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Dynamics of hot Bose-Einstein condensates:
stochastic Ehrenfest relations for number and energy damping
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Abstract

Describing partially-condensed Bose gases poses a long-standing theoretical challenge.
We present exact stochastic Ehrenfest relations for the stochastic projected
Gross-Pitaevskii equation, including both number and energy damping mechanisms, and
all projector terms that arise from the energy cutoff separating system from reservoir.
We test the theory by applying it to the center of mass fluctuations of a harmonically
trapped prolate system, finding close agreement between c-field simulations and ana-
lytical results. The formalism lays the foundation to analytically explore experimentally
accessible hot Bose-Einstein condensates.
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1 Introduction

A system of Bose atoms with temperature T undergoes a dramatic change in behavior at the
critical temperature for the formation of a Bose-Einstein condensate (BEC), Tc . Far below the
BEC transition T � Tc , a nearly pure BEC forms, consisting of a highly occupied many-body
quantum state; in this regime dilute gas BEC are renowned both for their high experimen-
tal control, and precise theoretical description [1]. At temperatures T � Tc thermal energy
dominates, the quantum statistics are unimportant, and a Boltzman description captures the
physical properties of the atoms. When T ∼ Tc the quantum statistics of the atoms are decisive,
despite appreciable thermal energy. In a hot BEC T . Tc , competition between thermal and
interaction effects leads to fragmentation of the condensate, and formation of vortices, soli-
tons, and phononic excitations. A cooling quench across the transition can inject interesting
excitations into the BEC that form as remnants of the broken U(1) symmetry [2, 3], and rich
turbulent dynamics develop from the competition between thermal, quantum, and interaction
effects, posing a challenge for theory.

At low temperatures that contain significant condensate and non-condensate fraction,
mean field theory provides a useful description, upon which the GPE and its generalizations
are based. The Zaremba-Nikuni-Griffin U(1) symmetry breaking approach has proven well
suited for practical calculations in this low-temperature regime [4], having the virtue that the
interactions between condensate and thermal cloud, and their respective dynamics, are all
included in the dynamical description. However, it’s strength for low temperatures presents
a limitation at high temperatures: despite notable successes, e.g. for collective modes [5],
the symmetry-breaking ansatz has limited scope for describing strongly fluctuating systems
containing large non-condensate fraction. Fortunately, the scope of the Gross-Pitaevskii equa-
tion (GPE) upon which ZNG is based goes much further than mean-field theory: GPE-like
field equations appear naturally in phase-space representations of Bose gases [6], suggesting
a generalization of quantum optical open systems theory [7] for describing hot Bose gases.
Indeed, various generalized Gross-Pitaevskii theories have been developed for the high tem-
perature regime, describing many modes that are weakly occupied, interacting, and partially
coherent [8, 9]. Devoid of the symmetry-breaking ansatz, these approaches have advantages
for high-temperature work.

One approach capable of describing experiments across the phase transition is known as the
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stochastic projected Gross-Pitaevskii equation (SPGPE) [10–14]. The SPGPE was developed as
a synthesis of quantum kinetic theory [15] and the projected Gross-Pitaevskii equation [16],
and provides a tractable approach for numerical simulations of hot matter-wave dynamics
that includes all significant reservoir interaction processes. The SPGPE describes the evolution
of a high-temperature partially condensed system within a classical field approximation, is
valid on either side of the critical point, and has been used to quantitatively model the BEC
phase transition [3], and BEC dynamics observed in high-temperature experiments [17]. The
complete SPGPE includes a number-damping reservoir interaction (of Ginzburg-Landau type)
described in previous works [3,17], and an additional interaction involving exchange of energy
with the reservoir [2]; the latter is a number-conserving interaction that can in principle have
a significant influence on dissipative evolution [9,13,18,19], yet due to technical challenges,
its physical effects have thus far been largely unexplored.

Ehrenfest’s theorem [20] relates, for example, the time derivative of the expectation (with
respect to the wavefunction) of momentum and position of a particle with the potential expe-
rienced by the particle. The Ehrenfest relations can be extended to the Gross-Pitaevskii fluid
— essentially without modification — due to the net cancellation of two-body interaction
forces. Previously, development of the number-damping SPGPE theory was aided by Ehren-
fest relations [21]. Such relations for ensemble averages provide an essential validity check
for numerical work, and physical consistency tests for the reservoir theory, including ensemble
averages expected in equilibrium.

In this work we derive stochastic collective equations for the SPGPE including the effects
of both number-damping and energy-damping. These stochastic Ehrenfest relations (SERs)
form the extension of Ehrenfest relations to finite-temperature stochastic field theory of Bose-
Einstein condensates. They extend beyond the scope of previously derived relations of this
type [21] by explicitly retaining all noises and cutoff terms. Importantly, for many one-body
operators the multiplicative noise in the energy-damped SPGPE is transformed into additive
noise in the collective equations. This simplification opens the way for analytical treatments
of a broad class of low-energy excitations in BEC including solitons, vortices, and collective
modes, for both number- and energy-damping decay channels. As a test we apply the Ehrenfest
relations to the center of mass fluctuations of a harmonically trapped system tightly confined
along two spatial dimensions. We find that the analtyic solution of the SER for the center of
mass is in close agreement with SPGPE simulations. The SPGPE theory of spinor and multi-
component systems [14] enables these techniques to be applied to systems where dissipation
can only proceed via energy damping.

The paper is structured as follows. The GPE, PGPE, and SPGPE are introduced in Sec. 2,
and the Ehrenfest relations for the GPE and PGPE briefly reviewed. In Sec. 3 we apply Ito’s
formula for change of variables to derive SERs for the SPGPE. We then derive a set of simple
fluctuation-dissipation relations describing equilibrium ensembles. In Sec. 4 we test the for-
malism on the center of mass motion of a harmonically trapped quasi-1D system. In Sec. 5 we
discuss links between our work and relevant linterature, and give our conclusions.

2 Background

2.1 Gross-Pitaevskii equation

The Gross-Pitaevskii equation is the equation of motion for a scalar complex field evolving
according to the Gross-Pitaevskii Hamiltonian

H =

∫

d3rψ∗(r, t)

�

−
~2∇2

2m
+ V (r, t) +

g
2
|ψ(r, t)|2

�

ψ(r, t), (1)
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where V (r, t) is an external potential and the interaction strength g = 4π~2as/m is the two-
body interaction strength in the cold-collision regime [22] via the s-wave scattering length as
and atomic mass m. The Gross-Pitaevskii equation may be generated by taking the functional
derivative of the Gross-Pitaevskii Hamiltonian

i~
∂ψ(r, t)
∂ t

=
δH

δψ∗(r, t)
= Lψ(r, t), (2)

where the Gross-Pitaevskii operator is

Lψ(r, t)≡
�

−
~2∇2

2m
+ V (r, t) + g|ψ(r, t)|2

�

ψ(r, t). (3)

The total particle number

N =

∫

d3rψ∗(r, t)ψ(r, t), (4)

is conserved under the Hamiltonian evolution. Observables A(t) of the system that are given
by the expectation value of an operator Â are defined by

A(t)≡ 〈Â〉=
∫

d3r 〈ψ|Â|r〉ψ(r, t) =

∫

d3rψ∗(r, t)〈r|Â|ψ〉, (5)

for example R(t) =
∫

d3rψ∗(r)rψ(r) is the mean position of the atoms. The internal cancella-
tion of s-wave interaction forces renders the Ehrenfest relations for the GPE identical to those
of the Schrodinger equation [23]:

dR(t)
d t

=
1
m

P(t), (6)

dP(t)
d t

= −〈∇V (r, t)〉 , (7)

dL(t)
d t

= −〈r×∇V (r, t)〉 , (8)

dH(t)
d t

=


∂ V (r, t)
∂ t

·

, (9)

dN(t)
d t

= 0, (10)

for the position R(t), momentum P(t), angular momentum L(t), energy H(t), and number
N(t) respectively. The focus of the present article is to develop a detailed theory of modifica-
tions to these collective equations that occur due to reservoir interactions in a Bose-Einstein
condensate.

As is often convenient when changing representations, here we are using |ψ〉 to represent
the abstract state ket associated with the pure-state wavefunctionψ(r) = 〈r|ψ〉. In the context
of phase-space methods introduced below, it should be noted that we do not use this notation
for the many-body quantum state, but just as a convenient shorthand for the wavefunction
appearing in individual trajectories. Many-body expectation values are calculated as ensemble
averages over trajectories of the stochastic field theory [9]. When generalizing the above
definitions [(6)—(10)] to the many-body theory as described below, the average 〈·〉 refers only
to the wavefunction expectation over position coordinates. The combination of wavefunction
and ensemble average will be denoted by 〈〈·〉〉.
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2.2 Stochastic projected Gross-Pitaevskii equation

The derivation of the complete SPGPE for scalar BEC appeared in [10]. A later generaliza-
tion allows for the possibility of multiple components and spins [14]. The derivation involves
finding a master equation for the coherent region density operator. A series of approximations
valid at high temperartures [21] then gives the high temperature regime master equation,
which is mapped to an equivalent equation of motion for the multimode Wigner distribution
function W [ψ,ψ∗] using quantum to classical operator correspondences [7, 24]. The result
of this is a generalized Fokker-Planck equation (FPE) of motion for the Wigner function that
includes third-order functional derivates. An equation of motion for a quasi-probability dis-
tribution can only be mapped to an SDE if it takes the form of a Fokker-Planck equation, that
is, only contains functional derivatives up to second order and has a positive semi-definite
diffusion matrix. Futher progress can be made by neglecting the third-order derivatives, an
approximation known as the truncated Wigner approximation. Such an approximation is phys-
ically well justified at high temperatures where thermal and classical noise dominate over
quantum noise [25]. To establish notation and formulate the problem, we now summarize the
key results.

2.2.1 Projector

The SPGPE requires a clear formulation of a projection operator that formally and numer-
ically projects the nonlinear GPE dynamics into a low-energy subspace. To define the pro-
jector, the external potential is split into a time-invariant part and a time-dependent part
V (r, t)≡ V (r) +δV (r, t). The time independent part defines the single-particle Hamiltonian

Hsp ≡ −
~2∇2

2m
+ V (r). (11)

The basis of representation is chosen to be the eigenstates of this Hamiltonian, satisfying
Hspφn(r) = εnφn(r), where n denotes the set of quantum numbers required to completely
describe the single-particle basis states, with corresponding energy eigenvalues εn.

The projector can be written in operator form as

P̂ =
∑

n∈C

|n〉〈n|, (12)

where the coherent region C is defined as the set of basis states beneath the cutoff:
C ≡ {n : εn ≤ εc}. In position space, this becomes an integral operator projecting an arbi-
trary function F(r) into C , with action on the function F(r) written as

P {F(r)} ≡
∑

n∈C

φn(r)

∫

d3r′φ∗n(r
′)F(r′) =

∫

d3r′δ(r, r′)F(r′), (13)

where we have made use of the projected Dirac-delta distribution

δ(r, r′)≡
∑

n∈C

φn(r)φ
∗
n(r
′) = 〈r|P̂ |r′〉. (14)

The orthogonal projector Q̂= 1− P̂ , has the action on the function F(r)

Q {F(r)} ≡
∑

n∈I

φn(r)

∫

d3r′φ∗n(r
′)F(r′), (15)

where the incoherent region I is defined as I ≡ {n : εn > εc}. Since P̂ is Hermitian, for any
two states |F〉, |G〉, we have 〈F |P̂ |G〉= 〈F |P̂G〉= 〈P̂F |G〉.
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Figure 1: Schematic: separation of the hot Bose gas into a C-region system con-
taining partially coherent modes with appreciable occupation, and I -region reservoir
containing incoherent modes with small occupation (left); C − I coupling via s-wave
scattering: Energy-damping reservoir interaction (center); Number-damping reser-
voir interaction (right).

The classical field is represented as a sum over the basis states φn(r) with weight αn(t)

ψ(r, t) =
∑

n∈C

αn(t)φn(r), (16)

where the field is now restricted to exist entirely within the coherent region. Without reservoir
interactions, the projected Gross-Pitaevskii equation (PGPE) [16] is obtained by taking the
projected functional derivative of H, where these are defined by

δ̄

δ̄ψ(r, t)
=
∑

n∈C

φ∗n(r)
∂

∂ αn
,

δ̄

δ̄ψ∗(r, t)
=
∑

n∈C

φn(r)
∂

∂ α∗n
. (17)

The projected functional derivative is related to the regular functional derivative by

δ̄F[ψ,ψ∗]

δ̄ψ(r, t)
= P∗

§

δF[ψ,ψ∗]
δψ(r, t)

ª

,
δ̄F[ψ,ψ∗]

δ̄ψ∗(r, t)
= P

§

δF[ψ,ψ∗]
δψ∗(r, t)

ª

. (18)

In particular, the equation of motion for the c-field Eq. (16) is given by the PGPE:

i~
∂ψ(r, t)
∂ t

=
δ̄H

δ̄ψ∗(r, t)
= P {Lψ(r, t)} , (19)

describing Hamiltonian evolution for a field that is formally restricted to the C region. Defining
the canonical momentum Π(r, t)≡ i~ψ(r, t)∗, and projected functional Poisson bracket of any
two functionals F[ψ,Π], G[ψ,Π], as

{F, G} ≡
∫

d3r
δ̄F

δ̄ψ(r)
δ̄G

δ̄Π(r)
−

δ̄F

δ̄Π(r)
δ̄G

δ̄ψ(r)
, (20)

the PGPE follows the expected Hamiltonian structure

∂tψ(r) = {ψ(r), H}, ∂tΠ(r) = {Π(r), H}. (21)

Provided δV ≡ 0, N and H are both formally conserved by the PGPE: ∂t N = {N , H} = 0,
∂t H = {H, H} = 0. A short account of the former is instructive. Evaluating the projected
derivatives, we have

{N , H}=
1
i~

∫

d3rψ∗(r)(P Lψ)(r)−ψ(r)(P Lψ)∗(r). (22)
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Since P is hermitian, and Pψ ≡ ψ for projected fields, we then have {N , H} ≡ 0. As usual,
additional conserved quantities may exist when the confining potential possesses additional
symmetries, and numerical conservation requires that the basis also respect the symmetry. In
practice this requires that the basis modes are eigenstates of the the symmetry generator.

2.2.2 Equations of motion

The PGPE gives Hamiltonian evolution of the coherent region field in isolation. In SPGPE c-
field theory, the incoherent region is usually assumed to be thermalized and is thus treated as
a reservoir that acts as a damping mechanism for the coherent region. Applying the truncated
Wigner approximation to the Born-Markov master equation for the Bose field leads to the
Fokker-Planck equation [10]

∂W [ψ,ψ∗]
∂ t

=

∫

d3r

�

−
δ̄

δ̄ψ(r)

�

−
i
~
(1− iγ) (L −µ)ψ(r)−

i
~

Vε(r)ψ(r)
�

+ h.c.

�

W [ψ,ψ∗]

+

∫

d3r

�

γkBT
~

δ̄(2)

δ̄ψ(r)δ̄ψ∗(r)
+ h.c.

�

W [ψ,ψ∗]

+

∫

d3r

∫

d3r′
kBT
~
ε(r− r′)

�

δ̄

δ̄ψ(r)
ψ(r)

δ̄

δ̄ψ∗(r′)
ψ∗(r′) + h.c.

�

W [ψ,ψ∗]

−
∫

d3r

∫

d3r′
kBT
~
ε(r− r′)

�

δ̄

δ̄ψ(r)
ψ(r)

δ̄

δ̄ψ(r′)
ψ(r′) + h.c.

�

W [ψ,ψ∗]. (23)

The number-damping interction is parametrized by the number-damping rate γ describing
two-body collisions that transfer particles between C and I . For a thermal Bose reservoir the
dimensionless rate γ is [11]

γ=
8a2

s

λ2
dB

∞
∑

j=1

eβµ( j+1)

e2βεc j
Φ

�

eβµ

e2βεc
, 1, j

�2

, (24)

where λdB =
p

2π~2/mkBT is the thermal de Broglie wavelength, β = 1/kBT ,
Φ[z, x , a] =

∑∞
k=0 zk/(a + k)x is the Lerch transcendent.1 Energy damping is described by

the potential

Vε(r)≡ −~
∫

d3r′ε(r− r′)∇′ · j(r′), (25)

where j(r) = i~ [ψ(r)∇ψ∗(r)−ψ∗(r)∇ψ(r)]/2m is the current, and the epsilon function

ε(r)≡
M
(2π)3

∫

d3k S(k)eik·r, (26)

where S(k) ≡ |k|−1 is the scattering kernel. For identical bosons the rate constant M is given
by [10,13]

M=
16πa2

s kBT

~
1

eβ(εc−µ) − 1
, (27)

while for distinct reservoir species, it is reduced by 1/2 [14]. The scattering potential Eq. (25)
describes the reservoir interaction involving transfer of energy and momentum without trans-
fer of particles.

1A consequence of the high-energy cutoff (εc ∼ 3µ) used in the SPGPE is that γ is approximately independent
of position, simplifying the SPGPE. Typical experimentally relevant values are of order 10−5 − 10−4 [11].
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Direct solution of the Fokker-Planck equation of motion (23) is impractical numerically.
Working with this FPE involving only derivatives up to second order, the Wigner function
evolution equation can be mapped to an equivalent SDE for ψ(r) [26], provided the diffusion
matrix is positive semi-definite. For the FPE Eq. (23) this condition is always satisfied, and the
stochastic projected Gross-Pitaevskii equation (SPGPE) is [10,11,14]

(S)dψ(r) = P
§

−
i
~
(1− iγ)(L −µ)ψ(r)d t −

i
~

Vε(r)ψ(r)d t + dW (r, t) + iψ(r)dU(r, t)
ª

, (28)

where the (complex) number-damping noise has the non-zero correlations

〈dW (r, t)dW ∗(r′, t)〉=
2γkBT

~
δ(r, r′)d t, (29)

and the (real) energy-damping noise has non-zero correlations

〈dU(r, t)dU(r′, t)〉=
2kBT
~
ε(r− r′)d t. (30)

The notation (S) indicates that the SDE is to be interpreted as a stochastic integral in Stratonovich
form [26], and thus at a given time t the noises are not independent of the fields.

2.2.3 Energy cutoff and the single-particle basis

Before presenting our results, we remark that there exists a variety of interpretations in the
literature of a central feature of c-field theory: what constitutes a cutoff, and how should it be
imposed in practice? In some cases any convenient numerical basis of representation is trun-
cated. However, truncation in an arbitrary basis will not usually generate a consistent energy
cutoff, and some care should be taken when choosing a basis of representation. In particular,
if a highly inappropriate basis of representation is used, then thermal noise driving the c-field
modes will generate thermalization artifacts [21]. In our approach to the SPGPE we impose
the cutoff in the single-particle basis generated by the time-independent confining potential.
There is a clear physical motivation for this choice (clearly articulated by the pioneers of the
PGPE): at sufficiently high energy — usually of order 2-3µ— the interacting many-body prob-
lem is approximately diagonal in the single-particle basis. Thus a well-chosen cutoff in the
single-particle basis is also an approximate energy cutoff for the many-body system, precisely
what is required for its separation into coherent and incoherent subspaces. These considera-
tions will feature below in our discussion of equilibrium properties of the SPGPE.

3 Stochastic Ehrenfest relations

Ehrenfest relations for the stochastic field can be derived by casting the SPGPE in Ito form.
The noises and fields are then uncorrelated, allowing change of variables using the rules of Ito
calculus.

3.1 Ito form of the SPGPE

Recasting the SPGPE in Ito form involves reordering the projected function derivatives in the
final term of the FPE and mapping the equation to a new SDE.

8
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The FPE is equivalent to

∂W [ψ,ψ∗]
∂ t

=

∫

d3r

�

−
δ̄

δ̄ψ(r)

�

−
i
~
(1− iγ) (L −µ)ψ(r)−

i
~

Vε(r)ψ(r)
�

+ h.c.

�

W [ψ,ψ∗]

+

∫

d3r

�

−
δ̄

δ̄ψ(r)

�

−
kBT
~

∫

d3r′ε(r− r′)δ(r, r′)ψ(r′)

�

+ h.c.

�

W [ψ,ψ∗]

+

∫

d3r

�

γkBT
~

δ̄(2)

δ̄ψ(r)δ̄ψ∗(r)
+ h.c.

�

W [ψ,ψ∗]

+

∫

d3r

∫

d3r′
kBT
~
ε(r− r′)

�

δ̄(2)

δ̄ψ(r)δ̄ψ∗(r′)
ψ(r)ψ∗(r′) + h.c.

�

W [ψ,ψ∗]

−
∫

d3r

∫

d3r′
kBT
~
ε(r− r′)

�

δ̄(2)

δ̄ψ(r)δ̄ψ(r′)
ψ(r)ψ(r′) + h.c.

�

W [ψ,ψ∗], (31)

which maps to the Ito SPGPE

(I)dψ(r) = P
¦

−
i
~
(1− iγ)(L −µ)ψ(r)d t −

i
~

Vε(r)ψ(r)d t

−
kBT
~

∫

d3r′ε(r− r′)δ(r, r′)ψ(r′)d t + dW (r, t) + iψ(r)dU(r, t)
©

, (32)

where the first term in the second line is called the Stratonovich correction. In contrast to the
Stratonovich SPGPE, in the Ito SPGPE [denoted (I)] the noises are always independent of the
fields at a given time t. This formulation has distinct advantages for formal manipulation that
we exploit below.

3.2 Functional Change of Variables

Consider any functional of the projected fields A≡ A[ψ,ψ∗, t]. Using the rules of Ito calculus,
we can find the an SDE for A in the form

(I)dA[ψ,ψ∗, t] =
∂ A[ψ,ψ∗, t]

∂ t
d t +

∫

d3r

�

δ̄A[ψ,ψ∗, t]

δ̄ψ(r)
dψ(r) + h.c.

�

+

∫

d3r

∫

d3r′
�

δ̄(2)A[ψ,ψ∗, t]

δ̄ψ∗(r′)δ̄ψ(r)
δ(r, r′) + h.c.

�

γkBT
~

d t

+

∫

d3r

∫

d3r′
�

δ̄(2)A[ψ,ψ∗, t]

δ̄ψ∗(r′)δ̄ψ(r)
ψ∗(r′)ψ(r) + h.c.

�

ε(r− r′)
kBT
~

d t

−
∫

d3r

∫

d3r′
�

δ̄(2)A[ψ,ψ∗, t]

δ̄ψ(r′)δ̄ψ(r)
ψ(r′)ψ(r) + h.c.

�

ε(r− r′)
kBT
~

d t, (33)

where we consistently include all terms up to order d t, including terms quadratic in the noises
that generate second derivatives. We require the property of the epsilon function that it is
diagonal in k-space:

∫

d3r

∫

d3u F(r)G(u)ε(r− u) =M
∫

d3k S(k)F [F∗(r)]∗F [G(r)] , (34)

where the Fourier transform is defined as

F[ f (r)]≡ 1
(2π)3/2

∫

d3r f (r)e−ik·r, (35)
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a simplification that we will make use of below. Using

δ̄A[ψ,ψ∗, t]

δ̄ψ(r)
=
δA[ψ,ψ∗, t]
δψ(r)

−Q∗
�

δA[ψ,ψ∗, t]
δψ(r)

�

, (36)

we rewrite (33) as a stochastic Ehrenfest equation with additional terms due to the projector

(I)dA[ψ,ψ∗, t] =
∂ A[ψ,ψ∗, t]

∂ t
d t +

2
~

Im

∫

d3r
δA[ψ,ψ∗, t]
δψ(r)

(L −µ)ψ(r)d t +QH
A

−
2γ
~

Re

∫

d3r
δA[ψ,ψ∗, t]
δψ(r)

(L −µ)ψ(r)d t +QγA

− 2M Im

∫

d3k S(k)F
�

δA[ψ,ψ∗, t]
δψ∗(r)

ψ∗(r)
�∗

F [∇ · j(r)] d t +QεA

+
2γkBT

~
Re

∫

d3r

∫

d3u δ(u, r)
δ(2)A[ψ,ψ∗, t]
δψ∗(r)δψ(u)

d t + dAε

+ dW A
γ (t) + dW A

ε (t), (37)

where the noise correlations are

〈dW A
γ (t)dW A

γ (t)〉=

�

4γkBT
~

∫

d3r

�

�

�

�

δA[ψ,ψ∗, t]
δψ(r)

�

�

�

�

2

+ DγA

�

d t, (38)

〈dW A
ε (t)dW A

ε (t)〉=

�

8MkBT
~

∫

d3k k−1

�

�

�

�

F
�

Im
§

δA[ψ,ψ∗, t]
δψ(r)

ψ(r)
ª�

�

�

�

�

2

+ DεA

�

d t, (39)

and the Hamiltonian, number-damping, and energy-damping drift projector terms are given
in Appendix A.1. The number-damping and energy-damping each have a corresponding drift,
diffusion, and trace2 term. It is worth remarking that that the general expression obtained
above allows for any observable. Furthermore, it is well-suited for significant simplification
via an ansatz for the wavefunction, provided the integrals may be evaluated. In the remainder
of this paper we explore the consequences of this formulation, providing explicit stochastic
equations for particular observables of interest.

3.3 One-body operators

If we restrict our attention to one-body operators, the projected functional calculus assumes a
particularly simple form. Consider a quantity that is the pure-state trace of a one-body operator

A[ψ,ψ∗] = 〈ψ|Â|ψ〉=
∫

d3r〈ψ|Â|r〉ψ(r), (40)

where the operator Â is independent ofψ,ψ∗. We emphasize that this quantity is spatial aver-
age for the pure state wavefunction associated with each trajectory, and does not represent the
many-body expectation value found by tracing over the density matrix (the ensemble average).
The non-zero projected functional derivatives are

δ̄A[ψ,ψ∗, t]

δ̄ψ(r)
= 〈ψ|P̂ÂP̂ |r〉=

δAP[ψ,ψ∗, t]
δψ(r)

, (41)

δ̄(2)A[ψ,ψ∗, t]

δ̄ψ∗(r′)δ̄ψ(r)
= 〈r′|P̂ÂP̂ |r〉=

δ(2)AP[ψ,ψ∗, t]
δψ∗(r′)δψ(r)

. (42)

2We refer to dAε loosely as the energy-damping trace term, despite the fact it is not strictly a trace; it is the
energy-damping counterpart to the number-damping trace term, which is a true trace.
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The projected functional derivatives corresponding to the operator Â are equivalent to the
regular functional derivatives of the totally projected operator ÂP ≡ P̂ÂP̂; the change of
variables is then simple to construct. Again writing in the form of a wave function average
with additional projector terms, the SDE of the observable A is

(I)dA(t) =

�

∂ Â
∂ t

�

d t +
1
i~



[Â, Ĥsp]
�

d t +
1
~

2Im

∫

d3r〈ψ|Â|r〉(gn(r) +δV (r, t)−µ)ψ(r)d t

−
γ

~
2Re

∫

d3r〈ψ|Â|r〉(L −µ)ψ(r)d t +
2γkBT

~
Tr
�

ÂP̂
�

d t

− 2M
∫

d3kS(k)F
�

Im〈ψ|Â|r〉ψ(r)
�∗F [∇ · j(r)] d t

+ dW A
γ (t) + dW A

ε (t)

+ dAε +QH
A +QγA+QεA, (43)

where the noise correlations are

〈dW A
γ (t)dW A

γ (t)〉 =
�

4γkBT
~




Â2
�

+ DγA

�

d t, (44)

〈dW A
ε (t)dW A

ε (t)〉 =
�

8MkBT
~

∫

d3k k−1
�

�F
�

Im
�

〈ψ|Â|r〉ψ(r)
	��

�

2
+ DεA

�

d t, (45)

and the projector terms dAε−QεA are given in Appendix A. We have expressed Eq. (43) in terms
of the commutator [Â, Ĥsp] to show the connection to the standard Ehrenfest relations.

3.4 Noise correlations for multiple moments

When considering more than one moment, one must take care when considering the noise
terms that arise. Let B = B[ψ,ψ∗, t] be another moment of the SPGPE with evolution de-
scribed by Eq. (37). The correlations between the noises corresponding to A and the noises
corresponding to B are

〈dW A
γ (t)dW B

γ (t)〉 =
4γkBT

~
Re

∫

d3r

∫

d3r′
δ̄A[ψ,ψ∗, t]

δ̄ψ(r)

δ̄B[ψ,ψ∗, t]

δ̄ψ∗(r′)
δ(r, r′)d t (46)

〈dW A
ε (t)dW B

ε (t)〉 =
8MkBT

~

∫

d3k k−1F
�

Im

�

δ̄A[ψ,ψ∗, t]

δ̄ψ(r)
ψ(r, t)

��∗

×F
�

Im

�

δ̄B[ψ,ψ∗, t]

δ̄ψ(r)
ψ(r, t)

��

d t, (47)

for number-damping and energy-damping respectively.
The special case of one-body operators allows significant simplification: for moments that

are the expectation of a one-body operator the correlations reduce to

〈dW A
γ (t)dW B

γ (t)〉 =
4γkBT

~
Re〈ÂP̂ B̂〉d t, (48)

〈dW A
ε (t)dW B

ε (t)〉 =
8MkBT

~

∫

d3k k−1F
�

Im
�

〈ψ|ÂP̂ |r〉ψ(r, t)
	�∗

×F
�

Im
�

〈ψ|B̂P̂ |r〉ψ(r, t)
	�

d t, (49)

for number-damping and energy-damping respectively.
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3.5 Finite-temperature stochastic Ehrenfest relations

We consider the Ehrenfest relations for position, momentum, angular momentum, grand canon-
ical energy, and coherent region particle number. The complete set of stochastic Ehrenfest
relations for the SPGPE are

(I)dR j(t) =
1
m

Pj(t)d t −
2γ
~

Re



r̂ j(L −µ)
�

d t +
2γkBT

~
Tr
�

r̂ jP̂
�

d t

+ dW
R j
γ (t) + dW

R j
ε (t)

+QH
r j
+Qγr j

+Qεr j
+ dRεj , (50a)

(I)dPj(t) =−



∂ jV (r, t)
�

d t −
2γ
~

Re



p̂ j(L −µ)
�

d t +
2γkBT

~
Tr
�

p̂ jP̂
�

d t

− ~M
∫

d3kS(k)F
�

∂ jn(r)
�∗F [∇ · j(r)] d t

+ dW
Pj
γ (t) + dW

Pj
ε (t)

+QH
p j
+Qγp j

+Qεp j
+ dPεj , (50b)

(I)d L j(t) =−

�

r j+1∂ j−1 − r j−1∂ j+1

�

V (r, t)
�

d t −
2γ
~

Re



l̂ j(L −µ)
�

d t

+
2γkBT

~
Tr
�

l̂ jP̂
�

d t

− ~M
∫

d3k S(k)F
��

r j+1∂ j−1 − r j−1∂ j+1

�

n(r)
�∗F [∇ · j(r)] d t

+ dW
L j
γ (t) + dW

L j
ε (t)

+QH
l j
+Qγl j

+Qεl j
+ d Lεj , (50c)

(I)dK(t) =


∂ V (r, t)
∂ t

·

d t −
2γ
~

Re



(L −µ)2
�

d t +
2γkBT

~
Tr
�

P̂ (L −µ) P̂
�

d t

− ~M
∫

d3k S(k) |F [∇ · j(r)]|2 d t

+ dW K
γ (t) + dW K

ε (t)

+QH
K +QγK +QεK + dKε, (50d)

(I)dN(t) =−
2γ
~

Re〈(L −µ)〉d t +
2γkBTN

~
d t + dW N

γ (t), (50e)

where the noise correlators are given by Eqs. (46),(47). This set of equations are our main re-
sult. They take the form of generalized Ehrenfest relations with additional damping and noise
terms arising from the reservoir coupling processes. They provide a starting point for finding
analytic descriptions of hot BEC dynamics, and also provide tests for numerical consistency of
SPGPE simulations. We make the following remarks:

i) Ensemble averages.—Neglecting energy-damping and taking the average over the noise
(in Ito form the fields and noises are uncorrelated), we immediately recover the Ehren-
fest relations for the number-damped SPGPE as found in [21]. Those Ehrenfest relations
described the evolution of ensemble avarages, whereas in the present formulation we
retain all noises in the collective equations.

ii) Multiplicative noise.—Superficially, the multiplicative noise in the SPGPE Eq. (28) may
appear to have been transformed into additive noise. However, we emphasize that mul-
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tiplicative noises remain present in terms of the form
Æ

〈Â〉dWj , since 〈Â〉 is not a noise
average.

iii) Additive noise.—Reduction to additive noise can be achieved in special cases where the
system can be well-described by a suitable physically motivated ansatz wavefunction. If
such an ansatz is available, reduction to an additive noise SDE provides a significant sim-
plification that can enable analytical progress [19].

iv) Projector terms.—The projector terms are all consistently accounted for, and in general
contribute additional noises. However, provided the basis of projection is properly chosen,
their effect is typically only a small correction. Testing whether such terms are negligible
provides a useful consistency test for a well-chosen cutoff.

v) Thermal equilibrium.—Formally it is known that trajectories of the SPGPE will approach
a grand canonical ensemble [10] describing the thermal equilibrium properties of the
system. The c-field ensemble is then drawn from the equilibrium Wigner functional

W [ψ,ψ∗]∝ exp (−β(H −µN)). (51)

In the SPGPE, the particular ensemble depends upon the ratio M/γ, with canonical equi-
librium reached in the limit M � γ, and grand-canonical equilibrium reached in the
opposite limit. The equilibrium ensemble satisfies a set of fluctuation-dissipation rela-
tions, as may be derived by applying the steady-state condition to Eq. (50). In each case
there is a balance between thermal noise and the damping. For example, for pure number
damping it is easily shown that 〈〈L − µ〉〉 = kBTN for N ≡ Tr P̂ modes in the C-region.
The correct balance between damping and noise is manifest through the absence of the
dissipation parameters from such expressions, consistent with their absence from the equi-
librium ensemble Eq. (51). We note that ensemble (in)equivalence [27] and the choice
of an optimal cutoff [28] are both active areas of research.

4 Application to center of mass fluctuations

As a test of the formalism we consider center of mass oscillations in a quasi-1D harmonically
trapped system with frequency for transverse trapping ω⊥ such that ω⊥ � ω, the frequency
for the axial trap. Our primary aim is to test the validity of our analytical approach against
c-field simulations. The system we choose is particularly simple and thus amenable to analytic
treatment of the SERs. However, we must take some care in interpreting the reservoir theory
in this case, as the Bose gas in a harmonic trap obeys Kohn’s theorem.

Kohn’s theorem states that in a harmonically trapped system the center of mass undergoes
bulk oscillations about the trap center at the trapping frequency. While the second-quantized
field theory satisfies Kohn’s theorem, the best available c-field reservoir theory describes the
I region as time independent, and hence violates Kohn’s theorem. C-field theory is thus cur-
rently best suited to systems for which a time-independent high-energy thermal reservoir is a
reasonable approximation. We emphasize that the low-energy c-field is a dynamical treatment
of both condensate and non-condensate; above a high-energy cutoff the dynamics are typically
not included due to technical limitations.

While the time-independent reservoir approximation (TIRA) is not strictly applicable for
scalar BEC in the purely harmonic trap, there are a number of physical systems where it is
applicable: Kohn’s theorem does not apply to a scalar Bose gas held in a harmonic trap if the
trap becomes non harmonic at high energy. The theorem is also inapplicable for a harmoni-
cally trapped system if the reservoir consists of second atomic species confined by a different
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trapping potential, as may occur during sympathetic cooling. Furthermore, any system that is
not harmonically trapped will not obey Kohn’s theorem, and is thus potentially amenable to
the TIRA. Examples systems in non-harmonic traps for which the theory is applicable include
vortex decay in hard-wall confinement [46], soliton decay in a 1D toroidal trap (where the
present approach was first used) [19], and persistent current formation in a 3D toroidal trap,
where SPGPE simulations [17] compare well with experiment [44].

In this work our approach is simply to test the formalism on a simple model system within
the TIRA by integrating out the spatial degrees of freedom to find effective stochastic equations
of motion for the center of mass. We stress that the TIRA approached used here is physically
valid for (at least) two scenarios if immediate interest: non-harmonic trapping at high energies
for a scalar BEC, and sympathetic cooling involving two BEC components in different harmonic
traps [14]3. An effective one-dimensional theory can be found in the prolate trapping regime
where the reservoir remains three dimensional4, and the low-dimensional subspace is well-
described by projecting onto the transverse ground state of the confining potential.

The one dimensional SPGPE assumes an identical functional form to the three dimensional
SPGPE, but with dimensionally reduced damping and noise coefficients [18]. The number-
damping term is only changed by the replacement g→ g1D, as are the Hamiltonian terms. The
scattering kernel in the 1D reduction of Eq. (26) becomes

S1(k) =
1

q

8πa2
⊥

erfcx
� |k|a⊥p

2

�

, (52)

where erfcx(q) ≡ eq2
erfc(q) is the scaled complementary error function, and a⊥ ≡

p

~/mω⊥
is the transverse harmonic oscillator length, much smaller than aω =

p

~/mω. The system is
assumed to be sufficiently condensed such that the center of mass motion can be approximated
using a Thomas-Fermi wavefunction ansatz. We do not require that this is a good approxima-
tion — indeed, the high-temperature regime requires that it must not be. We merely require
that it should approximate the center of mass motion. The Thomas-Fermi wave function al-
lowing for arbitrary variations in the center of mass position x(t) and momentum p(t) is

ψ(x) =
√

√µ

g

√

√

1−
(x − x(t))2

R2
exp

�

ip(t)x
~

�

. (53)

Using this ansatz, the integrals for Eqs. (50) can be evaluated analytically.5

4.1 Stochastic equations for center of mass

In the interest of brevity, we outline the derivation here, providing details in Appendix B. We
first use the Thomas-Fermi ansatz Eq. (53) and evaluate the spatial integrals in (50a), (50b) to
derive stochastic equations for x and p that are exact within the Thomas-Fermi approximation.
The projector terms, given in Appendix B.1, severely constrain exact analytic progress beyond
this point. Provided these terms may be safely neglected, we can arrive at an approximate
set of equations that can be solved analytically. For consistent c-field simulations, neglecting
the projector terms in the SERs will always be a good approximation, since for a well-chosen
cutoff the mode population near the cutoff will be relatively small. Since we are considering

3The theory introduced here can be developed into a first-principles treatment for a particular atom number
and temperature by self-consistent calculation of the reservoir interaction parameters [3,13,17].

4Without this restriction the complexity of the reservoir interactions increases significantly and we do not pursue
this regime further here.

5We note that in the basis of harmonic oscillator modes used to represent the C-region the trace terms in the
Ehrenfest relations for position and momentum vanish.
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equilibrium states, we can assume that the values of x(t) and p(t)will also be small relative to
the characteristic harmonic oscillator length and momentum scales; we test our assumptions
by solving the SPGPE numerically. It is convenient to rewrite the equations of motion as a
single equation of motion for the dimensionless complex variable

z(t) =
s

mω
2~

x(t) +
i

p
2~mω

p(t), (54)

and neglect terms of higher order than linear in z(t), z∗(t), to find the simpler stochastic equa-
tions given in Appendix B, Eq. (76). Assuming it is physically consistent to neglect projector
terms in (76), (77a), we arrive at the equation of motion

(I)dz(t) =− iωz(t)d t −
�

Λγ +Λε
�

z(t)d t −
�

Λγ −Λε
�

z∗(t)d t + dW z
γ (t) + dW z

ε (t), (55)

with noise correlations

〈dW z
γ (t)dW z

γ (t)〉 =
Dγ

2~mω3
d t, (56a)

〈dW z
ε (t)dW z

ε (t)〉 = −
mDε
2~ω

d t. (56b)

The equation of motion describes simple harmonic motion with two sources of damping and
noise.

4.2 Analytic and numerical solutions

In this section we present an analytical treatment of the stochastic equations discussed in
Section 4.1, and compare the results with numerical simulations of the 1D SPGPE. The analytic
approach offers a simple intuitive picture of the dynamics of the center of mass, for both
number and energy damping mechanisms, and for both dissipation and noise.

Neglecting the projector terms, we can write the coupled differential equation as a vector
SDE representing an Ornstein-Uhlenbeck process6

du(t) = −Λu(t)d t +BdW(t), (57)

where u(t) = [x(t), p(t)]ᵀ, and

Λ=

�

2Λγ −1/m
mω2 2Λε

�

, B=





r

Dγ
m2ω4 0

0
p

m2Dε



 , (58)

are the drift and diffusion matrices respectively, and dW(t) = [dW1(t), dW2(t)]ᵀ is a vector of
independent real Wiener processes with correlations 〈dWn(t)dWm(t)〉= δmnd t. The SDE has
the formal solution

u(t) = exp [−Λt]u(0) +

∫ t

0

exp
�

−Λ(t − t ′)
�

BdW(t ′), (59)

where have assumed the initial state u(0) to be deterministic. The mean undergoes exponen-
tial decay 〈u(t)〉= exp [−Λt]u(0).

6The defining property of an Ornstein-Uhlenbeck process is that the drift and diffusion matrices are independent
of the stochastic field. Since the noise is additive, the distinction between Ito and Stratonovich is irrelevant for
Ornstein-Uhlenbeck processes.
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Figure 2: Steady-state time correlations for position-position (left), momentum-
momentum (middle) and momentum-position (right), as determined by numerical
solutions of the SPGPE (red dots) and the analytic solutions (solid blue) Eq. (63a)-
Eq. (63c).

For a system with x(0) = x0 and p(0) = 0, the center of mass position over time is given
by

〈x(t)〉= x0e−(Λγ+Λε)t
�

cos
�

ωγε t
�

+

�

�Λγ −Λε
�

�

ωγε
sin
�

ωγε t
�

�

, (60)

where we have defined the frequency ωγε =
Æ

ω2 − (Λγ −Λε)2. This simple result has a clear
interpretation in terms of the decaying oscillatory motion of the center of mass with effective
damping rates given by the SPGPE. Note that since we have arrived at a description with
additive noise, the noise does not alter the average coordinate.

To study this regime of energy-damped dynamics numerically, we consider the steady-state
correlations given by

G(τ) ≡ lim
t→∞

〈[u(t)− 〈u(t)〉] [u(t +τ)− 〈u(t +τ)〉]ᵀ〉

=

∫ min(t,t+τ)

−∞
exp

�

−Λ(t − t ′)
�

BBᵀ exp
�

−Λᵀ(t +τ− t ′)
�

d t ′. (61)

Fourier transforming with respect to τ in the steady-state, the fluctuation spectra are given by

S(Ω) =
1

2π
(Λ+ iΩ)−1BBᵀ(Λᵀ − iΩ)−1. (62)

The steady-state correlations for position-position, momentum-momentum, and momentum-
position are

Gx x(τ) = −
kBT
Nm

1
ωωγε

e−(Λγ+Λε)|τ| sin
�

ωγε|τ| − sin−1
�ωγε

ω

��

, (63a)

Gpp(τ) =
mkBT

N
ω

ω′γε
e−(Λγ+Λε)|τ| sin

�

ωγε|τ|+ sin−1
�ωγε

ω

��

, (63b)

Gpx(τ) =
kBT
N

1
ω′γε

e−(Λγ+Λε)|τ| sin
�

ω′γετ
�

, (63c)

respectively. The steady-state spectra for position-position, momentum-momentum, and momentum-
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position are

Sx x(Ω) =
2kBT

Nπmω2

Λε(4ΛγΛε +ω2) +ΛγΩ2

(4ΛγΛε +ω2)2 − 2(ω2 − 2(Λ2
ε +Λ2

γ))Ω2 +Ω4
, (64a)

Spp(Ω) =
2kBT m

Nπ

Λγ(4ΛγΛε +ω2) +ΛεΩ2

(4ΛγΛε +ω2)2 − 2(ω2 − 2(Λ2
ε +Λ2

γ))Ω2 +Ω4
, (64b)

Spx(Ω) =
2ikBT

Nπ

(Λγ +Λε)Ω

(4ΛγΛε +ω2)2 − 2(ω2 − 2(Λ2
ε +Λ2

γ))Ω2 +Ω4
, (64c)

respectively.
We now test our analytical description against SPGPE simulations. While the SPGPE can

be used for quantitative modelling [17, 29, 30] here our aim is simply to test our analytic
solutions of the SPGPE using the SERs. We thus choose parameters that are representative of
BEC experiments, and leave a first principles treatment of reservoir interactions [18] for future
work.

We perform simulations of the 1D SPGPE [18] with the initial condition given by Eq. (53)
with x(0) = p(0) = 0. We use a chemical potential of µ = 100~ω, an energy cutoff of
εc = 250~ω, a temperature of T = 500~ω/kB, an interaction strength of g1D = 0.01~ωaω,
an energy-damping rate of M = 0.0005a2

ω, and a number-damping rate of γ = 0.001. We
chose values for the damping rates such that Λε ≈ Λγ and thus neither damping process is
dominant over the other. Timescales are considered in units of the harmonic oscillator time
period tω ≡ 2π/ω.

We compare our analytic solutions with the numerical data from equilibrated SPGPE sim-
ulations. In Fig. 2 we show the steady-state correlation functions for an ensemble of 5000
trajectories7. We see that the analytic and numeric results show excellent agreement for short
times with differences becoming more pronounced for larger τ. Similarly, the steady-state
spectra for position-position, momentum-momentum, and momentum-position are shown in
Fig. 3, where the numeric spectra are obtained using the Wiener-Khinchin theorem applied to
the numeric steady-state correlations. The bulk oscillation seen in Fig. 2 is the Kohn mode, as
seen from the peak at Ω ≡ ω in Fig. 3. The spectral linewidth represents the decay time of
the two-time correlation function, determined by Λε and Λγ, the energy and number damping
rates. Again we see that the analytic and numeric results show good agreement. To assess
the validity of neglecting projector terms in our analytical treatment, we evaluate their contri-
bution numerically in Appendix B.3, finding that indeed the projector correction is negligible.

5 Discussion and Conclusions

5.1 Discussion

The SERs derived here using projected functional calculus contain many projector terms, pos-
ing a technical challenge. As an application of projected functional calculus, our approach
bears comparison with that of Opanchuk et al [31], where a number of useful functional rela-
tions were derived for Wigner phase-space methods [6] involving projected fields. The action
of the projector was reduced to the action of matrix operations, as is always possible in a finite
basis. While not without its own technical challenges, our approach has the advantage that

7When calculating the correlations from the numeric data, we have assumed that the system has reached equi-
librium after five trap cycles t = 5tω, and used ergodic averaging over the remaining time interval t = 5tω. With
respect to the dissipation timescale (Λγ +Λε)−1, the timescale of averaging is equivalent to t = 2.78(Λγ +Λε).
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Figure 3: Steady-state spectra for position-position (left), momentum-momentum
(middle) and momentum-position (right), as determined by numerical solutions of
the SPGPE (red dots) and the analytic solutions (solid blue) Eq. (64a)-Eq. (64c).

the equations of motion have an obvious link with the continuum limit recovered for a high
cutoff.

An alternate stochastic reservoir theory, namely the Stoof SGPE [32], has been used in sev-
eral studies of finite-temperature BEC dynamics [33–37]. While the SGPE lacks a projection
operator of the form used in the present work, our aims are similar in spirit to the work of
Duine et al. [38] applying path-integral techniques to the Stoof SGPE to find effective stochastic
equations for a reduced set of variables. However, the explicit high-energy cutoff in the SPGPE
necessitates a different technical approach, with significant differences appearing in the result-
ing stochastic equations. As the energy-damping mechanism is absent from the Stoof SGPE, an
interesting future direction is to identify further experimentally accessible regimes capable of
distinguishing between the two approaches [30]. A related question receiving recent attention
is that of ensemble equivalence [27]; in general the equilibrium ensemble generated by the
SPGPE will be affected by the relative strengths of number and energy damping processes.

In applications of the SPGPE, the energy cutoff must be chosen such that the bulk of the
coherent region modes are significantly occupied compared to the modes in the incoherent re-
gion. The relative occupation at the cutoff thus determines the presence of spurious dynamics
due to the projector, and this population can typically be chosen to be of order unity. Ulti-
mately, large projector corrections generate spurious dynamics and for a consistent treatment
the cutoff should be chosen such that the projector corrections are small.

5.2 Conclusions

We have developed a set of exact stochastic Ehrenfest relations (SERs) for the complete stochas-
tic projected Gross-Pitaevskii equation [10], an equation of motion which has significant ap-
plication in the study of finite-temperature Bose-Einstein condensates [3, 9, 11]. In addition
to the number-damping process, the SPGPE contains a number-conserving dissipative mecha-
nism that transfers energy between the system and reservoir. Our main result, the SERs, retain
the stochastic nature of the SPGPE and explicitly contain terms that result from both number-
and energy-damping processes.

We tested our stochastic Ehrenfest equations in two ways. Considering the center of mass
motion of a finite-temperature quasi-1D condensate near equilibrium, we tracked the size of
the largest projector corrections and saw they are indeed small. We also compared the steady-
state correlations of position and momentum to analytic solutions derived by neglecting the
projector corrections, finding excellent agreement. Our chosen test system has the weakness
that the center of mass motion in a purely harmonic trap is not strictly amenable to the reservoir
theory due to a violation of Kohn’s theorem, However, our treatment is physically relevant for
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non-harmonic trapping, multicomponent systems, and other systems of interest that physically
violate Kohn’s theorem, provided a low-energy fraction is harmonically trapped. Indeed, since
the thermal equilibrium properties involve small excursions from equilibrium, the confining
potential is only required to be locally harmonic near the trap minimum and any number of
non-harmonic effects may intrude at larger distances. The center of mass motion thus provides
an excellent formal and numerical test of the SERs, being one of the simplest states of motion
to handle analytically.

We have shown that SERs can be used to obtain analytic equations that agree with numeri-
cal solutions of the full SPGPE and offer some physical insight into the open system dynamics.
Future work will explore systems involving analytically tractable excitations such as vortex
decay in hard-wall confinement [46], soliton [39] and phase-slip dynamics [40] in toroidal
confinement, sympathetic cooling [41,42], spinor BECs [43], and quantum turbulence in non-
harmonic traps [44–47].
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A Projector terms

A.1 General operators

For general operator Â, the drift projector terms are

QH
A = −

2
~

Im

∫

d3r (gn(r) +δV (r, t))ψ(r)Q∗
�

δA[ψ,ψ∗, t]
δψ(r)

�

d t, (65a)

QγA =
2γ
~

Re

∫

d3r (gn(r) +δV (r, t))ψ(r)Q∗
�

δA[ψ,ψ∗, t]
δψ(r)

�

d t, (65b)

QεA = 2M Im

∫

d3k S(k)F
�

ψ∗(r)Q
�

δA[ψ,ψ∗, t]
δψ∗(r)

��∗
F [∇ · j(r)] d t, (65c)

the number-damping, and energy-damping diffusion projector terms are

DγA = −
4γkBT

~
Re

∫

d3r
δA[ψ,ψ∗, t]
δψ∗(r)

Q∗
�

δA[ψ,ψ∗, t]
δψ(r)

�

, (66a)

DεA =
8MkBT

~
d t

∫

d3k S(k)

�

�

�

�

F
�

Imψ(r)Q∗
�

δA[ψ,ψ∗, t]
δψ(r)

��

�

�

�

�

2

−
16MkBT

~
d t

∫

d3k S(k)F
�

Im
δA[ψ,ψ∗, t]
δψ(r)

ψ(r)
�∗

F
�

Imψ(r)Q∗
�

δA[ψ,ψ∗, t]
δψ(r)

��

,

(66b)
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and the epsilon term is

dAε = −
kBT
~

∫

d3r

∫

d3r′
�

δ̄A[ψ,ψ∗, t]

δ̄ψ(r)
δ(r, r′)ψ(r′) + h.c.

�

ε(r− r′)d t

+
kBT
~

∫

d3r

∫

d3r′
�

δ̄(2)A[ψ,ψ∗, t]

δ̄ψ∗(r′)δ̄ψ(r)
ψ∗(r′)ψ(r) + h.c.

�

ε(r− r′)d t

−
kBT
~

∫

d3r

∫

d3r′
�

δ̄(2)A[ψ,ψ∗, t]

δ̄ψ(r′)δ̄ψ(r)
ψ(r′)ψ(r) + h.c.

�

ε(r− r′)d t. (67)

A.2 One-body operators

For the special case where Â is a one-body operator, the projector corrections take a simpler
form. In this case we find the drift projector terms

QH
A = −

2
~

Im

∫

d3r〈ψ|ÂQ̂|r〉(gn(r) +δV (r, t))ψ(r)d t (68a)

QγA =
2γ
~

Re

∫

d3r〈ψ|ÂQ̂|r〉(gn(r) +δV (r, t))ψ(r)d t (68b)

QεA = 2M Im

∫

d3kS(k)F
�

〈r|Q̂Â|ψ〉ψ∗(r)
�∗F [∇ · j(r)] d t, (68c)

diffusion projector terms

DγA =−
4γkBT

~
〈ÂQ̂Â〉 (69)

DεA =
8MkBT

~
d t

∫

d3k S(k)
�

�F
�

Im〈ψ|ÂQ̂|r〉ψ(r)
��

�

2

−
16MkBT

~
d t

∫

d3k S(k)F
�

Im〈ψ|Â|r〉ψ(r)
�∗F

�

Im〈ψ|ÂQ̂|r〉ψ(r)
�

, (70)

and the epsilon term

dAε =−
kBT
~

d t

∫

d3r

∫

d3r′〈ψ|ÂP̂ |r〉δ(r, r′)ψ(r′)ε(r− r′) + h.c.

+
kBT
~

d t

∫

d3r

∫

d3r′〈r|P̂ÂP̂ |r′〉ψ∗(r)ψ(r′)ε(r− r′) + h.c.. (71)

B Centre of mass equations

Integrating over the Thomas-Fermi ansatz, the SERs for position and momentum take the
form of a pair of coupled stochastic differential equations for the center of mass position and
momentum

(I)d x(t) =
1
m

p(t)d t −
γmω2

~
x(t)3d t − 2Λγx(t)d t + dW x

γ (t)

+ dW x
ε (t) + qH

x + qγx + qεx + d xεd t, (72)

(I)dp(t) =−mω2 x(t)d t −
γmω2

~
x(t)2p(t)d t − 2Λεp(t)d t + dW p

ε (t)

+ dW p
γ (t) + qH

p + qγp + qεp + dpεd t. (73)
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Here the noise correlations are

〈dW x
γ (t)dW x

γ (t)〉 =
� Dγ

m2ω4
+

4γkBT x(t)2

N~
+ dγx

�

d t, (74a)

〈dW p
γ (t)dW p

γ (t)〉 = dγp d t, (74b)

〈dW x
γ (t)dW p

γ (t)〉 = −
4µ1γkBT

g1~
p(t)x(t)d t, (74c)

〈dW x
ε (t)dW x

ε (t)〉 = dεx d t, (74d)

〈dW p
ε (t)dW p

ε (t)〉 =
�

m2Dε + dεp
�

d t, (74e)

〈dW x
ε (t)dW p

ε (t)〉 = dεx ,pd t, (74f)

and the drift and diffusion rates are

Λγ =
2γµ
5~

, Dγ =
4mω2kBT

N
Λγ, Dε =

4kBT
mNTF

Λε,

Λε =
3ωM~
2gRa⊥

s

µ

mπ3

∫ ∞

0

dq erfcx
� |q|a⊥

R
p

2

�

(sin(q)− q cos(q))2

q4
, (75)

derived from the effective one dimensional SPGPE [18] by integrating over the Thomas-Fermi
ansatz. In terms of the dimensionless phase-space amplitude Eq. (54) the equation of motion
becomes

(I)dz(t) =− iωz(t)d t −
�

Λγ +Λε
�

z(t)d t −
�

Λγ −Λε
�

z∗(t)d t

+ dW z
γ,1(t) + dW z

ε,1(t) + dW z
γ,2(t) + dW z

ε,2(t)

+ qH
z d t + qγz d t + qεz d t + dzεd t, (76)

where the noises have non-zero correlations

〈dW z
γ,1(t)dW z

γ,1(t)〉 =
mω
2~

� Dγ
m2ω4

+ dγx

�

d t, (77a)

〈dW z
γ,2(t)dW z

γ,2(t)〉 = −
1

2~mω
dγp d t, (77b)

〈dW z
ε,1(t)dW z

ε,1(t)〉 =
mω
2~

dεx d t, (77c)

〈dW z
ε,2(t)dW z

ε2(t)〉 = −
1

2~mω

�

m2Dε + dεp
�

d t, (77d)

〈dW z
ε,1(t)dW z

ε2(t)〉 =
i

2~
dεx ,pd t, (77e)

and the projector terms are given below. The projector terms are relatively simple for this
SPGPE describing a BEC in an oblate parabolic trap with only one effective C-region dimen-
sion [18]. We first consider the position and momentum terms separately, and then give the
terms for the dimensionless complex variable Eq. (54).

B.1 Position and momentum

Noting that

〈ψ| x̂Q̂|x〉=

√

√~(nc + 1)
2mω

α∗nc
(t)φ∗nc+1(x), (78)

〈ψ|p̂Q̂|x〉= −i

√

√~mω(nc + 1)
2

α∗nc
(t)φ∗nc+1(x), (79)

21

https://scipost.org
https://scipost.org/SciPostPhys.8.2.029


SciPost Phys. 8, 029 (2020)

the projector and epsilon terms for x and p are

qH
x =−

g1

N

√

√2(nc + 1)
~mω

Im

�

α∗nc
(t)

∫

d xφ∗nc+1(x)ψ(x)n(x)

�

, (80a)

qγx =
g1γ

N

√

√2(nc + 1)
~mω

Re

�

α∗nc
(t)

∫

d xφ∗nc+1(x)ψ(x)n(x)

�

, (80b)

qεx =
M
N

√

√2~(nc + 1)
mω

∫

dk S1(k)F
�

Im
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�∗
F [∂x j(x)] , (80c)

dγx =−
2γkBT (nc + 1)

N2mω

�

�αnc
(t)
�

�

2
, (80d)

dεx =
4MkBT (nc + 1)

N2mω

∫

dkS1(k)
�

�

�F
�

Im
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�

�

�

�

2
, (80e)

d xε =−
kBT
N~

∫

d x

∫

d x ′〈ψ| x̂P̂ |x〉δ(x , x ′)ψ(x ′)ε(x − x ′) + h.c.

+
kBT
N~

∫

d x

∫

d x ′〈x |P̂ x̂P̂ |x ′〉ψ∗(x)ψ(x ′)ε(x − x ′) + h.c., (80f)

and

qH
p =

g1

N

√

√2mω(nc + 1)
~

Re

�

α∗nc
(t)

∫

d xφ∗nc+1(x)ψ(x)n(x)

�

, (81a)

qγp =
g1γ

N

√

√2mω(nc + 1)
~

Im

�

α∗nc
(t)

∫

d xφ∗nc+1(x)ψ(x)n(x)

�

, (81b)

qεp =
M
N

Æ

2~mω(nc + 1)

∫

dk S1(k)F
�

Re
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�∗
F [∂x j(x)] , (81c)

dγp =−
2γmωkBT (nc + 1)

N2

�

�αnc
(t)
�

�

2
, (81d)

dεp =
4MkBT

N2

∫

dkS1(k)

�

mω(nc + 1)
�

�

�F
�

Re
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�

�

�

�

2

−
Æ

8~mω(nc + 1)Re
¦

F
�

Re
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�

F [∂x n(x)]∗
©

�

, (81e)

dpε =−
kBT
N~

∫

d x

∫

d x ′〈ψ|p̂P̂ |x〉δ(x , x ′)ψ(x ′)ε(x − x ′) + h.c.

+
kBT
N~

∫

d x

∫

d x ′〈x |P̂ p̂P̂ |x ′〉ψ∗(x)ψ(x ′)ε(x − x ′) + h.c.. (81f)

22

https://scipost.org
https://scipost.org/SciPostPhys.8.2.029


SciPost Phys. 8, 029 (2020)

B.2 Dimensionless variable z(t)

The projector corrections for the dimensionless variable phase-space amplitude z(t) are

qH
z =

ig1

~N

p

nc + 1α∗nc
(t)

∫

d xφ∗nc+1(x)ψ(x)n(x), (82a)

qγz =
γg1

~N

p

nc + 1α∗nc
(t)

∫

d xφ∗nc+1(x)ψ(x)n(x), (82b)

qεz =
iM
N

p

nc + 1α∗nc
(t)

∫

dk S1(k)F
�

φ∗nc+1(x)ψ(x)
�∗
F [∂x j(x)] , (82c)

dγz =−
γkBT (nc + 1)

~N2

�

�αnc
(t)
�

�

2
, (82d)

dε,az =
2MkBT (nc + 1)

~N2

∫

dkS1(k)
�

�

�F
�

Im
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�

�

�

�

2
, (82e)

dε,bz =
2MkBT
~N2

∫

dk S1(k)

�

(nc + 1)
�

�

�F
�

Re
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�

�

�

�

2

+

√

√8~(nc + 1)
mω

Re
¦

F
�

Re
¦

α∗nc
(t)φ∗nc+1(x)ψ(x)

©�∗
F [∂x n(x)]

©

�

, (82f)

dzε =−
kBT
N~

∫

d x

∫

d x ′〈ψ|ẑP̂ |x〉δ(x , x ′)ψ(x ′)ε(x − x ′) + h.c.

+
kBT
N~

∫

d x

∫

d x ′〈x |P̂ ẑP̂ |x ′〉ψ∗(x)ψ(x ′)ε(x − x ′) + h.c.. (82g)

B.3 Numerical evaluation of projector terms

With the exception of the epsilon correction Eq. (82g), all the cutoff terms are a result of mode
mixing between the highest energy coherent mode and the lowest energy incoherent mode.
In the limit of imposing a very high energy cutoff, the populations of the modes above the
cutoff approach zero and hence all the cutoff terms go to zero. For a well-chosen but finite
cutoff the integrals involving the overlap of the lowest energy incoherent mode φnc+1(x) and
the coherent field wave function ψ(x) should be small, as φnc+1(x) is highly oscillatory and
the mode population is also small by definition. We claim that for a well-chosen cutoff the
cutoff terms are small enough such that they may be neglected, and we justify this in two
ways. Firstly, we consider the magnitude of a selection of the cutoff terms by calculating them
numerically. Second, we consider the analytic solutions that can be found by neglecting the
cutoff terms and show that these agree well with simulations of the 1D SPGPE.

When considering the cutoff terms involving mode mixing at the cutoff (i.e. all except the
epsilon correction), we note that only the Hamiltonian cutoff term qH

z Eq. (82a) does not have
one of the damping rates as a multiplying factor. As the damping rates have a typical value
several orders of magnitude less than unity, it is reasonable to expect that of all these terms,
the Hamiltonian cutoff term will be the largest. If we show that qH

z is small enough to be
neglected then we can reason that qγz Eq. (82b), qεz Eq. (82c), dγz Eq. (82d), dεz |(1) Eq. (82e),
and dεz |(2) Eq. (82f) are smaller still and so can certainly be neglected also.

The epsilon term dzε Eq. (82g) is distinct from the other terms, as it is not a result of mode
mixing at the cutoff. We expect the two terms in the epsilon term to almost cancel, as it is
clear this is the case in the limit that the projector becomes the identity. This is an important
result of the earlier step where we found that writing the SPGPE in Ito form resulted in an
extra term; without this extra term the epsilon term would in general be non-negligible, and
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Figure 4: The mean relative cutoff term magnitudes, Eq. (83), for qH
z (blue) and dzε

(green) over time determined numerically for an ensemble of 1000 trajectories.

in fact diverges in the infinite cutoff limit. We thus monitor the magnitudes of qH
z and dzε over

the course of an ensemble of numerical trajectories.
We define the relative cutoff term magnitudes by

E(1)z (t) =
�

�qH
z (t)/ż(t)

�

� , E(2)z (t) = |dzε(t)/ż(t)| , (83)

noting that |ż(t)| is strictly non-zero for harmonic motion. If these values remain significantly
less than unity, then we may conclude that the effects of the cutoff terms are negligible. For
the simulations of section 4.2, example relative cutoff term magnitudes are shown in Fig. 4,
where the initial state is Eq. (53) with x(0) = p(0) = 0 and we have taken an ensemble average
over 1000 trajectories. While the relative magnitudes can reach as high as ∼ 0.1 early in the
dynamics, we see that once the system has equilibrated they approach a steady-state of order
∼ 0.01.
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