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Field theories with a vector global symmetry
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Abstract

Motivated by recent discussions of fractons, we explore nonrelativistic field theories with
a continuous global symmetry, whose charge is a spatial vector. We present several such
symmetries and demonstrate them in concrete examples. They differ by the equations
their Noether currents satisfy. Simple cases, other than the translation symmetry, are an
ordinary (relativistic) one-form global symmetry and its nonrelativistic generalization.
In the latter case the conserved charge is associated with a codimension-one spatial
manifold, but it is not topological. More general examples involve charges that are in-
tegrated over the entire space. We also discuss the coupling of these systems to gauge
fields for these symmetries. We relate our examples to known continuum and lattice
constructions.
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1 Introduction and summary

The goal of this note is to discuss some special global symmetries in nonrelativistic field theories
in D spatial dimensions. Specifically, we will be interested in global symmetries that carry a
spatial vector index i. For simplicity, we will limit ourselves to U(1) symmetries and study
their Noether currents and conserved charges.1 This discussion is generalized easily to ZN .
The main difference is that in that case there is no Noether current and no conserved charge,
but an appropriate exponential of the conserved charge does exist.

This work was motivated by recent exciting ideas about fractons (for a review, see [1] and
references therein) and in particular [2, 3], where similar symmetries have played a crucial
role. Below we will explain the relation between these approaches and ours.

1.1 Review of ordinary U(1) global symmetry

Let us start by reviewing the ordinary (zero-form) U(1) symmetry. It is associated with a
conserved Noether current. In relativistic notation we have2

∂µJµ = 0 (1)

and in nonrelativistic terms it is
∂0J0 − ∂iJ

i = 0 . (2)

The conserved charge is an integral over all of space

Q =

∫

space
J0 . (3)

The charged observables are local operators acting at a point.
The form of the current is subject to a known ambiguity, known as “improvement trans-

formations”

J0→ J0 + ∂iX
i ,

J j → J j + ∂0X j + ∂iY
[i j] , (4)

with some well defined operators X i , Y [i j], where [i j] means that the indices are antisym-
metric. Since J0 is shifted by a total spatial derivative, the charge (3) is not modified. (This
assumes sufficient fall off at infinity.) The shift of J j is such that the current remains conserved.

A conserved current Jµ can be coupled to a gauge field Aµ. The minimal coupling is

AµJµ . (5)

Nonminimal couplings include other gauge invariant terms linear in Aµ. Specifically, terms of
the form

FµνZ [µν], (6)

with Fµν = ∂µAν − ∂νAµ are related to the improvement transformation (4).
We also note that depending on the details of the theory the minimal coupling (5) is often

accompanied by “seagull terms” that are higher order in Aµ.

1We will see that in some cases the U(1) symmetry is actually noncompact, i.e.R. The transformation parameter
is a real number rather than being periodic.

2Throughout this note we will denote the time coordinate by x0 and the spatial coordinates by x i with
i = 1, ..., D. We will use Greek letters µ,ν, ... to combine the indices 0 and i to denote spacetime indices. Nowhere
in this note will we discuss curved spacetime. Therefore, when we will raise or lower the time index we will simply
multiply by minus one. Except when stated explicitly, we will be interested in flat, noncompact, D-dimensional
space RD. We will keep track of upper and lower spatial indices so that it is easy to generalize our discussion to
other spatial geometries.
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1.2 A symmetry with a vector index and a summary of this note

If the charge has a vector index, the conserved Noether current must have two indices. A well
known example of such a charge is the momentum P i =

∫

space T i
0. Other standard examples

are based on a conserved current with two antisymmetric indices

∂µJ [µν] = 0 . (7)

Here we will follow [4, 5] and interpret it as a one-form global symmetry. In nonrelativistic
notation (7) is

∂0J j
0 − ∂iJ

[i j] = 0,

∂iJ
i
0 = 0 . (8)

From a nonrelativistic perspective the first equation states the conservation and the second
equation is an additional condition.

The conserved charges are associated with codimension-one manifolds in space C

Q(C) =
∫

C
J j

0n j , (9)

with n j a unit vector normal to C. The second condition in (8) guarantees that these charges
do not change under small changes of C .

In section 2, we will discuss these charges in detail and will stress that the charged oper-
ators are associated with lines. We will demonstrate the symmetry in continuum U(1) gauge
theory and in its lattice version. Here the second condition in (8) is Gauss law and the con-
served charge (9) is the electric flux through C.

In sections 3 and 4, we will present generalizations of the relativistic one-form symmetry
(8) in a hierarchical way.

In sections 3, we will generalize (8) to a current that satisfies the conservation equation
(the first condition in (8)), but does not satisfy the second condition in (8)

∂0J j
0 − ∂iJ

[i j] = 0,

G ≡ ∂iJ
i
0 6= 0 . (10)

This is inconsistent with relativistic invariance, but is consistent in a nonrelativistic system.
One important fact, which follows trivially from the defining equation (10) is that G is con-
served at every point

∂0G = 0 . (11)

Unlike the more special case (8), where G vanishes, here it is nonzero, but it is conserved.
The conserved charges are still given by (9), but since G no longer vanishes, they change

under small changes of C.
The conserved global symmetry (11) is quite unusual. There is a separate conservation at

every point in space. Equivalently, we have a conserved current with charge

QC(x i) =

∫

space
C(x i)G (12)

for any space-dependent function C(x i).
In section 3, we will also present continuum and lattice examples of systems with that

symmetry. They are obtained by coupling a U(1) gauge theory to special matter fields. In this
interpretation G in (10) is the divergence of the electric field, i.e. Gauss law. In the system
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without matter we have (8) and G vanishes. Now, it is nonzero because of the presence of
charged matter.

This matter system is quite peculiar, because it leads to the conserved current (10). It can
be thought of as infinitely massive charged scalar fields. They are pinned and are immobile.
Yet, this matter system is not merely a product of independent systems at different points in
space.

In section 4, we will generalize the symmetry further by considering J i j in (10) whose
indices are not necessarily antisymmetric. We will impose

∂0J j
0 − ∂iJ

i j = 0 . (13)

Unlike (8) where G = ∂iJ
i
0 vanishes and unlike the more general case (10) where G is nonzero

but conserved, here it is not even conserved.
Since G is not conserved, the charges associated with codimension-one manifolds C (9)

are also not conserved. Instead, the only conserved charge is an integral over the entire space

Q j =

∫

space
J j

0 . (14)

We will show how the special matter system in section 3 can be modified to account for this
change in the current.

We will also consider the coupling of the systems with the global symmetry (8) (10) (13)
to appropriate gauge fields. The minimal coupling is similar to (5) and “nonminimal” terms
analogous to (6) are associated with the freedom to perform “improvement transformations”
of the current (similar to (4))

J j
0→ J j

0 + ∂kX k j

J i j → J i j + ∂0X i j + ∂kY [ki] j . (15)

Finally, in an appendix we will consider these peculiar matter systems on their own (with-
out the U(1)n gauge field) and show that their canonical quantization leads to a strange Hilbert
space with an infinite vacuum degeneracy!

2 Relativistic one-form global symmetry

2.1 The symmetry

There has been a lot of work on conserved currents with antisymmetric indices. Here we
follow [4] and interpret it as a one-form global symmetry.

We start by describing the relativistic symmetry in a D + 1-dimensional spacetime. The
conservation equation (7)

∂µJ [µν] = 0 (16)

means that an observable obtained by integrating the current over a codimension-two manifold
C in spacetime

Q(C) =
∫

J [µν]n[µν], (17)

with n[µν] a unit vector normal to C has special properties. It does not change under small
deformations of C. We refer to this property of the operator as being topological. The only way
its correlation functions can change under deformations of C is when the deformation crosses
another operator.
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Given our D + 1-dimensional spacetime, the only meaningful crossing of C with another
operator is when this operator is a line operator. (Below, when we demonstrate this symmetry
in a concrete field theory this line operator will be a Wilson line.)

Let us repeat this discussion in nonrelativistic terms. The conservation equation (16) be-
comes (8)

∂0J j
0 − ∂iJ

[i j] = 0,

G = ∂iJ
i
0 = 0 . (18)

The first equation is a conservation equation. The second equation, which is related to the first
one in the relativistic theory (16) might seem unnatural. (Indeed, below we will relax it.)

In the nonrelativistic theory, operators act at a given time, but they might be integrated
along some region in space.3 Therefore, an operator (17) at fixed time is (9)

Q(C) =
∫

C
J j

0n j , (19)

with C a codimension-one manifold in space and n j is orthogonal to it. If C encloses a compact
region without any operator insertion,

Q(C) =
∫

C
J j

0n j =

∫

Ĉ
∂ jJ

j
0 = 0 , (20)

where C = ∂ Ĉ is the boundary of Ĉ and we used the second equation in (18). The only way to
get a nonzero answer is when there is no such Ĉ, i.e. when the underlying space has nontrivial
topology, or when C is noncompact. Even on flat RD, there can still be nontrivial topology if
the theory includes “defects.” These are line insertions along the time direction. They act as
delta function sources violating G = ∂ jJ

j
0 = 0. Then, Q(C) receives contributions only from

these points. In the example below, these insertions will be classical background charges.
It is standard to gauge this global symmetry by coupling it to a two-form gauge field Bµν.

The minimal coupling, similar to (5), is

BµνJ [µν] . (21)

The conservation equation (16) guarantees that it is gauge invariant under

Bµν→ Bµν + ∂µcν − ∂νcµ . (22)

It is important that cµ is a U(1) gauge field. One way to see that is that Bµν does not transform
under a pure gauge cµ = ∂µλ. This also means that if spacetime is more complicated, there
are gauge transformations of Bµν with nonzero “flux” of cµ. The gauge invariant field strength
of Bµν is Hµνρ = ∂[µBνρ] and using that we can add to the Lagrangian terms of the form H2

µνρ

and other couplings.
This discussion of gauging the global symmetry is essentially unchanged in a nonrelativistic

system. The only difference is that the coefficients of H2
0i j and H2

i jk in the Lagrangian do not
have to be the same.

3Insertions that are integrated along the time direction should be interpreted as defects rather than operators
acting on the Hilbert space.
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2.2 Example: U(1) continuum gauge theory

The simplest example of a system with a U(1) one-form global symmetry is an ordinary U(1)
gauge theory with the continuum Lagrangian4

−
1

4g2
FµνFµν . (23)

The equation of motion of Aµ
∂µFµν = 0 (24)

means that we have the conservation (16) with the identification

J [µν] =
1
g2

Fµν . (25)

In nonrelativistic terms, the equation of motion of Ai leads to the first equation in (18) and
the equation of motion of A0 leads to the second equation in (18), which is now interpreted
as Gauss law. (Hence the notation G.)

The conserved charge (19) is the electric flux through C. Clearly, it does not change under
deformations of C,unless we cross a background charge. This crossing of a background charge
is the manifestation of the general discussion following (20). It is clear that the Wilson lines
ei
∮

A are charged under the one-form symmetry. The normalization of the current (25) is set
such that its charge is one.

This system also has a magnetic D − 2-form global symmetry [4], but we will ignore it in
this discussion.

Let us consider the effect of the charge operator Q(C) on the gauge fields in more detail.
The group element generated by Q(C) is eiβQ(C) and the charged operators are Wilson lines
Wq(`) = eiq

∫

`
A with ` a line in space. Then the group action is

eiβQ(C)Wq(`) =Wq(`)e
iβQ(C)eiqβ I(`,C) , (26)

with I(`,C) the oriented number of times ` pierces C. This can be interpreted to mean that
Q(C) shifts the gauge field by a flat gauge field [4].

The coupling to a two-form gauge field (21) is standard. The gauge field Aµ transforms
under (22) as (see the discussion around (26))

Aµ→ Aµ − cµ (27)

and then we replace (23) by

−
1

4g2
(Fµν + Bµν)(F

µν + Bµν)−
1

g2
H

HµνρHµνρ . (28)

This includes a B2
µν seagull term we mentioned above. (As for FµνFµν, there can be different

coefficients for the kinetic terms that are not related by the spatial Euclidean symmetry.)

4In a nonrelativistic system, the term with the electric field and the term with the magnetic field can have
different coefficients, but in order to simplify the expressions, we are going to take these coefficients to be equal.
It is trivial to extend the discussion to the more generic case.
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2.3 Example: U(1) lattice gauge theory

Let us repeat this discussion on the lattice.5

In a Hamiltonian formalism the theory is described by group elements Ul = eiAl and their
conjugate electric field operators El on the links, which are labeled by l. The Hamiltonian
includes a sum over plaquette terms

Up = ei
∑

l∈{lp} εlAl = ei∇×A (29)

(and their complex conjugates), where the sum in the exponent is an oriented sum (with
εl = ±1) over the links {lp} around the plaquette p. The kinetic terms in the Hamiltonian are
a sum over E2

l . In addition, we need to impose the Gauss law constraint

G =
∑

l∈{ls}

εl El =∇ · E = 0 , (30)

where the sum is an oriented sum (with εl = ±1) over the links {ls} emanating from the site
s.

More generally, we can introduce probe electric charges qi at the sites si by modifying (30)
∑

l∈{ls}

εl El =∇ · E =
∑

i

qiδs,si
. (31)

We emphasize that these are probe charges, rather than dynamical particles. (This can be
generalized to probe charges whose positions change in time.)

This system has an electric one-form global symmetry [4] analogous to the continuum
current (16). And the conserved charge (19) Q(C) is

Q(C) =
∑

l∈C
εl El , (32)

where l labels the links pierced by C and again εl = ±1. Clearly, Q(C) commutes with the
kinetic term, which depends only on El . To see that it commutes with the plaquette terms,
focus on a given plaquette p. C pierces an even number of the links around it. Then the
commutator of (32) with Up receives an even number of contributions and they cancel each
other. Therefore, Q(C) commutes with the Hamiltonian.

A key fact about Q(C) is that it is not only conserved, but it is also topological. Small
changes in C do not change the correlation functions, provided they do not cross any insertion
of an operator. This fact follows from Gauss law (30). All this is as in the discussion around
(20) and is identical to the continuum discussion above.

More generally, if probe particles are present, (31) means that Q(C) changes when it
crosses a site with nonzero charge. Equivalently, the operator Q(C) measures the total charge
enclosed by C, i.e. the sum of the charges qi in (31) in that region. This is consistent with the
fact that Q(C) measures the electric flux through C.

The existence of this electric one-form global symmetry is tied to the fact that the system
does not include charged dynamical degrees of freedom. When such matter fields are present,
the charges qi in (31) are dynamical, they fluctuate, and thus ruin the symmetry.

When the gauge group is compact,6 the analogous continuum theory also has a magnetic
D − 2-form global symmetry, which is generated by integrating the magnetic field along a
surface Σ,

∫

Σ
F . The lattice system typically does not have that symmetry.

5A classic review of lattice gauge theory is [6].
6Here we use the standard mathematical terminology, which is also used in high energy physics. The meaning

of a compact gauge group in condensed matter physics is different.
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3 Nonrelativistic one-form global symmetry

3.1 The symmetry

In this section we consider the nonrelativistic symmetry (10)

∂0J j
0 − ∂iJ

[i j] = 0, (33)

without imposing the second condition G ≡ ∂iJ
i
0. Clearly, this is not possible in a relativistic

system, but it is perfectly natural in a nonrelativistic system.
Applying ∂ j to the conservation equation and using the antisymmetry of the spatial indices

we derive
∂0G = 0 . (34)

Therefore, G does not vanish, but it is conserved at every point.
This is an unusual conservation law and many of the peculiarities of this symmetry stem

from it. In particular, as we said around (12),

QC(x i) =

∫

space
C(x i)G (35)

is conserved for any space-dependent function C(x i).
Instead of thinking about the charges (35), we can follow the discussion of the relativistic

system. There we considered conserved charges that are given by integrals over a codimension-
one spatial manifold C

Q(C) =
∫

C
J j

0n j , (36)

with n j a unit vector normal to C.7 In the relativistic case we used the fact that G = ∂ jJ
j
0 = 0

to prove that this expression is topological. Now, this is no longer true. Q(C) changes under
small deformations of C even if they do not cross defects.

In a sense, this symmetry is a lot larger than the relativistic one. We can say that the
relativistic symmetry is a quotient of the nonrelativistic symmetry by G = 0. The quotient
identifies Q(C) with C in the same homotopy class.8

In flat space, there is an interesting subgroup generated by a cruder charge

Q j =

∫

space
J j

0 . (37)

It is an integral ofQ(C) over all codimension-one manifolds C that are normal to the j direction.
We can also think of Q j as QC(x i) of (35) with C(x i) = x i . Exponentiating Q j leads to a
symmetry group element

eic jQ
j
, (38)

with constant c j . As we will see below, these constants are arbitrary real numbers and they
are not subject to any identification.

Another consequence of the larger symmetry group is that unlike the relativistic symmetry,
whose charged objects are lines, here point operators can also transform under the symmetry.
This is clear because the local operator G is nontrivial. Below we will see examples of this.

7Actually, when C is a nontrivial cycle in space, (36) provides additional information beyond (35).
8The authors of [7] refer to the relativistic symmetry as a nonfaithfully acting version of this nonrelativistic

symmetry.
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Next, we would like to discuss gauging of this symmetry. As in the relativistic case we
introduce gauge fields Bµν with minimal coupling (21)

2B0 jJ
j
0 − Bi jJ

[i j] . (39)

However, now the conservation equation (33) guarantees gauge invariance under

B0 j → B0 j + ∂0c j ,

Bi j → Bi j + ∂ic j − ∂ jci , (40)

but without a shift by c0 in (22).
The lack of gauge transformation with c0 originates from the fact that we did not impose

G = 0 and it is closely related to the fact that the charges Q(C) are not topological. Another
consequence of that is that unlike the relativistic discussion around (22), here the gauge pa-
rameter ci is not a U(1) gauge field. Indeed, ci = ∂iλ leaves Bi j invariant, but it shifts B0 j by
∂0∂ jλ. As a result, ci must be single valued. This fact is consistent with the comment after
(38) that in the system before gauging, ci are arbitrary real numbers and are not subject to
any identification.

Finally, as in the relativistic theory, we can use the gauge invariant field strength Hµνρ to
add a kinetic terms for Bµν.

3.2 Example: U(1) lattice gauge theory with energetically imposed Gauss law

It is common to follow [8, 9] and change the standard lattice gauge theory by relaxing the
Gauss law constraint (30) and replacing it by a term that imposes it energetically, e.g. adding
to the Hamiltonian a sum over all the sites s

∑

s

(∇ · E)2 . (41)

This means that the Hilbert space includes dynamical high energy excitations carrying electric
charge. The presence of these massive charges affects the one-form symmetry generated by
(32).

When Gauss law is not imposed, ∇ · E is nonzero. However, it is easy to check that it, and
more generally Q(C), are still conserved.

Unlike the case of∇· E = 0, now there are local physical operators that are charged under
∇ · E and Q(C) . For example, the link element Ul is charged under ∇ · E at the two ends of
l. When ∇ · E = 0 was imposed, these operators were not gauge invariant. Now, they are
consistent physical operators. We can interpret it to mean that the system is a standard gauge
theory with massive charged particles and this operator describes a pair of charged particles
at its two ends such that it is gauge invariant.

Let us summarize. The standard pure gauge system has a one-form symmetry (7). The
system with the energetically imposed Gauss law has the more generic, nonrelativistic one-
form symmetry (8). Explicitly, G = ∂iJ

i
0 is proportional to Gauss law. In the standard gauge

theory it vanishes, as in (7). And when it is imposed energetically, it is conserved, but does
not vanish, as in (8).

It is important to stress that the U(1) lattice gauge theory with energetically imposed Gauss
law is not a generic U(1) gauge theory with massive charged particles. The generic theory
does not have any global symmetry with a vector charge, but the theory with the energetically
imposed Gauss law does have such a symmetry.

This interpretation is consistent with the analysis in [2]. That paper focused on the global
symmetry generated by the sum of the electric field over the entire lattice, which is the lattice
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version of the cruder charge (37). (The more detailed symmetry obtained by summing the
electric field on a codimension-one subspace is mentioned in [2].) The main difference be-
tween our analysis and [2] is in the way this symmetry is gauged. Our gauging used the gauge
fields Bµν. The gauging in [2] also involves fields on the plaquettes, but they are symmetric
(rather than antisymmetric) and there are also additional fields.

3.3 Example: coupling a continuum U(1) gauge theory to a special matter sys-
tem

As we said above, the lattice gauge theory with Gauss law imposed energetically can be thought
of as an ordinary lattice gauge theory, but with massive charged matter. However, in order to
preserve the nonrelativistic global symmetry, the charged matter should be special.

Let us look for a continuum field theory for that system. We would like to start with the
standard continuum U(1) gauge theory (section 2.2) and add a matter theory to it, such that
it respects the nonrelativistic one-form symmetry. We want to retain (25)

J [µν] =
1
g2

Fµν, (42)

i.e. impose (33)

∂0J j
0 − ∂iJ

[i j] =
1
g2
(∂0F j

0 − ∂i F
[i j]) = 0 , (43)

but relax Gauss law

G = ∂iJ
i
0 =

1
g2
∂i F

i
0 6= 0 . (44)

This means that the U(1) gauge theory is coupled to a matter theory with a global U(1)
symmetry with a current Jµ

J0 6= 0 , J i = 0 , ∂0J0 = 0 . (45)

(Note that if J i = ∂ jJ [ ji] 6= 0, the current is still conserved, but it can be improved (4) to this
current.)

Such a matter system must be peculiar. The fact that it has a conserved nonzero operator
J0 means that not only J0 is time independent, but C(x i)J0 is time independent for every
function of the spatial coordinates C(x i).

Denoting the matter theory Lagrangian by L0 we use minimal coupling (5) and the U(1)
Lagrangian (23) to write

L1 = L0 −
1

4g2
FµνFµν + A0J0 . (46)

As above, for simplicity we took the coefficient of E2 and of B2 to be the same and we neglected
higher order terms and possible seagull terms. Also, we could add to the Lagrangian A0ρ0
with ρ0 a classical, time-independent, background charge density, but in order to simplify the
equations, we did not do it.

The equations of motion of A j derived from (46) lead to (43). Therefore, this theory has
the nonrelativistic one-form symmetry and the entire discussion in section 3.1 applies to it.

It is easy to construct an explicit example of a matter theory with these properties. The
charged matter is a massive complex scalar field Φ. The global U(1) symmetry acts on it as
Φ→ eiαΦ and therefore, the symmetry with arbitrary C(x i) acts as

Φ→ eiC(x i)Φ . (47)
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It is standard in nonrelativistic field theory to remove a term of the form m2|Φ|2 using a
redefinition of Φ by a time dependent phase and then rescale Φ. Then, the leading order terms
are

L0 = iΦ̄∂0Φ− s∂i(Φ̄Φ)∂
i(Φ̄Φ)−λ|Φ|4 + · · · . (48)

s and λ are real coupling constants and the ellipses represent terms with more derivatives or
higher powers of the field. The most important point about (48) is that it does not include a
term of the form ∂iΦ∂

iΦ̄. Such a term violates (47).9

We recognize that
J0 = Φ̄Φ+ · · · . (49)

The combined matter system L0 of (48) and the U(1) Lagrangian (23) as in (46)

L1 = iΦ̄(∂0 − iA0)Φ− s∂i(Φ̄Φ)∂
i(Φ̄Φ)−λ|Φ|4 −

1
4g2

FµνFµν + · · · . (50)

leads to a system with the desired properties. It is a continuum version of the energetically
imposed Gauss law lattice system and provides an explicit continuum realization of the non-
relativistic one-form global symmetry.

The equation of motion of A0 leads to

G =
1
g2
∂i F

i
0 = −J0 = −|Φ|2 + · · · . (51)

Using this explicit realization of the symmetry it is easy to find gauge invariant operators
that transform under it. Specifically,

Di(x) = Φ̄(∂i − iAi)Φ(x) (52)

transforms nontrivially under G(x) (51) and

W (x , y) = Φ̄(x)e−i
∫ y

x AΦ(y) (53)

transforms nontrivially under G(x) and G(y). Similarly,

eic jQ
j

(54)

maps

Di = Φ̄(∂i − iAi)Φ → Di + iciΦ̄Φ,

W (x , y) = Φ̄(x)e−i
∫ y

x AΦ(y) → eici(y−x)i W (x , y) . (55)

This demonstrates the point we made after (38) that the coefficients ci are not subject to any
identification.

We emphasize again that the lack of a standard ∂iΦ∂
iΦ̄ term means that the system is quite

nonstandard. In appendix A, we will exhibit some of its peculiarities that originate from this
fact.

9C. Vafa suggested that this Lagrangian is similar to the theory in [10].
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4 A more general vector symmetry

4.1 The symmetry

In the relativistic and the nonrelativistic symmetries we discussed above, the indices in J i j

were antisymmetric. In this section we consider a more general case (13)

∂0J j
0 − ∂iJ

i j = 0 , (56)

with no restriction on the spatial indices. J i j includes an antisymmetric tensor, a scalar, and a
traceless symmetric tensor. (We could further separate the discussion depending on whether
the scalar, the traceless symmetric tensor, or both of them are present.)

Since J i j is not antisymmetric, G = ∂iJ
i
0 is not conserved

∂0G = ∂i∂ jJ
i j 6= 0 . (57)

Related to that, the codimension-one observables Q(C) are not conserved. The only conserved
charge is the cruder charge obtained as an integral over the entire space (14)

Q j =

∫

space
J j

0 . (58)

Comments:

•
�

I0 = G, I j = ∂iJ
i j
�

seems like an ordinary conserved current (2). However, since

G = ∂iJ
i
0 is a total spatial derivative, the charge of this current is trivial. It can be

improved (4) to zero.

• One might try to generalize the relativistic symmetry (7) in a similar way by considering
a conserved current Jµν = J [µν]+δµνJ with a scalar J . However, this leads to ∂µ∂

µJ = 0
and hence J is a free field.

Next, as in the relativistic discussion following (21) and in the nonrelativistic case following
(39), we would like to gauge the symmetry. Unlike the previous cases, here it is not enough to
introduce the gauge fields Bµν because the current operator

�

J j
0, J i j

�

includes more tensors.
Minimal coupling in this case must be of the form

2B0 jJ
j
0 − (Bi j + Si j)J

i j , (59)

with an antisymmetric tensor gauge field Bi j and a symmetric tensor gauge field Si j . In this
case the conservation equation (56) guarantees gauge invariance under

B0 j → B0 j + ∂0c j ,

Bi j → Bi j + ∂ic j − ∂ jci ,

Si j → Si j + ∂ic j + ∂ jci . (60)

If either the traceless symmetric component of J i j or the trace vanish, then only the trace of
Si j or its traceless part should be introduced. But otherwise, all the components are needed.
As in the nonrelativistic case above, ci is not a U(1) gauge field.

Of course, as in all the previous cases, we can add gauge invariant kinetic terms for these
gauge fields and add higher order couplings of them to the original system.

It will be interesting to explore these gauge fields in detail.
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4.2 Example: coupling a continuum U(1) gauge theory to a special matter sys-
tem

Here we will extend the discussion in section 3.3 to find a class of continuum field theories
exhibiting the more general vector symmetry (56). As in section 3.3, we couple a matter sector
with a global U(1) symmetry to the U(1) gauge theory in such a way that the resulting theory
has the symmetry (56).

We will first discuss the matter theory in general and then give a concrete example based
on a charged scalar field.

The matter system

We assume that the matter theory has operators J0 and a symmetric tensor J i j satisfying

∂0J0 = ∂i∂ jJ ji . (61)

This generalizes (45) to nonzero J i j .
Before we couple this matter system to the U(1) gauge theory, we would like to discuss its

global symmetries. First, it has an ordinary global symmetry (2)

J0 = J0 , J i = ∂ jJ ji , (62)

with the conserved charge

Q =

∫

space
J0 . (63)

This is the symmetry that we will soon gauge.
It also has a vector global symmetry (56) with currents

J j
0 = x jJ0,

J i j = x j∂kJ ki −J i j . (64)

It is easy to check, using (61), that this current is conserved as in (56). The corresponding
charge is

Q j =

∫

space
J j

0 =

∫

space
x jJ0 . (65)

Since J0 is the charge density of the ordinary global U(1) symmetry, (65) leads us to interpret
the global symmetry of (64), (65) as a dipole symmetry.

Clearly, a shift of J i j by an antisymmetric tensor does not affect (61) and the currents
(62) and (64) change only by an improvement transformation. Therefore, we can limit our
discussion to symmetric J i j .

In the matter system in section 3.3, we had a large global symmetry with charge density
C(x i)J0. Here the symmetry is smaller and only a linear function C(x i) = α + ci x

i with
constant α and ci leads to a conserved charge. These transformations are implemented by

U(α) = eiαQ , V (c j) = eic jQ
j

(66)

with the charges (63), (65). The explicit x i dependence of the current (64) means that the
charge Q j does not commute with spatial translations. Denoting the translation transformation
by Pi we have

V (ci)e
ir i Pi = eir i Pi V (ci)U(ci r

i) . (67)
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Gauging the global U(1) symmetry

Next, following (5), we gauge the ordinary global U(1) symmetry (62), (63) by writing the
couplings10

L1(A) = L0 −
1

4g2
FµνFµν + A0J0 − Ai∂ jJ i j . (68)

As in section 3, L0 is the Lagrangian of the matter theory and Fµν = ∂µAν − ∂νAµ is the
standard field strength. Again, for simplicity we set the coefficients of E2 to be the same as the
coefficient of B2, we suppressed gauge invariant terms with more derivatives, gauge invariant
nonminimal couplings of Fµν to other matter operators, and possible seagull terms. Also, we
did not add to the Lagrangian a coupling A0ρ0 to background charge density.

The equations of motion of the gauge fields are

1
g2
∂ j F

j
0 +J0 = 0,

1
g2
∂0F i

0 −
1
g2
∂ j F

ji + ∂ jJ ji = 0 . (69)

After the gauging, the current of the global symmetry of (62), (63) becomes trivial.11 The
Noether current of the remaining global symmetry can now be written as12

J j
0 =

1
g2

F j
0 , J i j =

1
g2

F i j −J i j . (72)

Its conservation follows from the equation of motion of A j (the second in (69)). Note that the
antisymmetric part of J i j originates from the field strength and the symmetric part originates
from the matter sector.

Unlike the current (64) in the matter theory, the current (72) does not have explicit x i

dependence. As explains around (66), (67), the reason for the explicit x i dependence in (64)
is that its charge does not commute with translations. The commutator is a U(1) transforma-
tion. Here, that U(1) transformation is a gauge transformation. Therefore, the charge of (72)
commutes with translations on gauge invariant operators. Hence, there is no explicit x i in
(72).

The charge of the current (72) acts only on the gauge field as

Ai → Ai − ci , (73)

10Pretko’s discussion [3] can be phrased in terms of adding nonstandard gauge fields that couple linearly to J0

and J i j as A0J0+
1
2 Ai jJ i j . Our coupling here can be recast in this form with Ai j = ∂iA j+∂ jAi . However, not every

symmetric Ai j can be expressed in terms of a standard gauge field Ai .
11 More precisely, it can be improved to a trivial current

J0→ J0 +
1
g2
∂ j F

j
0 = 0,

J i → J i +
1
g2
∂0F i

0 −
1
g2
∂ j F

ji = 0 , (70)

where we used the equations of motion (69).
12 This current is related to (64) by an improvement transformation. Use X k j = − 1

g2 x j F k
0 and Y [ki] j = 1

g2 x j F ki

in (15) and the equations of motion (69) to find

J j
0 =

1
g2

F j
0 →

1
g2

F j
0 −

1
g2
∂k

�

x j F k
0

�

= x jJ0,

J i j =
1
g2

F i j −J ji →
1
g2

F i j −J i j −
1
g2
∂0

�

x j F i
0

�

+
1
g2
∂k

�

x j F ki
�

= x j∂kJ ki −J i j . (71)
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with constant ci . It leaves all other degrees of freedom invariant. It is trivial to check that the
Lagrangian (68) is invariant under (73).

So far space has been flat RD. It is easy to generalize it. For invariance of the Lagrangian
L1 (68) we need

∂0ci = 0,

∂ic j − ∂ jci = 0,

∇ici = 0 . (74)

This is reminiscent of a one-form global symmetry, where the action on the gauge field is
also given by (73) with ci a flat gauge field. However, our ci is not a U(1) gauge field. This
difference stems from the presence of the matter fields on which the symmetry (73) does not
act. We might have attempted to identify two different cis that differ by ∂iλ by combining (73)
with a U(1) gauge transformation by λ. But this gauge transformation would transform the
matter fields and will remain nontrivial. A related fact is that ci must be single valued. This is
clear from its action on local operators.

Finally, as in the discussion around (59), (60) we can couple this system to gauge fields
for this global symmetry.

A concrete realization

In order to find a concrete realization of this matter theory we deform the matter theory (48)
with its global symmetry (47) Φ → eiC(x i)Φ, such that only the symmetry (66) is present. It
acts as

Φ→ eiα+ici x
i
Φ . (75)

The resulting matter theory is essentially the one in [3]. Its leading order terms are

L0 = iΦ̄∂0Φ− s∂i(Φ̄Φ)∂
i(Φ̄Φ) + u

�

iΦ̄2∂iΦ∂
iΦ− iΦ2∂iΦ̄∂

iΦ̄
�

−λ|Φ|4 + · · · . (76)

The difference from (48) is only in the term multiplying the real constant u. This term breaks
(47) to its subgroup (75).

It is nice to write (76) in terms of Φ= ρeiθ

L0 = −ρ2∂0θ − s∂i(ρ
2)∂ i(ρ2)− u∂ i(ρ4)∂iθ −λρ4 + · · · , (77)

where we dropped total derivatives. This makes the global symmetries (75), which act as
θ → θ +α+ ci x

i , manifest.13 However, it obscures the fact that the Lagrangian (76) is smooth
at ρ = 0.

The equation of motion of θ can be expressed as the condition (61)

∂0J0 − ∂i∂ jJ i j = 0,

J0 = −
∂L0

∂ (∂0θ )
= |Φ|2 + · · · ,

J i j = −δi ju|Φ|4 + · · · . (78)

We see that our system has the two operators J0 and J i j satisfying (61). Therefore, this
system is a special case of the matter theory discussed there and the entire discussion can be
repeated.

13Motivated by this symmetry G. Gabadadze suggested a relation to Galileon [11].
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Actually, the leading order Lagrangian (76)(77) leads to J i j (78) without the traceless
symmetric tensor. This fact is special to terms with up to two spatial derivatives. These terms in
the Lagrangian lead to terms without derivatives in J i j and therefore cannot lead to nontrivial
representations under rotations. Higher order terms can change that. For example, the four-
derivative term from [3]

v
�

�

�Φ∂i∂ jΦ− ∂iΦ∂ jΦ
�

�

�

2
= v

�

�

�ρ∂i∂ jρ − ∂iρ∂ jρ + iρ2∂i∂ jθ
�

�

�

2
(79)

is manifestly invariant under (75). It leads to

J i j = · · ·+ iv
�

Φ̄2(Φ∂i∂ jΦ− ∂iΦ∂ jΦ)−Φ2(Φ̄∂i∂ jΦ̄− ∂iΦ̄∂ jΦ̄)
�

. (80)

It includes both a trace and a traceless contribution.
The dipole operator Di = Φ̄∂iΦ and the nonlocal operator W (x , y) = Φ̄(x)Φ(y) transform

under (75) as (see also (55))

Di = Φ̄∂iΦ→Di + iciΦ̄Φ,

W (x , y) = Φ̄(x)Φ(y)→ eici(y−x)i W (x , y) . (81)

This demonstrates again that this symmetry acts on local operators.
The gauging of the symmetry associated with α in (75) is as in the discussion following

(68). This is achieved by changing all the derivatives to covariant derivatives DµΦ= (∂µ−iAµ)Φ
and DµΦ̄= (∂µ + iAµ)Φ̄ and using the gauge invariant field strength Fµν = ∂µAν − ∂νAµ.

Then, (76) becomes (compare with (68))

L1 =
1

4g2
FµνFµν + iΦ̄D0Φ− s∂i(Φ̄Φ)∂

i(Φ̄Φ)

+ u
�

iΦ̄2∂iΦ∂
iΦ− iΦ2∂iΦ̄∂

iΦ̄+ Ai∂
i|Φ|4

�

−λ|Φ|4 + · · · . (82)

As above, we suppressed higher order terms and gauge invariant nonminimal couplings that
are linear in Fµν.

The important term with coefficient u can be written as

iΦ̄2∂iΦ∂
iΦ− iΦ2∂iΦ̄∂

iΦ̄+ Ai∂
i|Φ|4 = iΦ̄2DiΦDiΦ− iΦ2DiΦ̄DiΦ̄ , (83)

thus making the U(1) gauge symmetry manifest, but obscuring the fact that there is no “seagull
term” proportional to AiA

i and that the term linear in Ai multiplies a total derivative.
As in the general discussion around (73), the global symmetry associated with ci is simpli-

fied. We can combine the action on Φ with a gauge transformation to make Φ invariant and
instead transforming the gauge field

Φ→ Φ,

A0→ A0,

Ai → Ai − ci . (84)

Adding the gauge fields to (81), the gauge invariant dipole operator Di = Φ̄DiΦ and the
nonlocal operator W (x , y) = Φ̄(x)e−i

∫ y
x AΦ(y) transform under (84) as

Di = Φ̄DiΦ→Di + iciΦ̄Φ,

W (x , y) = Φ̄(x)e−i
∫ y

x AΦ(y)→ eici(y−x)i W (x , y) . (85)

We see again that this transformation acts on local operators.
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Let us consider the theory on a spatial flat torus with radii Ri and periodic boundary con-
ditions. When we studied the matter system with its global U(1) symmetry, Φ had to be single
valued and the global symmetry (75) was meaningful only when ci ∈

1
Ri
Z. Now, when the

global U(1) is gauged, and we let the remaining global symmetry act only on the gauge field,
as in (84), ci can be arbitrary real constants. Note that the holonomies ei

∮

d x jA j transform
the same under ci and under ci +

1
Ri

. However, the transformations (85) show that these two
values of ci cannot be identified.
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A Canonical quantization and the spectrum of the matter theory

Here we consider the matter theory L0 (76) (or its special case with u = 0 (48)) and neglect
higher order terms. We stress that this is the theory before adding the U(1) gauge field.

We start with the free theory, i.e. the terms with only two fields. As we emphasized, it is
important that these theories do not include the standard |∂iΦ|2 term. This means that the
only quadratic term in the Lagrangian is

L f ree = iΦ̄∂0Φ. (86)

Therefore, the energy is independent of the spatial momentum. We interpret it to mean that
the Φ “particles” have infinite mass. Indeed, Φ quanta exist, but since (86) does not have
spatial derivatives, they cannot move and hence they should not be called particles.

Let us analyze the theory in more detail. In the quantum theory, the term (86) leads to

[Φ(x i , x0), Φ̄(y i , x0)] = δ(x i − y i) (87)

and therefore Φ includes annihilation operators and Φ̄ includes creation operators.
The Hamiltonian density derived from (76) is

H0 = s∂i(Φ̄Φ)∂
i(Φ̄Φ)− u

�

iΦ̄2∂iΦ∂
iΦ− iΦ2∂iΦ̄∂

iΦ̄
�

+λ|Φ|4 (88)

and we take these terms to be normal ordered; i.e. all the Φs are to the right of all the Φ̄s.
Changing this ordering amounts to shifting H0 by a linear combination of terms proportional
to the unit operator (which shifts the overall energy of the system) and |Φ|2 (which can be
removed by redefining Φ).

We take the ground state |0〉 to be annihilated by the annihilation operators

Φ(x i , x0)|0〉= 0 . (89)

Then, since every term in H0 includes two annihilation operators, all the states

|x i
1, x i

2, · · · , x i
n〉= Φ̄(x

i
1, x0)Φ̄(x i

2, x0) · · · Φ̄(x i
n, x0)|0〉 with x l 6= xm (90)
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are annihilated by the Hamiltonian!
A more precise statement is that all the states (90) with the same n are degenerate. States

with different n carry different U(1) charges. When we redefined Φ and removed the quadratic
term |Φ|2 from the Lagrangian, we shiftedH0 by a term proportional to the U(1) charge density
J0 = |Φ|2 + · · · (78). Only after this shift are the states (90) with different n degenerate.

It is important to emphasize that the coupling of the system to a dynamical U(1) gauge
field, as we do in sections 3 and 4, removes this huge degeneracy. These states do not satisfy
Gauss law.
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