
SciPost Phys. 8, 041 (2020)

Introducing iFluid: a numerical framework for solving
hydrodynamical equations in integrable models

Frederik S. Møller* and Jörg Schmiedmayer

Vienna Center for Quantum Science and Technology, Atominstitut,
TU Wien, Stadionallee 2, 1020 Vienna, Austria

* frederik.moller@tuwien.ac.at

Abstract

We present an open-source Matlab framework, titled iFluid, for simulating the dynamics
of integrable models using the theory of generalized hydrodynamics (GHD). The frame-
work provides an intuitive interface, enabling users to define and solve problems in a few
lines of code. Moreover, iFluid can be extended to encompass any integrable model, and
the algorithms for solving the GHD equations can be fully customized. We demonstrate
how to use iFluid by solving the dynamics of three distinct systems: (i) The quantum
Newton’s cradle of the Lieb-Liniger model, (ii) a gradual field release in the XXZ-chain,
and (iii) a partitioning protocol in the relativistic sinh-Gordon model.

Copyright F. S. Møller and J. Schmiedmayer.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 09-01-2020
Accepted 10-03-2020
Published 13-03-2020

Check for
updates

doi:10.21468/SciPostPhys.8.3.041

Contents

1 Introduction 2

2 Review of generalized hydrodynamics (GHD) 3

3 Core functionality of iFluid 6
3.1 Implementing a model 6
3.2 Solving the GHD equation 7

4 Solving problems with iFluid 8
4.1 Quantum Newton’s cradle 8
4.2 Charges and currents of XXZ model 12
4.3 Partitioning protocol in relativistic sinh-Gordon 14

5 Conclusion 16

A Thermodynamic Bethe ansatz of implemented models 17
A.1 Lieb-Liniger model 17
A.2 XXZ spin chain model 18
A.3 Relativistic sinh-Gordon model 18

B Numerical implementation of GHD equations 19

1

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041
mailto:frederik.moller@tuwien.ac.at
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.8.3.041&domain=pdf&date_stamp=2020-03-13
http://dx.doi.org/10.21468/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

B.1 Tensor representation and index conventions 19
B.2 Discretized GHD equations 19

References 20

1 Introduction

In recent decades great experimental advances in the field of ultracold atoms have enable
the preparation and manipulation of one-dimensional many-body quantum system far from
equilibrium [1–9]. Therefore, theoretical tools for understanding the complex dynamics of
these systems have been highly sought after [10–12]. Some of these low dimensional systems
exhibit integrability by abiding to an infinite set of local conservation laws [13]. For a long
time, integrable models have been a theoretical playground, although several of these models
have also been realized experimentally [1,6,7,9].

Recently the theory of generalized hydrodynamics (GHD) has emerged as a powerful
framework for studying integrable models out of equilibrium [14,15]. In its most basic form,
generalized hydrodynamics describes the flow of all the conserved charges of integrable mod-
els. Thus, an infinite set of advection equations emerge, which through the thermodynamic
Bethe ansatz, can be formulated as a single Euler-scale equation for a quasiparticle distribu-
tion. Since the inception of GHD several applications have been added to the framework, such
as calculations of entanglement spreading [16–19], correlation functions [20–22], diffusive
corrections [23,24], and many others [25–28]. Recently it has also been demonstrated to cap-
ture the dynamics of a cold Bose gas trapped on an atom-chip [29]. An especially appealing
feature of the GHD framework is how the main equations can be universally applied to a large
set of integrable models including the Lieb-Liniger model [14,30–32], XXZ chain [15,33–35],
classical [36] and relativistic [14] sinh-Gordon, and many more [37–40]. The theory has al-
ready proven its worth by providing exact predictions for the many-body dynamics in several
cases [14, 15, 20]. Additionally, GHD appears to have great potential as a numerical tool, as
the computational complexity of solving the many-body dynamics is entirely independent of
the Hilbert space size. Despite this, only a couple of different numerical schemes have been
implemented so far [27, 28, 34, 38, 41]. Thus, if GHD is to applied on larger scales, such as
describing experimental observations, more powerful numerical methods must be developed.

Currently, no open-source code exists for solving GHD equations. The goal of iFluid
(integrable-Fluid) is to provide a powerful and intuitive numerical framework for finding and
propagating the root density distribution, which serves as the basic quantity for thermody-
namic calculations in integrable systems [42]. Hence, iFluid supplies a platform for solving
the core hydrodynamical equations on top of which user-specific applications can be built. The
universality of the GHD equations enables a highly flexible code base, wherein any integrable
model can be seamlessly integrated. iFluid already supports a couple of models (see Appendix
A), and the implementation of a new model can be achieved in relatively few lines of code
after extending core classes of the framework.

So far only little effort has been put into comparing different algorithms for solving the
GHD equations. For very cold temperatures the underlying quasiparticle distribution resembles
that of a Fermi sea, whose hard walls and edges complicates numerical solutions. However,
such problems have already been studied for many years within the field of fluid dynamics [43].
Adopting these methods should greatly bolster the numerical capability of generalized hydro-
dynamics. Therefore, iFluid abstracts the algorithm for solving the main advection equation,

2

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

whereby users are free to implement whatever algorithm is suitable for their specific problem.
Again, iFluid already implements a couple of basic algorithms sufficient for solving most tasks.

The purpose of this paper is to introduce the user to the iFluid framework and demonstrate
its applicability in various scenarios. Thus, the paper is organized as follows. In Section 2, we
review the basic concepts of GHD serving as the core of the iFluid framework. In section 3,
the core features of iFluid are discussed. In Section 4, the applicability of iFluid is demon-
strated by solving three distinct problems: The quantum Newtons cradle in the Lieb-Liniger
model, a gradual confinement release in the XXZ model, and a partitioning protocol in the
relativistic sinh-Gordon model. Finally in Section 5, we conclude and give an give an outlook
for the development of iFluid. Details of the exact numerical implementations are reported in
appendices.

2 Review of generalized hydrodynamics (GHD)

Generalized hydrodynamics in its essence utilizes the quasiparticle formulation of the thermo-
dynamics Bethe Ansatz to describe the flow of charges within an integrable system. Integrable
systems abide to infinitely many local conservation laws [44], thus preventing a conventional
hydrodynamical description which only captures conservation of particles, momentum, and
energy. This infinite set of conserved charges imposes constraints on the dynamics of the
system and inhibits thermalization. Hence, under the assumption of local thermal equilib-
rium, the systems relaxes to a generalized Gibbs ensemble (GGE) from which thermodynamic
quantities can be derived [45]. Once it is at this stage, the system can be described via the
quasi-particles based thermodynamic Bethe ansatz (TBA). Within TBA the eigenstates of the
full set of local conserved charges are multiparticle states, with each particle labelled by a
rapidity λ [13]. Under integrability all multiparticle scattering events factorize into two-body
elastic scatterings. Thus, all interactions between the quasiparticles are captured by the two-
body scattering matrix S(λ). In the thermodynamic limit the rapidity can be thought of as a
continuous variable, while the coarse-grained root density ρ(λ) gives the density of particles
within the interval [λ,λ+dλ) [42]. The root densities (like the GGE density matrix, ρ̂GGE) fix
the expectation value of the the local charges, Q̂ j , such that [46]

1
L
〈Q̂ j〉=

1
L

Tr
�

Q̂ j ρ̂GGE

�

=

∫

dλ h j(λ)ρ(λ)≡ q j , (1)

where h j(λ) is called the one-particle eigenvalue of the charge Q̂ j , and L is the system length.
Among the infinite set of conserved charges we find the particle number Q̂0 = N̂ , the to-
tal momentum Q̂1 = P̂, and the total energy Q̂2 = Ê. Thus, the corresponding one-particle
eigenvalues are h0(λ) = 1, h1(λ) = p(λ), and h2(λ) = ε(λ), where p(λ) and ε(λ) are the
momentum and energy of a single quasiparticle respectively.

In a similar fashion we can calculate the expectation values of the currents associated to
the charges via

j j ≡
∫

dλ h j(λ)v
eff(λ)ρ(λ) , (2)

where veff(λ) is the velocity by which the quasiparticles move. Later we will see how exactly
this velocity is computed.

Until recently, the thermodynamic Bethe ansatz was used only to describe the expectation
values of a homogeneous, stationary state. Imagine however, a weakly inhomogeneous system,
where physical properties vary on space-time scales much larger than the underlying time

3

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

scales. In this case local equilibrium is established faster than the physical quantities can
change, whereby the overall system remains in a quasi-stationary state. Thus, the system can
be thought of as consisting of space-time fluid cells, each of which is described by a local GGE
with minimal variations to those of neighbouring cells [14]. For a quasi-stationary state the
quasiparticle description of the thermodynamic Bethe ansatz still applies, however, the root
density is now weakly dependent on time and space, ρ = ρ(t, x ,λ). The main feature of
GHD is formalizing how the root density behaves under time evolution. Thus, the GHD details
how the flow of an infinite set of charges of an integrable model is given by the semiclassical
propagation of a phase-space density of a quasiparticle collection.

In practice, it is more convenient to express the hydrodynamical equations in terms of the
filling function, ϑ(λ). The filling can be interpreted as the density of quasiparticles over the
density of available states at a given rapidity, ρs(λ), such that

ϑ(λ) =
ρ(λ)
ρs(λ)

=
2πρ(λ)

(∂λp)dr
. (3)

Note that we have omitted the spacial and temporal argument for the sake of lighter nota-
tion. The subscript dr in eq. (3) denotes the dressing of the quantity. Non-trivial interactions
between the particles induces collective effects, which are captured by the dressing operation
defined through the integral equation

hdr(λ) = h(λ)−
∫

dλ′

2π
∂λΘ(λ−λ′)ϑ(λ′)hdr(λ′) . (4)

Due to the factorization of scatterings, the interparticle interactions are captured solely by
the two-body scattering phase Θ(λ) = −i log S(λ), with S(λ) being the two-body scattering
matrix. The interaction between particles also influences their equations of motion. In the
non-interacting case the particles move with the group velocity, v(λ) = ∂λε/∂λp. However, in
the presence of interactions the bare quantities become dressed, whereby the particles move
with an effective velocity [14,15]

veff(λ) =
(∂λε)

dr

(∂λp)dr
. (5)

Furthermore, space-time inhomogeneities in the parameters of the model induce force terms
on the quasiparticles, which can change their rapidities. Once again the interparticle interac-
tions collectively dress these force terms, whereby the quasiparticles experience an effective
acceleration [27]

aeff(λ) =
∂tα f dr + ∂xαΛ

dr

(∂λp)dr
, (6)

where α is a coupling of the model (such as the interaction strength c in the Lieb-Liniger
model [30]). Inhomogeneities of the couplings in space and time have their own associated
force term given respectively by

f (λ) = −∂αp(λ) +

∫

dλ′

2π
∂αΘ(λ−λ′) (∂λp)dr ϑ(λ′) (7)

and

Λ(λ) = −∂αε(λ) +
∫

dλ′

2π
∂αΘ(λ−λ′) (∂λε)

dr ϑ(λ′) . (8)

Finally, the evolution of the phase-space quasiparticle density is captured with the single hy-
drodynamical equation [26,27]

∂tϑ(λ) + veff[ϑ(λ)] ∂xϑ(λ) + aeff[ϑ(λ)] ∂λϑ(λ) = 0 , (9)

4

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

where the brackets explicitly indicates that the velocity and acceleration is dependent on the
current state. Eq. (9) is a simple Eulerian fluid equation, which describes the flow of the
infinite set of conserved charges through a single expression. It is the main equation of GHD
along with its root density-based counterpart

∂tρ(λ) + ∂x

�

veff[ρ(λ)]ρ(λ)
�

+ ∂λ
�

aeff[ρ(λ)] ϑ(λ)
�

= 0 , (10)

which identifies the root density as a conserved fluid density [14]. From a numerical perspec-
tive, eq. (9) is more convenient to work with than eq. (10).

While the thermodynamic states of the Lieb-Liniger model are characterized by a single root
density, this is in general not the case. For instance, the XXZ chain supports bound states, which
are captured by including multiple types of quasi-particles, each with their own corresponding
root density, ρk(λ). Thus, one must sum over the contribution from each quasi-particle type
to obtain the charge densities as described in eq. (1). To simplify the notation we adopt
the convention from [26] of writing the rapidity as a single spectral parameters λ = (λ, k),
whereby the integrals above can be generalized to

∫

dλ→
∫

dλ=
∑

k

∫

dλ . (11)

After accounting for multiple species of quasiparticles, all the equations above can be applied to
any integrable model. In fact, the only model-specific parameters that enter the calculations
is the scattering phase, Θ(λ), encoding the interactions of the quasiparticles and the one-
particle eigenvalues, h j(λ). These quantities can be obtained for a given model through the
thermodynamic Bethe ansatz, and once plugged into the hydrodynamical equations the full
framework of GHD can be applied to the problem.

The equations above constitutes the core of generalized hydrodynamics. Under evolution
detailed by eq. (9) the system is always in a quasi-stationary state, from which various physical
quantities can be calculated. In addition to solving eq. (9), iFluid also computes the so called
characteristics [41] encoding the trajectories of the quasiparticles. Thus, the characteristics can
be used for computing the hydrodynamics spreading of entanglement [19] and correlations
[20]. The characteristics U and W have the simple interpretation as the inverse space and
rapidity trajectories of the quasi-particles respectively [19], yielding

ϑ(t, x ,λ) = ϑ(0, U(t, x ,λ), W (t, x ,λ)) . (12)

Thus, U(t, x ,λ) is the position at time t ′ = 0 of the quasi-particle λ, which at time t has the
position x [26]. Interestingly, the characteristics follow the same hydrodynamical equation as
the filling function

∂t U(t, x ,λ) + veff[ϑ(t, x ,λ)] ∂x U(t, x ,λ) + aeff[ϑ(t, x ,λ)] ∂λU(t, x ,λ) = 0 , (13)

∂tW (t, x ,λ) + veff[ϑ(t, x ,λ)]∂xW (t, x ,λ) + aeff[ϑ(t, x ,λ)] ∂λW (t, x ,λ) = 0 , (14)

with the initial conditions given by definition

U(0, x ,λ) = x , (15)

W (0, x ,λ) = λ . (16)

Hence, the characteristics can be propagated alongside the filling function with minimal nu-
merical cost.

5

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

3 Core functionality of iFluid

iFluid implements all the equations listed in the section above along with several additional
features. The main goal of the framework is to remain highly flexible while delivering fast
performance. To achieve this goal, iFluid implements all its core methods in abstract classes,
which must be extended by the user in order to supply the necessary model-specific functions
required by the internal routines of iFluid. Several models and numerical solvers are already
implemented in iFluid and will be demonstrated in Section 4. This section aims to introduce
the iFluid base classes, while more in-depth information can be found in the documentation
[47].

The hydrodynamical equations described in Section 2 are solved numerically by discretiz-
ing the integrals using appropriate quadratures. Thereby the linear integral equations are
converted into linear matrix equations enabling very fast numerical calculation of the hydro-
dynamical quantities. One should note that iFluid employs a very strict convention for indices
which is enforced through the iFluidTensor class. The discretized equations are found in
Appendix B, while further information regarding the iFluidTensor is written in the docu-
mentation [47].

3.1 Implementing a model

A key feature of iFluid is its intuitive interface and extendibility. This is achieved through the
abstract class iFluidCore, which implements all the equations of the thermodynamics Bethe
ansatz from the previous section. Following the hydrodynamical principle the system is always
in a quasi-stationary state, whereby all the methods of the iFluidCore can be applied for any
given root density. However, in order to perform any specific calculations some explicit infor-
mation regarding the model is required, namely the energy and momentum functions, ε(λ)
and p(λ), and the two-body scattering phase, Θ(λ−λ′), along with their rapidity derivatives.
Additionally, inhomogeneous systems require derivatives with respect to the couplings in order
to compute eqs. 7 and 8. Hence, before any calculation can be undertaken one must extend
the general iFluidCore class with a model-specific class myModel < iFluidCore, wherein
the following abstract functions must be implemented

1 % Abstract methods which must be overloaded in model class
2 getBareEnergy(obj, t, x, rapid, type)
3 getBareMomentum(obj, t, x, rapid, type)
4 getEnergyRapidDeriv(obj, t, x, rapid, type)
5 getMomentumRapidDeriv(obj, t, x, rapid, type)
6 getScatteringRapidDeriv(obj, t, x, rapid1, rapid2, type1, type2)
7 getEnergyCoupDeriv(obj, coupIdx, t, x, rapid, type)
8 getMomentumCoupDeriv(obj, coupIdx, t, x, rapid, type)
9 getScatteringCoupDeriv(obj,coupIdx,t,x,rapid1,rapid2,type1,type2)

A few things to note about the input parameters: t, x and rapid are the spatial, temporal
and rapidity arguments respectively. They can be either scalars or vectors. The type argument
specifies the index of the quasiparticle type (only relevant for TBAs with multiple quasiparticle
species). This argument can be either a scalar or an array of scalars and should default to 1
for single-particle TBAs. Lastly, the coupIdx input is a scalar index specifying which coupling
the derivative is taken with respect to. The couplings are passed to the model-specific class
through an array upon initialization (more on this later), whereby the array-index of the given
coupling must match the coupIdx.

Although this might seem like a lot of work at first glance, most of these functions can be
written in a single line. Examples of this can be found in the documentation [47].

6

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

3.2 Solving the GHD equation

Having specified the model-specific functions, all the equations listed in Section 2 except the
main GHD equation (9) can be solved. Solving eq. (9) is achieved through the abstract
iFluidSolver class. As previously mentioned, iFluid abstracts the algorithm for solving
eq. (9) in order to accommodate future advances in the GHD numerics. Algorithms already
implemented in iFluid can be found in the documentation [47], while new algorithms can be
added simply by extending the iFluidSolver class and implementing the abstract methods

1 % Abstract methods which must be overloaded in sub−class
2 step(obj, theta_prev, u_prev, w_prev, t, dt)
3 initialize(obj, theta_init, u_init, w_init, t_array)

The method step() has the simple function of advancing the filling function by a single time
step, d t, following eq. (9)

ϑ(t, x ,λ)→ ϑ(t + d t, x ,λ) . (17)

Several different approaches exists for taking this step. The solvers already implemented in
iFluid utilize the implicit solution of eq. (9) [27,34]

ϑ
�

t ′, x ,λ
�

= ϑ(t, x̃(t ′, t), λ̃(t ′, t)) , (18)

where the functions x̃(t ′, t) and λ̃(t ′, t) are given by

x̃
�

t ′, t
�

= x −
∫ t ′

t
dτ veff

τ (x̃(τ, t), λ̃(τ, t)) (19)

and

λ̃
�

t ′, t
�

= λ−
∫ t ′

t
dτ aeff

τ (x̃(τ, t), λ̃(τ, t)) . (20)

The subscript of the effective velocity and acceleration denotes that the dressing is taken with
respect to the filling function at time τ. Further, note that the functions x̃(t, 0) and λ̃(t, 0)
are in fact the characteristics U(t, x ,λ) and W (t, x ,λ) respectively. The step() function in
iFluids FirstOrderSolver and SecondOrderSolver approximates solutions of eqs. (19)
and (20) for a single time step at various orders.

Some algorithms require the filling function at only a single time to perform the step above,
while others need the filling at multiple times in order to perform a more accurate step. For
example, the class SecondORderSolver [27] employs a midpoint rule, whereby the midpoint
filling function is stored within the class. However, in order to take the first step, the class
needs to know the first midpoint, which is not given a priori. Thus, one must also implement
the method initialize(), which prepares all the quantities necessary for starting the time
evolution algorithm.

Once the abstracted methods above are implemented, one can solve eq. (9) simply by
calling the method propagateTheta() within the iFluidSolver class. The method takes
an initial state, ϑ(0, x ,λ), and an array of time-steps, t array = {0, d t, 2 d t, . . . , tfinal}, as
inputs and returns an array of filling functions

theta_array= {ϑ(0, x ,λ),ϑ(d t, x ,λ), . . . ,ϑ(tfinal, x ,λ)} , (21)

where each filling is stored as an iFluidTensor. In order to implement the abstract methods
listed above, one will need some of the hydrodynamical equations listed in Section 2. Thus, the
iFluidSolver constructor takes an iFluidCore object as argument and stores it. Whenever
the dressing of a quantity (or something similar) is needed, one simply calls the appropriate
method from the stored iFluidCore object.

7

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

4 Solving problems with iFluid

The previous section demonstrated how to implement models and algorithms in iFluid. Once
the specific model and algorithm is implemented the hydrodynamical calculations become
almost trivial, as most problems can be formulated in only a couple of lines of code. In the
following examples we solve three distinctly different hydrodynamical problems using the
already implemented methods of iFluid. The example codes can all be found on the iFLuid git
page [48] and can be run in a matter of minutes on a laptop.

4.1 Quantum Newton’s cradle

The original experimental realization of the quantum Newtons cradle [1] beautifully demon-
strated integrability in a one-dimensional Bose gas. Recently, generalized hydrodynamics was
utilized in a numerical study of the experiment [28], where the numerical results were ob-
tained using the flea gas algorithm first described in [38]. Here we simulate a similar scenario
of a Bose gas oscillating in a harmonic confinement. In contrast to previous studies which used
an initial Bragg pulse to imprint different momenta unto the system, we simply displace half of
the cloud with regards to the center of the trap akin to lifting a bead in the classical cradle. The
initially displaced cloud will oscillate back and forth in the harmonic trap for several periods,
thus demonstrating the lack of thermalization in integrable models. Furthermore, by keeping
part of the cloud in the center we clearly illustrate the effect of the interparticle interaction,
as the central cloud will be distorted upon overlapping with oscillating one.

The one-dimensional Bose gas is described by the Lieb-Liniger model with the Hamiltonian
[30,31]

Ĥ =

∫ L

0

dx
§

1
2m
∂xψ̂

†(x)∂xψ̂(x) + cψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)−µψ̂†(x)ψ̂(x)
ª

. (22)

The interaction strength, c > 0, and the chemical potential, µ, are the two couplings of the
model, while m is the particle mass and L the system length. By employing an inhomogeneous
chemical potential we can describe external traps through the local density approximation.

First we need to specify the problem at hand, namely the discretization grids, the couplings
and the temperature. For this example we employ a rectangular quadrature for solving the
integrals, whereby the quadrature weights are simply the grid spacings.

1 x_grid = linspace(−6, 6, 2^7)
2 rapid_grid = linspace(−13, 13, 2^7) % linear grid
3 rapid_w = rapid_grid(2) − rapid_grid(1) % quad. weights
4 T = 3 % temperature

Next, we have to specify the dynamical couplings used in the simulation. The couplings and
their derivatives are declared as a cell array of anonymous functions with time and space
arguments. The first row specifies the raw couplings, while the second and third row contains
the temporal and spatial derivatives respectively. The class LiebLinigerModel requires the
first column of the coupling array to be the chemical potential and the second column to be
the interaction strength. The chemical potential is given by some central value, µ0, minus the
harmonic confinement, while the interaction is simply set to unit:

8

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

5 sw = @(t,x) 4.*x.^2 % single well potential
6 mu0 = 2 % chemical potential offset
7
8 % specify couplings and their derivatives
9 couplings = { @(t,x) mu0 − sw(t,x) , @(t,x) 1 ; % (mu , c)

10 [] , [] ; % d/dt
11 @(t,x) −8.*x , [] } % d/dx
12
13 % initialize model
14 LL = LiebLinigerModel(x_grid, rapid_grid, rapid_w, couplings);

Note that all operations in the anonymous functions should be elementwise (signified by the
dot-prefix). Furthermore, entries for derivatives equal to zero can be left empty for a boost in
performance.

Having specified the problem, we now turn to calculating the initial state given by two
clearly separated, identical clouds. To illustrate the interaction between the two clouds, any
distortion of the central cloud should be caused by the interactions. Hence, the initial state of
the central cloud should be stationary with respect to the harmonic trap. This can be achieved
in several fashions: Here we simply create an initial "double well", by displacing a copy of the
harmonic trap via a heaviside function. In this case, the initial couplings are very different
from the dynamical ones. Therefore, the method calcThermalState() of the iFluidCore
class takes an initial set of couplings as optional argument, whereby:

15 % double−well potential with offset a
16 dw = @(t,x,a) heaviside(−(x − a/2)).*sw(t,x) ...
17 + heaviside((x − a/2)).*sw(t,x−a)
18
19 % specify initial couplings (no deriv needed)
20 offset = 3
21 coup_init = { @(t,x) 2 − dw(t,x,offset) , @(t,x) 1 }
22
23 % calculate thermal state
24 theta_init = LL.calcThermalState(T, coup_init);

Finally, we are ready to solve the GHD equation (9), using the SecondOrderSolver class
[27]. Simply pass the model to the solver and run the simulation through the
propagateTheta() method:

25 Solver2 = SecondOrderSolver(LL) % initialize solver
26 t_array = linspace(0, 8, 321) % dt = 0.025
27 theta_t = Solver2.propagateTheta(theta_init, t_array)

The final output is a cell array, where the i’th entry is the filling function, ϑ(x ,λ), at the time
t_array(i). Note, each ϑ(x ,λ) is stored as an iFluidTensor.

The 27 lines of code above is all there is needed for specifying and solving a typical prob-
lem in iFluid. According to the hydrodynamic principles, the system is in a quasi-stationary
state at every point in time. Hence, once the filling function is computed, it can be used for
any calculation within the thermodynamic Bethe ansatz.

We start out by illustrating the motion of the two clouds of Bose gases in the Newton’s
cradle by calculating the linear (atomic) density corresponding to the zeroth charge density
in eq. (1). Given the filling function, we can also calculate the root density, ρ(t, x ,λ), thus
illustrating the motion of the quasiparticles.

9

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

0

1

2

0

0.1

0.2

0.3

Figure 1: Above: Evolution of the linear density of a Bose gas in a Newton’s cradle.
The interactions between the oscillating and stationary cloud transfers momentum
between them. At the end of the evolution, the system moves as a single cloud
exhibiting both a center-of-mass and breathing motion. Below: Snapshots of the
root density at each period. Initially the two clouds have distinct root densities,
which gradually merges into a single, binary distribution.

28 charge_idx = 0 % linear density is 0th charge density
29 n_t = LL.calcCharges(charge_idx, theta_t, t_array)
30 rho_t = LL.transform2rho(theta_t, t_array)

The evolution of the linear density is plotted in Figure 1 along with the root density at selected
times. In the root density picture we initially see two blobs well separated in space and centred
on zero rapidity. The central blob is the stationary state of the harmonic trap and thus remains
in place, while the offset blob is accelerated by the harmonic confinement. This causes the
offset root density to encircle the central one, effectively resulting in an oscillating motion of
the density. Every time the two clouds overlap interactions occur, effectively transferring a
small portion of the oscillating clouds momentum to the central one. Their total interaction
is primarily determined by two things: the interaction strength, c, and the amount of time at
which the clouds overlap. By separating the clouds by only a small distance, the offset cloud
will only accelerate to a low velocity before passing the stationary cloud. Thus, the overlap
time becomes long leading to a large distortion of the root densities. Therefore, the two blobs
partially merge after merely a few oscillations, creating a binary system orbiting the center
while rotating around itself. In the density picture this produces a single cloud whose center
of mass oscillates in the harmonic trap while the cloud itself exerts a breathing motion.

Figure 1 clearly demonstrates the collective interactions in generalized hydrodynamics. In
a non-interacting theory, the offset cloud would simply have encircled the center forever with-
out any deformations of the root densities. Meanwhile, any non-integrable system would have
rapidly thermalized producing a single, Gaussian cloud.

Next, we wish to calculate the characteristic, U and W of eqs. (12), and illustrate their
interpretation. This is easier if the two blobs of quasiparticles stay separate, which can be
achieved simply by starting them further apart, thus decreasing their effective interaction over

10

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

0

0.5

1

-1

0

1

Figure 2: Demonstration of the solution by characteristics in eq. (12). (a) Filling
function after five periods ϑ(tfinal, x ,λ). (b) Initial filling function interpolated to
characteristics ϑ(0, U(tfinal, x ,λ), W (tfinal, x ,λ)). This indeed reproduces the filling
shown in (a). The characteristics U and W rescaled by their initial max value are de-
picted in (c-d) respectively. The spiral patterns are a result of the interaction between
the clouds.

time. The characteristics follow the same hydrodynamical equations as the filling function,
and can be computed alongside the filling:

31 [theta_t, U_t, W_t] = Solver2.propagateTheta(theta_init, t_array)

Just like the filling, the characteristics are returned as cell arrays of iFluidTensor. According
to eq. 12, the filling function after some evolution time can be inferred from initial state via
the characteristics. To demonstrate this we interpolate the initial filling to the characteristics
at some time t and compare with ϑ(t). Performing the interpolation is straightforward in
Matlab:

32 % Get the distribution of the first (and only) quasiparticle type. Return as a
matrix of double.

33 theta = theta_t{end}.getType(1, ’double’)
34 U = U_t{end}.getType(1, ’double’)
35 W = W_t{end}.getType(1, ’double’)
36
37 % interpolate theta_init to (U(t_final) , W(t_final))
38 theta_UW = interp2(x_grid, rapid_grid, plt(theta_init), U(:), W(:))
39 theta_UW = reshape(theta_UW, length(rapid_grid), length(x_grid))

The resulting filling function is plotted in Figure 2 along with the characteristics. Starting
with the characteristics we observe a spiral pattern, which provides new information about
the quasiparticle trajectories not accessible from the root densities themselves. Although the
central blob is stationary with respect to the harmonic confinement, its quasiparticles still
have a finite velocities causing them to move in an orbit around the center of the blob. In
fact, in the case of a harmonic confinement and no interactions, all the quasiparticles move
in closed orbit around (x ,λ) = (0,0). However, the interactions between the two clouds
distort the quasiparticle trajectories resulting in the observed spiral patterns. Interpolating
the initial filling to the characteristics does indeed reproduce the filling function at time t as
seen in Figures 2. The small differences between the two fillings are due to inaccuracies in

11

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

0 0.5 1 1.5 2 2.5 3

Characteristic Time

Figure 3: Interpretation of characteristics as inverse quasiparticle trajectories. The
plots show the filling function at various times, ϑ(t), overlaid with the characteristic
coordinates (U(τ), W (τ)). The coordinates mark the location of the quasiparticle at
time t − τ, which later at time t is found in the center of the encircling filling. The
clouds interact whenever they overlap in space causing a distortion of the quasipar-
ticle trajectories. For detailed description refer to main text.

the interpolation and the finite number of grid points, making it very hard to resolve the fine
structure of the characteristics.

The interpretation of the characteristics can be further understood by plotting them as
function of time. Going back to definition in Section 2, we recollect that the characteristics
encode the positions and rapidities of the quasiparticles at an earlier time. Note that this is
not the trajectory of the quasiparticle but rather the inverse trajectory. Figure 3 depicts the
filling at different times along with characteristics of the quasiparticles in the center of the
offset blob as a function of time. Starting with Figure 3.(a), the bullets mark represent the
coordinates at time t − τ of the quasiparticles now located in the center of the offset blob.
The characteristics depict a circular motion, as the two blobs have yet to overlap. However,
as the two cloud pass through each other, the quasiparticle trajectories become distorted, as
seen in Figure 3.(b). This becomes especially clear when looking at the point t = τ, which
clearly has moved. Hence, due to the distortion of the trajectories, a different quasiparticle
of the initial root density can now be found in the center of the blob. Every time the two
clouds overlap the trajectories become increasingly distorted, which in the end produced the
spiral patterns observed previously in Figure 2. Thus, the characteristics do indeed encode the
original location of the quasiparticles, which can be used to infer correlations of entanglements
of the system [19,20].

4.2 Charges and currents of XXZ model

The Heisenberg XXZ model is another integrable model already implemented in iFluid. It has
the Hamiltonian [42]

Ĥ =
N
∑

j=1

�

Ŝ x
j Ŝ x

j+1 + Ŝ y
j Ŝ y

j+1 +∆ j Ŝ
z
j Ŝ

z
j+1 + B j Ŝ

z
j

�

, (23)

where Ŝσj are the standard spin-1
2 operators, while the couplings are the magnetic field, B,

and the interaction, ∆. The model differs from the Lieb-Liniger model in a number of dif-
ferent ways. In the case of ∆ ≥ 1 the quasiparticles are restricted to the first Brillouin zone
in the rapidity. Furthermore, bound states within the chain can occur, which requires a TBA

12

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

description consisting of multiple root densities, i.e. multiple types of quasiparticles otherwise
known as strings. For B < 0 infinitely many root densities are needed in theory, however, in
practice one can truncate this to a relatively small number, as each additional root density has
diminishing effect.

In this example we examine a system initially confined by a strong magnetic field, which
afterwards is gradually decreased. Setting up the problem in iFluid is very similar to the
previous example. Since the expression for the coupling is a little longer in this case, we use
Matlab’s symbolic feature to take the derivative of the coupling for us. Furthermore, we solve
the TBA integrals using a Legendre-Gauss quadrature obtained via the legzo() method [49].

1 Ntypes = 3 % number of quasiparticle types
2 dt = 0.01 % time step
3 tmax = 1 % t_final
4 T = 1 % temperature
5
6 % Rapidity is confined within first Brillouin zone
7 % To solve integrals we employ a Legendre−Gauss quadrature
8 [rapid_grid,rapid_w] = legzo(2^7, −pi/2, pi/2)
9 x_grid = linspace(−1.5, 1.5, 2^7)

10 t_array = linspace(0, tmax, tmax/dt+1)
11
12 % Define couplings via Matlab symbolic
13 syms x t
14
15 B = −1 − (1−tanh(3*t))*10*x.^2 % symbolic function
16 B_func = matlabFunction(B) % anonymous function
17 dBdt = matlabFunction(diff(B,t))
18 dBdx = matlabFunction(diff(B,x))
19
20 couplings = { B_func , @(t,x) acosh(1.5) ; % (B , acosh(Delta))
21 dBdt , [] ; % d/dt
22 dBdx , [] } % d/dx
23
24 % Instantiate model and solver and solve the GHD eq.
25 XXZ = XXZchainModel(x_grid, rapid_grid, rapid_w, couplings, Ntypes)
26 Solver2 = SecondOrderSolver(XXZ)
27
28 theta_0 = XXZ.calcThermalState(T)
29 theta_t = Solver2.propagateTheta(theta_0, t_array)
30
31 % Set B to 0 and calculate exp. values of charges + currents
32 XXZ.setCouplings({@(t,x) 0 , @(t,x) acosh(1.5)})
33 [q_t, j_t] = XXZ.calcCharges([0 2], theta_t, t_array)

In the final two lines of the code we calculate the expectation values of the zeroth and second
charges and associated currents. We wish to calculate the kinetic energy, thus the energy
without the contribution from the magnetic field. Hence, we simply set the field to zero before
the calculation.

Figure 4 shows the calculated quantities at select times. Starting with subfigure 4.(a) we
see the evolution of the linear density. Initially the density profile consists of a single, smooth
curve dictated by the parabolic, confining magnetic field. However, the temporal change in
the coupling induces force terms on the quasiparticles, and each string experiences a different
effective acceleration. Thus, the strings starts moving outwards at different velocities, whereby
three distinct density profiles become visible after some time. These three profiles correspond

13

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

Figure 4: Expectation values of charge densities and their associated currents as
function of x for the XXZ model. The system is initialized in a parabolic, confining
magnetic field, whereafter the field is gradually lowered. (a,c) Linear density and its
current at different times. As the field is lowered the difference in velocity between
the different quasiparticles becomes apparent. (b,d) Kinetic energy density and cur-
rent at different times. The higher kinetic energy of first order quasiparticles hides
the contribution from higher orders.

to the three root densities accounted for in the calculation. This further emphasises the point
made earlier that each additional root density included has diminishing effect. The same three-
part structure can be seen in the associated current, albeit to a much lesser degree. Meanwhile,
the expectation value of the kinetic energy barely changes by taking the contribution from
additional strings into account, as the string corresponding to no bound states has the largest
kinetic energy.

4.3 Partitioning protocol in relativistic sinh-Gordon

In our final example we examine the relativistic sinh-Gordon model with the Hamiltonian
[50,51]

Ĥ =

∫

dx

�

c2

2
π2(x) +

1
2
[∂xφ(x)]

2 +
β2c2

g2
: cosh[gφ(x)] :

�

, (24)

where the constant c is the speed of light, and : • : denotes normal ordering with respect to
the ground state. The mass-parameter β is related to the physical renormalized mass m by

m2 = β2 sin(απ)
απ

and α=
cg2

8π+ cg2
. (25)

In the iFluid implementation of the model, the couplings are given by the renormalized interac-
tion, α, and the parameter β . Additionally, iFluid adds a chemical potential to the Hamiltonian
as a third coupling, such that users can control the initial linear density.

With this example we wish to illustrate how iFluid deals with extensive systems. Thus,
we explore a well-known protocol in the GHD community [14, 15], namely a partitioning
protocol where two semi-infinite, homogeneous systems, or leads, of different temperature

14

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

Figure 5: Partitioning protocol in relativistic sinh-Gordon model, where two homo-
geneous, semi-infinite leads of temperature TL = 1.25 and TR = 1.75 are joined
together at time t = 0. Additionally the interaction, α, is gradually increased. (a)
Expectation of the vertex operator Φk(x)≡: ekgφ(x) : for k = 3 at different times. As
the interaction is increased globally, so is 〈Φ3(x)〉. (b) Evolution of the linear density
driven by the difference in temperature. Quasiparticles from the hot reservoir travel
quickly into the cold reservoir creating an expanding density wave.

are joined together. Since iFluid uses finite-sized grids, we obviously cannot store an infinitely
long system. However, we can toggle the option extrapFlag = true of the iFluidSolver
to enable extrapolation of the filling functions upon propagation. Usually extrapolation is ill
advised, but in this case the extrapolation works well since each lead is homogeneous.

There are several ways of realizing the two leads. One option is declaring a space-dependent
temperature and then balancing the difference in density via the chemical potential. Achieving
exactly equal density of the two leads can be tricky using this approach, however, the example
here is merely a demonstration of using the model. In addition to performing the regular parti-
tioning protocol we also gradually increase the interactions, such that
α(t) = (1 + 0.5 tanh(2t))/(8π + 2), while β = 1. By now the process of setting up grids
and couplings in iFluid should be known to the reader, so we merely show the part of the code
unique to the problem:

1 T = @(x) 1.5 + 0.25*tanh(50*x) % inhomogeneous temperature
2
3 options.extrapFlag = true % options struct for solver
4
5 shG = sinhGordonModel(x_grid, rapid_grid, rapid_w, couplings)
6 Solver2 = SecondOrderSolver(shG, options)
7
8 theta_init= shG.calcThermalState(T, coup_balance)
9 theta_t = Solver2.propagateTheta(theta_init, t_array)

10
11 % calculate expectation value of density and vertex operators
12 q0_t = shG.calcCharges(0, theta_t, t_array)
13 Psi3_t = shG.calcVertexExpval(3, theta_t, t_array)

At the end of the calculation the linear density is calculated along with the expectation value
of the vertex operator [51], Φk(x)≡: ekgφ(x) :, which are both plotted in Figure 5.

15

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

Starting with the linear density we confirm the density being homogeneous initially. How-
ever, the higher temperature of the right lead causes a larger number of quasiparticles to be
initialized at higher rapidities, whereby they move at higher velocity. Thus, quasiparticles from
the right travel into the left lead faster than the quasiparticles from the left can fill out the void
left behind. Therefore, one observes a wave of increased density travelling left and another
wave of decreased density travelling right.

The change in interaction, α, has barely any influence on the redistribution of density.
However, it greatly influences the expectation values of the vertex operators, since the expres-
sion for 〈Φk〉(x) is directly dependent on α [51]. Thus, as the interaction increases, so does
〈Φk〉(x). Even the regions not yet reached by the density wave are affected, since α is changed
globally.

5 Conclusion

We have demonstrated that iFluid enables the user to perform state of the art GHD calculations
in only a few lines of code. Additionally we have shown that iFluid can be easily extended to
encompass a large number of integrable models and numerical solvers. We hope that iFluid
will be a help to both students and researchers, who wish to explore the numerical side of
generalized hydrodynamics. Furthermore, the recent experimental evidence of GHD’s ability
to describe the dynamics of cold gas experiments [29] further increases the need for powerful
numerical tools. Thus, iFluid represents a great step forward in making the theory more widely
accessible, since no open-source software exist in the GHD community so far.

Aside from being easy to use, iFluid also offers great extendibility through its abstract
classes. Thus, users can implement new models simply by extending the iFluidCore class
and overloading a couple of methods. Similarly, new solvers of the GHD Euler-equation (9)
can be added to the framework by extending the class iFluidSolver. Well-established algo-
rithms from the field of fluid dynamics can thereby be seamlessly added and tested.

The development of iFluid is an ongoing process, as more and more advances are being
made in the theory of generalized hydrodynamics. By employing a modular layout, the frame-
work aims to function as a fundamental platform on which further tools can be built upon.
Applications for calculating the hydrodynamical spreading of correlations and entanglement
seem especially promising.

The current version of iFluid is written is Matlab, however, plans are currently in the works
to write the framework as either a Python package or a C++ library. While each language has
its own advantages, the Matlab iteration of iFluid is easily accessible to most members of the
GHD community while retaining decent performance. We also welcome anyone interested in
contributing to the project to contact the authors through either email or the official iFluid
repository on Github.

Acknowledgements

The authors would like to thank Alvise Bastianello, Bruno Bertini, and Vincenzo Alba for en-
lightening discussions on the topic of generalized hydrodynamics. We also thank Moham-
madamin Tajik, Federica Cataldini and João Sabino for proofreading the manuscript. Finally,
we would like to thank Sebastian Erne and Camille Leveque for discussions and inputs on the
code.

16

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041
https://github.com/integrableFluid/iFluidMatlab
https://github.com/integrableFluid/iFluidMatlab

SciPost Phys. 8, 041 (2020)

Funding information F.M. acknowledges the support of the Doctoral Program CoQuS. This
research was supported by the SFB 1225 ’ISOQUANT’ and grant number I3010-N27, financed
by the Austrian Science Fund (FWF), and the Wiener Wissenschafts- und TechnologieFonds
(WWTF) project No MA16-066 (SEQUEX).

A Thermodynamic Bethe ansatz of implemented models

The thermodynamic Bethe ansatz is a textbook technique nowadays [42], which can be applied
to a large range of integrable models. In this section we report the basic TBA quantities of the
models highlighted in the main text and emphasise the details of the iFluid implementation.

A.1 Lieb-Liniger model

The Lieb-Linger model describes a one-dimensional Bose gas with contact interactions gov-
erned by the Hamiltonian [30,31]

Ĥ =

∫ L

0

dx
§

1
2m
∂xψ̂

†(x)∂xψ̂(x) + cψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x)−µψ̂†(x)ψ̂(x)
ª

, (26)

where ψ̂†(x), ψ̂(x) are the bosonic fields, while c is the interaction strength and µ is the
chemical potential. The TBA detailed here and implemented in iFluid is only valid for repulsive
interactions c > 0. Thus, the three main functions (single-particle energy, momentum and
scattering) required for solving the GHD equations read

ε(λ) =
λ2

2m
−µ , p(λ) = λ , Θ(λ) = arctan

�

4λmc
λ2 − (2mc)2

�

. (27)

The iFluid implementation of the Lieb-Liniger model is contained in the LiebLinigerModel
class, which takes the chemical potential as the first coupling and the interaction strength as
the second coupling. In addition to the standard TBA equations, the LiebLinigerModel
class implements additional methods:

1 % Given external potential V_ext, fit mu to get given number of atoms
2 fitAtomnumber(obj, T, V_ext, Natoms, mu0_guess, setCouplingFlag)
3
4 % Calculate the n−body local correlator g_n
5 calcLocalCorrelator(obj, n, theta, t_array)

The first method fitAtomnumber() fits the central chemical potential, µ0, where
µ= µ0− Vex t(x), to achieve a thermal state whose root density integrates to a specified num-
ber of atoms. This is especially useful for experimental comparisons. The second method
calcLocalCorrelator() computes the local n-body correlator through the approach de-
tailed in [21].

Recently generalized hydrodynamics was shown to describe the dynamics of an experimen-
tally realized one-dimensional Bose gas. Hence, the theory appears to be a powerful tool for
simulating real systems. Therefore, iFluid implements a wrapper class LiebLinigerModel_SI
for converting inputs in SI-units to the internal units of iFluid, which then calls the appropriate
methods of the LiebLinigerModel class.

For more detailed description of these methods we refer the reader to the official iFluid
documentation [47].

17

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

A.2 XXZ spin chain model

The XXZ spin chain model is a discrete integrable model of N sites with the Hamiltonian

Ĥ =
N
∑

j=1

�

Ŝ x
j Ŝ x

j+1 + Ŝ y
j Ŝ y

j+1 +∆ j Ŝ
z
j Ŝ

z
j+1 + B j Ŝ

z
j

�

. (28)

Here the standard spin-1
2 operators are Ŝσj . while B j denotes the magnetic field at site j and

∆ j the interaction. Although the model is discrete, it is treated exactly like the continuous
models in the hydrodynamical description.

As already mentioned in the main text, the TBA description of the XXZ chain requires
multiple root densities. The exact thermodynamics of the model are highly dependent on the
values of B and ∆ [42]. The iFluid implementation of the model is only valid in the sector of
B < 0 and ∆ ≥ 1, in which an infinite set of root densities, {ρk(λ)}

∞
k=1, are required for the

TBA description. The rapidities of every root density are confined to the first Brillouin zone
λ ∈ [−π/2,π/2], and their associated functions read [27]

εk(λ) = −
1
2

sinh(θ)∂λpk(λ)− kB , pk(λ) = 2arctan
�

coth
�

kθ
2

�

tanλ
�

, (29)

with the scattering

Θk,l(λ) =
�

1−δk,l

�

p|k−l|(λ) + pk+l(λ) +
min(k,l)−1
∑

n=1

2p|k−l|+2n(λ) . (30)

The iFluid implementation of the model, XXZchainModel, takes B as the first coupling, while
the angle θ = arccosh∆ serves as the second coupling.

A.3 Relativistic sinh-Gordon model

The sinh-Gordon model is a relativistic field theory described by the Hamiltonian [50,51]

Ĥ =

∫

dx

�

c2

2
π2(x) +

1
2
[∂xφ(x)]

2 +
β2c2

g2
: cosh[gφ(x)] :

�

, (31)

where

m2 = β2 sin(απ)
απ

and α=
cg2

8π+ cg2
. (32)

Like the Lieb-Liniger model, the thermodynamic Bethe ansatz is determined by only a single
root density. The TBA functions of the model read

ε(λ) = m coshλ−µ , p(λ) = m sinhλ , Θ(λ) = i log
sinhλ− i sin(απ)
sinhλ+ i sin(απ)

, (33)

where we have added a chemical potential, µ, to the energy function.
The iFluid implementation of the model, sinhGordonModel, takes α as the first coupling,

β as the second coupling, and µ as the third coupling. In the addition to the standard TBA
functions, the sinhGordonModel class also implements methods for calculating the expecta-
tion values of vertex operators using the approach detailed in [51].

1 % Calculates <Psi_k> up to order k_max
2 calcVertexExpval(obj, kmax, theta_t, t_array)

18

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

B Numerical implementation of GHD equations

In this section we summarize iFluids numerical implementation of the equations in Section 2.
All the equations listed in this section are implemented as separate functions in the
iFluidCore class. Once again we refer to the official documentation for more in-depth in-
formation regarding the input and output quantities of these functions. The most challenging
task in solving these equations is keeping track of all the indices, which iFluid handles through
the iFluidTensor class.

B.1 Tensor representation and index conventions

The main quantity of TBA is the root density (or filling function). The root density is explic-
itly dependent on the rapidity, λ, but can also have a spatial dependence by assuming the
root density at neighbouring points to be slightly different (known as the local density ap-
proximation). Finally, some TBAs (like the XXZ model) require multiple root densities. Thus,
the thermodynamics of the state is fully determined by the set {ρk(x ,λ)}Ntypes

k=1 . By discretiz-
ing space and rapidity all the information contained within this set can be stored in a single
rank-3 tensor, where each of its indices corresponding to the dependencies listed above. Most
quantities in the GHD framework abide to a similar structure except for the scattering phase,
Θ, which details the scattering between quasiparticles of different rapidities and types. Thus,
the discretized scattering phase is a rank-5 tensor, as it requires an additional rapidity and
type argument. Keeping track of all these indices can be very tedious. Therefore, iFluid imple-
ments the iFluidTensor class, which overloads many of Matlabs standard matrix operations
in order to handle the extra indices. The iFluidTensor assumes the following order of the
indices:

1 % iFluidTensor index convention
2 index 1: main rapidity index
3 index 2: spatial index
4 index 3: main type index
5 index 4: secondary rapidity index used in convolutions
6 index 5: secondary type index used in convolutions

Note how the iFluidTensor does not a have temporal index despite GHD providing solutions
to the dynamics. Instead, each iFluidTensor represents the quasi-stationary state of the
system at some point in time. Methods like propagateTheta() of the iFluidSolver class
thus return a cell array, where each entry is an iFluidTensor representing the system at a
given time.

In all the examples shown in Section 4 no direct manipulation of iFluidTensors was
needed, however, the class is a critical data structure for extending the iFluid framework and
adding more modules. More information regarding the iFluidTensor class can be found in
the official documentation.

B.2 Discretized GHD equations

The integral equations of Section 2 are solved by appropriate quadratures, whereby the equa-
tions transform into matrix equations. Following the strict index convention of iFluid, we
distinguish the indices by writing the rapidity index as subscript and the type index as super-
script. Like the equations in the main text, the spatial argument is omitted for readability.
However, in the discretized form the spatial argument just enters as an additional index where

19

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041

SciPost Phys. 8, 041 (2020)

each entry is multiplied elementwise. Thus, the integrals transform as follows
∫

dλ h(λ)→
∑

i

∑

k

wk
i hk

i , (34)

∫

dλ′ Θ(λ,λ′)h(λ′)→
∑

i

∑

k

wk
iΘ

lk
ji hk

i , (35)

where wk
i are the quadrature weights.

Employing all the conventions above, we can express the expectation values of charge
densities (1) and associated currents (2) as

qn =
∑

i

∑

k

wk
i ρ

k
i (hn)

k
i (36)

and
jn =

∑

i

∑

k

wk
i ρ

k
i (hn)

k
i (v

eff)ki . (37)

In order to compute the velocity, we need to solve the dressing equation (4). In its discretized
form the equation reads

(hdr)ki = hk
i −

∑

j

∑

l

wl
j T

kl
i j ϑ

l
j(h

dr)lj , (38)

where we have written T kl
i j = (∂λΘ)

kl
i j /2π for more compact notation. The dressing of quanti-

ties constitutes the greatest operational cost of most of the GHD algorithms. One can rewrite
the dressing equations into a system of linear equations, which can be solved by the standard
routines of Matlab. Thus, the dressing is achieved by solving

hk
i =

∑

j

∑

l

�

δi jδ
kl +wl

j T
kl
i j ϑ

l
j

�

(hdr)lj , (39)

where δi j is the Kronecker delta. Finally, the force terms (7) and (8) of the effective accelera-
tion are computed by solving

f k
i = −(∂αp)ki +

∑

j

∑

l

wl
j T

kl
i j ϑ

l
j((∂λp)dr)lj (40)

and
Λk

i = −(∂αε)
k
i +

∑

j

∑

l

wl
j T

kl
i j ϑ

l
j((∂λε)

dr)lj . (41)

References

[1] T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900
(2006), doi:10.1038/nature04693.

[2] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod.
Phys. 80, 885 (2008), doi:10.1103/RevModPhys.80.885.

[3] M. Greiner, O. Mandel, T. W. Hänsch and I. Bloch, Collapse and revival of the matter wave
field of a bose–einstein condensate, Nature 419, 51 (2002), doi:10.1038/nature00968.

20

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature00968

SciPost Phys. 8, 041 (2020)

[4] T. Langen, R. Geiger, M. Kuhnert, B. Rauer and J. Schmiedmayer, Local emergence of
thermal correlations in an isolated quantum many-body system, Nat. Phys. 9, 640 (2013),
doi:10.1038/nphys2739.

[5] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. A.
Smith, E. Demler and J. Schmiedmayer, Relaxation and prethermalization in an isolated
quantum system, Science 337, 1318 (2012), doi:10.1126/science.1224953.

[6] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W.
Hänsch and I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature
429, 277 (2004), doi:10.1038/nature02530.

[7] F. Meinert, M. Panfil, M. J. Mark, K. Lauber, J.-S. Caux and H.-C. Nägerl, Probing the
excitations of a lieb-liniger gas from weak to strong coupling, Phys. Rev. Lett. 115, 085301
(2015), doi:10.1103/PhysRevLett.115.085301.

[8] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Weinmann, A. J. Daley and H.-C. Nägerl,
Quantum quench in an atomic one-dimensional ising chain, Phys. Rev. Lett. 111, 053003
(2013), doi:10.1103/PhysRevLett.111.053003.

[9] T. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer, F. Cataldini, T. Langen, T. Gasenzer,
J. Berges and J. Schmiedmayer, Experimental characterization of a quantum many-body
system via higher-order correlations, Nature 545, 323 (2017), doi:10.1038/nature22310.

[10] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[11] P. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer Science and
Business Media (2012).

[12] C. Mora and Y. Castin, Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A
67, 053615 (2003), doi:10.1103/PhysRevA.67.053615.

[13] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum inverse scattering method and
correlation functions, Cambridge University Press (1997).

[14] O. A. Castro-Alvaredo, B. Doyon and T. Yoshimura, Emergent hydrodynamics in
integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016),
doi:10.1103/PhysRevX.6.041065.

[15] B. Bertini, M. Collura, J. De Nardis and M. Fagotti, Transport in out-of-equilibrium XXZ
chains: Exact profiles of charges and currents, Phys. Rev. Lett. 117, 207201 (2016),
doi:10.1103/PhysRevLett.117.207201.

[16] B. Bertini, M. Fagotti, L. Piroli and P. Calabrese, Entanglement evolution and generalised
hydrodynamics: noninteracting systems, J. Phys. A: Math. Theor. 51, 39LT01 (2018),
doi:10.1088/1751-8121/aad82e.

[17] V. Alba and P. Calabrese, Entanglement dynamics after quantum quenches in generic inte-
grable systems, SciPost Phys. 4, 017 (2018), doi:10.21468/SciPostPhys.4.3.017.

[18] V. Alba, Entanglement and quantum transport in integrable systems, Phys. Rev. B 97,
245135 (2018), doi:10.1103/PhysRevB.97.245135.

[19] V. Alba, B. Bertini and M. Fagotti, Entanglement evolution and generalised
hydrodynamics: interacting integrable systems, SciPost Phys. 7, 005 (2019),
doi:10.21468/SciPostPhys.7.1.005.

21

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041
http://dx.doi.org/10.1038/nphys2739
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1103/PhysRevLett.115.085301
http://dx.doi.org/10.1103/PhysRevLett.111.053003
http://dx.doi.org/10.1038/nature22310
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevA.67.053615
http://dx.doi.org/10.1103/PhysRevX.6.041065
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1088/1751-8121/aad82e
http://dx.doi.org/10.21468/SciPostPhys.4.3.017
http://dx.doi.org/10.1103/PhysRevB.97.245135
http://dx.doi.org/10.21468/SciPostPhys.7.1.005

SciPost Phys. 8, 041 (2020)

[20] B. Doyon, Exact large-scale correlations in integrable systems out of equilibrium, SciPost
Phys. 5, 054 (2018), doi:10.21468/SciPostPhys.5.5.054.

[21] A. Bastianello, L. Piroli and P. Calabrese, Exact local correlations and full counting statis-
tics for arbitrary states of the one-dimensional interacting Bose gas, Phys. Rev. Lett. 120,
190601 (2018), doi:10.1103/PhysRevLett.120.190601.

[22] A. Bastianello and L. Piroli, From the sinh-gordon field theory to the one-dimensional Bose
gas: exact local correlations and full counting statistics, J. Stat. Mech.: Theory Exp. 113104
(2018), doi:10.1088/1742-5468/aaeb48.

[23] J. De Nardis, D. Bernard and B. Doyon, Hydrodynamic diffusion in integrable systems,
Phys. Rev. Lett. 121, 160603 (2018), doi:10.1103/PhysRevLett.121.160603.

[24] S. Gopalakrishnan, D. A. Huse, V. Khemani and R. Vasseur, Hydrodynamics of operator
spreading and quasiparticle diffusion in interacting integrable systems, Phys. Rev. B 98,
220303 (2018), doi:10.1103/PhysRevB.98.220303.

[25] B. Doyon and H. Spohn, Drude Weight for the Lieb-Liniger Bose Gas, SciPost Phys. 3, 039
(2017), doi:10.21468/SciPostPhys.3.6.039.

[26] B. Doyon and T. Yoshimura, A note on generalized hydrodynamics: inhomogeneous fields
and other concepts, SciPost Phys. 2, 014 (2017), doi:10.21468/SciPostPhys.2.2.014.

[27] A. Bastianello, V. Alba and J.-S. Caux, Generalized hydrodynamics with
space-time inhomogeneous interactions, Phys. Rev. Lett. 123, 130602 (2019),
doi:10.1103/PhysRevLett.123.130602.

[28] J.-S. Caux, B. Doyon, J. Dubail, R. Konik and T. Yoshimura, Hydrodynamics of the in-
teracting Bose gas in the Quantum Newton Cradle setup, SciPost Phys. 6, 070 (2019),
doi:10.21468/SciPostPhys.6.6.070.

[29] M. Schemmer, I. Bouchoule, B. Doyon and J. Dubail, Generalized hydrodynamics on an
atom chip, Phys. Rev. Lett. 122, 090601 (2019), doi:10.1103/PhysRevLett.122.090601.

[30] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution
and the ground state, Phys. Rev. 130, 1605 (1963), doi:10.1103/PhysRev.130.1605.

[31] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, In Con-
densed Matter Physics and Exactly Soluble Models 617, Springer, Berlin, Heidelberg
(2004), doi:10.1007/978-3-662-06390-3_37.

[32] J. De Nardis, B. Wouters, M. Brockmann and J.-S. Caux, Solution for an in-
teraction quench in the Lieb-Liniger Bose gas, Phys. Rev. A 89, 033601 (2014),
doi:10.1103/PhysRevA.89.033601.

[33] V. B. Bulchandani, R. Vasseur, C. Karrasch and J. E. Moore, Bethe-Boltzmann hy-
drodynamics and spin transport in the XXZ chain, Phys. Rev. B 97, 045407 (2018),
doi:10.1103/PhysRevB.97.045407.

[34] V. B. Bulchandani, R. Vasseur, C. Karrasch and J. E. Moore, Solvable hydro-
dynamics of quantum integrable systems, Phys. Rev. Lett. 119, 220604 (2017),
doi:10.1103/PhysRevLett.119.220604.

[35] L. Piroli, J. De Nardis, M. Collura, B. Bertini and M. Fagotti, Transport in out-of-
equilibrium XXZ chains: Nonballistic behavior and correlation functions, Phys. Rev. B 96,
115124 (2017), doi:10.1103/PhysRevB.96.115124.

22

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041
http://dx.doi.org/10.21468/SciPostPhys.5.5.054
http://dx.doi.org/10.1103/PhysRevLett.120.190601
http://dx.doi.org/10.1088/1742-5468/aaeb48
http://dx.doi.org/10.1103/PhysRevLett.121.160603
http://dx.doi.org/10.1103/PhysRevB.98.220303
http://dx.doi.org/10.21468/SciPostPhys.3.6.039
http://dx.doi.org/10.21468/SciPostPhys.2.2.014
http://dx.doi.org/10.1103/PhysRevLett.123.130602
http://dx.doi.org/10.21468/SciPostPhys.6.6.070
http://dx.doi.org/10.1103/PhysRevLett.122.090601
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1007/978-3-662-06390-3_37
http://dx.doi.org/10.1103/PhysRevA.89.033601
http://dx.doi.org/10.1103/PhysRevB.97.045407
http://dx.doi.org/10.1103/PhysRevLett.119.220604
http://dx.doi.org/10.1103/PhysRevB.96.115124

SciPost Phys. 8, 041 (2020)

[36] A. Bastianello, B. Doyon, G. Watts and T. Yoshimura, Generalized hydrodynamics of
classical integrable field theory: the sinh-Gordon model, SciPost Phys. 4, 045 (2018),
doi:10.21468/SciPostPhys.4.6.045.

[37] B. Doyon and H. Spohn, Dynamics of hard rods with initial domain wall state, J. Stat.
Mech.: Theory Exp. 073210 (2017), doi:10.1088/1742-5468/aa7abf.

[38] B. Doyon, T. Yoshimura and J.-S. Caux, Soliton gases and generalized hydrodynamics, Phys.
Rev. Lett. 120, 045301 (2018), doi:10.1103/PhysRevLett.120.045301.

[39] H. Spohn, Generalized Gibbs ensembles of the classical toda chain, J. Stat. Phys. (2019),
doi:10.1007/s10955-019-02320-5.

[40] B. Doyon, Generalized hydrodynamics of the classical Toda system, J. Math. Phys. 60,
073302 (2019), doi:10.1063/1.5096892.

[41] B. Doyon, H. Spohn and T. Yoshimura, A geometric viewpoint on generalized hydrodynam-
ics, Nucl. Phys. B 926, 570 (2018), doi:10.1016/j.nuclphysb.2017.12.002.

[42] M. Takahashi, Thermodynamics of one-dimensional solvable models, Cambridge University
Press (2005).

[43] J. D. Anderson and J. Wendt, Computational fluid dynamics, Springer (1995).

[44] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler and T. Prosen, Complete
generalized Gibbs ensembles in an interacting theory, Phys. Rev. Lett. 115, 157201 (2015),
doi:10.1103/PhysRevLett.115.157201.

[45] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely inte-
grable many-body quantum system: An ab initio study of the dynamics of the highly
excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98, 050405 (2007),
doi:10.1103/PhysRevLett.98.050405.

[46] J.-S. Caux and F. H. L. Essler, Time evolution of local observables after
quenching to an integrable model, Phys. Rev. Lett. 110, 257203 (2013),
doi:10.1103/PhysRevLett.110.257203.

[47] F. Møller, ifluid documentation, https://integrablefluid.github.io/iFluidDocumentation/
(2019).

[48] F. Møller, ifluidmatlab, https://github.com/integrableFluid/iFluidMatlab (2019).

[49] Pazus, Legendre-gauss-quadrature, https://github.com/Pazus/
Legendre-Gauss-Quadrature (2016).

[50] A. Arinshtein, V. Fateyev and A. Zamolodchikov, Quantum S-matrix of the
(1+1)-dimensional Todd chain, Phys. Lett. B 87, 389 (1979), doi:10.1016/0370-
2693(79)90561-6.

[51] B. Bertini, L. Piroli and P. Calabrese, Quantum quenches in the sinh-Gordon model: steady
state and one-point correlation functions, J. Stat. Mech.: Theory Exp. 063102 (2016),
doi:10.1088/1742-5468/2016/06/063102.

23

https://scipost.org
https://scipost.org/SciPostPhys.8.3.041
http://dx.doi.org/10.21468/SciPostPhys.4.6.045
http://dx.doi.org/10.1088/1742-5468/aa7abf
http://dx.doi.org/10.1103/PhysRevLett.120.045301
http://dx.doi.org/10.1007/s10955-019-02320-5
http://dx.doi.org/10.1063/1.5096892
http://dx.doi.org/10.1016/j.nuclphysb.2017.12.002
http://dx.doi.org/10.1103/PhysRevLett.115.157201
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.110.257203
https://integrablefluid.github.io/iFluidDocumentation/
https://github.com/integrableFluid/iFluidMatlab
https://github.com/Pazus/Legendre-Gauss-Quadrature
https://github.com/Pazus/Legendre-Gauss-Quadrature
http://dx.doi.org/10.1016/0370-2693(79)90561-6
http://dx.doi.org/10.1016/0370-2693(79)90561-6
http://dx.doi.org/10.1088/1742-5468/2016/06/063102

	Introduction
	Review of generalized hydrodynamics (GHD)
	Core functionality of iFluid
	Implementing a model
	Solving the GHD equation

	Solving problems with iFluid
	Quantum Newton's cradle
	Charges and currents of XXZ model
	Partitioning protocol in relativistic sinh-Gordon

	Conclusion
	Thermodynamic Bethe ansatz of implemented models
	Lieb-Liniger model
	XXZ spin chain model
	Relativistic sinh-Gordon model

	Numerical implementation of GHD equations
	Tensor representation and index conventions
	Discretized GHD equations

	References

