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Abstract

We study the time evolution of magnetization and entanglement for initial states with
local excitations, created upon the ferromagnetic ground state of the XY chain. For exci-
tations corresponding to a single or two well separated domain walls, the magnetization
profile has a simple hydrodynamic limit, which has a standard interpretation in terms
of quasiparticles. In contrast, for a spin-flip we obtain an interference term, which has
to do with the nonlocality of the excitation in the fermionic basis. Surprisingly, for the
single domain wall the hydrodynamic limit of the entropy and magnetization profiles are
found to be directly related. Furthermore, the entropy profile is additive for the double
domain wall, whereas in case of the spin-flip excitation one has a nontrivial behaviour.
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1 Introduction

The nonequilibrium dynamics of integrable quantum many-body systems has been the focus of
intensive research [1]. The interest in these peculiar models, characterized by the existence of
a large set of conservation laws, comes from two main perspectives. On one hand, they show
relaxation towards generalized stationary ensembles that are not described by conventional
statistical mechanics [2]. On the other hand, owing to the presence of stable quasiparticle
excitations, integrable models have anomalous transport properties [3]. A recent milestone in
understanding the transport driven by an initial inhomogeneity has been the formulation of
generalized hydrodynamics (GHD) [4, 5], which gives accurate predictions for the profiles of
conserved densities in an appropriate spacetime scaling limit.

The simplest paradigm of an inhomogeneous initial state is a domain wall, separating do-
mains of spins with different magnetizations. Letting the system evolve, the domain wall starts
to melt, giving rise to an expanding front region characterized by a nonzero spin current. The
resulting magnetization profiles were studied in various integrable spin models such as the XX
chain [6–8], the transverse Ising (TI) [9–11], the XY [12] as well as the XXZ chains [4,13–17].
Rather generically one finds ballistic transport, with the exception of the isotropic Heisenberg
chain where a diffusive behaviour is observed instead [18–23]. The common feature in all of
the examples above is that the domain wall is oriented along the z-axis, and thus the mag-
netization is a local operator in the fermionic representation of the corresponding spin chain.
In particular, for models with fermion-number conservation, the transverse magnetization it-
self corresponds to a locally conserved density, which makes the problem directly amenable to
GHD techniques.

Recently, however, domain walls created upon the symmetry-broken ferromagnetic ground
states of TI or XY chains have been considered [24–26]. The ordering in these chains occurs in
the longitudinal component of the magnetization, which is a highly nonlocal string operator in
the fermionic picture, being nontrivially related to the local conserved densities. Hence, even
though one has a free-fermion model at hand, it is a priori unclear whether a hydrodynamic
description still holds for this observable. Nevertheless, in [25, 26] it has been shown that,
for domain walls excited by a single local fermion operator, the longitudinal magnetization
profile has the usual hydrodynamic scaling limit one would naively expect. Namely, the profile
is determined by noninteracting quasiparticles carrying the fraction of a spin-flip and traveling
at the corresponding group velocity.

In the present work we extend these studies to excitations that can be written as the product
of two local fermion operators. In the spin language they describe a double domain wall, and if
the distance between them is sufficiently large, we find that the magnetization profile factorizes
in the hydrodynamic scaling limit. In other words, the quasiparticle excitations created at the
two domain walls are completely independent. In contrast, the situation becomes nontrivial if
the fermionic excitations act on neighbouring sites, even though the product of two adjacent
domain walls is just a spin-flip and thus perfectly local in the spin-representation. Indeed, it
turns out that this composite fermionic excitation leads to interference effects between the
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quasiparticle modes, encoded in the form factors of the spin operator. This interference term
yields a significant contribution to the hydrodynamic profile, which can be found analytically
via stationary phase analysis.

We also study in detail the correlation functions and the entanglement entropy for the
single domain wall excitation. Interestingly, both of them can be directly related to the mag-
netization. For the correlations we derive a relation which holds also for finite times if the
separation of the spins is much larger than the correlation length. On the other hand, for the
entropy we propose an ansatz that is motivated by recent results for single-mode quasiparticle
excitations in a free massive quantum field theory (QFT) [27,28]. Our ansatz works perfectly
in the hydrodynamic regime, thereby creating an exact relation between the magnetization
and entanglement profiles. Furthermore, we observe that the entropy becomes additive for
the double domain wall excitation, whereas for the spin-flip one has again a nontrivial be-
haviour due to the above mentioned interference terms.

The paper is structured as follows. We start by introducing the model in Sec. 2. The
magnetization dynamics is studied in Sec. 3 for three different local excitations as well as for
a local quench. The correlation functions are investigated in Sec. 4, followed by the study of
the entropy profiles in Sec. 5. We discuss our findings in Sec. 6, and the technical details of
the calculations are reported in three Appendices.

2 Model

We consider an XY spin chain of length N described by the Hamiltonian

H = −
N−1
∑

n=1

�

1+ γ
4
σx

nσ
x
n+1 +

1− γ
4
σ y

nσ
y
n+1

�

−
h
2

N
∑

n=1

σz
n , (1)

where σαn are Pauli matrices located at site n, h and γ denote the transverse magnetic field
and the XY anisotropy, respectively. We restrict ourselves to the parameter regime 0 < h < 1
and 0< γ≤ 1 where the chain is in a gapped ferromagnetic phase, with γ= 1 corresponding
to the TI chain.

The Hamiltonian (1) is diagonalized through a standard procedure [29], by first introduc-
ing Majorana fermions via a Jordan-Wigner transformation

a2 j−1 =
j−1
∏

k=1

σz
kσ

x
j , a2 j =

j−1
∏

k=1

σz
kσ

y
j , (2)

satisfying anticommutation relations {ak, al}= 2δk,l . While (1) describes an open chain which
is most suitable for our numerical calculations, the analytical treatment of the problem requires
to consider either periodic (s = +) or antiperiodic (s = −) boundary conditions, σx

N+1 = sσx
1

and σ y
N+1 = sσ y

1 . Due to the global spin-flip symmetry of the model, the corresponding Hamil-
tonians can then be split into two parts

Hs =
1− sP

2
HR+

1+ sP
2

HNS , P =
N
∏

n=1

σz
n . (3)

In terms of the Majorana fermions, the corresponding symmetry sectors are described by the
Hamiltonians

HR/NS =
i
2

N
∑

j=1

�

1+ γ
2

a2 ja2 j+1 −
1− γ

2
a2 j−1a2 j+2 + ha2 j−1a2 j

�

, (4)
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which differ in the boundary conditions a2N+1 = ±a1 and a2N+2 = ±a2 being periodic for the
Ramond (R) and antiperiodic for the Neveu-Schwarz (NS) sectors.

In order to diagonalize (4), one performs a Fourier transformation followed by a Bogoli-
ubov rotation

a2 j−1 =
1
p

N

∑

q∈R/NS

e−iq jei(θq+q)/2(b†
q + b−q),

a2 j =
−i
p

N

∑

q∈R/NS

e−iq je−i(θq+q)/2(b†
q − b−q),

(5)

where the Bogoliubov angle and the dispersion are given by

ei(θq+q) =
cos q− h+ iγ sin q

εq
, εq =

q

(cos q− h)2 + γ2 sin2 q . (6)

Note that the above definition ensures that the function θq is continuous within the Brillouin
zone q ∈ [−π,π]. To satisfy the proper boundary conditions, the allowed values of the mo-
menta are qk =

2π
N k for R and qk =

2π
N (k+1/2) for NS, respectively, with k = −N/2, . . . , N/2−1

and N even. The diagonalized Hamiltonian and its K-particle eigenstates are then given by

HR/NS =
∑

q∈R/NS

εq b†
q bq + const, |q1, q2, . . . , qK〉R/NS =

K
∏

i=1

b†
qi
|0〉R/NS . (7)

It should be stressed that the eigenstates with K even belong to the spin-periodic Hamiltonian
H+, whereas the eigenstates of the spin-antiperiodic H− have odd K .

In the thermodynamic limit N → ∞, the periodic chain H+ has a doubly degenerate
ground state with ferromagnetic ordering along the x-axis, denoted by |⇑〉 and |⇓〉, respectively.
Note however, that for finite N the actual ground states in both symmetry sectors are given by

|0〉NS =
1
p

2
(|⇑〉+ |⇓〉), |0〉R =

1
p

2
(|⇑〉 − |⇓〉), (8)

which are separated by an exponentially small gap and both have vanishing magnetizations.

3 Magnetization dynamics

We are interested in the dynamics of the magnetization of various initial states, excited locally
from the ferromagnetic ground state |⇑〉 and time-evolved under the Hamiltonian H in (1). The
locality of the excitation is understood in terms of the Majorana basis, which implies that these
excitations may become highly non-local in the spin-basis representation. In fact, the latter will
correspond to domain-wall excitations and one is interested in how the inhomogeneity spreads
out under unitary time evolution. On the other hand, since the order-parameter magnetization
is not conserved, even a single spin-flip excitation (which is local in terms of the spins) will
lead to nontrivial dynamics. For the study of domain-wall melting, we will also consider for
comparison a local quench setup where two separate chains are initially prepared in oppositely
magnetized ground states, and subsequently joined together.

The time-evolved magnetization can be extracted in a number of different ways. On the
numerical side, we apply matrix product state (MPS) calculations1 [30] in an open-chain ge-
ometry. To ensure that we obtain the proper ferromagnetic (symmetry-broken) ground state
|⇑〉, we introduced a small longitudinal field hx > 0 in the Hamiltonian H − hx

∑

i σ
x
i for the

1Our MPS code is implemented using the ITENSOR library, http://itensor.org/.
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first few sweeps and set hx = 0 afterwards, until convergence is reached. The excitations are
then created by acting with the matrix product operator representation of the corresponding
spin-excitation. Finally, the time evolution was implemented with the finite two-site time-
dependent variational principle (TDVP) algorithm [31].

On the other hand, we also employed Pfaffian techniques for the numerical evaluation of
the magnetization. For the simple domain-wall excitation these were described in Ref. [25],
but the calculations can easily be generalized for the other local excitations we deal with. In
all of the examples we observed a perfect agreement with the results of MPS calculations.

Finally, we also present analytical results based on form-factor calculations. To this end,
one has to first express the excited initial state |ψ0〉= (|ψ0〉R+|ψ0〉NS)/

p
2 in the fermion basis,

which is then time-evolved with the corresponding Hamiltonian in both symmetry sectors as

|ψt〉R/NS = e−i tHR/NS |ψ0〉R/NS . (9)

Once |ψ0〉R/NS is written as a linear combination of the K-particle eigenstates (7), the time
evolution is trivial

e−i tHR/NS|q1, q2, . . . , qK〉R/NS = e−i t
∑K

k=1 εqk |q1, q2, . . . , qK〉R/NS , (10)

since the Hamiltonian HR/NS is diagonal in this basis. It is useful to introduce the normalized
magnetization which can be evaluated as

Mn(t) =
R〈ψt |σx

n |ψt〉NS

R〈0|σx
n |0〉NS

. (11)

Note that, since the operator σx
n changes the parity of the state, the only non-vanishing con-

tribution to the expectation value is between different parity sectors. In turn, the calculation
of Mn(t) boils down to evaluating multiple sums over the momenta with the form factors

R〈p1, . . . , pL|σx
n |q1, . . . , qK〉NS, which are known explicitly from previous studies [32–34]. In

the following we always consider the thermodynamic limit N →∞, where the sums over mo-
menta can be turned into integrals and the expressions for the form factors are summarized
in Appendix A.

3.1 Single domain wall

Our first example is a single domain wall, which has already been considered for the TI [25] as
well as for the XY chains [26]. For completeness, we revisit here the results obtained previously
for the normalized magnetization. The single domain wall is an excitation |ψ0〉 = Dn1

|⇑〉
created by the operator

Dn1
=

n1−1
∏

j=1

σz
j σ

x
n1
= a2n1−1 . (12)

As remarked before, Dn1
is strictly local in terms of the fermions, whereas in the spin repre-

sentation it creates spin-flips all over the sites j < n1. In the eigenbasis of the Hamiltonian it
corresponds to a linear combination of one-particle states

|ψ0〉=
1
p

N

∑

q

e−iq(n1−1/2)eiθq/2 |q〉 , (13)

where we have suppressed the subscripts R/NS of the symmetry sector for notational simplicity.
One thus only needs the form factors between one-particle states, which has a relatively simple

5

https://scipost.org
https://scipost.org/SciPostPhys.8.3.037


SciPost Phys. 8, 037 (2020)

form (51) given in Appendix A. Performing the time evolution (9) via (10) and inserting the
result into (11), one arrives at

Mn(t) =

∫ π

−π

dp
2π

∫ π

−π

dq
2π

εp + εq

2
p

εpεq

ei(n−n1+1/2)(q−p)

i sin
� q−p

2

� ei(θq−θp)/2e−i(εq−εp)t . (14)

The above expression simplifies considerably in appropriate scaling limits. Indeed, noting
that the integral receives the dominant contribution due to a pole at q = p in the integrand
of (14), one can change variables as Q = q − p and P = (q + p)/2, and perform a stationary
phase analysis as described in Appendix B. In turn, one obtains

Mn(t) = 1− 2

∫ π

−π

dP
2π
Θ(vP − ν) , ν=

n− n1 + 1/2
t

, (15)

which is the so-called hydrodynamic scaling limit. Here Θ(x) is the Heaviside step function,
vP =

dεP
dP is the group velocity of the single-particle excitations and ν is the ray variable, with

the distance measured from the initial location n1−1/2 of the domain wall. The result (15) has
a simple semiclassical interpretation, which has been applied many times to understand front
dynamics in quantum chains [35–38]. Namely, the magnetization is transported by single-
particle excitations, each carrying an elementary spin-flip, which contribute to the hydrody-
namic profile at a given ray only if their velocity vP > ν.

Another interesting scaling regime emerges around the edge of the front ν ≈ vmax , given
by the maximum speed of excitations. In order to understand the fine structure of the edge, a
higher order stationary phase analysis has to be performed around the momentum q∗ which
yields the maximum velocity vq∗ = vmax . As shown in Appendix B, this leads to the following
result

Mn(t)≈ 1− 2

�

2
|v′′q∗ |t

�1/3

ρ(X ) , X = (n− n1 + 1/2+ θ ′q∗/2− vq∗ t)

�

2
|v′′q∗ |t

�1/3

. (16)

In other words, with the proper choice of the scaling variable X measuring the distance from
the edge, and after appropriate rescaling, the fine structure of the magnetization front is given
via the function

ρ(X ) =KAi(X , X ) =
�

Ai′(X )
�2 − XAi2(X ) . (17)

Note that ρ(X ) is nothing else but the diagonal part of the Airy-kernel KAi(X , Y ) [39], which
appears in a number of front evolution problems related to free-fermion edge universality
[8,11,40–45].

The results (15) and (16) have already been tested against numerical calculations for vari-
ous parameters of the XY chain, where the notable feature of a hydrodynamic phase transition
at hc = 1 − γ2 was observed [26]. Indeed, this phase transition can be understood by the
appearance of a second local maximum in the group velocities vq for h < hc , which in turn
leads to kinks in the bulk of the hydrodynamic magnetization profile [26].

Finally, it should be noted that the analytical result was obtained by following the time
evolution of one-particle states building up the domain wall. Strictly speaking, these states are
eigenstates of H− only, i.e. the time evolution has to be performed with antiperiodic boundary
conditions on the spin chain. However, since the form factor calculations are carried out
directly in the thermodynamic limit, the boundaries actually do not play any role.
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3.2 Double domain wall

We now move on to consider more complicated excitations, that are created by acting with the
operator

Dn1,n2
= σx

n1−1

n2−1
∏

j=n1

σz
j σ

x
n2
= −i a2n1−2 a2n2−1 , (18)

where n2 > n1 is assumed. In terms of fermions this is a two-local operator, i.e. supported on
two sites only. In contrast, Dn1,n2

is again nonlocal in the spin representation, and it is easy to
see that it describes a double domain wall, located at sites n1 and n2, respectively. Using (5),
the excited initial state can be written as

|ψ0〉=
1
N

∑

q

eiq(n2−n1)e−iθq |0〉 −
1
N

∑

q1,q2

e−iq1(n1−1/2)e−iq2(n2−1/2)e−i(θq1
−θq2

)/2 |q1, q2〉 . (19)

We shall restrict ourselves to the case n2−n1� 1, i.e. when the two domain walls are spatially
well separated, such that the sum in the first term of (19) becomes highly oscillatory and can
be neglected. The initial state then involves only two-particle excitations and the time evolved
state can be written as

|ψt〉= −
1
N

∑

q1,q2

e−iq1(n1−1/2)e−iq2(n2−1/2)e−i(θq1
−θq2

)/2e−i(εq1
+εq2

)t |q1, q2〉 . (20)

The magnetization Mn(t) can thus be expressed as a quadruple integral via two-particle
form factors R〈p1, p2|σx

n |q1, q2〉NS , that are reported in (53) in Appendix A. The result can
be simplified, similarly to the single domain wall case, by analyzing the pole-structure of the
form factors combined with a stationary phase approximation. The poles appear for momenta
satisfying q1 = p1 and q2 = p2 or q1 = p2 and q2 = p1. For the first pole one obtains two
independent stationary phase conditions

vPi
t − (−1)iθ ′Pi

− (n− ni + 1/2) = 0 , (21)

where Pi = (qi + pi)/2 for i = 1,2. Note that this pole corresponds to a process where the
incoming momenta are matched with the outgoing ones at each domain wall separately. In
contrast, at the second pole an incoming momentum of the first domain wall must match with
an outgoing momentum of the second domain wall. However, as shown in Appendix B, after
the exchange of the outgoing momenta and under the assumption n2− n1� 1, the stationary
phase condition cannot be satisfied. Thus only the first pole gives a contribution to the integral
and leads to the result

Mn(t) =
∏

i

∫

dPi

2π

�

1− 2Θ
�

vPi
− νi

� �

, νi =
n− ni + 1/2

t
. (22)

The hydrodynamic scaling limit of the profile in (22) has thus a factorized form with again
a very simple physical interpretation. The ray variables νi now measure the distances from
the corresponding initial domain wall locations ni − 1/2, where quasiparticles with velocity
vPi

are emitted, each carrying a spin-flip. If, for a given pair of particles, one has vP1
> ν1

and vP2
> ν2 then both of the particles have reached site n at time t, hence the spin is flipped

twice and one has a positive contribution. If, on the other hand, vP1
< ν1 and vP2

> ν2, then
only one particle has arrived and the contribution is negative. The profile is then obtained by
summing the contributions over all pairs.

In Fig. 1 we show the results of our MPS simulations together with the result (22). One can
see a perfect agreement, even after the two fronts propagating from different locations overlap
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Figure 1: Magnetization profiles after a double domain wall excitation for different
times and various h and γ. The solid red lines show the approximation (22). The
parameters are N = 600, n1 = 201 and n2 = 401.

in the middle. In particular, one observes the emergence of two cusps at the ends of the overlap
region, which follows from the factorized form of (22), i.e. one multiplies two single domain
wall front profiles, each having square-root singularities at their edges. Moreover, this also
implies that the outer edge of the front is still described by the same scaling (16) as for the
single domain wall. On the right of Fig. 1 there are extra kinks to be seen, which is due to the
fact that one has h< hc there, i.e. one is beyond the hydrodynamical phase transition point.

3.3 Single spin-flip

After having discussed the evolution of domain walls, we now study a very simple excitation,
in the form of a single flipped spin. Naively, one would think that this excitation has a trivial
hydrodynamic limit, and the flipped spin just disperses. However, since the magnetization is
not conserved under the XY dynamics, it turns out that the profile is far from being trivial.
In fact, the operator that creates a spin-flip at site n1 is just σz

n1
= −ia2n1−1a2n1

, which is
strictly local in the spin representation, but is again two-local, i.e. a product of two adjacent
Majoranas in the fermionic picture. Hence, this form is more reminiscent of a double domain
wall excitation, with the exception that they are now created at neighbouring sites. Rewriting
the excitation in the fermionic basis one has

|ψ0〉= mz |0〉 −
1
N

∑

q1,q2

e−iq1(n1−1/2)e−iq2(n1+1/2)ei(θq1
−θq2

)/2 |q1, q2〉 , (23)

where the ground-state contribution is now proportional to the transverse magnetization

mz = 〈0|σz
n|0〉= −

∫ π

−π

dq
2π

ei(θq+q) , (24)

and thus cannot be neglected.
The calculation of Mn(t) follows the same steps as in the previous cases. Note, in par-

ticular, that the two-particle contribution in (23) has almost the same form as (19) for the
double domain wall with n2 = n1 + 1, except for the sign of the Bogoliubov phases. After
time evolving and taking the expectation value with |ψt〉, one has now cross terms where the
form factors R〈0|σx

n |q1, q2〉NS appear, see (52). However, since they have no poles, it is easy to
see that their contribution is negligible in the scaling limit we are interested in. On the other
hand, the two-particle form factors now yield a contribution from both of the poles. Indeed,
the stationarity condition is, up to the sign of the θ ′Pi

term, is the same as (21) for the double
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domain wall with n2 = n1 + 1. However, in the limit of t � 1 and |n − n1| � 1, the two
equations are essentially the same. Hence, the process in which an incoming momentum of
the first domain wall scatters into an outgoing momentum of the neighbouring one is equally
well permitted and yields a sizable contribution.

Carrying out the stationary phase analysis in detail (see Appendix B), one arrives at the
following result in the hydrodynamic limit

Mn(t) = (m
z)2 +

�

1− 2

∫ π

−π

dP
2π
Θ (vP − ν̃)

�2

−
�

�

�

�

mz + 2

∫ π

−π

dP
2π

eiPeiθPΘ (vP − ν̃)
�

�

�

�

2

, (25)

where the ray variable ν̃ = n−n1
t is slightly changed compared to (15), since the distance is

now measured from the location n1 of the spin-flip. The profile can be written as the sum
of three terms, where the first one is simply the ground-state contribution. The second one
corresponds to the factorized result for the double domain wall and the third one describes a
kind of interference term, where the momenta of the excitations building up the two domain
walls are exchanged. There is no simple semiclassical interpretation of this interference term,
since the quasiparticles contribute with a phase factor. The result (25) is compared against
our numerical calculations in Fig. 2 with an excellent agreement.
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Figure 2: Magnetization profiles after a spin-flip excitation for various h and γ. The
red solid lines show the approximation (25). The parameters are N = 400, n1 = 200
and t = 200.

It is also interesting to have a look at the edge behaviour of the profile. Performing the
higher order stationary phase analysis (see Appendix B), one is led to the following result

Mn(t)≈ 1− 2

�

2
|v′′q∗ |t

�1/3

ρ̃(X̃ ) , X̃ = (n− n1 − vq∗ t)

�

2
|v′′q∗ |t

�1/3

, (26)

where the scaling function is given by

ρ̃(X̃ ) =
�

2+ 2 mz cos(θq∗ + q∗)
�

KAi(X̃ , X̃ ) . (27)

The result is thus very similar to the one for the domain wall in (16), however the scaling
function ρ̃(X̃ ) acquires a nontrivial prefactor, which depends explicitly on the transverse mag-
netization mz , and even on the Bogoliubov phase evaluated at q∗ where the quasiparticle ve-
locity has its maximum. In particular, this phase factor vanishes for the TI chain and one has
a factor of 2 difference with respect to ρ(X ). This explains the numerical findings of Ref. [24]
where the very same setup was studied. We checked the validity of the edge scaling (26) in
Fig. 3 for various parameter values and found a very good agreement, there are however some
differences in the convergence towards the scaling function ρ̃(X̃ ).
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Figure 3: Edge scaling (26) of the magnetization profiles after a spin-flip excitation
for various h and γ. The red solid lines show the scaling function in (27).

3.4 Local quench

As a final example, we show here the results for the magnetization profile resulting from a local
quench. That is, instead of applying a local excitation to the symmetry-broken ferromagnetic
state, we rather prepare the two halves of our chain in oppositely magnetized ground states
and join them together. Our goal is to check whether this protocol yields a similar result for
the hydrodynamic profile as the one found for the single domain wall excitation.

The initial and time-evolved states are now given by

|ψ0〉= |⇓〉 ⊗ |⇑〉 , |ψt〉= e−iH t |ψ0〉 . (28)

Since our initial state is not prepared as an excitation upon the bulk vacuum state, it is a
nontrivial question how |ψ0〉 can be written in the basis of the full Hamiltonian H. Thus
we shall only perform numerical (MPS and Pfaffian based) calculations for the quench. The
results, shown in Fig. 4, turn out to be rather surprising. Namely, we find that in the TI limit
(γ= 1) the profiles after the local quench (full symbols) almost exactly coincide with the ones
for the domain wall excitation (empty symbols). The only deviations visible at the scale of
the figure are around the front edges. In sharp contrast, for γ= 0.5 one has a huge deviation
between the profiles for all the values of h we considered. This signals that in the latter case the
factorized initial state is not well approximated by a single-particle excitation in the fermionic
basis. We observe that the mismatch between the profiles gradually increases as one moves
away from the TI limit. However, we have no clear explanation of this phenomenon which
needs further studies.

4 Correlation functions

The form-factor approach is not restricted to the study of the magnetization profile. The next
simplest physically interesting observable is the correlation function between the spins. Here
we shall restrict ourselves to equal-time correlations between the x-components of the spin,
which have already been addressed briefly in [26]. It is useful to work with the normalized
correlation functions

Cm,n(t) = NS〈ψt |M̂mM̂n |ψt〉NS , (29)

where the expectation value is now taken between the NS components only, since the operator
σx

mσ
x
n does not change the parity. Note that we use here that the corresponding expectation

value between the R components is equal to (29) in the thermodynamic limit.
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Figure 4: Magnetization profiles after the local quench (full symbols) vs. single
domain wall excitation (empty symbols), for various h and γ. The parameters are
N = 400, n1 = 201 and t = 100.

In order to get a form-factor expansion of (29), we shall insert the resolution of the identity

1= |0〉 〈0|+
∑

p

|p〉〈p|+
∑

p1,p2

|p1, p2〉〈p1, p2|+
∑

p1,p2,p3

|p1, p2, p3〉〈p1, p2, p3|+ . . . (30)

Note that the resolution must be taken within the R sector, but we omit here the subscripts for
notational simplicity. The form-factor expansion can be obtained by inserting the expression
of |ψt〉NS in terms of the fermionic basis. We focus here on the case of a single domain wall,
since the calculations become rather cumbersome for more complicated excitations. In this
case |ψt〉NS is a superposition of single-particle states only and it is reasonable to assume that,
for distances much larger than the correlation length |n−m| � ξ, the dominant contribution
to the correlations comes from the single-particle terms in (30) as well. To lowest order in the
form-factor expansion we thus arrive at the result

Cm,n(t)'
∫

dq1

2π

∫

dq2

2π
e−i(θq1

−θq2
)/2ei(εq1

−εq2
)t

×
∫

dp
2π

εp + εq1

2
p

εpεq1

εp + εq2

2
p

εpεq2

e−i(m−n1+1/2)(q1−p)

sin q1−p
2

ei(n−n1+1/2)(q2−p)

sin q2−p
2

. (31)

The hydrodynamic limit of (31) can be obtained in a similar fashion as was done for the
magnetization profile. Expanding around the poles of the integrand and using the properties
of the Θ function (see Appendix C for details) one obtains

Cm,n(t)' 1− 2

∫ π

−π

dP
2π
Θ(vP −µ)Θ(ν− vP) , (32)

where the ray variables

µ=
m− n1 + 1/2

t
, ν=

n− n1 + 1/2
t

(33)

are measured from the initial domain wall location and the expression has a very simple in-
terpretation. Let us assume ν > µ and consider the contribution of a single quasi-particle
traveling at speed vP . Now, for short times vP < µ the excitation has not yet reached the first
spin and thus the correlations are ferromagnetic. Once µ < vP < ν, the first spin has been
flipped while the second one is still untouched, hence the correlation is antiferromagnetic.
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Finally, after the excitation has traveled through, vP > ν, the second spin is also flipped and
the correlation becomes ferromagnetic again.

It turns out that, instead of approximating the integrals in (31), there is a way to directly
relate Cm,n(t) to the profile Mn(t). Indeed, by turning the integral over p into a contour
integral and applying the residue theorem, one obtains the formula (80) reported in Appendix
C, which is an exact relation at the level of one-particle form factors. However it is easy to
see that, similarly to the hydrodynamic approximation in (32), it yields perfect ferromagnetic
correlations Cm,n(t)' 1 when both spins are outside the front region. Indeed, it can be shown
that the many-particle form factors are the ones responsible for the exponentially decaying
correlations C0

m,n in the ground state [33]. One can thus reincorporate these correlations into
the approximation as

Cm,n(t)' C0
m,n +Mm(t)−Mn(t) . (34)

The relation in (34) is tested against exact numerical calculations for the TI chain in Fig.
5. We have calculated the correlations along the front region while keeping the distance d
between the spins fixed. One can see that, for d = 1, there is still a slight deviation from (34)
which, however, decreases with increasing d. For d = 10 one has already an excellent agree-
ment with no visible deviations. In fact, for |n−m| � ξ one has C0

m,n → 1, and one recovers
the one-particle result (80) which should become exact. Note, however, that calculating the
corrections to (34) would require to evaluate multiple integrals with higher-order offdiagonal
form factors and is thus a difficult task. Nevertheless, a closer investigation of the form-factor
structure in (48) confirms, that the dominant pole contribution is suppressed and thus one
indeed obtains subleading terms.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-40 -20  0  20  40

C n
,n

+
d
(t

)

n-n1+(d-1)/2

d = 1
d = 5
d=10

Figure 5: Equal-time correlation functions at t = 50 for the TI model at h = 0.9, for
various distances d between the spins. The solid lines show the approximation in
(34).

5 Entanglement dynamics

So far we have studied the simplest observables. One can, however, gather important informa-
tion about the time-evolved state by looking at the entanglement dynamics. In particular, we
are interested in the entanglement profiles along the front region, considering a bipartition into
two disjoint segments A= [1, N/2+ r] and its complement B, and calculating the resulting von
Neumann entropy. Entanglement profiles for domain-wall type initial conditions have been
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studied extensively for time evolution under critical Hamiltonians [13, 15, 17, 22, 24, 46–49],
and even a description in terms of CFT has been given [50,51]. However, much less is known
about the non-critical case, such as the one at hand.

The calculation of the entanglement profile is straightforward in MPS calculations, how-
ever, extracting the entropy via covariance-matrix techniques for Gaussian states [52, 53] re-
quires some extra considerations. Indeed, the problem lies in the nature of the initial state,
since the excitations are created upon the symmetry-broken ground state, which is inherently
non-Gaussian [54]. Nevertheless, this difficulty can be overcome by relating the problem to the
one where the very same excitations are created upon the Gaussian, non-magnetized ground
states in (8). The method has already been outlined in [26] but we expand here the arguments
for completeness.

Let us consider initial states corresponding to the two symmetry-broken ground states of
the system. Using (8), the density matrices are given by

|⇑〉 〈⇑|= ρe +ρo , |⇓〉 〈⇓|= ρe −ρo , (35)

where the even and odd parity components, satisfying [P ,ρe] = 0 and {P ,ρo} = 0, respec-
tively, are defined as

ρe =
1
2

�

|0〉NS NS〈0|+ |0〉R R〈0|
�

, ρo =
1
2
(|0〉NS R〈0|+ |0〉R NS〈0|) . (36)

Clearly, the problem is with the odd component ρo, since a Gaussian density operator is by
definition even. One can, however, eliminate ρo by considering an equal-weight convex com-
bination of the density matrices in (35). The resulting density matrix ρe is itself still a convex
combination of two Gaussian states from the NS and R sectors. However, working in the ther-
modynamic limit, these two states become indistinguishable [54], and one concludes that ρe
is equivalent to a proper Gaussian state.

Furthermore, as shown in Ref. [55], excitations that can be written as a product of Majo-
rana fermions

DJ =
∏

j∈J

a j , (37)

where J is an arbitrary index set, preserve Gaussianity. So does unitary time evolution gov-
erned by a quadratic Hamiltonian. Hence, introducing the notation

ρ⇑A = TrB

�

e−iH t DJ |⇑〉 〈⇑|D
†
J eiH t

�

, ρ⇓A = TrB

�

e−iH t DJ |⇓〉 〈⇓|D
†
J eiH t

�

, (38)

for the reduced density matrices of a given bipartition, after exciting and time evolving the
initial states in (35), we finally come to the conclusion that

ρA =
ρ⇑A +ρ

⇓
A

2
(39)

is a well-defined Gaussian state living on the Hilbert space of segment A.
Our goal is now to relate the entropy S(ρ⇑A) = −Trρ⇑A lnρ⇑A of our target state to that S(ρA)

of the Gaussian state in (39). To this end we use the inequality for convex combinations of
density matrices [56,57]

S
�

∑

i

λiρi

�

≤
∑

i

λiS(ρi)−
∑

i

λi lnλi . (40)

First, we note that from trivial symmetry arguments one has S(ρ⇓A) = S(ρ⇑A). Furthermore,
it is also known [57] that the inequality (40) is saturated if the ranges of ρi are pairwise
orthogonal, which is again clearly satisfied in our case due to 〈⇑ | ⇓〉= 0. Hence one finds

S(ρ⇑A) = S(ρA)− ln 2 . (41)
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Finally, it remains to calculate the covariance matrix ΓA corresponding to ρA, from which
the calculation of the entropy S(ρA) follows standard procedure [52, 53]. Since ρA is the
reduced density matrix of the time-evolved and excited ground state |ψt〉NS, ΓA is just the
reduction of the full covariance matrix with elements Γk,l = NS〈ψt | [ak, al] |ψt〉NS /2. This can
be obtained by working in the Heisenberg picture. Since DJ is unitary, DJ D†

J = 1, the effect of
the excitation can be absorbed by a change of the Majorana basis [55]

a′k = D†
J ak DJ =

2N
∑

l=1

Qk,l al . (42)

The orthogonal transformation Q has a simple diagonal matrix form

Qkl = δk,l

∏

j∈J

(2δk, j − 1) , (43)

with entries ±1, depending on whether the corresponding column is part of the index set J or
not. In complete analogy, the unitary time evolution corresponds to the basis rotation

a′k(t) = eiH t a′ke−iH t =
2N
∑

l=1

Rk,l a
′
l , (44)

where the explicit form of the orthogonal matrix R was reported in Ref. [25]. Putting every-
thing together, one finds that

Γ = RQ Γ0 QT RT , (45)

where Γ0 is the ground-state covariance matrix with elements (Γ0)k,l = NS〈0| [ak, al] |0〉NS /2.
We are now ready to discuss the entanglement dynamics for the simple excitations intro-

duced in Sec. 3. In each case we have verified that the entropy obtained by the procedure
outlined above agrees perfectly with the results of our MPS calculations.

5.1 Single domain wall

The entropy profiles for the single domain wall, located initially in the center (r = 0) of the
chain, have already been considered in [26] and are shown in the left of Fig. 6 for γ = 0.5
and several values of h. The profile ∆S(r) = S(ρ⇑A)− S0 is always measured from the initial
entropy S0 of the bulk ferromagnetic state, and is plotted against the rescaled distance ζ= r/t
from the center of the chain. The main feature to be seen is the emergence of a kink in the
profile for h < hc , at the value ζ∗ that equals the local maximum of the quasiparticle velocity,
in complete analogy to the case of the magnetization.

Due to the similar features observed in the entropy and magnetization profiles, one is
naturally led to the question whether there is a simple relation between the two of them.
We are also motivated by recent results of Refs. [27, 28], where the entanglement content of
particle excitations in 1+ 1-dimensional massive quantum field theories was studied, with a
surprisingly simple result. Namely, it has been found that the entropy difference (relative to the
ground state) of a single-mode excitation is independent of the wavenumber and given by the
binary entropy formula involving the ratio of the subsystem and full system lengths [27, 28].
This ratio is just the density fraction of the single-mode excitation that is contained within the
subsystem.

Inspired by these findings, we put forward the following ansatz

∆S(ζ) = −N ln N − (1−N ) ln (1−N ) , N (ζ) =
∫ π

−π

dP
2π
Θ(vP − ζ) . (46)
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Figure 6: Left: entanglement profiles for the single domain wall, for various h and
γ = 0.5. The parameters are N = 400, n1 = 201 and t = 200. The solid red
lines show the ansatz (46). Right: half-chain entanglement as a function of time.
The horizontal dotted line indicates the value ln2. The inset shows the deviation
from ln 2 on a logarithmic scale. The red dashed lines with slopes −1/2 and −1,
respectively, are guides to the eye.

In other words, we assume that the static results of [27,28]would generalize to our dynamical
scenario, and the entropy difference for bipartitions along the ray ζ is just given by the same
binary formula, with the density ratio N (ζ) being the fraction of the quasiparticles that have
reached the entangling point. Surprisingly, we find that the simple-minded ansatz (46), shown
by the red solid lines in the left of Fig. 6, gives a very good description of the entropy profiles.
Via the density fraction N (ζ), the entropy profiles are thus directly related to those of the
magnetization (15).

In case h< hc , one observes some deviations from the ansatz (46), which are only visible in
the regime ζ < ζ∗ and are assumed to be finite-time effects. In order to better understand the
convergence, on the right of Fig. 6 we also studied the time evolution of the half-chain entropy
∆S(0), for the same parameter values. Although each of them can be seen to converge towards
the asymptotic value ln2, their approach is rather different. For h > hc the convergence is
fast and steady, with rapid oscillations only, whereas for h < hc there is a smaller frequency
appearing with a larger amplitude, and the curve bounces back from its asymptotical value
repeatedly. Interestingly, at the critical point h = hc = 0.75 one can see a slowing down in
the convergence, which becomes most evident on a logarithmic scale as shown on the inset
of the figure. Indeed, the approach seems to be a power law t−1/2, as opposed to t−1 in the
h 6= hc case. This critical slowing down is responsible for the dip around ζ = 0 in the profile
for h= hc on the left of Fig. 6.

One should stress the marked difference of the entropy profiles as compared to domain-
wall evolution in critical systems, such as the XX chain. Indeed, in the latter case the entropy
was found to grow logarithmically in time in the entire front region [47,51], whereas here the
profiles converge to the scaling function (46) when plotted against ζ= r/t. In particular, the
result ∆S(0) = ln2 for ζ = 0 implies that the entropy converges towards the value attained
in the ground state |0〉NS, which has been studied in [58, 59]. Indeed, applying the relation
(41) at t = 0, one finds that the entropy S0 in the initial symmetry-broken ground state is
exactly ln2 less than that of the NS ground state. This strongly suggests that the steady state
is nothing but the ground state with its symmetry restored.
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5.2 Double domain wall

The profiles for the double domain wall are shown in Fig. 8 for various times and two different
model parameters. In both cases, the profiles resemble those of two separate single domain
walls for short times, while for large times the main feature is the emergence of an additional
plateau in the overlap region. This strongly suggests the relation

∆Sn1,n2
(r) =∆Sn1

(r) +∆Sn2
(r) , (47)

where ∆Sn1,n2
(r) and ∆Sni

(r) denote the entropy differences for double and single domain
walls, respectively, with the indices referring to the initial locations of the excitations. In other
words, one expects the entropy differences to be additive, which is indeed perfectly confirmed
by the numerics.
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Figure 7: Entanglement profiles after the double domain wall excitation for different
h and γ. The parameters are the same as in Fig. 1.

5.3 Single spin-flip

Finally, we consider the entropy profiles for the spin-flip excitation, with the results shown in
Fig. 8, for the same choice of parameters as for the magnetization profiles in Fig. 2. When
plotted against the scaling variable ζ, the profiles show a different behaviour as compared
to those of the single domain wall excitation in Fig. 6. In particular, the additivity (47) is
not satisfied, analogously to the corresponding result (25) for the magnetization, which does
not have a factorized form. Indeed, as explained under Sec. 3.3, this has to do with an
interference effect in the dynamics, where an incoming momentum of the first excitation can
travel forward as an outgoing momentum of the second one. Clearly, such a process creates
entanglement between the quasiparticles building up the two domain-wall excitations, which
spoils the additivity and reduces the overall entropy of the state. Unfortunately, despite the
qualitative understanding of the origin of the nontrivial entropy behaviour, we have not been
able to find an ansatz analogous to (46) that captures the profiles quantitatively.

6 Discussion

We studied the time evolution of the magnetization and entanglement profiles in the XY chain
for simple initial states that can be written as a product of one or two local fermionic excita-
tions. The former corresponds to a single domain wall in the spin-picture and the magnetiza-
tion profile has a simple hydrodynamic limit (15), corresponding to the motion of independent
quasiparticles. Furthermore, in the very same limit we find that the entropy is given by the
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Figure 8: Entanglement profiles after a spin-flip excitation. The parameters are the
same as in Fig. 2.

simple ansatz (46) and is thus directly related to the magnetization profile. The correlation
function is also found to be related via (29) to the magnetization, which gives a very good
approximation even for finite times and distances.

For double domain walls, excited by the product of two fermions separated by a large dis-
tance, we simply find the factorized form (22) for the magnetization, as well as the additivity
(47) of the entropy differences. For a single spin-flip, however, the fermions are located on
neighbouring sites and the excitation cannot be considered strictly local any more. As a con-
sequence, we find an interference term in the magnetization profile (25). Furthermore, the
additivity of the entropy is lost, and we find convergence towards a nontrivial profile

We have also compared the profiles for the single domain wall to the ones obtained via a
local cut and glue quench, where the two ferromagnetic ground states are prepared on half-
chains and joined together. Rather surprisingly we found that, while for the TI chain the
respective profiles almost coincide, for the generic XY case they become completely different
(see Fig. 4), with the discrepancy growing with the distance from the TI limit. Apparently the
local quench is well approximated by a single fermionic excitation for the TI but not any more
for the XY case. The precise origin of this phenomenon is unclear to us and requires further
studies.

It would be also interesting to see if a QFT treatment of the entropy increase could be
given. Even though our ansatz (46) was inspired by QFT results [27,28] on the entanglement
content of particle excitations, those particles are single wave modes and there is no dynamics
involved. On the other hand, for the case of critical Hamiltonians there exists a CFT framework
for calculating the time evolution of entropy after spatially local excitations [60]. Whether this
approach could be generalized to a massive QFT to predict the asymptotic entropy increase
after the excitations considered in this paper is a puzzling question to be addressed.

One could also think about extending the studies to excitations composed of a product
of more than two fermions. While being a straightforward generalization, the form-factor
calculations are likely to be very cumbersome, due to the increasing number of the pole con-
tributions one has to account for. Finally, it is natural to ask how the setup could be extended
to interacting integrable systems, and if the treatment of such composite but still essentially
local excitations could be incorporated into the theory of GHD.
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A Form factors for the TI and XY chains

Here we present the form factors used in the calculations of the main text. Although for our
simple excitations we required only few-particle form factors, the general expression is re-
ported for completeness. The formula is rather involved even after taking the thermodynamic
limit N →∞, and for the TI chain (γ= 1) it reads [32]

R〈p1, . . . , pL|σx
n |q1, . . . , qK〉NS

R〈0|σx
n |0〉NS

= i−(K+L)/2 (−1)L(L−1)/2 h(K−L)2/4 ein(
∑K

k=1 qk−
∑L

l=1 pl )

×
K
∏

k=1

1
Æ

Nεqk

L
∏

l=1

1
Æ

Nεpl

K
∏

k<k′=1

sin qk−qk′
2

εqk
+εqk′
2

L
∏

l<l ′=1

sin pl−pl′
2

εpl
+εpl′
2

K
∏

k=1

L
∏

l=1

εqk
+εpl
2

sin qk−pl
2

. (48)

We have assumed here that the number of momenta K and L on the right and left hand side
have the same parity, otherwise the form factor vanishes. Note that we have normalized with
the vacuum form factor, i.e. with the expectation value of the ground-state magnetization. For
K = L the form factors (48) depend only on the dispersion relation εq, given in Eq. (6), and
the values of the momenta.

For the generic case of the XY chain, the expressions become even more complicated. In
the limit N →∞ they can be written as [33,34]

R〈p1, . . . , pL|σx
n |q1, . . . , qK〉NS

R〈0|σx
n |0〉NS

= i−(K+L)/2 (−1)L(L−1)/2 g(K−L)2/4 ein(
∑K

k=1 qk−
∑L

l=1 pl )

× cosh

∑K
k=1∆qk

−
∑L

l=1∆pl

2

K
∏

k=1

1
Æ

N sinh∆qk

L
∏

l=1

1
Æ

N sinh∆pl

×
K
∏

k<k′=1

sin qk−qk′
2

sinh
∆qk
+∆qk′
2

L
∏

l<l ′=1

sin pl−pl′
2

sinh
∆pl
+∆pl′
2

K
∏

k=1

L
∏

l=1

sinh
∆qk
+∆pl
2

sin qk−pl
2

, (49)

where we have defined

sinh∆q =

p

1− γ2

γ
p

γ2 + h2 − 1
εq , g =

1− γ2

γ
p

γ2 + h2 − 1
. (50)

The above definition is valid in the parameter regime
p

1− γ2 < h < 1, i.e. in the non-
oscillatory ferromagnetic phase. In the oscillatory phase 0 < h <

p

1− γ2 the corresponding
expressions can be obtained by analytic continuation [33]. One can also check that, in the
singular TI limit γ → 1, the expression (49) goes over to the one in (48). While in general
they differ in the details, these will turn out to be irrelevant for the hydrodynamic limit, since
their pole structure is exactly the same.

We now discuss the form factors needed in the main text. The simplest is the one-particle
form factor (K = L = 1), where using some hyperbolic identities in (49), one can show that
the TI and XY cases yield the same expression

R〈p|σx
n |q〉NS

R〈0|σx
n |0〉NS

= −
i
N

εp + εq

2
p

εpεq

ein(q−p)

sin q−p
2

. (51)
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Thus the formula (14) for the single domain wall excitation is valid for arbitrary parameter
values of the XY chain. In general, no such simplification occurs and in the following we
restrict ourselves to the TI case for the sake of simplicity. For the spin-flip excitation one needs
the off-diagonal form factor with K = 2 and L = 0 which reads

R〈0|σx
n |q1, q2〉NS

R〈0|σx
n |0〉NS

= −
i
N

h
p

εq1
εq2

ein(q1+q2)
2sin q1−q2

2

εq1
+ εq2

. (52)

One can see immediately, that this form factor does not have any poles which implies that it
will only give a subleading contribution. The diagonal two-particle form factor (K = L = 2),
on the other hand, has the form

R〈p1, p2|σx
n |q1, q2〉NS

R〈0|σx
n |0〉NS

=
1

N2

ein(q1+q2−p1−p2)

p

εp1
εp2
εq1
εq2

2sin p1−p2
2

εp1
+ εp2

2sin q1−q2
2

εq1
+ εq2

×
εq1
+ εp1

2 sin q1−p1
2

εq1
+ εp2

2sin q1−p2
2

εq2
+ εp1

2 sin q2−p1
2

εq2
+ εp2

2sin q2−p2
2

, (53)

with two possible poles for q1 = p1 and q2 = p2, or with an exchange of momenta for q1 = p2
and q2 = p1. It should be noted that, for the generic diagonal K-particle form factors in (48),
an arbitrary permutation between the incoming and outgoing momenta yields a pole, which
makes the analysis of the contributions increasingly complicated.

B Stationary phase calculations for the profile

In this appendix we summarize the calculations leading to the approximations of the magneti-
zation profile in the hydrodynamic regime. The simplest case is the single domain wall, where
Mn(t) is given by a double integral (14). The integrand has a pole due to the form factor,
which can be regularized as

Mn(t) = 1+

∫ π

−π

dp
2π

∫ π

−π

dq
2π

εp + εq

2
p

εpεq

ei(n−n1+1/2)(q−p)

i sin
�

q−p+iε
2

� ei(θq−θp)/2e−i(εq−εp)t , (54)

by introducing the infinitesimal shift ε > 0. The integrand of (54) is highly oscillatory for
|n− n1| � 1 and t � 1, and the location of the pole at q = p suggests the change of variables
Q = q−p and P = (q+p)/2. The phase factors become stationary at Q = 0, thus the integrand
should be expanded around this value. Keeping only the most singular term one has

1+ 2

∫ π

−π

dP
2π

∫ ∞

−∞

dQ
2πi

ei(n−n1+1/2+θ ′P−vP t)Q

Q+ iε
, (55)

where we have extended the integration in the relative momentum up to infinity. Thanks to
the definition (6), the function θ ′P varies smoothly and one can neglect it in the hydrodynamic
regime. Then using the integral representation of the Heaviside theta function

Θ(x) = − lim
ε→0

∫ ∞

−∞

dQ
2πi

e−iQx

Q+ iε
, (56)

and introducing the ray variable ν= (n− n1 + 1/2)/t brings us to the result (15) in the main
text.

The bulk hydrodynamic profile is thus recovered by solving the equation vq = ν. Special
attention is needed around the maximum vq∗ = vmax of the velocities, where the solutions
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coalesce at momentum q∗. To get the fine structure of the front edge, one has to expand the
dispersion around q∗ as

εq ≈ εq∗ + vq∗(q− q∗) +
ε′′′q∗

6
(q− q∗)

3. (57)

Furthermore, one can introduce the following rescaled variables

X =

�

−2
ε′′′q∗

t

�1/3

(n− n1 + 1/2+ θ ′q∗/2− vq∗ t),

Q =

�

−2
ε′′′q∗

t

�−1/3

(q− q∗), P =

�

−2
ε′′′q∗

t

�−1/3

(p− q∗).

(58)

Substituting (57) and (58) into (54), one arrives at the following integral

1+ 2

�

−2
ε′′′q∗

t

�1/3∫
dP
2π

∫

dQ
2π

eiX (Q−P)ei(Q3−P3)/3

i(Q− P + iε)
. (59)

Using the integral representation of the Airy kernel [39]

KAi(X , Y ) = lim
ε→0

∫

dP
2π

∫

dQ
2π

e−iX Pe−iP3/3eiYQeiQ3/3

i(P −Q− iε)
=

Ai(X )Ai′(Y )−Ai′(X )Ai(Y )
X − Y

, (60)

one recovers (16) of the main text, with ρ(X ) = limY→X KAi(X , Y ) given by the diagonal terms
of the Airy kernel.

The hydrodynamic limit (22) for the double domain wall can be obtained in a similar
fashion, however, one has now a quadruple integral to start with. The poles are contained
in the two-particle form factor (53). First, we consider the pole with q1 = p1 and q2 = p2.
Changing variables as

Q i = qi − pi , Pi =
qi + pi

2
, (61)

and expanding the phases around the stationary points Q i = 0, one has

I1 = 4

∫

dP1

2π

∫

dP2

2π
f (P1, P2,Q1,Q2)

∫

dQ1

2π
e−i x1Q1

Q1

∫

dQ2

2π
e−i x2Q2

Q2
, (62)

where we defined
x i = vPi

t − (−1)iθ ′Pi
− (n− ni + 1/2) . (63)

The function f in (62) describes the slowly varying part of the form factor in (53). It is easy to
see, that the terms containing the dispersion εqi

and εpi
can be approximated by 1 to leading

order. It remains to analyze the contribution of the trigonometric factors that do not contain
the poles, which can be rewritten as

f (P1, P2,Q1,Q2)≈ −
cos(Q1−Q2

2 )− cos(P1 − P2)

cos(Q1+Q2
2 )− cos(P1 − P2)

. (64)

Thus, again to leading order around Q i = 0, one has f (P1, P2,Q1,Q2)≈ −1+O(Q1Q2), mean-
ing that the first correction would already remove the singularity in the integral (62), and can
be neglected. Setting f = −1, one recovers immediately the factorized result (22).

The second pole of the form factor (53) is given by q1 = p2 and q2 = p1 and corresponds
to an exchange of the outgoing momenta. The form factor itself transforms trivially under
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this exchange, acquiring only a sign. The time-evolved state (20), however, has phase factors
attached to the locations of the domain walls and thus transforms nontrivially under exchange
of the momenta. Indeed, introducing the variables

Q′1 = q1 − p2, Q′2 = q2 − p1, P ′1 =
q1 + p2

2
, P ′2 =

q2 + p1

2
, (65)

this phase factor can now be rewritten as

e−i(Q′1+Q′2)(n1+n2)/2 ei(P ′1−P ′2)(n2−n1). (66)

The second term contains the center of mass momenta and becomes highly oscillatory for
|n2− n1| � 1. This phase, however, cannot be made stationary, since the time-dependent part
of the phase in (20) is symmetric under the exchange of the momenta. One thus concludes
that, for large separations of the domain walls, the second pole gives a negligible contribution.

The situation for the spin-flip excitation is different. As discussed in the main text, ex-
cept for a sign change of the Bogoliubov angles, the state (23) is a double domain wall with
n2 = n1 + 1. The first pole thus yields the very same factorized result as in (62), with the cor-
responding changes in x i . In the hydrodynamic limit, however, it is more natural to measure
distances from the spin-flip location n1 (instead of n1±1/2) and use the ray variable ν̃= n−n1

t ,
which gives the second term in (25). The second pole, however, has also a significant contri-
bution, since n2 − n1 = 1 and the phase factor in (66) now varies slowly. Expanding around
Q′i = 0, one finds

I2 = 4

∫

dP ′1
2π

∫

dP ′2
2π

eiP ′1e
iθP′1 e−iP ′2e

−iθP′2

∫

dQ′1
2π

e−i x ′1Q′1

Q′1

∫

dQ′2
2π

e−i x ′2Q′2

Q′2
, (67)

where x ′i = vP ′i
t− (n−n1) and the sign change in the form factor has been taken into account.

It is easy to see that

I2 = −
�

�

�

�

2

∫

dP ′

2π
eiP ′eiθP′

∫

dQ′

2πi
e−i x ′Q′

Q′

�

�

�

�

2

. (68)

Regularizing the pole via the identity Q′−1 = iπδ(Q′) + limε→0(Q′ + iε)−1, using (56) and the
expression of the transverse magnetization in (24), the third term of (25) follows.

It remains to investigate the edge scaling regime for the spin-flip excitation. The second
term of (25) is simply the square of the profile for a single domain wall, where the edge scaling
is given by (16). To leading order, this just yields a factor 2. The situation is similar for the
third term in (25) where, additionally, the phase factors in the integral must be evaluated at
the momentum q∗ where the velocity has its maximum, vq∗ = vmax . Collecting the terms, one
obtains the prefactor in (27).

Finally it should be noted that, although the calculation above has been carried out using
the form factors for the TI chain, the result generalizes to the XY case. Indeed, the pole struc-
ture of the form factors is exactly the same, whereas the differences in the slowly varying part
are irrelevant in the hydrodynamic limit, since they have the same trivial limit after expanding
around the pole.
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C Calculation of correlation functions

At one-particle level of the form-factor expansion, the normalized correlation function is given
by the triple integral

Cm,n(t)'
∫

dq1

2π

∫

dq2

2π
e−i(θq1

−θq2
)/2ei(εq1

−εq2
)t

×
∫

dp
2π

εp + εq1

2
p

εpεq1

εp + εq2

2
p

εpεq2

e−i(m−n1+1/2)(q1−p)

sin q1−p
2

ei(n−n1+1/2)(q2−p)

sin q2−p
2

. (69)

The stationary phase approximation of this integral is very similar to that of the magnetization
profile. Introducing the new set of variables

Q1 = q1 − p, Q2 = q2 − p, P =
q1 + p

2
, (70)

and expanding around the poles Q1 = 0 and Q2 = 0, one obtains

Cm,n(t)' 4

∫

dP
2π

∫

dQ1

2π
e−i(m−n1+1/2+θ ′P−vP t)Q1

Q1

∫

dQ2

2π
ei(n−n1+1/2+θ ′P−vP t)Q2

Q2
. (71)

Applying (56) in both the Q1 and Q2 integrals, the result can again be written with the help
of step functions

Cm,n(t)' 1− 2

∫ π

−π

dP
2π
[Θ(vP −µ) +Θ(vP − ν)− 2Θ(vP −µ)Θ(vP − ν)] , (72)

where the scaling variable µ = (m − n1 + 1/2)/t is introduced analogously to ν. Assuming
µ < ν and using the identities for the step function

Θ(vP − ν) = 1−Θ(ν− vP) , Θ(vP −µ)−Θ(vP − ν) = Θ(vP −µ)Θ(ν− vP) , (73)

the result (32) of the main text follows immediately.
Instead of applying the stationary phase argument, one can also do a more precise analysis.

Indeed, it turns out that the integral over p in (69) can be carried out explicitly. We first
regularize the factor containing the pole as

1

sin
� q1−p

2

�

sin
� q2−p

2

� =



2πδ(p− q1) +
1

i sin
�

q1−p+iε
2

�







2πδ(p− q2) +
1

i sin
�

p−q2+iε
2

�



 .

(74)
Multiplying out this expression, the terms containing the delta functions can be plugged back
into (69) and integrated over. Comparing to (54), one can identify the resulting double in-
tegrals as Mm(t) − 1 and Mn(t) − 1, respectively, while the product of the delta functions
trivially yields one. The remaining factor from (74) can be rewritten as

1

sin
�

q1−p+iε
2

�

sin
�

p−q2+iε
2

� =
2

cos
� q1+q2

2 − p
�

− cos
� q1−q2

2 + iε
� . (75)

Introducing new variables

z = ei[p−(q1+q2)/2] , z0 = ei[(q1−q2)/2+iε] , (76)
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the integral over p is transformed into the contour integral

I =
∮

dz
2πiz

f (z)
4

z + z−1 − (z0 + z−1
0 )

, (77)

where f (z) is the slowly varying regular part of the integrand in (69), and the contour is the
unit circle. Now the two poles are located at z = z0 and z = z−1

0 . However, for ε > 0, only
z = z0 lies inside the contour and contributes to the integral. We have thus to obtain the
residue around this pole. Rewriting

4

z2 + 1− z(z0 + z−1
0 )
=

4

z0 − z−1
0

�

1
z − z0

−
1

z − z−1
0

�

, (78)

and the two poles correspond to p = q1 and p = q2, respectively. Hence the result of the
contour integral is

I = 2 f (q1)

i sin
� q1−q2

2 + iε
� . (79)

Finally, noting that I enters with a minus sign (see (74)), and inserting the result back into
(69), one can easily identify the contribution as −2(Mn(t)− 1). Collecting all the terms, one
arrives at the result

Cm,n(t)' 1+Mm(t)−Mn(t) . (80)

As a closing remark, we give a simple argument why the many-particle contributions in
the form-factor expansion of the correlation functions can be neglected. In the one-particle
expression (69), the dominant contribution is obtained from momenta satisfying q1 = p = q2,
where the stationary phase conditions match the poles of the integrand. The next nonvanishing
term in the expansion involves three intermediate particles, where the phase factor could be
made stationary for q1 = p1 = q2 and p2 = −p3. However, from (48) one can see that there is
no pole in the form factor at p2 = −p3, and thus the contribution is subleading.
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