translate into progress
regarding the characterization and classification of topological quantum field theories with
symmetry.

In the absence of any symmetry, gapped quantum systems in two and higher spatial dimen-
sions can still form different phases of matter, distinguished by their topological order [1–3]. In
(2+1) space-time dimensions, it is believed that distinct gapped phases of quantum many-body
systems can be fully characterized by a pair of objects, (C, c−). C is a unitary modular tensor
category, sometimes referred to as the algebraic theory of anyons, which describes the fusion
and braiding properties of anyons, which are topologically non-trivial finite-energy quasiparti-
cle excitations [2,4,5]. c− is the chiral central charge, and dictates the low temperature specific
heat and thermal conductivity on the boundary of the system. In a system where the micro-
scopic constituents are all bosons, C determines c− modulo 8, while in a system of fermions
c− is determined by C modulo 1/2.

When C is trivial, the system forms an invertible state. This means that the many-body
ground state possesses an inverse state, such that the original state and its inverse together
can be adiabatically converted to a trivial product state without closing the bulk energy gap.
In the presence of a symmetry group G, an important class of invertible states are referred to
as symmetry-protected topological (SPT) states [6]. These are states that can be adiabatically
connected to a trivial product state if the symmetry can be broken, but not while preserving
the symmetry. A wide class of d-dimensional SPT states can be classified using topological
effective actions associated with the group G, which results in the group cohomology classi-
fication Hd+1[G, U(1)] [7,8]. More generally, sophisticated mathematical theories have been
developed to classify invertible and SPT states in general dimensions in terms of generalized
cohomology theories [9–12].

When the anyon theory C is non-trivial, the resulting quantum many-body ground state is
non-trivial even in the absence of any symmetry as it is not possible to adiabatically transform
the ground state to a trivial product state without closing the bulk energy gap. In the presence
of a symmetry group G, some topologically ordered states may be disallowed, while others split
into distinct symmetry-enriched topological (SETs) phases. Different SETs described by the
same topological order (C, c−) cannot be adiabatically connected to each other while preserving
the symmetry, although they can be adiabatically connected if the symmetry is broken along
the path.

A hallmark of SETs is that the topologically non-trivial excitations can carry fractional quan-
tum numbers of the symmetry. Well-known examples include the fractional electric charge
carried by quasiparticles in fractional quantum Hall states, or the neutral spin-1/2 “spinon”
excitations in quantum spin liquids. The different patterns of symmetry fractionalization par-
tially distinguish SETs with the same topological order (C, c−). In the past few years, it was
understood that symmetry fractionalization can also be classified in terms of group cohomol-
ogy [13,14].

In addition to the symmetry fractionalization patterns, different SETs are characterized
by different fusion and braiding properties of symmetry defects that can be introduced into
the system. Ref. [14] developed a general algebraic theory of symmetry defects for unitary,
space-time orientation preserving symmetries, known as a G-crossed braided tensor category
theory (see also [15,16] for related work). The G-crossed braided tensor category is expected
to fully characterize the distinction between different SETs in (2+1) dimensions. Concretely,
it consists of a set of data {ρ, N , F, R, U ,η}, subject to a number of consistency conditions and
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gauge equivalences.
An intriguing property of symmetry fractionalization is that it is possible for some symmetry

fractionalization classes to be anomalous, in the sense that the given symmetry fractionaliza-
tion class cannot occur in purely (2+1) dimensions, but can occur at the (2+1)D boundary of
a (3+1)D SPT state [17]. In the language of high energy theory, the associated topological
field theory has a ’t Hooft anomaly. A simple example is the case of a Z2 spin liquid with ZT

2
time-reversal symmetry (with time-reversal T2 = 1), where the Z2 charge and flux both carry
a Kramers degeneracy [17]. A basic question, then, is to determine which (3+1)D SPT state
is required to host a given SET at its (2+1)D surface. We refer to this as “computing the sym-
metry fractionalization anomaly,” or simply “computing the anomaly” associated with a given
SET. Since almost all SPTs in (3+1) dimensions fall within the group cohomology classifica-
tion H4[G, U(1)], it follows that with a few exceptions, computing the anomaly amounts to
computing an element of H4[G, U(1)] given the data that describes a given symmetry frac-
tionalization class.

In general, the problem of computing anomalies for SETs has not been fully solved ex-
cept for certain special cases. For cases where the symmetry is unitary, space-time orientation
preserving, and does not permute anyon types, a formula for the H4 anomaly was presented
in Refs. [14, 18]. Ref. [14] computed the anomaly by explicitly solving the G-crossed consis-
tency equations up to an H4 co-cycle. Ref. [18] computed the anomaly in a different manner
by following a derivation of an obstruction formula for group extensions of fusion categories
develeped by Etingof, Nikshych, and Ostrik [19]. However these formulas were neither gener-
alized to the case where symmetries may permute anyons nor to symmetries that involve space-
time reflections. For Abelian topological orders with Abelian (unitary orientation-preserving)
symmetry groups that do not permute quasiparticle types, a bulk-boundary correspondence
was also developed in Ref. [20].

For the case of space-time reflection symmetries where time-reversal or spatial reflection
square to the identity (referred to as ZT

2 and Zr
2 respectively), methods to compute the anomaly

were subsequently derived in Ref. [21] for bosonic systems, in Ref. [22, 23] for fermionic
systems, and independently conjectured for both in Ref. [24]. Ref. [25] also subsequently
developed an alternate derivation. Ref. [26] has also recently extended the derivation of Ref.
[21] to fermionic systems.

Recently, anomaly indicators for U(1)×ZT
2 and U(1)⋊ZT

2 were also derived in Ref. [27],
allowing a general computation of mixed anomalies between U(1) and ZT

2 symmetry. For gen-
eral symmetry groups that involve space-time reflections, the only known result is an anomaly
formula for Abelian toric code topological order when anyons are not permuted by symmetries,
derived from an explicit microscopic construction of SET phases in Ref. [28].

Despite the above progress, to date a general method has not been developed for comput-
ing symmetry fractionalization anomalies in cases where symmetries permute anyon types, or
where time-reversal or spatial reflection symmetry are intertwined in non-trivial ways with uni-
tary orientation-preserving symmetries. One may consider, for example, systems with space-
time reflection symmetries where time-reversal does not square to the identity, but rather
squares to a non-trivial unitary symmetry, corresponding to the group ZT

4. This would physi-
cally arise if the underlying microscopic time-reversal symmetry is not a true symmetry of the
system, but rather time-reversal combined with a unitary symmetry, such as a spin rotation,
is a symmetry. Then the effective time-reversal symmetry may not square to the identity but
rather to a unitary spin rotation symmetry. On the other hand, in cases such as G × ZT

2 sym-
metry, where G is a unitary space-time orientation preserving symmetry, there may be mixed
anomalies which we currently do not know how to compute except in the special case where
G = U(1).

An important observation is that while symmetry fractionalization itself is in general char-
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acterized by a complicated set of data [14], the difference between symmetry fractionalization
classes forms an Abelian group, classified byH2

[ρ][G,A] [14]. Hereρ determines how the sym-
metries permute anyons, while A is an Abelian group that arises from the group structure of
fusion of Abelian anyons. In other words, after fixing the way symmetries permute anyons
by fixing ρ, two different symmetry fractionalization classes for a given topological order can
then be related to each other by an element [t] ∈H2

[ρ][G,A]. Therefore, [t] should allow us to
specify the relative anomaly, that is the difference in anomalies, between two symmetry frac-
tionalization classes. Note that since anomalies, or equivalently SPTs in one higher dimension,
form an Abelian group, the difference in anomalies is a well-defined notion.

In this paper, we explain how to compute relative anomalies for general symmetries, includ-
ing symmetries that permute anyon types and also general space-time reflection symmetries.
In the case of unitary space-time orientation preserving symmetries, the anomaly formula we
derive, presented in Eq. (44), was previously also derived as an obstruction to gauging in
Ref. [29] through a more abstract mathematical formalism. However the logical arguments
leading to our derivation and its interpretation are somewhat different from that of Ref. [29].
Moreover, the mathematical structure and equations that we use are entirely in terms of the
data and consistency conditions presented in Ref. [14].

To treat space-time reflection symmetries, we propose a method to generalize the G-crossed
braided tensor category equations presented in Ref. [14] to characterize space-time reflection
defects. Our proposal proceeds by incorporating additional labels to keep track of local space-
time orientations. This allows us to extend the derivation of the relative anomaly formula to
the case of general space-time reflection symmetries, which results in some minor modifica-
tions to the unitary space-time orientation preserving case (see Eq. (51)).

We subsequently use the relative anomaly formula to reproduce previous results for ZT
2,

U(1)× ZT
2, and U(1)⋊ZT

2 anomalies [21, 27] in a completely different way, thus providing a
highly non-trivial consistency check on the correctness of this approach.

We then use the relative anomaly formula to study a variety of previously inaccessible
examples involving more general time-reversal symmetries. These include anomalies for ZT

4
symmetry and mixed anomalies for Z2×ZT

2 symmetries. A few notable simple examples are as
follows. We find that the Z2 spin liquid (toric code) state with ZT

4 symmetry is anomalous when
the electric and magnetic particles carry half charge under T2. This provides a generalization
of the anomalous eTmT state [17,30] to the case of ZT

4 symmetry, which we dub the anomalous
eT2mT2 state. By studying Z2×ZT

2 symmetry for the Z2 spin liquid (toric code) state, we find
a host of novel types of mixed anomalies, summarized for the case of no permutations in Table
2.

We also explicitly study novel examples of anomalous symmetry fractionalization classes
for unitary Z2 × Z2 symmetry where anyons are permuted. This, for example, leads us to
find anomalies associated with charge-conjugation symmetry in U(1)N Chern-Simons theories,
summarized in Table 1.

Our analysis also yields as a byproduct new invariants for Z2 symmetry fractionalization,
λa, λ̃a = ±1 (see Eq. (106), (107)), which do not require a to be self-dual. λa = ±1 is
defined whenever a is invariant under the action of the Z2 symmetry and determines whether
a carries integer or fractional charge under Z2. λ̃a is defined whenever a is permuted to its
topological charge conjugate under the action of the Z2 symmetry and changes by ±1 when
the Z2 symmetry fractionalization class is changed.
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2 Symmetry fractionalization

2.1 Review of UMTC notation

Here we briefly review the notation that we use to describe UMTCs. For a more compre-
hensive review of the notation that we use, see e.g. Ref. [14]. The topologically non-trivial
quasiparticles of a (2+1)D topologically ordered state are equivalently referred to as anyons,
topological charges, and quasiparticles. In the category theory terminology, they correspond
to isomorphism classes of simple objects of the UMTC.

A UMTC C contains splitting spaces V ab
c , and their dual fusion spaces, V c

ab, where a, b, c ∈ C
are the anyons. These spaces have dimension dim V ab

c = dim V c
ab = N c

ab, where N c
ab are

referred to as the fusion rules. They are depicted graphically as:

(dc/dadb)
1/4

c

ba
µ = 〈a, b; c,µ| ∈ V c

ab, (1)

(dc/dadb)
1/4

c

ba
µ = |a, b; c,µ〉 ∈ V ab

c , (2)

where µ = 1, . . . , N c
ab, da is the quantum dimension of a, and the factors

�
dc

dadb

�1/4
are a

normalization convention for the diagrams.
We denote ā as the topological charge conjugate of a, for which N1

aā = 1, i.e.

a× ā = 1+ · · · (3)

Here 1 refers to the identity particle, i.e. the vacuum topological sector, which physically
describes all local, topologically trivial excitations.

The F -symbols are defined as the following basis transformation between the splitting
spaces of 4 anyons:

a b c

e

d

α

β
=
∑
f ,µ,ν

�
F abc

d

�
(e,α,β)( f ,µ,ν)

a b c

f

d

µ

ν
. (4)

To describe topological phases, these are required to be unitary transformations, i.e.��
F abc

d

�−1�
( f ,µ,ν)(e,α,β)

=
��

F abc
d

�†�
( f ,µ,ν)(e,α,β)

=
�
F abc

d

�∗
(e,α,β)( f ,µ,ν) . (5)

The R-symbols define the braiding properties of the anyons, and are defined via the the
following diagram:

c

ba
µ =
∑
ν

�
Rab

c

�
µν

c

ba
ν . (6)

Under a basis transformation, Γ ab
c : V ab

c → V ab
c , the F and R symbols change:

F abc
d → F̃ abc

d = Γ ab
e Γ

ec
d F abc

d [Γ bc
f ]

†[Γ a f
d ]

†,

Rab
c → R̃ab

c = Γ
ba
c Rab

c [Γ
ab
c ]

†. (7)

These basis transformations are referred to as vertex basis gauge transformations. Physical
quantities correspond to gauge-invariant combinations of the data.
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The topological twist θa = e2πiha , with ha the topological spin, is defined via the diagram:

θa = θā =
∑
c,µ

dc

da

�
Raa

c

�
µµ
=

1
da a

. (8)

Finally, the modular, or topological, S-matrix, is defined as

Sab =D−1
∑

c

N c
āb
θc

θaθb
dc =

1
D a b , (9)

where D =
q∑

a d2
a .

A quantity that we make extensive use of is the double braid, which is a phase if either a
or b is an Abelian anyon:

a b

= Mab

ba

. (10)

2.2 Topological symmetry and braided auto-equivalence

An important property of a UMTC C is the group of “topological symmetries,” which are re-
lated to “braided auto-equivalences” in the mathematical literature. They are associated with
the symmetries of the emergent TQFT described by C, irrespective of any microscopic global
symmetries of a quantum system in which the TQFT emerges as the long wavelength descrip-
tion.

The topological symmetries consist of the invertible maps

φ : C→ C. (11)

The different φ, modulo equivalences known as natural isomorphisms, form a group, which
we denote as Aut(C). [14]

The symmetry maps can be classified according to a Z2 ×Z2 grading, defined by

q(φ) =

�
0 if φ is not time-reversing
1 if φ is time-reversing,

(12)

p(φ) =

�
0 if φ is spatial parity even
1 if φ is spatial parity odd.

(13)

Here time-reversing transformations are anti-unitary, while spatial parity odd transformations
involve an odd number of reflections in space, thus changing the orientation of space. Thus
the topological symmetry group can be decomposed as

Aut(C) =
⊔

q,p=0,1

Autq,p(C). (14)

Aut0,0(C) is therefore the subgroup corresponding to topological symmetries that are unitary
and space-time parity even (this is referred to in the mathematical literature as the group of
“braided auto-equivalences”). The generalization involving reflection and time-reversal sym-
metries appears to be beyond what has been considered in the mathematics literature to date.

It is also convenient to define

σ(φ) =

�
1 if φ is space-time parity even
∗ if φ is space-time parity odd.

(15)
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A map φ is space-time parity odd if (q(φ) + p(φ)) mod 2 = 1, and otherwise it is space-time
parity even.

The maps φ may permute the topological charges:

φ(a) = a′ ∈ C, (16)

subject to the constraint that

N c′
a′b′ = N c

ab,

Sa′b′ = Sσ(φ)ab ,

θa′ = θ
σ(φ)
a . (17)

The maps φ have a corresponding action on the F - and R− symbols of the theory, as well as
on the fusion and splitting spaces, which we will discuss in the subsequent section.

2.3 Global symmetry

Let us now suppose that we are interested in a system with a global symmetry group G. For
example, we may be interested in a given microscopic Hamiltonian that has a global symmetry
group G, whose ground state preserves G, and whose anyonic excitations are algebraically
described by C. The global symmetry acts on the topological quasiparticles and the topological
state space through the action of a group homomorphism

[ρ] : G→ Aut(C). (18)

We use the notation [ρg] ∈ Aut(C) for a specific element g ∈ G. The square brackets indicate
the equivalence class of symmetry maps related by natural isomorphisms, which we define
below. ρg is thus a representative symmetry map of the equivalence class [ρg]. We use the
notation

ga ≡ ρg(a). (19)

We associate gradings q(g) and p(g) by defining

q(g)≡ q(ρg),

p(g)≡ p(ρg),

σ(g)≡ σ(ρg). (20)

In this section we consider the case with no spatial reflections, i.e. p(g) = 0. The case with
spatial reflection is discussed in Sec. 5.
ρg has an action on the fusion/splitting spaces:

ρg : V c
ab→ V

gc
ga g b. (21)

This map is unitary if q(g) = 0 and anti-unitary if q(g) = 1. We write this as

ρg|a, b; c,µ〉=∑
ν

[Ug(
ga, gb; gc)]µνKq(g)| ga, gb; gc,ν〉, (22)

where Ug( ga, gb; gc) is a N c
ab × N c

ab matrix, and K denotes complex conjugation.
Under the map ρg, the F and R symbols transform as well:

ρg[F
abc
de f ] = Ug(

ga, gb; ge)Ug(
ge, gc; gd)F

ga g b gc
gd ge g f U−1

g (
gb, gc; g f )U−1

g (
ga, g f ; gd) (23)

= Kq(g)F abc
de f Kq(g)

ρg[R
ab
c ] = Ug(

gb, ga; gc)R
ga g b
gc Ug(

ga, gb; gc)−1 = Kq(g)Rab
c Kq(g), (24)
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where we have suppressed the additional indices that appear when N c
ab > 1.

Importantly, we have

κg,h ◦ρg ◦ρh = ρgh, (25)

where the action of κg,h on the fusion / splitting spaces is defined as

κg,h(|a, b; c,µ〉) =∑
ν

[κg,h(a, b; c)]µν|a, b; c,ν〉. (26)

The above definitions imply that

κg,h(a, b; c) = Ug(a, b; c)−1Kq(g)Uh(
ḡa, ḡb; ḡc)−1Kq(q)Ugh(a, b; c), (27)

where ḡ≡ g−1. κg,h is a natural isomorphism, which means that by definition,

[κg,h(a, b; c)]µν = δµν
βa(g,h)βb(g,h)

βc(g,h)
, (28)

where βa(g,h) are U(1) phases.

2.4 Symmetry localization and fractionalization

Now let us consider the action of a symmetry g ∈ G on the full quantum many-body state of
the system. Let Rg be the representation of g acting on the full Hilbert space of the theory. We
consider a state |Ψa1,··· ,an

〉 in the full Hilbert space of the system, which consists of n anyons,
a1, · · · an, at well-separated locations, which collectively fuse to the identity topological sector.
Since the ground state is G-symmetric, we expect that the symmetry action Rg on this state
possesses a property that we refer to as symmetry localization. This is the property that the
symmetry action Rg decomposes as

Rg|Ψa1,··· ,an
〉 ≈

n∏
j=1

U ( j)g Ug(
ga1, · · · , gan; 1)|Ψ ga1,··· , gan

〉. (29)

Here, U ( j)g are unitary matrices that have support in a region (of length scale set by the corre-
lation length) localized to the anyon a j . The map Ug( ga1, · · · , gan; 1) is the generalization of
Ug( ga, gb; gc), defined above, to the case with n anyons fusing to vacuum. Ug( ga1, · · · , gan; 1)
only depends on the global topological sector of the system – that is, on the precise fusion tree
that defines the topological state – and not on any other details of the state, in contrast to the
local operators U ( j)g . The≈means that the equation is true up to corrections that are exponen-
tially small in the size of U ( j) and the distance between the anyons, in units of the correlation
length.

The choice of action ρ defined above defines an element [O] ∈ H3
[ρ](G,A) [14]. If [O]

is non-trivial, then there is an obstruction to Eq. (29) being consistent when considering the
associativity of three group elements. We refer to this as a symmetry localization anomaly, or
symmetry localization obstruction. See. Ref. [14,31,32] for examples.1

If [O] is trivial, so that symmetry localization as described by Eq. (29) is well-defined,
then it is possible to define a notion of symmetry fractionalization [14]. When the action
of ρ is trivial, this is particularly simple to review. In this case, one can fix a gauge where

1A non-trivial obstruction [O] ∈H3
[ρ](G,A) can be alternatively interpreted as the associated TQFT possessing

a non-trivial 2-group symmetry, consisting of the 0-form symmetry group G and the 1-form symmetry group A,
with [O] characterizing the 2-group [14,19,33].
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Ug(a, b; c) = 1. Symmetry fractionalization then corresponds to a possible choice of phase
ωa(g,h):

U (1)g U (1)h =ωa(g,h)U (1)gh . (30)

One can show that ωaωb = ωc whenever N c
ab ̸= 0, which then implies that ωa = Maw(g,h),

where w(g,h) ∈ A is an Abelian anyon. One can show that associativity of three group ele-
ments requires thatw obey a 2-cocyle condition, while redefinitions of U (1)g allow one to change
w by a coboundary. It thus follows that the symmetry fractionalization pattern corresponds to
an element [w] ∈H2(G,A).

When the action of ρ is non-trivial, so that the anyons can be permuted by symmetries,
the above analysis is more complicated. A detailed analysis [14] reveals that now symmetry
fractionalization patterns are no longer characterized by group cohomology. Rather, differ-
ent symmetry fractionalization classes can be related to each other by [t] ∈ H2

[ρ](G,A). In

mathematical parlance, symmetry fractionalization classes form an H2
[ρ](G,A) torsor.

In general, symmetry fractionalization is characterized by a consistent set of data {η} and
{U}, where {U} was defined above. The data ηa(g,h) characterize the difference in phase
obtained when acting “locally” on an anyon a by g and h separately, as compared with gh
(note ηa(g,h) is not the same as ωa(g,h) above). This can be captured through a physical
process involving symmetry defects, as explained in the next section. There are two important
consistency conditions for U and η, which we will use repeatedly later in this paper [14]. The
first one is

ηa(g,h)ηb(g,h)
ηc(g,h)

= κg,h(a, b; c), (31)

with κ defined in terms of U as in Eq. (27). The other one is

ηa(g,h)ηa(gh,k) = ηa(g,hk)ηq(g)
ρ−1

g (a)
(h,k). (32)

These data are subject to an additional class of gauge transformations, referred to as symmetry
action gauge transformations [14]:

Ug(a, b; c)→ γa(g)γb(g)
γc(g)

Ug(a, b; c),

ηa(g,h)→ γa(gh)
(γ ga(g))q(g)γa(h)

ηa(g,h). (33)

Recall p(g) = 0 in the discussion of this section. We note that U also changes under a vertex
basis gauge transformation. Different gauge-inequivalent choices of {η} and {U} characterize
distinct symmetry fractionalization classes [14].

3 Symmetry defects

One way to understand the classification of symmetry fractionalization is in terms of the prop-
erties of symmetry defects. A symmetry defect consists of a defect line in space, labeled by a
group element g ∈ G, which we sometimes refer to as a branch cut, and which can terminate
at a point. In the (2+1)D space-time, the symmetry defect is thus associated with a two-
dimensional branch sheet. A given branch cut line associated with g can have topologically
distinct endpoints, which thus give rise to topologically distinct types of g defects; a particular
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ag

g

x

g
x

g

Figure 1: Left: A g defect in space. Branch cut is depicted by dashed line; there can be
topologically distinct endpoints, labeled by ag. Right: g defect is a two-dimensional
sheet in space-time; an anyon x is permuted to gx upon crossing the sheet.

topological class of g defect is thus labeled as ag. An anyon x crossing the g defect branch cut
is transformed into its permuted counterpart, gx (see Fig. 1).

Here we focus on the case where the symmetry group is space-time orientation preserving
and is represented unitarily on the quantum states. In this case, a complete algebraic theory
of symmetry defects has been developed in [14], which captures the fusion and braiding prop-
erties of the symmetry defects. Without developing the full theory of symmetry defects, some
elementary considerations can be used to reproduce the symmetry fractionalization classifica-
tion, as we describe below.

First, we note that the defects can be organized into a G-graded fusion category,

CG =
⊕
g∈G

Cg, (34)

where the simple objects of Cg are the topologically distinct set of g defects. By considering
states on a torus with a g defect wrapping one of the cycles, one can show that

|Cg|= |Cg
0 |, (35)

where |Cg| is the number of topologically distinct g defects, and |Cg
0 | is the number of g invariant

anyons.

3.1 Fusion rules of symmetry defects and relation to symmetry fractionalization

Fusion of the defects respects the group multiplication law associated with their branch cuts,
so that

ag × bh =
∑
cgh

N c
abcgh. (36)

For a given choice of fusion rules, one can consider a different state where the fusion rules
are modified relative to those of the original state by allowing an anyon flux line associated
with an anyon t(g,h) to appear at the tri-junction between the branch sheets g, h, and gh (see
Fig. 2). The fusion of the defects is thus modified to

ag × bh = t(g,h)
∑

c

N c
abcgh. (37)

Note that in our diagrammatic calculus, we pick the convention that the anyon line t(g,h)
propagates to the left in time.

Immediately, a number of important constraints appear for such a modification. The fusion
of the branch sheets should be an invertible process, which requires that t(g,h) be an Abelian
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g
h

gh

ag bh

c
′

gh

ag bh ckag bh ck

t(g,h) t(g,h)

t(g,h)

t(gh,k)

t(h,k)

t(g,hk)

g
t(h,k)

Figure 2: Top left: Fusion of defect branch sheets. Changing the symmetry fraction-
alization class by a 2-cocyle t(g,h) changes the fusion of the defect worldsheets by
the appearance of a Wilson line of t(g,h) at the trijunction. Top right: Equivalent
diagrammatic representation, where ag, bh are the end-points of the g and h line de-
fects. The fusion rule of the new theory thus becomes ag × bh = t(g,h)

∑
cgh

N c
abcgh.

We define c′gh = t(g,h)cgh. Bottom panel: associativity of the defect fusion implies
the 2-cocyle condition for t(g,h).

g
h

gh

t(g,h)

h

gh

gh

t(g,h)

=

Figure 3: Splitting and fusing defect sheets g and h leaves behind an anyon loop for
t(g,h). Invertibility of the process thus requires dt(g,h) = 1.

anyon. To see this, note that the process of fusing and then splitting the branch sheets to
come back to the original configuration of branch sheets would leave behind an anyon loop
associated with t(g,h) (see Fig. 3). The anyon loop would give a quantum dimension factor
dt(g,h) to the evaluation of defect diagrams; the invertibility of the process would then require
dt(g,h) = 1. We note that an alternative derivation of the fact that t(g,h) is Abelian, starting
from basic locality constraints on symmetry localization and symmetry fractionalization, is
given in Ref. [14].

Furthermore, t(g,h) must respect the associativity of fusion:

(ag × bh)× ck = ag × (bh × ck). (38)
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For the new fusion rules (37) to be associative, we are thus led to the constraint

t(g,h)t(gh,k) = gt(h,k)t(g,hk). (39)

We can understand this equation diagrammatically as shown in Fig 2. Eq. (39) is the condition
that t(g,h) be a 2-cocycle (twisted by the action of ρ). Since t(g,h) is itself ambiguous up to
fusing ag and bh separately by an Abelian anyon, we thus also obtain an equivalence of t(g,h)
under 2-coboundaries.

We see therefore that given a set of defect fusion rules, another set of defect fusion rules
can be obtained given an element of H2

[ρ](G,A). In other words, the set of possible defect

fusion rules forms an H2
[ρ](G,A) torsor.

The connection to symmetry fractionalization can be understood as follows. Symmetry
fractionalization is characterized by the difference in phases obtained when acting ‘locally’ on
an anyon by g and h separately, as compared with gh. We can capture this by introducing the
η symbols, defined diagrammatically as follows:

x

ḡ x

h̄ḡ x

cgh

bhag

µ

= ηx (g,h)
x

h̄ḡ x

cgh

bhag

µ

. (40)

The U symbols, which define the action of symmetry group elements on the fusion and
splitting spaces can also be defined diagrammatically, as shown:

xk
k̄ b

k̄c

ba

µ

=
∑
ν

[Uk (a, b; c)]µν xk

k̄c

c

ba

ν

. (41)

Different gauge-inequivalent choices of η and U define the notion of symmetry fractional-
ization [14]. When the trijunction of the defect branch sheets is modified to include an anyon
flux line, we therefore see that ηx(g,h) changes, because the x anyon line must be exchanged
with the t(g,h) anyon line when being fully slid under the vertex, as shown in Fig. 4. This
corresponds to the transformation ηx(g,h)→ Mxt(g,h)ηx(g,h), where Mxt(g,h) is the phase ob-
tained from a double braid between x and t(g,h). This precisely corresponds to a change in
the symmetry fractionalization class. In fact one can show that all possible symmetry fraction-
alization classes can be related to each other by such a change in the defect fusion rules [14],
which implies that symmetry fractionalization classes are therefore related to each other by
elements of H2

[ρ](G,A).

3.2 Relating F -symbols from different symmetry fractionalization classes

For unitary, orientation preserving symmetries, the defects form a G-graded fusion category.
This means that in addition to the fusion rules (36), the defect fusion is characterized by F -
symbols, which describe basis changes among different fusion trees for fusing three defects
ag, bh, ck. For the defect theory to be anomaly-free, we require that the pentagon equation for
the defect F -symbols be satisfied:

F f cd
egl F abl

e f k =
∑

h

F abc
g f hF ahd

egk F bcd
khl , (42)

where we have suppressed the group labels for ease of notation.
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g
h

gh

x

g
h

gh
x

=Mxt(g,h)ηx(g,h)

Figure 4: In the original theory, sliding an anyon line through the defect trijunction
gave a phase ηx(g,h). In the new theory, the anyon line x must also pass through
the Abelian anyon line associated with t(g,h), which picks up the mutual braiding
phase Mxt(g,h) between x and t(g,h), as illustrated.

e

g

c d

e

f

c db

e

g

a c db

F
k

a db
e

c dbFba
l

F

f

e

F F
c

a

a

k
l

hh

Figure 5: The Pentagon equation enforces the condition that different sequences
of F -moves from the same starting fusion basis decomposition to the same ending
decomposition gives the same result. Eq. (42) is obtained by imposing the condition
that the above diagram commutes.

ag bh ckag bh ck

d
′′

ghk

e
′

gh

d
′′

ghk

f ′

hk

=

∑

f ′

F̃
agbhck
d′′

ghk
e′
gh

f ′

hk

t(g,h)

t(gh,k)

g
t(h,k)

t(g,hk)

t(h,k)

Figure 6: Diagram depicting F symbols of the new theory, which we de-
note as F̃ , in terms of labeling of objects in the original theory. We define
d ′′ghk = t(g,h)t(gh,k)dghk = gt(h,k)t(g,hk)dghk, e′gh = t(g,h)egh, f ′hk = t(h,k) fhk.

Given two symmetry fractionalization classes related to each other by an element of
H2
[ρ](G,A), the defect F symbols must also change. Since the defect fusion rules change

according to Eq. 37, we can also determine the F symbols of the new theory given the data of
the old theory.

Let us label the F symbols of the new theory as F̃ . F̃ is therefore associated with the
diagram shown in Fig. 6. We can derive an explicit expression for F̃ by using the F and R
moves of the original theory, as shown in Fig. 7. This leads to the following equation for F̃ :
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Figure 7: Sequence of moves in the original theory in order to determine the F sym-
bols, F̃ , for defects in the new theory. The defect fusion rules in the new theory are
twisted by an element [t] ∈ H2

[ρ](G,A) relative to those of the original theory. We
assume all defect and anyon lines have arrows pointing upwards.

.

F̃
ag,bh,ck

d ′′ghk,d ′ghk, f ′hk
=F
t(g,h),egh,ck

d ′ghk,e′gh,dghk
F

ag,bh,ck

dghk,egh, fhk
[F
t(gh,k),t(g,h),dghk

d ′′ghk,t(gh,k)t(g,h),dghk
]∗F t(g,hk), gt(h,k),dghk

d ′′ghk,t(g,hk) gt(h,k),d̃ghk

× [F gt(h,k),ag, fhk

d̃ghk,ãg,dghk
]∗[R

gt(h,k),ag

ãg
]∗F ag,t(h,k), fhk

d̃ghk,ãg, f ′hk

.

Note that we assume for ease of notation that all fusion coefficients are 0 or 1.

4 Relative anomaly calculation for symmetry fractionalization

In the previous sections we have discussed how one can consider two theories, where the “new”
theory is related to the “original” theory by changing the defect fusion rules by an element
[t] ∈H2

[ρ](G,A), which thus corresponds to a change in the symmetry fractionalization class.
The relative anomaly derives from studying the consistency of the defect F symbols for the
new theory, denoted F̃ in the previous section, in relation to the consistency of the original
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theory. In this section we use this consideration to derive a relative anomaly formula.
To do so, we consider the fusion of four defects in the original theory, together with Abelian

anyons specified by t : G × G → A, in order to recover the defect fusion of the new theory.
This leads us to consider an analog of the pentagon equation for 4 defects, which now yields
a non-trivial consistency condition obtained by following the 15 moves shown in Fig. 8.

Let us first assume that the original theory is fully consistent. In this case, following the
15 moves shown in Fig. 8 gives us a non-trivial equality:

F̃ F̃Or(g,h,k, l) =
∑

F̃ F̃ F̃ , (43)

where

Or(g,h,k, l) =R
ght(k,l),t(g,h)η ght(k,l)(g,h)[Ug(

gt(hk, l), gt(h,k))]∗Ug(
gt(h,kl), ght(k, l))

F t(ghk,l),t(gh,k),t(g,h)[F t(ghk,l),t(g,hk), gt(h,k)]∗

F t(g,hkl), gt(hk,l), gt(h,k)[F t(g,hkl), gt(h,kl), ght(k,l)]∗

F t(gh,kl),t(g,h), ght(k,l)[F t(gh,kl), ght(k,l),t(g,h)]∗. (44)

In Eq. (43) we have for ease of notation dropped the explicit indices for the F̃ symbols. Note
that in Eq. (44), we have dropped labels in the data whenever they are fixed by fusion out-
comes. For example, Ug(a, b; c) is written as Ug(a, b) if c is uniquely determined by a and b.
Similarly F abc

de f is written as F abc when a,b,c are Abelian, as d,e, f are then fixed uniquely by
the fusion rules.

Eq. (43) shows that while the original theory was consistent, the new theory, whose de-
fect F -symbols are given by F̃ , may not satisfy its pentagon equation, up to an obstruction
defined by Or(g,h,k, l). The new theory is therefore anomalous, while the original theory was
consistent.

On the other hand, suppose that the original theory is not fully consistent. In this case,
following the 15 moves of Fig. 8 does not give an equality, but rather an equality up to a
4-cochain O(g,h,k, l):

F̃ F̃O(g,h,k, l)Or(g,h,k, l) =
∑

F̃ F̃ F̃ . (45)

Here O(g,h,k, l) detects the failure of the original theory from satisfying the consistency equa-
tion required by Fig. 8. We see then that Or(g,h,k, l) describes a relative anomaly, as it
describes the failure of the new theory from satisfying its pentagon equation, relative to an
anomaly O(g,h,k, l) of the original theory.

4.1 Or(g,h,k, l), H4[G, U(1)], and SPTs

Two comments are now in order. First, we expect that Or(g,h,k, l) is a 4-cocycle; we expect
this should be provable using only the G-crossed consistency equations described in Ref. [14],
however we do not pursue this further here.

Second, we assert that Or(g,h,k, l) can always be canceled completely by considering the
theory to exist at the (2+1)D surface of a (3+1)D invertible state. The cohomology class of
Or in H4[G, U(1)] determines which SPT state is required in the bulk, relative to the SPT that
was required to cancel the anomaly of the original theory. The proof of this would require
developing a theory of the full (3+1)D system, which we leave for future work.
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Figure 8: Consistency condition for derivation of relative anomaly. Anyon and defect
lines are assumed to have arrows directed upwards.

5 Incorporating space-time reflection symmetries

Here we wish to extend the discussion above to the case where the symmetry group G may
contain space-time reflection symmetries. We will propose a simple modification of the ap-
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proach in Sec. 3-4 for unitary space-time orientation-preserving symmetries. Our proposed
modification leads to a similar formula for the relative anomaly (see Eq. (51)).

A defect associated with reflection symmetry corresponds to inserting a crosscap in the
system, as shown in Fig. 9. By considering a flattened crosscap, we can consider this as a g
defect branch line as well, on the same footing as g defects for unitary symmetries, with the
exception that when an anyon crosses the defect line, it gets reflected in space in addition to
being permuted to its counterpart.

x

r

x

x

r

x

Figure 9: Left: crosscap, interpreted as a reflection symmetry defect, in space. We can
consider flattening it and treating it on the same footing as other g-defects for unitary
orientation-preserving symmetries. Right: in space-time, the reflection symmetry
defect corresponds to a crosscap tube.

For time-reversing symmetries, which are anti-unitary, it is not clear whether one can de-
fine a sensible notion of a symmetry defect within a Hamiltonian formalism. However if we
Wick rotate to imaginary time, then in Euclidean space-time we can treat time-reversal and
spatial reflection symmetries on equal footing. Our usual notion of time-reversal corresponds
in imaginary time to charge conjugation followed by reflection symmetry. Therefore, in this
section we simply focus on spatial reflection symmetries. In subsequent sections, when dis-
cussing time-reversal symmetries, we then replace our formulas involving spatial reflection
with the product of topological charge-conjugation and time-reversal.

5.1 Symmetry fractionalization classification

The symmetry fractionalization classification H2
[ρ](G,A) can now be rederived by considering

the fusion of reflection symmetry defects, with the following important modification. When
the anyon lines associated with t cross a reflection symmetry defect sheet, the line itself is
reflected in space. This means that t(h,k) transforms to gt(h,k) if it crosses a g-defect where
g is spatial parity reversing. See for example Fig. 10. This implies the following non-trivial
modification to the cocycle equation:

t(g,h)t(gh,k) = g[t(h,k)p(g)]t(g,hk), (46)

where ap(g) ≡ ā if g is spatial parity reversing. Remarkably, this same formula involving the
charge conjugation operation associated with p(g)was derived in Ref. [14] through completely
different considerations, without introducing the notion of a reflection symmetry defect. We
thus view the derivation of Eq. (46) from fusion of reflection symmetry defects as a non-
trivial check on the validity of incorporating reflection symmetry defects into the algebraic
description of defects.

5.2 Keeping track of local space-time orientation

To date, a complete consistent algebraic theory of fusion and braiding of symmetry defects in-
volving reflection symmetry defects has not yet been developed. Here we propose an important
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t(h,k)

t(h,k)

r

t(h,k)

r

t(h,k)

r

h k

hk

rhkt(r,hk)

Figure 10: Fusion of three defect sheets, r, h, k, where r is a spatial reflection symme-
try. As the anyon lines cross the crosscap sheet associated with r, they get reflected
in space in addition to being permuted by the action of ρr.

modification to the original G-crossed braided tensor category theory in order to incorporate
reflection symmetry defects.

Our proposed modification is to first keep track of the local orientation of space-time in
all regions. This can be done by labeling each region in between the defect lines by a local
orientation s = ±. For two regions separated by a defect line, if the defect is orientation-
preserving (reversing), the orientations in the two regions are the same (opposite). Therefore,
once the orientation in one region is known, orientations in all other regions are determined
by the group elements associated with each of the defect lines. Note that a global space-time
orientation is not in general well-defined in the presence of reflection defects; however given
a local portion of a defect diagram, we can label the local space-time orientations.

Now, the F , R, U , and η symbols all explicitly depend on the local orientations. We thus
have F abc

de f ({si}), Rab
c ({si}), Ug(a, b; c; {si}), ηa(g,h; {si}), as shown in Fig. 11. Note that since

the group labels on the defect lines specify the difference in local orientations across the line,
it is sufficient to only specify the orientation in a single region.

ag bh ck ag bh ck

s0

s1
s2

s3 s0

s1

s2

s3

dghk
dghk

egh fhk

s0

s1

s2 s0 s2

s1

ag bh

cgh

ag bh

cgh

= Ra,b
c (s0, s1, s2)

F abc
def (s0, s1, s2, s3)=

s0
s0

s1

s0

s1

s2ag bh

cgh

s0

s1

s2

ag bh

cgh

= ηx(g,h; s0, s1, s2)

s1
s2

s2

s3

ag bh

cgh
s3

= Uk(a, b; c; {si})

ag bh

cgh

xk xk

xk

xk

Figure 11: Including the local space-time orientations {si} in the regions between
the defect / anyon lines. This naturally gives the structure of a higher category. The
lines are assumed to be directed with arrows pointing upwards.
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g
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g
s1 g

s2 g
s3

s0

s1 s2

s3

a b c
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d

e

xg xg

g
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g
b

g
c

g
e

g
d

g
a

g
b

g
c

g
d

gf

xg

a
b

c

d

fs0

s1

s2

s3

g
s0

g
s1

g
s2

g
s3

F
abc
def ({si})

F
ga gb gc
gd ge gf ({

g
si})

Ug(
ga, gb; ge; gs0)

Ug(
ge, gc; gd; gs0)

Ug(
gb, gc; gf ; gs1)

Ug(
ga, gf ; gd; gs0)

Figure 12: g action on the F -symbol diagram. All lines are assumed to be directed
with arrows pointing upwards.

Furthermore we can consider a global symmetry action, ρg for g ∈ G, on the whole di-
agram. Note this is the extension of ρg defined in Sec. 2.3, which acted only on the anyon
theory, to an action on all of the defect data as well. Diagrammatically, this corresponds to
sweeping a defect line associated with g across the diagram, as shown in Fig. 12 for the case
of the F -symbol. We therefore have, for example,

ρg[F
abc
de f ({si})] =Ug(

ga, gb; ge; gs0)Ug(
ge, gc; gd; gs0)

F
ga g b gc
gd ge g f (

gs0)

U−1
g (

gb, gc; g f ; gs1)U
−1
g (

ga, g f ; gd; gs0), (47)

where for ease of notation we have only included the top-left-most space-time index on the
U symbols. The symmetry action on the local orientations is such that gs = (−1)σ(g)s, where
here σ(g) = 0 if g is space-time parity even and σ(g) = 1 if g is space-time parity odd.

In order for the theory to be symmetric, we wish that this G action keep invariant all of
the data of the theory. Therefore, we impose the condition:

ρg[X (· · · ; s)] = X (· · · ; s), (48)

where X (· · · ; s) refers to any datum of the theory, such as the F , R, U , or η symbols. This is
equivalent to the condition that the corresponding diagram, for example Fig. 12, commutes,
which ensures that one obtains the same results regardless of whether a defect line is swept
across the diagram before or after the corresponding move.

Finally, in addition to Eq. (47), (48), we further impose that

X (· · · ; gs) = Kσ(g)X (· · · ; s)Kσ(g), (49)

where recall K refers to complex conjugation. One way to understand the appearance of this
complex conjugation is as follows. Within a path integral formalism, a state on a space M
corresponds to the path integral evaluated on a space-time W such that ∂W = M . Reversing
the orientation of M corresponds to converting a state from a bra to a ket and vice versa. This
requires a Hermitian conjugation to relate processes that occur before and after the reflection.

When space-time reflection symmetries are allowed, the pentagon equation must thus be
modified, because we must keep track of the local orientations. The pentagon equation be-
comes:

F f cd
egl (s0, s2, s3, s4)F

abl
e f k(s0, s1, s2, s4) =

∑
h

F abc
g f h(s0, s1, s2, s3)F

ahd
egk (s0, s1, s3, s4)F

bcd
khl (s1, s2, s3, s4).

(50)
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Other consistency equations are similarly modified, however we will not explicitly consider
them in this paper.

If we focus just on the fusion properties, which involve only the fusion rules and F symbols,
then the above structure no longer corresponds to a fusion category, because a fusion category
does not require the additional data {si}. Rather, as described in a slightly different context
in Ref. [21], such a fusion structure corresponds to the structure of a 2-category. The objects
of the 2-category are the local orientations ±, while the defects ag are now considered to be
1-morphisms between the objects. The fusion and splitting processes that map ag × bh→ cgh
then correspond to the 2-morphisms. Furthermore, the 2-category has a G-action, as described
by the action of ρg, and is also G-equivariant, because we require that the G action leave the
fusion rules and F symbols invariant.

When we include the G-crossed braiding processes in addition to fusion, then the proper
mathematical structure must be a G-equivariant 3-category with G action. We leave a proper
study of the relation between symmetry-enriched topological states and higher category theory
for future work.

So far we have derived the action of ρg on the F -symbols and derived a modified pentagon
equation. It is possible to derive the action of ρg on all of the data {F, R, U ,η}, consistency
conditions, and gauge transformations of the theory, which, combined with Eq. (48) and (49)
thus provides a generalization of the G-crossed braided tensor category equations of Ref. [14]
to space-time reflecting symmetries. We leave it for future work to fully derive all of these
equations and to demonstrate their consistency and applicability to characterizing space-time
reflection symmetric SETs.

Now, turning to the relative anomaly, precisely the same derivation as in Sec. 4 can be
carried through, with the difference that now all of the data also includes a dependence on
the local space-time orientations. Importantly this means that whenever an Abelian anyon
associated with t crosses a g defect line, it gets conjugated to g[tp(g)], as was the case for Eq.
46. We thus arrive at essentially the same formula as in the case without space-time reflections,
with some minor modification:

Or(g,h,k, l; s0) =R
gh[t(k,l)p(gh)],t(g,h)(s0)η gh[t(k,l)p(gh)](g,h, s0)

[Ug(
g[t(hk, l)p(g)], g[t(h,k)p(g)]; s0)]

∗Ug(
g[t(h,kl)p(g)], gh[t(k, l)p(gh)]; s0)

[F t(ghk,l),t(g,hk), g[t(h,k)p(g)](s0)]
∗F t(g,hkl), g[t(hk,l)p(g)], g[t(h,k)p(g)](s0)

[F t(g,hkl), g[t(h,kl)p(g)], gh[t(k,l)p(gh)](s0)]
∗F t(gh,kl),t(g,h), gh[t(k,l)p(gh)](s0)

[F t(gh,kl), gh[t(k,l)p(gh)],t(g,h)(s0)]
∗F t(ghk,l),t(gh,k),t(g,h)(s0). (51)

Note that, as mentioned above, since the defect group labels fix all the local orientations si
once s0 is fixed, we only need to keep track of one additional variable, s0, in the above formula,
which corresponds to the local orientation in the top left of the associated diagram.

From Eqs. (48), (49), we see thatOr(g,h,k, l;−) is fixed byOr(g,h,k, l;+). We thus define
the relative anomaly

Or(g,h,k, l)≡ Or(g,h,k, l;+). (52)

6 Time-reversal symmetry, G = ZT
2

Here we apply the relative anomaly formula to the case where G = ZT
2. Note that (3+1)D

SPTs with ZT
2 symmetry have a Z2 × Z2 classification, while H4[ZT

2, U(1)] = Z2. Therefore
the approach here only captures the relative anomaly that is within the group cohomology
classification.
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To do computations, we work in a “canonical gauge,” where Or(g1,g2,g3,g4) = 1 if any
gi = 1, where 1 refers to the identity element of G. Any residual gauge transformation
(that is, any shift of Or by a coboundary) dε(g1,g2,g3,g4) must then have the property that
ε(g1,g2,g3) = 1 if any gi = 1.

One can then check that

I ≡ Or(T,T,T,T) (53)

is invariant under any residual gauge transformations in the canonical gauge.
Next, we note that it is always possible to pick a gauge for a representative 2-cocycle t such

that

t(1,1) = t(T,1) = t(1,T) = 1. (54)

Here we use 1 to denote the vacuum sector of the anyon theory. Furthermore, we can also
always pick a gauge where UT(a, 1) = UT(1, a) = 1 [14]. This choice of gauge satisfies our
choice of canonical gauge for Or(g1,g2,g3,g4) described above.

Applying the relative anomaly formula, we then find

I = ηt(T,T)(T,T)θt(T,T). (55)

Recall that when Ta = a, ηT
a ≡ ηa(T,T) is a gauge-invariant symmetry fractionalization quan-

tum number that indicates whether a carries a “local” Kramers degeneracy; that is, whether
T2 = −1 “locally” for the anyon a [14].

6.1 Relation to absolute anomaly indicator, Z(RP4)

Recently, the absolute anomaly for ZT
2 was computed in general by computing the path integral

of the (3+1)D theory on RP4 [21]:

Z(RP4) =
1
D

∑
a|a= Ta

ηT
aθada. (56)

This formula was independently conjectured as an “anomaly indicator” in Ref. [24]. Here we
demonstrate compatibility of the relative anomaly, Eq. (55), with the absolute anomaly, Eq.
(56)

As discussed in Sec. 3, shifting a symmetry fractionalization class by a 2-cocyle [t] induces
a shift in the η symbols: η→ η′, with

η′a(T,T) = ηa(T,T)Ma,t(T,T). (57)

That this also holds for anti-unitary time-reversal symmetry was demonstrated explicitly in
Ref. [14].

Let us define

t≡ t(T,T), (58)

as this is the only non-trivial element. The 2-cocycle condition requires

Tt= t. (59)

We have:

η′aθaηtθt = ηaMatθaηtθt = ηatθat. (60)
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Letting Z ′(RP4) be given by Eq. (56) with the η′ quantum numbers, we find

Z ′(RP4)θtηt =
1
D

∑
a|a= Ta

η′aθadaθtηt

=
1
D

∑
a|a= Ta

ηatθatdat

=
1
D

∑
a|(at)= T(at)

ηatθatdat

=
1
D

∑
x |x= T x

ηxθx dx

= Z(RP4). (61)

Note we have used Tt= t by the cocycle condition. Therefore we have proven

Z ′(RP4)θtηt = Z(RP4), (62)

which confirms the relative anomaly formula.
We note that for Abelian topological states, ZT

2 anomalies were further studied in Ref. [34],
where it was shown that the absolute anomaly formula Eq. (56) reduces to the Arf invariant of a
certain quadratic form q defined as follows. Define the Abelian group C = Ker(1−T)/Im(1+T),
which is the group of all T invariant anyons, a = Ta, modulo those that are of the form
a = c × Tc, for some anyon c. Then one defines q(a) = θaη

T
a , considered as a function on C .

The relative anomaly formula derived in this paper, in the case of Abelian topological phases,
is a well-known property of Arf invariants.

7 U(1)×ZT
2 and U(1)⋊ZT

2 symmetry

Here we analyze the cases where the symmetry group corresponds to U(1)×ZT
2 or U(1)⋊ZT

2
symmetry. We denote elements of U(1)×ZT

2 and U(1)⋊ZT
2 as (Uθ ,g), where θ ∈ [0, 2π) and

g ∈ {1,T}. The multiplication is

(Uα,g) · (Uβ ,h) = (Uα+β ,gh) (63)

for U(1)×ZT
2 and

(Uα,g) · (Uβ ,h) = (Uα+q(g)β ,gh) (64)

for U(1) ⋊ ZT
2. Below, for convenience we will also sometimes denote (Uα,g) as Uαg, for

g ∈ {1,T}.
The anomaly classification, given by bulk (3+1)D SPTs, is given by:

H4[U(1)×ZT
2, U(1)] = Z3

2,

H4[U(1)⋊ZT
2, U(1)] = Z2

2. (65)

There is also an additional Z2 coming from a “beyond cohomology” SPT in this case, associ-
ated with time-reversal symmetry alone, whose anomaly can be detected by e2πic−/8 = ±1,
where c− is the chiral central charge. Furthermore, one of the Z2 factors in the group coho-
mology classifications above is associated with pure time-reversal symmetry and corresponds
to the case studied in Sec. 6. Therefore we see the appearance of two additional independent
anomalies for U(1)×ZT

2 symmetry and one for U(1)⋊ZT
2 symmetry. Note that these are mixed

anomalies, because U(1) by itself has trivial fourth cohomology.

23

https://scipost.org
https://scipost.org/SciPostPhys.8.2.028


SciPost Phys. 8, 028 (2020)

In fact it is already known that one of the mixed anomalies for both U(1)×ZT
2 and U(1)⋊ZT

2
symmetry corresponds to whether the vison, which corresponds to the excitation obtained by
threading 2π units of U(1) flux, is a fermion. For U(1) × ZT

2, the second mixed anomaly
corresponds to whether the vison is a Kramers singlet or doublet. These diagnostics were used
recently in Ref. [27] to derive formulas for absolute anomaly indicators for U(1) × ZT

2 and
U(1)⋊ZT

2 symmetry groups. Below we apply our relative anomaly formula to compare with
these results.

7.1 Symmetry fractionalization

First we explain physically the fractionalization classes of U(1)×ZT
2. One can show that there

are basically two pieces of information: first of all, an anyon a can carry a fractional charge
qa (defined mod 1) under U(1). This is captured by a (absolute) vison v0 ∈A such that

e2πiqa = Mv0,a. (66)

Next, we must specify the action of the time-reversal symmetry T, including the permutation
of anyon types ρT and the local T2 value ηT

a for all T-invariant anyons.
The 2-cocyle [t] ∈H2

[ρ](U(1)×ZT
2,A) can be generally parametrized as

t
�
(Uα,g), (Uβ ,h)
�
= t(g,h)v([α]2π+[β]2π−[α+β]2π)/2π. (67)

where [α]2π denotes α modulo 2π. Here t(g,h) is a 2-cocycle associated with H2
[ρ](Z

T
2,A),

while v([α]2π+[β]2π−[α+β]2π)/2π gives a 2-cocycle associated with H2(U(1),A).
This form for the 2-cocyle follows because the Künneth formula in this case gives
H2
[ρ](U(1)×ZT

2,A) =H2
[ρ](Z

T
2,A)⊕H2(U(1),A).

The 2-cocycle condition is satisfied if both t(T,T) and v are invariant under T. v here has
the interpretation of the anyon resulting from a 2π flux insertion in the new theory, relative
to the old theory. This can be seen by looking at g= h= 1,β = 2π−α, which gives

t
�
(Uα,1), (U2π−α,1)

�
= v. (68)

In other words, we may refer to v here as a “relative vison.”
Because T commutes with U(1), the 2π flux and thus v is invariant under T:

Tv = v. (69)

On the other hand, for U(1)⋊ZT
2, one can show that the 2-cocyle [t] ∈H2

[ρ](U(1)⋊Z
T
2,A)

can be generally parametrized as

t
�
(Uα,g), (Uβ ,h)
�
= t(g,h)v([α]2π+s(g)[β]2π−[α+s(g)β]2π)/2π, (70)

where s(g) = 1 − 2q(g) = ±1 depending on whether g is time-reversing. Here the relative
vison v must be a self-dual Abelian anyon and invariant under T, as a 2π flux turns into a −2π
flux under T.

7.2 Cohomology invariants

We first describe a set of invariants for the H4 cohomology classes. Let us first focus on
H4[U(1) × ZT

2, U(1)] = Z3
2. One quick way to understand the invariants is to consider the

Z2 × ZT
2 subgroup, where the Z2 is generated by Uπ. Notice that besides T there is another
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order-2 anti-unitary element T′ = UπT. Thus we can define a pure time-reversal anomaly for
both T and T′:

I1 = Or(T,T,T,T),

I2 = Or(T
′,T′,T′,T′). (71)

For the third Z2 invariant, we consider the following expression:

I3 =
Or(T, Uπ, Uπ, Uπ)Or(Uπ, Uπ,T, Uπ)
Or(Uπ,T, Uπ, Uπ)Or(Uπ, Uπ, Uπ,T)

Or(Uπ, Uπ, Uπ, Uπ). (72)

The form of the expression is motivated by relation of the slant product of the 4-cocycle to a
time-reversal (i.e. T) domain wall. The bulk bosonic topological insulator can be viewed as
proliferation of time-reversal domain walls decorated with U(1) bosonic integer quantum Hall
(BIQH) states with Hall conductance σx y = 2. If the U(1) symmetry is broken down to Z2,
then the BIQH state becomes the Z2 Levin-Gu SPT state [35]. The invariant I3 is designed to
detect such decorated 2D SPT states on time-reversal domain walls.

Note that these expressions are all assuming a canonical gauge for Or , as described in the
previous section, and thus are invariant under residual gauge transformations that preserve
this canonical gauge.

For G = U(1)⋊ZT
2, the above expressions are all still invariants, however we will see that

I2 = I1. Therefore I1,I3 are the two invariants that distinguish the Z2
2 cohomology classes.

7.3 General anomaly formula

Define t = t(T,T). A straightforward application of Eq. (71), (72) and the relative anomaly
formula yields the following results for G = U(1)×ZT

2:

I1 = θtηt(T,T),

I2 = θt vηt v(T
′,T′),

I3 = θv
ηv(T, Uπ)
ηv(Uπ,T)

ηv(Uπ, Uπ).

(73)

Since v is invariant under T, we have the following two cocycle conditions:

ηv(Uπ,T)ηv(UπT, UπT) = ηv(Uπ, Uπ)ηv(T, UπT),

ηv(T,T) = ηv(T, UπT)η−1
v (T, Uπ). (74)

Thus we find
ηv(T, Uπ)
ηv(Uπ,T)

ηv(Uπ, Uπ) =
ηv(T′,T′)
ηv(T,T)

. (75)

We can also show that ηt v(T′,T′) = ηt(T′,T′)ηv(T′,T′), which follows from the fact that both
t and v should be invariant under T (and thus T′).

To compare the results with more familiar characterization of the anomalies, we need to
determine the absolute anomaly. In this case, we can choose a reference SET state in the
following way:

1. Since U(1) does not permute anyons, there is a canonical choice for a reference where
U(1) acts completely trivially, namely all anyons are charge-neutral, so that the vison is
the identity. This implies that there is no mixed anomaly involving the U(1) symmetry.
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2. As shown in Ref. [14], the time-reversal symmetry fractionalization can be characterized
by how T permutes anyons and the local T2 values of T-invariant anyons, ηa(T,T) for
Ta = a. It is believed that this gives a complete characterization of time-reversal symme-
try fractionalization, although so far this has not been proven. We assume that there is
no symmetry localization anomaly (characterized by a non-trivial element in H3

[ρ](G,A)
for the T action [14,32]). We choose a reference state which has no ZT

2 anomaly.

3. For the symmetry groups U(1)×ZT
2 or U(1)⋊ZT

2, the permutation action for T′ must be
identical to that of T. Furthermore, because U(1) rotations, including Uπ, act trivially
on anyons, we have ηa(T′,T′) = ηa(T,T) in this reference state, which also implies that
there is no anomaly associated with T′ alone.

Now compared to this anomaly-free reference SET state, the invariants become

I1 = θtη
T
t ,

I2 = θtη
T
t θv Mt vη

T
v ,

I3 = θv .

(76)

It is more convenient to replace I2 with I ′2 =
I2

I1I3
:

I1 = θtη
T
t ,

I ′2 = Mt vη
T
v ,

I3 = θv .

(77)

Now I ′2 has the interpretation of the local T2 value for v in the new SET phase, which is
the reference one modified by the fractionalization class t. I3 is determined by whether the
vison is a boson or fermion. These are precisely the known anomaly indicators for U(1)×ZT

2
symmetry [27].

Let us apply these formulas to an example, where we reproduce the results of [30]. Con-
sider a Z2 toric code topological order, and suppose T does not permute anyons. In this case,
the relative anomalies agree with the “absolute” ones, and ηa(g,h) = 1 in the reference SET.

I1 = θt , I2 = Mv,t , I3 = θv . (78)

For the eCmC state, which is the state where both the e and the m particle carry half-
charge under the U(1) symmetry and are Kramers singlets, we set t = 1, v = ψ, and thus
(I1,I2,I3) = (1, 1,−1). For the eCmT state, which is the state where the e particle car-
ries half-charge and is a Kramers singlet, while the m particle carries integer charge and is a
Kramers doublet, we set t(T,T) = e, v = m, which yields (I1,I2,I3) = (1,−1, 1). This also
shows explicitly that two mixed anomalies associated with I2 and I3 are independent.

Let us now turn to the case with U(1)⋊ZT
2 symmetry. In this case the group cohomology

classification gives H4[U(1)⋊ZT
2, U(1)] = Z2

2. There is only one mixed anomaly, which corre-
sponds to the whether the vison is a fermion. We can still use the invariants for the Z2 × ZT

2
subgroup that we used in the U(1)×ZT

2 case, but now notice that t(UπT, UπT) = t(T,T), and
therefore I2 = I1. Using the same convention for the reference SET phase, we obtain the
following anomaly indicators:

I1 = θtη
T
t ,I3 = θv , (79)

which again agrees with known results [27].
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8 ZT
4 symmetry

In this section we study the case of ZT
4, which has been out of reach using previous methods.

In this case, T2 is a non-trivial unitary symmetry. Physically, T can correspond to some com-
bination of the true time-reversal operation of a physical system together with a non-trivial
unitary symmetry. For example, we can consider a bosonic system where T2 = (−1)Nb , where
Nb is the boson number.

8.1 ZT
4 SPTs in (1+1)D and H2[ZT

4, U(1)]

In (2+1)D systems, ZT
2 symmetry fractionalization can fruitfully be understood by dimensional

reduction and considering (1+1)D ZT
2 SPTs [21,36]. It is natural therefore to begin by studying

(1+1)D ZT
4 SPTs.

In (1+1)D, ZT
4 SPTs have a Z2 classification, corresponding to the cohomology group

H2[ZT
4, U(1)] = Z2. (80)

H2[ZT
4, U(1)] characterizes projective representations of ZT

4. Physically, this means that a non-
trivial ZT

4 SPT state on a 1D space with boundary has a symmetry-protected degenerate two-
dimensional subspace at each edge, forming a projective representation of ZT

4.
One possible manifestation of a physical system with ZT

4 symmetry is a system of bosons
where T2 = (−1)Nb , and where Nb is the boson number. In this case, Kramers theorem implies
that each boson, which carries a linear representation of ZT

4, must carry a local Kramers de-
generacy. However, the projective representation of ZT

4 is also two-dimensional. (A generator
for it can be taken to be VT = e−iσ yπ/4K). It is interesting in this case that the linear and pro-
jective representations have the same dimension, but nevertheless are fundamentally distinct
from each other. The non-trivial projective representation of ZT

4 can be thought of as carrying
fractional Z2 charge under the unitary symmetry T2.

It is useful for future reference to note that the following combination of 2-cocyles
ω2(g,h) ∈ U(1) is invariant under gauge transformations (i.e. under shifting ω2 by a 2-
coboundary):

ηT =
ω2(T,T2)ω2(T2,T2)

ω2(T2,T)
. (81)

8.2 ZT
4 symmetry fractionalization in (2+1)D

As reviewed in Sec. 2,3, symmetry fractionalization is characterized in terms of distinct, gauge-
inequivalent consistent choices of the {η} and {U} symbols [14]. For ZT

4 symmetry, we will
discuss two types of gauge-invariant quantum numbers associated to certain anyons.

First, when Ta = a, one can also define an invariant

ηT
a ≡ ηa(T,T2)ηa(T2,T2)

ηa(T2,T)
. (82)

Under a symmetry action gauge transformation (see Sec. 2.4), ηT
a → ηT

a
1

(γTa(T2))∗γa(T2) . Thus

ηT
a is gauge invariant when Ta = a. Note that the definition is nothing but the invariant that

detects a nontrivial ZT
4 projective representation, defined in the previous section.

On the other hand, T2 generates a unitary Z2 subgroup, and anyons can carry fractional
Z2 charges. A general definition of fractional Z2 charge will be given in Sec. 9.1. Here we
consider a special case: self-dual anyons a (i.e. the fusion of a satisfies a× a = 1+ · · · ), which

27

https://scipost.org
https://scipost.org/SciPostPhys.8.2.028


SciPost Phys. 8, 028 (2020)

are also invariant under T2 (but not necessarily T). We define an invariant λT2

a measuring
whether a carries fractional Z2 charge under T2:

λT2

a ≡ ηa(T
2,T2)UT2(a, a; 1). (83)

It is straightforward to verify that this expression is gauge invariant. This is a special case of
Eq. (106).

We note that invariants for Z2 symmetry fractionalization can also be defined for anyons
that satisfy ā = T2

a (see Eq. (107)). This kind of Z2 charge will be used in the example
discussed in Sec. 8.5.5.

We now prove that ηT
a = λ

T2

a for a self-dual, T-invariant a. This amounts to the following
identity:

ηa(T,T2)
ηa(T2,T)

= UT2(a, a; 1). (84)

First, consider the fusion channel a× a→ 1. We have

ηa(T,T)2 = UT2(a, a; 1). (85)

Then consider the 2-cocycle condition with T,T,T:

ηa(T,T)ηa(T
2,T) = ηa(T,T2)ηa(T,T)−1. (86)

Combining the two relations immediately gives the desired identity.
Now we study [t] ∈H2

ρ[Z4,A]. We denote Z4 = {0, 1, 2, 3}. One can show that a general
2-cocycle can always be made into the following form:

t(α,β) = t
α+β−[α+β]4

4 , (87)

where [α]4 denotes α modulo 4. Here t ∈ A is invariant under ZT
4. Once this form of the

cocycle is fixed, there is still a remaining coboundary in the following form:

ϵ(α) =
α−1∏
j=0

T j
ϵ, α ∈ {1, 2, 3}, (88)

where ε ∈A. Under this coboundary, t becomes t · T (ε) where T (ϵ) =
∏3

j=0
T j
ϵ.

If the fractionalization class is modified by such a torsor 2-cocycle, the fractional quantum
number for a T-invariant anyon a becomes

(ηT
a) = η

T
a Ma,t(T2,T2) = η

T
a Mat . (89)

Let us prove that Ma,T (ϵ) = 1, so (ηT
a) is indeed an invariant. Note that

Ma,T (ϵ) = Mt,ϵMt,TϵMt,T2ϵMt,T3ϵ. (90)

Because a is invariant under T, we have Ma,Tϵ = M∗a,ϵ, Ma,T3ϵ = M∗
a,T2ϵ

, therefore Ma,T (ϵ) is

positive. Because a and ϵ are Abelian, Ma,T (ϵ) must be a phase factor and thus Ma,T (ϵ) = 1.

Clearly, the same is true for λT2

a .
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8.3 Anomaly classification: ZT
4 SPTs in (3+1)D and H4(ZT

4, U(1))

In (3+1)D, SPTs with ZT
4 symmetry have a Z2×Z2 classification. One of the non-trivial classes

comes from the group cohomology classification and is associated with

H4[ZT
4, U(1)] = Z2. (91)

The other non-trivial SPT that is outside of the group cohomology classification is similar to
the beyond group cohomology SPT state for ZT

2.
We now define an invariant for the cohomology classes. It turns out that one can basically

use the same formula for the I3 invariant of the Z2 ×ZT
2 symmetry group discussed in Sec. 7,

replacing Uπ with T2:

I =
Or(T,T2,T2,T2)Or(T2,T2,T,T2)
Or(T2,T,T2,T2)Or(T2,T2,T2,T)

Or(T
2,T2,T2,T2). (92)

It is straightforward to check that this is invariant under any residual gauge transformations
once we fix the canonical gauge where Or(g1,g2,g3,g4) = 1 if any gi = 1. Recall that in this
canonical gauge, residual gauge transformations correspond to shifting Or by a coboundary
dε, where ε(g1,g2,g3) = 1 if any gi = 1.

To understand the physics, let us for a moment enlarge the symmetry group to
[U(1) ⋊ ZT

4]/Z2. The quotient means that the unitary Z2 element of ZT
4 is identified with

Uπ. This is the symmetry group of charge-conserving “spin-1/2” bosons, i.e. a charge-1 boson
carries T2 = −1. If the U(1) is broken down to the Z2 subgroup the group becomes just ZT

4. The
classification of such SPT phases can be understood through the property of (background) U(1)
magnetic monopoles. Notice that the time-reversal transformation reverses magnetic charge.
The nontrivial SPT phase is characterized by a topological theta term with Θ = 2π, similar
to the mixed anomaly of U(1)⋊ZT

2 symmetry [17]. Therefore the bulk also can be viewed as
proliferating time-reversal domain walls decorated by (2+1)D BIQH with σx y = 2, and can
be detected by the invariant Eq. (92) similar to I3.

8.4 General ZT
4 anomaly formula

Using Eq. (87) and (92), a direct computation of the invariant gives

I = θtη
T
t . (93)

Note that t = t(T2,T2) can be interpreted as a “relative vison,” in analogy to the cases with
U(1) symmetry studied in Sec. 7. Thus the relative anomaly for ZT

4 is non-trivial if either the
relative vison is a fermion or if it carries fractional Z2 charge under T2 (in the reference SET),
but not both.

8.5 Examples

8.5.1 A= Z2 with ZT
4 symmetry

Here the Abelian anyon sector associated with A consists of just two particles {1, x}. There
are three possible fusion/braiding structures for such a braided fusion category:

1. x is a boson. In this case, fusion and braiding are completely trivial.

2. x is a fermion. We have Rx ,x = θx = −1.

3. x is a semion/anti-semion, i.e. θx = ±i. Such a theory necessarily breaks time-reversal
symmetry, so we do not consider this possibility.
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There are two symmetry fractionalization classes. One can be related to another by t = x .
Using Eq. (93), we find that the invariant for the relative anomaly is

I = θxη
T
x . (94)

Many theories fall into this class, including D(S3) (the quantum double of S3, the per-
mutation group on three elements) and USp(4)2. See Refs. [21, 32] for a discussion of ZT

2
time-reversal symmetry for these theories.

8.5.2 ZN toric code with ZT
4 symmetry

Let us consider the ZN toric code with ZT
4 symmetry. The anyons are labeled by a = (a1, a2),

for ai = 0, · · · , N − 1, with fusion rules (a1, a2)× (b1, b2) = (a1 + b1, a2 + b2), modulo N . The
F symbols can all be chosen to be 1, unless they are not allowed by the fusion rules. The
anyons have topological twist θ(a1,a2) = e

2πi
N a1a2 . We will take Rab = e

2πi
N a2 b1 . Therefore, under

time-reversal T, we must have that either (a1, a2)→ (a1,−a2), or (a1, a2)→ (a2,−a1). Note
that the latter one squares to (a1, a2) → (−a1,−a2), which is a nontrivial operation for any
N > 2. We consider the two cases separately.

Case 1: ρT(a1, a2) = (a1,−a2).

First we need to know Ug and η in this case. Since F symbols are all 1, and the R symbols

satisfy R
TaT b = (Rab)∗, we can pick all U = 1. Moreover, this means that there is a fractional-

ization class where we can set all η= 1 as well.
The symmetry fractionalization classification in this case is

H2
ρ[Z4,ZN ×ZN ] = Z(N ,4) ×Z(N ,2), (95)

where in the above equation (N , 4) means the greatest common divisor of N and 4, and simi-
larly for (N , 2). To see this, first consider N even. Since t should be invariant under ZT

4, we can
write t = (p, 0) or t = (p, N

2 ). The remaining coboundary takes the form of (4k, 0). In other
words, p and p+4 represent the same cohomology class. More generally, p and p+gcd(N , 4)
are the same. So the symmetry fractionalization classification is Z(N ,4)×Z2. For N odd, t must
take the form (p, 0) and because (N , 4) = 1, all of them are trivial.

Picking the reference state where all η = 1, the anomaly relative to this reference state
becomes:

I = θt =

¨
1 t = (p, 0)
(−1)p t = (p, N/2).

(96)

Note that the way to think about the anomalous case is that the (1, 0) and (0, N/2) parti-
cles carry half charge under T2. That is, ηT

(1,0) = η
T
(0,N/2) = −1, which makes it anoma-

lous. To see this, we compute the fractional T2 charge for t = (p, N/2) in the new theory:
ηT
(1,0) = −1,ηT

(0,N/2) = (−1)p, where recall that the shift in ηa(g,h) between the old and new
theory is given by the mutual braiding phase Ma,t(g,h).

This has an analog for ZT
2 symmetry. Consider ZN toric code with ZT

2 symmetry, where
N is even. If we set ηT

(1,0) = −1 and ηT
(0,N/2) = −1, then Z(RP4) = −1 [21], which is a

generalization of the eTmT state [17] to the ZN toric code. We can think of the generalization
to ZT

4 symmetry as the anomalous eT 2mT 2 state.
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Case 2: ρT(a1, a2) = (a2,−a1).

Here we consider the case where ρ is such that under time-reversal, (a1, a2)→ (a2,−a1).
We find the following expressions for U:

UT(a, b) = e
2πi
N a2 b1 , UT2(a, b) = e

2πi
N (a1 b2+a2 b1), UT3(a, b) = e

2πi
N (a1 b2+2a2 b1), (97)

such that κg,h(a, b) = 1. Therefore, one can set η= 1 as the reference class.
This is a special case of the example in Sec. 8.5.5, so we will skip it here.

8.5.3 Doubled semion with ZT
4 symmetry

The doubled semion topological order has four anyon types: {1, s, s′, ss′}, with s2 = s′2 = 1.
The non-trivial F -symbols are F sss

s = −1 and F s′s′s′
s′ = −1, while Rss

1 = i and Rs′s′
1 = −i. Note

that here there is no freedom in the action ρ because T must necessarily interchange the
two semions s and s′. It is clear then that we can set all U = 1. Therefore, in the trivial
fractionalization class, we can set all η= 1.

This is an interesting example, because with ZT
2, we only have one possible symmetry

fractionalization class: H2
ρ[Z2,Z2 ×Z2] = Z1. On the other hand,

H2
ρ[Z4,Z2 ×Z2] = Z2. (98)

These two symmetry fractionalization classes are distinguished by whether the semions carry
fractional or integer charge under T2. To see this, note that the non-trivial cocycle is given by
t = ss′, which is the only T-invariant anyon. The torsor 2-cocycle t = ss′ does not change ηT

ss′ ,

however it does change λT2

s and λT2

s by a sign.
We thus find that the anomaly vanishes:

I = θt = 1. (99)

So both fractionalization classes can be realized in (2+1)D.

8.5.4 Z(p)N anyons

Let us consider Z(p)N anyons, where N is an odd integer. The quasiparticles can be labeled [a]
for a = 0, · · · , N − 1. The F and R symbols are given by

F [a][b][c] = 1, R[a][b][a+b] = ei 2π
N pab. (100)

Let us consider a general automorphism of the ZN fusion group, T : [a] → [ka], which re-
quires (k, N) = 1. For the automorphism to correspond to an anti-unitary symmetry, we need
k2 ≡ −1 (mod N). Then T2 : [a]→ [−a], so T4 = 1, so that T generates a Z4 group. The con-
dition θ[ka] = θ ∗[a], reduces to p(k2+1)≡ 0 (mod N), which is obviously satisfied. Since there
are no invariant anyons except [0], the fractionalization classification is trivial, and therefore
there is no relative anomaly to speak of.

8.5.5 U(1)×U(1) Chern-Simons theory

In this example we consider a U(1)×U(1) Chern-Simons theory:

L= 1
4π
ϵµνλaI

µKI J∂νaJ
λ, (101)
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where aI , I = 1, 2 are U(1) gauge fields. Here the integer K matrix is given by

K =

�
m n
n −m

�
. (102)

We will assume that m is even so the theory is bosonic. The theory has a ZT
4 symmetry gener-

ated by the following transformation):�
a1

a2

�
→
�

0 1
−1 0

��
a1

a2

�
. (103)

Quasiparticles in the theory are labeled by their gauge charges, in this case a two-dimensional
integer column vector l = (l1, l2)T. Local excitations all take the form Kl′ for some integer
vector l′, so anyon types are defined by equivalence classes l ∼ l+ Kl′. Notice that T2 sends l
to −l, so in general T is of order 4, unless all anyons are self dual. This includes the case 2 of
the ZN toric code example mentioned above as a special case with m= 0. Another interesting

case is that when m= n, the K matrix is SL(2,Z) equivalent to

�
2n
−n

�
. One can show that

the minimal time-reversal symmetry in this case is of order 4.
Let specialize to the case where n is even. We show in Appendix A that for the ZT

4 symmetry,
while the U symbols are nontrivial the κg,h symbols can all be set to 1, for the case where m
and n are both even. Thus in this case there is a reference state with η = 1. To determine
fractionalization classes, let us find all T-invariant anyons. With a little algebra, we find that
for even n there is a unique nontrivial T-invariant anyon, given by the following charge vector:�m+n

2
n−m

2

�
. (104)

To see what distinguishes the two classes related by t = (m+n
2 , n−m

2 )
T, we need to compute

fractional quantum numbers. Since T2 is just charge conjugation, according to Eq. (107), we
may associate an invariant λ̃T2

a = ±1 that changes sign when the symmetry fractionalization
class is changed from a carrying fractional T2 charge to integer T2 charge. The fractionalization
class changes λ̃T2

(x ,y)→ λ̃T2

(x ,y)(−1)x+y for a quasiparticle (x , y)T.

Note however that ηT
t = (−1)n = 1. Then relative to the trivial reference SET phase we

find the cohomology invariant for the anomaly is

I = θt = (−1)n/2. (105)

9 Z2 ×Z2 symmetry

In this section we consider a unitary symmetry G = Z2 ×Z2 = {1,Z,X,Y= ZX}.
9.1 Symmetry fractionalization for Z2 ×Z2

There are three Z2 subgroups of G, generated by X,Y and Z respectively. Z2 × Z2 symmetry
fractionalization in a topological phase can be characterized by fractional charges under these
Z2 subgroups.

9.1.1 Fractional Z2 charge

Let us first focus on a single Z2 subgroup, and denote the generator by g. We now define two
types of invariants to characterize Z2 fractionalization of an anyon a.
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Type-I Consider the case where a = ga, and the order of a is even (here order means the min-
imal integer n such that an→ 1). We further assume that at least one of the fusion tree
basis states for a×a×· · · a→ 1 is Z2 invariant. Namely, we can find a series of g-invariant
anyons a0 = a, a1, a2, · · · , an−2, an−1 = 1, such that N

a j+1
a,a j

> 0 for j = 0, 1, . . . , n− 2. Let
us define

λg
a = η

n/2
a (g,g)

n−2∏
j=0

Ug(a, a j; a j+1). (106)

The product of U ’s is simply the action of ρg on a state corresponding to the fusion tree
a× a× · · · a→ 1. Intuitively, λg

a = −1 means that fusing n identical copies of a yields a
Z2 charge. One can show that (λg

a)2 = 1 and the invariant λg
a = ±1 determines whether

a carries Z2 fractional charge.

Type-II When ā = ga, we define

λ̃g
a = ηa(g,g)Ug(a, ā; 1)Rā,a

1 θa. (107)

The R symbol is introduced so that λ̃g
a is invariant under (vertex basis) gauge transfor-

mations. θa is introduced so that (λ̃g
a)2 = 1. This invariant is most easily understood

when g corresponds to a spatial rotation by π, i.e. inversion. In this case, one may create
a g-invariant physical state by placing a and a in inversion-symmetric positions, and λ̃g

a
is the eigenvalue of inversion acting on this state. We caution that λ̃g

a is best thought of
as a relative invariant; there are examples where λ̃g

a = −1 but yet Z2 symmetry is not
fractionalized (namely the case of U(1)4 with charge conjugation symmetry), and there
are examples where λ̃g

a = 1 and Z2 symmetry is fractionalized. Nevertheless, λ̃g
a = ±1 is

a gauge invariant quantity and changes value when the Z2 symmetry fractionalization
class is changed.

Let us now make a connection with the symmetry fractionalization classification. Choose
a cohomology class [t] ∈ H2

ρ[G,A]. We use the canonical gauge t(1,g) = t(g, 1) = 1. The
2-cocycle condition for t reads

gt(g,g) = t(g,g). (108)

In the following we will simply write t for t(g,g). There is a coboundary t(g,g)→ t(g,g)×ϵ×gϵ.
Upon changing the symmetry fractionalization class by [t], the η symbols change to

η′a(g,g) = ηa(g,g)Ma,t. (109)

One can also verify that, as expected, changing the symmetry fractionalization class by [t]
can only change the λg and λ̃g invariants by ±1. For type-I, λg

a
′ = λg

aM n/2
a,t . It is obvious that

M n/2
a,t = ±1. For type-II, λ̃g

a
′ = λ̃g

aMa,t. One can see that Ma,t = ±1 as follows:

Ma,t = M ∗̄a,t = M∗ga,t = M∗a,gt = M∗a,t. (110)

Thus Ma,t is real. Since t is Abelian, it follows that Ma,t = ±1.

9.1.2 Z2 ×Z2 fractionalization classes

We now give an explicit description of 2-cocycles in H2
[ρ][Z2 × Z2,A]. We fix a gauge such

that t(X,Z) = 1. Then by systematically solving the 2-cocycle conditions, one can show that
all 2-cocycles can be expressed in terms of t(X,X), t(Z,Z) and t(Y,Y). They have to satisfy
gt(g,g) = t(g,g) for g= X,Y,Z, and

Zt(Y,Y)× t(Y,Y) = Xt(Z,Z)× t(Z,Z)× Yt(X,X)× t(X,X). (111)
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Finally, they are subject to coboundaries t(g,g)→ t(g,g)×ϵ(g)×gϵ(g), with ϵ(Y) = ϵ(X)×Xϵ(Z).
Another result that is useful for the examples that we study is:

t(Z,X) =
Xt(Y,Y)

t(X,X)Xt(Z,Z)
. (112)

9.2 Anomaly classification: Z2 ×Z2 SPTs in (3+1)D

(3+1)D SPTs with Z2 ×Z2 symmetry are classified by

H4[Z2 ×Z2, U(1)] = Z2
2. (113)

We can define two Z2 invariants [37]:

IX ,Z = χZ(X,X,X),

IZ ,X = χX(Z,Z,Z), (114)

where χ is the slant product:

χh(g,g,g) =
Or(g,h,g,g)Or(g,g,g,h)
Or(h,g,g,g)Or(g,g,h,g)

. (115)

9.3 Examples with permutations

Anomalies for non-permuting Abelian unitary symmetries and Abelian topological orders were
thoroughly studied in Ref. [38]. Instead here we study two examples with anyon-permuting
Z2 ×Z2 symmetry.

9.3.1 ZN toric code

We consider ZN toric code with even N , whose topological symmetry group always contains a
Z2×Z2 subgroup, generated by electromagnetic duality (a1, a2)→ (a2, a1) and charge conju-
gation C : (a1, a2)→ (N −a1, N −a2). Denote by AC = {(0, 0), (N/2, 0), (0, N/2), (N/2, N/2)}
the set of self-dual anyons.

We consider the case where ρX = C ,ρZ = 1. We then have t(X,X), t(Y,Y) ∈ AC ,
both of which are gauge-invariant. Accounting for the gauge freedom for t(Z,Z), we have
t(Z,Z) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. We will denote tg ≡ t(g,g).

For the case ρX = C , ρZ = 1, one can show that all U symbols can be set to 1. There is
therefore a reference state where all η can be set to 1. The Z2 fractional charges can be found
to be

λ̃g
a = Ma,tg

, g= X,Y, (116)

λZ
a = M N/2

a,tZ
. (117)

The obstruction formula relative to this reference state then just depends on the R symbol.
The invariants are found to be

IZ,X = MtZ ,tX
MtZ ,tY

,

IX,Z = MtX ,tZ
MtX ,tY

. (118)
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Table 1: Obstruction classes for Z2 ×Z2 symmetry in U(1)2N with even N .

t(X,X) tN (Z,Z) t(Y,Y) λ̃X
[1], λ̃

Z
[1], λ̃

Y
[1] IX,Z IZ,X

0 0 0 1, 1, 1 1 1
0 0 [N] 1, 1,−1 1 1
0 [N] 0 1,−1, 1 1 1
0 [N] [N] 1,−1,−1 1 −1
[N] 0 0 −1, 1, 1 1 1
[N] 0 [N] −1, 1,−1 1 1
[N] [N] 0 −1,−1, 1 −1 −1
[N] [N] [N] −1,−1,−1 −1 1

9.3.2 U(1)2N Chern-Simons theory

We consider U(1)2N Chern-Simons theory, whose topological symmetry group always contains
a Z2 charge conjugation symmetry.

Anyons in this case are labeled by a = 0, 1, . . . , 2N − 1 defined mod 2N . The F and R
symbols read:

F abc = e
iπ
2N a(b+c−[b+c]),

Rab = e
iπ
2N ab, (119)

where [a] = a mod 2N .The Z2 charge conjugation symmetry has the action C : a→ 2N − a.
The corresponding U symbols are found to be

UC(a, b) =

¨
(−1)a b > 0

1 b = 0.
(120)

Again consider G = Z2 × Z2, with ρX = C ,ρZ = 1. It is straightforward to check that
κg,h(a, b) = 1, so there is a canonical reference state with η = 1. Adopting the results in
Sec. 9.1.2, the 2-cocycles are labeled by t(X,X), t(Y,Y) and tN (Z,Z) (we raise t(Z,Z) to the
N -th power to eliminate remaining coboundary degrees of freedom). They are all valued in
{[0], [N]}, and subject to no further constraints. We notice that when N is odd, the MTC

can be factorized into Z(
N
2 )

2 × Z(1)N , where Z(
N
2 )

2 = {[0], [N]} is a semion/anti-semion theory

and Z(1)N = {[0], [2], [4], . . . , [2N]}, and all symmetry fractionalizations can be accounted for
entirely in the semion sector, which was treated extensively in Refs. [18,20]. So we will only
present the results for even N . The corresponding anomaly invariants are listed in Table 1.

10 Z2 ×ZT
2 symmetry

The case of Z2 ×ZT
2 symmetry is closely related to the case of U(1)×ZT

2 symmetry, studied in
Sec. 9.1. However, as we see below, the possible symmetry fractionalization classes are richer,
which leads to new possibilities.

We denote the group as {1,X,T,T′ = XT} where X generates the Z2 subgroup and T gen-
erates the ZT

2 subgroup.
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10.1 Z2 ×ZT
2 SPTs in (1+1)D

In (1+1)D, Zm ×ZT
2 SPTs have a classification given by

H2[Zm ×ZT
2, U(1)] = Z2 ×Z(m,2), (121)

where (m, 2)means the greatest common divisor of m and 2. ThusH2[Z2×ZT
2, U(1)] = Z2×Z2.

The two Z2 classes correspond to whether the edge modes transform projectively as T2 = ±1
and (T′)2 = ±1.

10.2 Symmetry fractionalization for Z2 ×ZT
2

Symmetry fractionalization for Z2 × ZT
2 is classified by elements of H2

[ρ][Z2 × Z2,A]. As
discussed in Section 9.1, elements of this group are completely parametrized by t(g,g), for
g= X,T,XT, with the condition that gt(g,g) = t(g,g).

We see that the symmetry fractionalization classes in this case cannot be completely char-
acterized in terms of projective representations of Z2 × ZT

2 or, equivalently, by dimensional
reduction to (1+1)D. The additional information is t(X,X), i.e. the fractional Z2 charge.

10.3 Z2 ×ZT
2 SPTs in (3+1) D

The classification of Z2 × ZT
2 SPTs in (3+1)D and thus the anomaly classification for (2+1)D

SETs is identical to the case of U(1)× ZT
2 SPTs. Namely, within group cohomology, there is a

Z3
2 classification:

H4[Z2 ×ZT
2, U(1)] = Z3

2. (122)

There is an additional Z2 associated with the beyond group cohomology pure ZT
2 SPT. One of

the Z2 factors within group cohomology is also associated with a pure ZT
2 SPT state. Thus we

have a Z2
2 classification coming from pure ZT

2 SPTs, and an additional Z2
2 factor arising due to

a mixing between the Z2 and ZT
2 symmetries.

In terms of 4-cocycles, the invariants that describe the Z3
2 classification are identical to

those discussed in Sec. 7.2 for the U(1)× ZT
2 case, in Eq. (71), (72). We take X = Uπ to be

the generator of the Z2, and T′ = XT.

10.4 Example: Z2 toric code

10.4.1 With no permutations

Here we study a simple example, the Z2 toric code state where the symmetries do not permute
the particle types. In this case,

H2[Z2 ×Z2,Z2] = Z3
2. (123)

In contrast recall that for U(1)×ZT
2 symmetry, we have H2[U(1)×Z2,Z2] = Z2

2. The U(1)×ZT
2

classes correspond to the specific case where t(T′,T′) = t(X,X)t(T,T).
For the Z2 toric code, we thus have a total of 64 possible choices, since t(g,g) = 1, e, m,ψ,

for g = X,T,T′. These can be physically understood as whether the e (or m) particle carries
charge 1/2, and whether it carries Kramers degeneracy under T or T′.

Recall that for the toric code the F -symbols are all either one or zero depending on whether
they are allowed by the fusion rules. Furthermore, since ρ is trivial in this example, we can
pick a reference state where all η and U are set equal to 1. Thus, the relative anomaly is simply

Or(g,h,k, l) = Rt(k,l),t(g,h). (124)
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We note that the form of the relative anomaly in ZN toric code holds for any symmetry group as
long as no anyons are permuted. This result was derived previously by explicitly constructing
generalized string-net models on the surface of (3+1)d SPT phase in Ref. [28].

Thus the invariants are:

I1 = Or(T,T,T,T) = θt(T,T),

I2 = Or(T
′,T′,T′,T′) = θt(T′,T′), (125)

and

I3 = Rt(X,X),t(T,X)Rt(T,X),t(X,X)θt(X,X) = Mt(X,X),t(T,T)Mt(X,X),t(T′,T′)θt(X,X), (126)

where we have used Mab = RabRba. We have also used the gauge t(X,T) = 1, with the cocycle
condition in this case giving t(T,X) = t(T′,T′)t(X,X)t(T,T).

Table 2 summarizes the anomalies for all of the 36 inequivalent symmetry fractionalization
classes. (Of the 64 possible classes associated with H2(Z2 × Z2,Z2 × Z2) = Z6

2, relabeling e
and m gives 36 inequivalent classes). Note that we use the labeling convention of Ref. [39]: If
the e particle carries half-charge under the Z2, it is followed by a C in the labeling. If e carries
a Kramers degeneracy under T or T′, then it is followed by a T or T ′ in the labeling.

One can consider t(X,X) to correspond to the vison. From Table 2, we see that in general
I3 is no longer determined by whether the vison is a fermion, in contrast to the case with
U(1)×ZT

2 symmetry.

10.4.2 With permutations

The topological symmetry group of the Z2 toric code is Z2, with the nontrivial element being
the “electromagnetic duality” that swaps e with m.

First we compute the corresponding U symbols for this symmetry. It is easy to see that
in a gauge where all F and R symbols are real, we do not need to distinguish unitary and
anti-unitary symmetries at least for U . One solution is

U(a, b) = (−1)a2 b1 , (127)

which leads to

κX,X(a, b) = (−1)a2 b1+a1 b2 =
θaθb

θa×b
. (128)

Next we consider constraints on η symbols for a Z2 symmetry g which maps to the du-
ality symmetry. The only nontrivial cocycle is ηa(g,g) ≡ ηa. The fusion rule implies that
η2

e = η
2
m = η

2
ψ
= 1, and ηψ = −ηeηm. Thus we find ηa = ±1 for all a. The twisted 2-

cocycle condition implies ηeηm = 1, for both unitary and anti-unitary g. So we have found
that ηψ = −1.

Now if g is unitary, the Z2 fractional charge

λ
g
ψ
= ηψ(g,g)Ug(ψ,ψ; 1) = 1. (129)

The other values ηe and ηm can be set to 1 by gauge transformations.
If g is anti-unitary, ηψ is the gauge-invariant T2 value, so the fermion ψ has T2 = −1,

which is a well-known result.
In both cases, there are no further choices for symmetry fractionalization. This is also

consistent with H2
ρ[Z2,Z2 ×Z2] = Z1 for this choice of ρ.
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Table 2: Anomalies for Z2 toric code with Z2 × ZT
2 symmetry, where symmetries do

not permute any particle types. e0m0 refers to the trivial symmetry fractionalization
class. If e or m does not appear in the label, then it has trivial symmetry fractional-
ization quantum numbers.

Label (t(X,X), t(T,T), t(T′,T′) (I1,I2,I3)
e0m0 (1, 1, 1) (1,1,1)
eT′ (1, 1, m) (1, 1, 1)

eT′mT′ (1, 1,ψ) (1, -1, 1)
eT (1, m, 1) (1, 1, 1)

eTmT′ (1, m, e) (1, 1, 1)
eTT′ (1, m, m) (1, 1, 1)

eTT′mT′ (1, m,ψ) (1, -1, 1)
eTmT (1,ψ, 1) (-1, 1, 1)

eTT′mT (1,ψ, m) (-1, 1, 1)
eTT′mTT′ (1,ψ,ψ) (-1, -1, 1)

mC (e, 1, 1) (1, 1, 1)
mCT′ (e, 1, e) (1, 1, 1)
eT′mC (e, 1, m) (1, 1, -1)

eT′mCT′ (e, 1,ψ) (1, -1, -1)
mCT (e, e, 1) (1, 1, 1)

mCTT′ (e, e, e) (1, 1, 1)
eT′mCT (e, e, m) (1, 1, -1)

eT′mCTT′ (e, e,ψ) (1, -1, -1)
eTmC (e, m, 1) (1, 1, -1)

eTmCT′ (e, m, e) (1, 1, -1)
eTT′mC (e, m, m) (1, 1, 1)

eTT′mCT′ (e, m,ψ) (1, -1, 1)
eTmCT (e,ψ, 1) (-1, 1, -1)

eTmCTT′ (e,ψ, e) (-1, 1, -1)
eTT′mCT (e,ψ, m) (-1, 1, 1)

eTT′mCTT′ (e,ψ,ψ) (-1, -1, 1)
eCmC (ψ, 1, 1) (1, 1, -1)

eCT′mC (ψ, 1, m) (1, 1, 1)
eCT′mCT′ (ψ, 1,ψ) (1, -1, -1)

eCmCT (ψ, e, 1) (1, 1, 1)
eCmCTT′ (ψ, e, e) (1, 1, -1)
eCT′mCT (ψ, e, m) (1, 1, -1)

eCT′mCTT′ (ψ, e,ψ) (1, -1, 1)
eCTmCT (ψ,ψ, 1) (-1, 1, -1)

eCTT′mCT (ψ,ψ, m) (-1, 1, 1)
eCTT′mCTT′ (ψ,ψ,ψ) (-1, -1, -1)

• Consider the case where X permutes e and m, and T does not. We can gauge fix
t(X,X) = t(T′,T′) = 1. In this case we find t(T,T) = 1 or ψ. We find that I1 = θt(T,T),
I2 = 1,I3 = λX

t(T,T) = 1. So only a pure time-reversal anomaly is present for eTmT when
X permutes e and m.

• Consider the case where T permutes e and m, but X does not. Consistency requires that
ηψ(T,T) = ηψ(T′,T′) = −1. We can further gauge fix t(T,T) = t(T′,T′) = 1. t(X,X)
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must be T-invariant, which follows from Eq. (111). In this case, I1 and I2 obviously
vanish and we find I3 = θt(X,X), so the only anomalous one is t(X,X) = ψ. This implies
that the eCmC state, where e and m carry half Z2 charge, has a mixed anomaly when T
permutes e and m. This is the same anomaly structure as the case where T acts trivially.

• Consider the case where both X and T permute anyons. This is identical to the case
above as long as we swap T and T′.
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A F , R, and U symbols for Abelian Chern-Simons theories

Consider an Abelian Chern-Simons theory defined by a D × D K-matrix. Quasiparticles are
labeled by charges under the U(1) gauge fields, each as a D-dimensional integer column vector
l ∈ ZD. Superselection sectors are defined by the equivalence relation l ∼ l + Kn where
n ∈ ZD. They form an Abelian group A. For each anyon type a, we choose a representative
charge vector, denoted by la. Then [la] denotes the equivalence class associated with the
representative la. Clearly [la×b] = [la + lb]. The topological twist factor is given by

θa = eiπlTa K−1la . (130)

Below we first write down the F and R symbols for the special case where all matrix el-
ements of K are even. (The more general case requires dealing with the Sylow 2-group of
A).

We write the F symbol as

[F a,b,c
a×b×c]a×b,b×c = e2πiω(a,b,c). (131)

Since all particles are Abelian, the pentagon equation reduces to a 3-cocyle equation for F .
Defining

ω(a, b, c) =
1
2

lTa K−1(lb + lc − lb×c), (132)

we prove that ω indeed defines a 3-cocycle on A:

ω(a, b, c) +ω(a, b× c, d) +ω(b, c, d)−ω(a× b, c, d)−ω(a, b, c × d)

=
1
2
(la + lb − la×b)

TK−1(lc + ld − lc×d). (133)

Notice that la + lb − la×b must be of the form Kn1 for some n1 ∈ ZD, and similarly
lc + ld − lc×d = Kn2, so the result is 1

2nT
1 Kn2. Since we assume K is even entry-wise, 1

2nT
1 Kn2

is an integer.
Now we define the R symbol:

Ra,b
a×b = e2πir(a,b), r(a, b) =

1
2

lTa K−1lb. (134)
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Suppose that now we have a symmetry group G of the K-matrix, namely a set of invertible
matrices Wg such that

WgKW T
g = σ(g)K ,

WgWh =Wgh, (135)

where σ(g) = ±1 depending on whether g is space-time orientation reversing. Under Wg a
charge vector l becomes Wgl, which induces an automorphism ρg on A. Now we compute the
U symbol for this action. We have

l ga =Wgla + Kpg,a, (136)

for pg,a ∈ ZD. It then follows that

ω( ga, gb, gc)

=
1
2

lTa W T
g K−1Wg(lb + lc − lb×c) +

1
2

lTa Wg(pg,b + pg,c − pg,b×c) +
1
2

pT
g,aWg(lb + lc − lb×c)

= σ(g)ω(a, b, c) +
1
2

lTa Wg(pg,b + pg,c − pg,b×c),

(137)

where we have dropped a term 1
2pT

g,aK(pg,b+pg,c−pg,b×c) as it contributes an integer multiple

of 2π. We have also dropped a term 1
2pT

g,aWg(lb + lc − lb×c) =
1
2pT

g,aWgKn ∈ Z, because K is
even entry-wise, and thus this term also contributes an integer multiple of 2π. In going from
the first to the second line we have also used the following

W T
g K−1Wg =W T

g ·σ(g)(W T
g )
−1K−1W−1

g ·Wg = σ(g)K
−1. (138)

Considering the group multiplications, we find

pgh,a = σ(g)(W
−1
g )

Tph,a + pg, ha. (139)

Now let us specialize to the case studied in Sec. 8.5.5, with the K-matrix given in Eq. 102
and the ZT

4 symmetry given in Eq. 103. In this case σ(g) = q(g), where recall q(g) = ±1
depending on whether g corresponds to a unitary or anti-unitary symmetry. Also, in this case
we have W T

g = q(g)Wg.
We thus find that we can set

Ug(
ga, gb) = exp(−iπlTa Wgpg,b). (140)

κ is defined as:

κg,h(a, b) = Ugh(a, b)[Ug(a, b)]−1[Uh(
ḡa, ḡb)]−q(g). (141)

Thus we find:

κg,h(
gha, ghb) = exp

�−iπ[lT
a Wghpgh,b − lT

haWgpg, h b − q(g)lT
a Whph,b]
�

= exp
�−iπ[q(g)lT

a (WgWh(W
T

g )
−1 −Wh)ph,b + lT

a (WgWh −W T
h Wg)pg, h b]
�

.

(142)

Using W T
g = q(g)Wg and Wgh = Whg for this example, we see that

WgWh[W T
g ]
−1 −Wh = q(g)Wh −Wh and WgWh −W T

h Wg =Wgh(1− q(h)). Since q(g) = ±1, it
follows that the entries in the brackets in the second line of Eq. (142) are all even, so that
κg,h(a, b) = 1 for all choices of a, b,g,h.
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