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Abstract

Deep learning tools can incorporate all of the available information into a search for
new particles, thus making the best use of the available data. This paper reviews how
to optimally integrate information with deep learning and explicitly describes the corre-
sponding sources of uncertainty. Simple illustrative examples show how these concepts
can be applied in practice.
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1 Introduction

Since the first studies of deep learning1 in high energy physics (HEP) [3,4], there has been a
rapid growth in the adaptation and development of techniques for all areas of data analysis
(see Ref. [5–7] and references therein). One of the most exciting prospects of deep learning is
the opportunity to exploit all of the available information to significantly increase the power
of Standard Model measurements and searches for new particles.

While the first analysis-specific deep learning results are only starting to become public (see
e.g. [8–10]), analysis-non-specific deep learning has been used for a few years starting with
flavor tagging [11,12]. In addition, there are a plethora of experimental2 and phenomenolog-
ical 3 studies for additional methods which will likely be realized as part of physics analyses
in the near future.

The goal of this paper is to clearly and concisely describe how to achieve optimality and
account for uncertainty using deep learning in LHC data analysis. One of the most common
questions when an analysis wants to use deep learning is ‘...but what about the uncertainty
on the network?’ Ideally the discussion here will help clarify and direct this question. The
concepts of accuracy/bias and optimality/precision will be distinguished when covering un-
certainties. In particular, most applications of neural networks do not result in uncertainties
on the networks themselves related to the accuracy of the analysis. This statement will be
qualified in detail. The exposition is based on a mixture of old and new insights, with refer-
ences given to the foundational papers for further reading – although it is likely that even older
references exist in the statistics literature. Section 2 introduces a simple example that will be
used for illustration throughout the paper. Sections 3 and 4 discuss achieving optimality and
including uncertainties, respectively. A brief discussion with future outlook is contained in
Sec. 5.

2 Illustrative Model

One of the most widely used techniques to search for new particles in HEP is to seek out a
localized feature on top of a smooth background from known phenomena, also known as the
‘bump hunt’. This methodology was used to discover the Higgs boson [13,14] and has a rich
history, dating back at least to the discovery of the ρ meson [15]. The localized feature in
these searches is often the invariant mass of two or more decay products of the hypothetical
new resonance. A simplified version of this search is used as an illustrative example.

Consider a simple approximation to the bump hunt where the background distribution is
uniform and the signal is a δ-function. Let X be a random variable corresponding to the bump

1Here, ‘deep learning’ means machine learning with modern neural networks. These networks are deeper and
more flexible than artificial neural networks from the past and can now readily process high-dimensional feature
spaces with complex structure. In the context of classification, deep neural networks are powerful high-dimensional
likelihood-ratio approximators, as described in later sections. Machine learning has a long history in HEP and there
are too many references to cite here – see for instance Ref. [1] and the many papers that cite it and came before
going back to at least Ref. [2].

2These are mostly contained in ATLAS/CMS/LHCb/ALICE performance notes and theses - see e.g. stud-
ies for missing energy [ATL-PHYS-PUB-2019-028], (non b-jet) jet tagging [CMS-DP-2017-027, CMS-DP-2017-
049,ATL-PHYS-PUB-2018-014,ATL-PHYS-PUB-2017-017,ATL-PHYS-PUB-2017-004], simulation [ATL-SOFT-PUB-
2018-001], calibration [ATL-PHYS-PUB-2018-013], track reconstruction [ATL-PHYS-PUB-2018-002], Data qual-
ity [74], and much more.

3See for instance Ref. [5–7] for recent reviews and e.g. Ref. [34, 46–55, 75–81] for anomaly detection, Ref.
[31,82–86,86–96,96–110] for generative models, Ref. [45,67–69,72,73,111–113] for decorrelation techniques,
Ref. [24,28–31,33,41–43,66,100,114–119] for inference, Ref. [3,4,40,60,109,120–164] for tagging, and various
other applications in Ref. [165–167].
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hunt feature, which can be thought of as the invariant mass of two objects such as high energy
jets. Under this model, X |background ∼ Uniform(−0.5, 0.5) and X |signal = δ(0). Following
the analogy with jets, the random variable X will be built from two other random variables
representing the jet energies. As the energy of the daughter objects would be approximately
half of the mass of the parent, let the decay products be X0, X1 = X/2. Detector distortions
will perturb the X i . Let Yi represent the measured versions of the X i . The experimental reso-
lution will affect X0 and X1 independently. To model these distortions, let Yi = X i + Zi where
Zi ∼ N (0,σ2

i ). Figure 1 schematically illustrates the connection between the back-to-back
decay of a massive particle produced at rest and the approximation used here.

For simplicity, all arithmetic is performed ‘mod [−0.5, 0.5]’ so that everything can be vi-
sualized inside a compact interval. This means that an integer is added or subtracted until
the resulting value is in the range [−0.5,0.5]. For example, if X0 = 0.4 and Z0 = 0.2 then
Y0 = −0.4. The distributions of Y0 ± Y1 are shown in Fig. 2.

E = m/2

E = m/2

m X

X0 = X/2

X1 = X/2
Z1

Z0

Y1 = X1 + Z1

Y0 = X0 + Z0

Y0 + Y1

Figure 1: A schematic diagram of the illustrative model. An actual two-body decay
in the parent particle rest frame is shown on the left. In the simple example, the two
energies are collinear and detector effects (Zi) only modify the magnitude but not
the direction.

The reconstructed mass is given by Y0+Y1 and can be used for the resonance search. By con-
struction, Y0−Y1 contains no useful information for distinguishing the signal and background
processes (see right plot of Fig. 2), but is sensitive to the value of σ. Two scenarios for σi will
be investigated in later sections: (1) σi = σ is constant and the same for all events4 and (2)
σi is different, but known for each event. The former is the usual case for a global systematic
uncertainty and in this simple example is analogous to the jet energy scale resolution [16,17].
The latter is the opposite extreme, where there is a precise event-by-event constraint. The
physics analog of (2) would be jet-by-jet estimates of the jet energy uncertainty or the number
of additional proton-proton collisions (‘pileup’) in an event, which degrades resolutions, but
can be measured for each bunch crossing.

The experimental goal is to identify if the data are consistent with the background only, or
if there is evidence for a non-zero contribution of signal.

4In practice, σ may vary from event-to-event in a known way, but there is one global nuisance parameter.
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Figure 2: A histogram of Y0 + Y1 (left) and Y0 − Y1 (right). As the true signal is
a δ-function and resolution effects are independent for both ‘decay products’, the
measured distribution of Y0 + Y1 for the signal is the same as Y0 − Y1 for both signal
and background. A constant value of σ is used for all events.

3 Achieving Optimality

3.1 Overview

The usual way of performing an analysis with Y = (Y0, Y1) is to define a signal region and then
count the number of events in data and compare it to the number of predicted events5. For
a fixed and known value6 of σ, and a particular signal model, the probability distribution for
the number of observed events follows a Poisson distribution:

p(|Y||µ) =
(µS + B)|Y|e−(µS+B)

|Y|!
, (3.1)

where Y = {Yi}, and S, B are the predicted signal and background event yields. Viewed as a
function ofµ for fixed |Y|, Eq. (3.1) is the likelihoodL(µ). One can express S =

∫

εσphysics L d t,
where ε is an event-selection efficiency, σphysics is the cross-section for producing events, and
L is the instantaneous luminosity. These yields may be derived directly from simulation or
completely / partially constrained from control regions in data. The parameter µ distinguishes
the null hypothesis7 µ= 1 from the alternative hypothesis µ= 0.

By the Neyman-Pearson lemma [19], the most powerful8 test for this analysis is performed
with the likelihood ratio test statistic:

λLR(|Y|) = p(|Y||1)/p(|Y||0). (3.2)

At the LHC, it is more common to use the profile likelihood ratio instead:

λPLR(µ) = p(|Y||µ)/max
µ

p(|Y||µ). (3.3)

5See Ref. [18] for a review of statistical procedures in HEP.
6Section 4 will revisit the above setup when σ is not known.
7This is for setting limits. For discovery, the null hypothesis is the Standard Model, µ= 0.
8This means that for a fixed probability of rejecting the null hypothesis when it is true, this test has the highest

probability of rejecting the null hypothesis when the alternative is true.
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There is no uniformly most powerful test in the presence of nuisance parameter, but Eq. (3.3)
is still the most widely-used test statistic. Two related quantities are the CLS+B and CLB, which
are the p-values associated with the Eq. (3.3) under the null and alternative hypotheses:

CLS+B = Pr
�

λPLR(1)> λ
data
PLR (1)|µ= 1

�

(3.4)

CLB = Pr
�

λPLR(1)> λ
data
PLR (1)|µ= 0

�

, (3.5)

where λdata
PLR is the observed test statistics. In the absence of signal, argmax

µ
p(|Y||µ)≈ 0, so this

is nearly the same as λLR(|Y|). A generic feature of hypothesis tests where the two hypothesis
do not span the space of possibilities is that both the null and alternative hypothesis can be
inconsistent with the data. The HEP solution to this phenomenon is to exclude a model if
the value of CLS = CLS+B/CLB is small instead of CLS+B [20,21]. The CLS does not maximize
statistical power and is not even a proper p-value. Other proposals for regulating the p-value
have been discussed (see e.g. Ref. [22] or Sec. 7.1. in Ref. [23]) but are not used in practice.
The results that follow will focus on λLR and the lessons learned are likely approximately valid
for the HEP solution as well9.

The usual way deep learning is used in analysis is to train a classifier f (Y ) : R2 → R and
count the number of events with f (Y )> c, where c is chosen to maximize significance. These
count data are then analyzed using the same likelihood ratio approach described above. Some
analyses use f (Y ) to make categories for performing a multi-dimensional statistical analysis.
Section 3.2 discusses the differences between threshold cuts and binning and describes how
to do an unbinned version that can use all of the available information.

3.2 Cuts, bins, and beyond

Suppose momentarily that the probability density for Y is piece-wise constant over a finite
number of patches P. Each patch is independent, so the full likelihood is the product over
patches:

p(Y|µ) =
∏

i∈P

Pr(Y in patch i|µ) =
(µSi + Bi)

∑n
j=1 I[Yj∈i]e−(µSi+Bi)

�

∑n
j=1 I[Yj ∈ i]

�

!
, (3.6)

where I[·] is an indicator function that is one when · is true and zero otherwise. This is product
over terms like Eq. (3.1), one for each patch. Defining ni =

∑n
j=1 I[Yj ∈ i], one can rewrite

Eq. (3.6) as

p(Y|µ) = e−(µS+B)
∏

i∈P

(µSi + Bi)ni

(µS + B)ni

(µS + B)ni

ni!
∝
(µS + B)|Y|e−(µS+B)

|Y|!

|Y|
∏

j=1

pµS+B(Yj), (3.7)

where pµS+B(Y ) is the probability to observe Y . Equation (3.7) is often called the extended
likelihood [26]. The important feature about Eq. (3.7) is that it does not depend on the patches
and so in the continuum limit, it is also appropriate for the full phase space likelihood where
pµS+B is now a probability density.

The likelihood ratio statistic using Eq. (3.7) is then given by

9The neural network approximates below naturally extend to the profiling case via parameterized neural net-
works [24,25], where the dependence on µ is explicitly learned.
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λfull LR(Y) = λLR(|Y|)×
|Y|
∏

i=1

pS+B(Yi)
pB(Yi)

. (3.8)

The optimal use of the full phase space would then be to exclude the model if λfull LR(Y) is
small. Especially when Y is high-dimensional, pS+B(Y ), pB(Y ), and λ(Y ) = pS+B(Y )/pB(Y )
are not known analytically. Using a small number of bins is an approximation to Eq. (3.8)
and can provide additional power beyond Eq. (3.1). Adding bins is only helpful if the events
in each bin have a different likelihood ratio. The loss functions used in deep learning ensure
that the network output is monotonically related to the likelihood ratio (more on this below).
Therefore, bins chosen based on the output of a neural network typically enhance the statistical
power of an analysis. Unless the likelihood ratio only takes on a small number of values,
binning will necessarily be less powerful than an unbinned approach using the full likelihood
for Y . Using the output of a neural network to construct bins does help to reduce the potentially
high-dimensional problem to a one-dimensional one. However, a small number of bins may
not be sufficient to capture all of the salient structures in the likelihood ratio, especially when
Y is high-dimensional.

A powerful way of estimating the second term in Eq. (3.8) is to use deep learning – instead
of or in addition to placing a threshold cut10. For making bins, it is sufficient for the neural
network output to be monotonic with the likelihood ratio. However, Eq. (3.8) requires that the
network output be proportional to the likelihood ratio. This needs some care when training
the neural network and interpreting its output. For example, suppose that a neural network
NN : R2→ [0, 1] is trained with the standard cross-entropy loss function:

Loss(NN) = −
∑

i∈S+B

log(NN(Yi))−
∑

i∈B

log(1−NN(Yi)), (3.9)

where the output range [0,1] can be achieved with a non-linear function in the last layer of the
neural network that outputs a number between 0 and 1 such as the commonly used sigmoid.
Appendix A shows that such a neural network will asymptotically (more on this later) learn
p(S + B|Y ). This is not the likelihood ratio, but some symbolic manipulation shows that it is
monotonically related to it:

p(S + B|Y ) =
p(Y |S + B)p(S + B)

p(Y )

=
p(Y |S + B)p(S + B)

p(Y |S + B)p(S + B) + p(Y |B)p(B)

=
λ(Y )

p(B)/p(S + B) +λ(Y )
, (3.10)

where p denotes a probability or probability density. If instead of directly using the NN output,
one uses λ̃(Y ) = NN(Y )/(1 − NN(Y )), then a similar calculation to Eq. (3.10) shows that
λ̃(Y )∝ λ(Y ), where the proportionality constant is the ratio of the background and signal
dataset sizes used during the NN training. The modified function λ̃(Y ) would be appropriate
as a surrogate to the second term in Eq. (3.8). Interestingly, the same λ̃(Y ) works when the
mean squared error loss is used. One can even choose a non-standard loss that directly learns
a function proportional to the likelihood ratio. For instance, the loss

10This observation was made in the context of hypothesis testing in Ref. [24] and in the context of reweighting
in Ref. [27–33]. It is likely that earlier references exist outside of HEP.
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Loss(NN) = −
∑

i∈S+B

NN(Yi) +
1
2

∑

i∈B

NN(Yi)
2, (3.11)

has the property that NN ∝ λ(Y ). The loss function proposed in Ref. [34] approaches
log(λ(Y )) directly, which may be useful when considering the logarithm of Eq. (3.8) for the
statistical test. One potential advantage of learning the ratio first and then taking the loga-
rithm is that one only needs to achieve proportionality while proportionality constants for the
loss designed to learn the logarithm of λ are suboptimal. See Appendix A for the derivations
involving these loss functions.

Figure 3 illustrates the above concepts using the simple example from Sec. 2. These
plots are trained only with y = y0 + y1 for simplicity. The left plot of Fig. 3 presents a
histogram of the ratio of neural network outputs f (y) = NN1(y)/NN2(y) for σ = 0.08. The
neural network is parameterized in Keras [35] with the Tensorflow [36] backend with three
fully connected hidden layers using 10, 20, 50 hidden nodes and the exponential linear unit
activation function [37] with 10% dropout [38]. The last hidden layer is connected to a one-
node output using the sigmoid activation function and the loss was binary cross-entropy. The
networks are optimized using Adam [39] over three epochs with 500,000 examples and a
batch size of 50. None of these parameters were optimized, as the problem is sufficiently
simple that the specifics of the training are not important for the message presented with the
results below.

As desired, the ratio of signal to background in Fig. 3 is monotonically increasing from left
to right and this ratio is the same as the value on the horizontal axis. Since this problem is
one-dimensional, it is possible to readily visualize the functional form of f (y), shown in the
right plot of Fig. 3. With a uniform background, the likelihood ratio should be simply the
signal probability distribution, which is a Gaussian11. For comparison to the neural network,
a binned version of the likelihood ratio is presented alongside the analytic result assuming
σ� 1 so that edge effects are not relevant. The neural network output can be used to well-
approximate the likelihood ratio.

Note that Eq. (3.9) is set up such that the classifier learns to separate S + B from B. It is
more common and often more pragmatic to train a classifier to distinguish S from B directly.
The resulting classifier will be monotonically related to the one resulting from the S+B versus
B classification [40]. Writing pS+B(Y ) = α pS(Y )+ (1−α) pB(Y ) with α= S/(S+ B), a neural
network trained with the binary cross entropy will produce

NNS vs. B(Y )
1−NNS vs. B(Y )

∝
pS(Y )
pB(Y )

(3.12)

=
pS+B(Y )− (1−α) pB(Y )

α pB(Y )
(3.13)

=
1
α
λ(Y )− (1−α). (3.14)

Therefore, one can use the predictions for the yields S and B to correct the S versus B classifier.
A complete illustration of cuts-versus-bins-versus-deep learning is presented in Fig. 4 for

the simple example from Sec. 2. As the above example shows that a NN can be used to well-
approximate the likelihood ratio, the analytic result is used for this comparison. The horizontal

11In fact, this (train against a uniform distribution) can be used as a general method for using a neural network
to learn a generic probability density. However, it becomes inefficient when the dimensionality of y is large. One
may be able to overcome this by using some localized (but known) density first before applying this procedure.
Thank you to David Shih for useful discussions on this point.
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Figure 3: Results for a training with a fixed value of σ = 0.08. Left: histograms
of the neural network outputs f (y) = NN1(y)/NN2(y). Right: the functional form
of f (y) alongside a binned version of the likelihood ratio is presented alongside a
Gaussian with mean zero and standard deviation 0.08.

axis in Fig. 4 is the ‘level’ or type I error of the test while the vertical axis is the power or (1-
type II error rate). For the Inclusive scenario, Y is not used and the test is based on λLR
alone. For the other cases, the bins and cuts are based on the likelihood ratio. For the Fixed
cut, the value is 0.5, and for the Two bins case, the bins boundaries are at 0.5 and 2, which
were optimized to capture most of the information. The Many bins case uses 20 bins evenly
spaced between 0 and 3. The Optimal procedure uses Eq. (3.8). For this simple example,
two bins are nearly sufficient to capture all of the available information and by twenty bins,
the procedure has converged to the one from Eq. (3.8).
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Figure 4: A comparison of different levels of information used to perform statistical
tests for the S+B hypothesis versus the background-only hypothesis. For illustration,
a type I error of 0.05 is shown as a vertical dotted line and another line with random
guessing at power = type I error is also shown as a dotted line. All of the p-values
are computed with 104 pseudo-experiments.
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As a final observation, note that the proportionality of λ̃(Y ) with the likelihood ratio is
strictly only true asymptotically when the NN is sufficiently flexible, there are enough training
examples, etc. While modern deep learning models can often achieve a close approximation
to λ̃(Y ) (see e.g. Ref. [33] for a high-dimensional example), further discussion about devia-
tions in the optimality of the NN can be found in Sec. 4. An alternative (or complement) to
engineering the NN output to be proportional to the likelihood ratio is to ‘calibrate’ the NN
output in which the NN is viewed as an information-preserving dimensionality reduction and
the class likelihood can be estimated numerically using one-dimensional density estimation
methods (such as histogramming) [24]. An extensive guide to likelihood estimation using
deep learning can additionally be found in Ref. [41–43].

3.3 Nuisance features

Given the high-dimensionality of LHC data, it is often necessary to only consider a redacted set
of features for deep learning. It is tempting to only use features Y for which p(Y |S)/p(Y |B)
is very different from unity. However, there are often features that are directly related to the
resolution or uncertainty of other observables. Such features may have p(Y |S)/p(Y |B)≈ 1 on
their own, but can enhance the potential of other observables when combined [44]. Examples
of this type were mentioned in Sec. 2. A neural network approximation to the likelihood
will naturally make the optimal use of these ‘nuisance features’. Removing these features
from consideration or even purposefully reducing their impact on the directly discriminative
features [45] will necessarily reduce the analysis optimality. Nuisance features are not the
same as nuisance parameters, where the value is unknown and a direct source of uncertainty.
The interplay of nuisance parameters and neural network uncertainty is discussed in Sec. 4.3.

The simplest way to incorporate nuisance features is to simply treat them in the same way
as directly discriminative features. Figure 5 illustrates this difference with the toy model from
Sec. 2, where inference is performed with a classifier using only Y0+ Y1 and one using Y0+ Y1
and σ, where σ is uniformly distributed between 0 and 0.29. As expected, when trying to
determine µ, the example that used σ in addition to Y is able to achieve a superior statistical
precision. This case is nearly the same to the one where there is a global nuisance parameter µ
and it is well constrained by some auxiliary data, i.e. constraining σ with Y0−Y1. In that case,
one may use the techniques of parameterized classifiers [24,25] to construct the NN, which is
the same as treating σ as a discriminating feature, only that a small number of σ values may
be available for training. This is discussed in more detail in Sec. 4.3.

4 Sources of Uncertainty

4.1 Overview

Uncertainty quantification is an essential part of incorporating deep learning into a HEP anal-
ysis framework. One of the most often-expressed phrases when someone proposes to use a
deep neural network in an analysis is ‘what is the uncertainty on that procedure?’ The goal of
this section is to be explicit about sources of uncertainty, how they impact the scientific result,
and what can be done to reduce them.

There are generically two sources of uncertainty. One source of uncertainty decreases
with more events (statistical or aleatoric uncertainty) and one represents potential sources of
model bias that are independent of the number of events (systematic or epistemic uncertainty).
These uncertainties are relevant for data as well as the models used to interpret the data,
and in general there can be sources of uncertainty that have components due to both types.
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Figure 5: A determination of the signal strength µ using a classifier trained with or
without σ, where σ is uniformly distributed between 0 and 0.29. The true value
of µ is 0.1 and |Y| = 104. The shaded regions indicate the ranges where the curves
intersect unity (the 68% confidence interval).

For most searches, the analysis strategy is designed prior12 to any statistical tests on data
(‘unblinding’). In the deep learning context, this means that the neural network training is
separate from the statistical analysis. As such, it is useful to further divide uncertainty sources
into two more types: uncertainty on the precision/optimality of the procedure and uncertainty
on the accuracy/bias of the procedure. These will be described in more detail below.

Consider the neural network setup from Sec. 3. If the network architecture is not flexible
enough, there were not enough training examples, or the network was not trained for long
enough, it may be that the likelihood ratio is not well-approximated. This means that the
procedure will be suboptimal and will not achieve the best possible precision. However, if the
classifier is well-modeled by the simulation, then p-values computed from the classifier may be
accurate, which means that the results are unbiased. Conversely, a well-trained network may
result in a biased result if the simulation used to estimate the p-value is not accurate. From
the point of view of accuracy, the neural network is just a fixed non-linear high-dimensional
function whose probability distribution must be modeled to compute p-values. In other words,
the NN itself has no uncertainty in its accuracy - its evaluation is only uncertain through its
inputs. A useful analogy is to consider common high-dimensional non-linear functions like the
jet mass, which clearly have no uncertainty on their definition.

Figure 6 summarizes the various sources of uncertainty related to neural networks, broken
down into the four categories described above. A machine learning model NN(x) is trained
on (usually) simulation following the distribution ptrain(x). Given the trained model, the
probability density of NN(x) is determined with another simulation following the distribu-
tion pprediction(x). It is often the case that ptrain = pprediction. Systematic uncertainties affecting
the accuracy of the result originate from differences between pprediction and the true density
ptrue while systematic uncertainties related to the optimality of the procedure originate from
differences between ptrain and ptrue.

The precision/optimality uncertainty is practically important for analysis optimization.
If this uncertainty is large, one may want to modify some aspect of the analysis design (more

12This is not the case for a recent anomaly detection proposal where the event selection depends on the data
[34,46–55].
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Precision / Optimality:

Accuracy / Bias:

pprediction(x) 6= ptrue(x)

limited training statistics

limited prediction statistics

ptrain(x) 6= ptrue(x)

inaccurate training data

model/optimization flexibility

inaccurate prediction data

Statistical uncertainty Systematic uncertainty

NN(x)|ptrue=ptrain
6= ptrue(x|S+B)

ptrue(x|B)

NN(x) 6= ptrue(x|S+B)
ptrue(x|B)

pprediction(NN) 6= ptrue(NN).

Figure 6: Sources of uncertainty affiliated with a neural network-based analysis. The
symbol p is used to represent a probability density function.

on this in Sec. 4.3). The precision/optimality uncertainty is often estimated by rerunning
the training with different random initializations of the network parameters. This procedure
is sensitive to both the finite size of the training dataset as well as the flexibility of the opti-
mization procedure. One can also bootstrap the training data for fixed weight initialization to
uniquely probe the statistical uncertainty from the training set size. An automated approach
to estimate these uncertainties that does not require retraining multiple networks is Bayesian
Neural Networks [56–60]. Estimating the uncertainty from the input feature accuracy can be
performed by varying the inputs within their systematic uncertainty (see Sec. 4.4). This can
be incorporated into network training via parameterized networks [24,25] with profiling (see
Sec. 4.3). Determining the uncertainty from the model flexibility is challenging and there is
currently no automated way for including this in the training. One (likely insufficient) pos-
sibility is to probe the sensitivity of the network performance to small perturbations in the
network architecture.

Unless asymptotic formulae are used to directly estimate p-values with λ̃ (see Sec. 4.2),
the optimality uncertainty is irrelevant from the perspective of scientific accuracy. To estimate
the accuracy/bias uncertainty, the network is fixed and the test set inputs are varied. The
statistical uncertainty can be estimated via bootstrapping [61]. Systematic uncertainties on
the output are determined by varying (or profiling) the inputs within their individual uncer-
tainties. As the whole point of deep learning is to exploit (possibly subtle) correlations in high
dimensions, it is important to include the full systematic uncertainty covariance over the input
feature space. This full matrix is often not known and impractically large, though parts of it
can be factorized (see also Sec. 4.4).

Before turning to more specific details in the following sections, it is useful to consider
efforts by the non-HEP machine learning community for uncertainties related to deep learning.
An often-cited discussion of model uncertainty (not necessarily for deep learning) is Ref. [62],
which lists seven sources of uncertainty. Many of these align well with those presented in Fig.
6. However, one key difference between HEP and industrial (and other scientific) applications
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of deep learning is the high-quality of HEP simulation. For instance, consider a charged particle
with momentum p that is measured with momentum p+δp. Industrial applications may treat
δp as a source of uncertainty while in HEP, if δp is well-modeled by the simulation, there is no
uncertainty at all. Therefore, the tools and strategies for uncertainty in the machine learning
literature are not always directly applicable to HEP. See e.g. Ref. [63] (and the many references
therein) for a recent discussion of uncertainties related to deep learning models.

4.2 Asymptotic formulae with classifiers

Powerful results from statistics (e.g. Wilks’ Theorem [64]) have made the use of asymptotic
formulae for computing p-values widespread [65]. One could apply such formulae directly to
Eq. (3.8) instead of estimating the distribution of the test statistic with pseudo-experiments
with techniques like bootstrapping. This would require that the neural network learns exactly
the likelihood ratio. Deviations of λ̃(Y ) from λ(Y )will result in biased p-value calculations. In
this case, it may be appropriate to combine (part of) the precision/optimality uncertainty with
the accuracy/bias uncertainty in order to reflect the total uncertainty in the resulting p-value.
However, this uncertainty on the p-value is completely reducible independent of the size of the
precision/optimality uncertainty by using pseudo-experiments instead of asymptotic formulae
so if this uncertainty is large, it is advised to simply13 switch to pseudo-experiments.

4.3 Learning to profile: reducing the optimality systematic uncertainty

If the classification is particularly sensitive to a source of systematic uncertainty, one may want
to reduce the dependence of the neural network on the corresponding nuisance parameter14

- see e.g. Ref. [24] for an automated method for achieving this goal. While removing the
dependence on such features may reduce model complexity, it will generally not improve the
overall analysis sensitivity. By construction, if the classification is sensitive to a given nuisance
parameter, removing the dependence on that parameter will reduce the nominal model perfor-
mance. The significance will only degrade if the uncertainty is sufficiently large. To see this,
suppose that there are two independent features to be used in training and one of them has
an uncertainty for the background. In the asymptotic limit (including S+B� 1, S� B [65]),
the question of deriving additional benefit from the uncertain feature is given symbolically by

εS1
εS2

S
q

εB1
εB2

B + (δεB1
εB2

B)2
?
>

εS2
S

Æ

εB2
B

, (4.1)

where εCi
is the efficiency of classifier i for class C and δε is the uncertainty on the efficiency.

Equation (4.1) is equivalent to

εS1
p

εB1

 

1−
1
2
εB1
εB2

�

δεB1

εB1

�2

B

!

¦ 1. (4.2)

Independent of the uncertainty, it only makes sense to use the classifier if the first term
εS1p
εB1
> 1.

For the second term, if each of the efficiencies and relative uncertainties are O(10%), then B
would need to be O(104) in order for the additional uncertain feature to detract from the anal-
ysis sensitivity. Even if the uncertainty is large, there are methods which construct classifiers

13This may require extensive computing resources, but given the growing availability of high performance com-
puters with and without GPUs, hopefully this will become less of a barrier in the future.

14This is in contrast to ‘nuisance features’, where it is argued in Sec. 3.3 should never be removed from the
neural network training except to reduce model complexity.
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using the information about how they will be used (‘inference-aware’) and therefore should
never do worse than the case where the uncertain features are removed from the start [66].

Especially for deep learning, one should proceed with caution when removing the depen-
dence on single nuisance parameters that represent many sources of uncertainty. For example,
it is common to use a single nuisance parameter to encode all of the fragmentation uncertainty.
This is already tenuous when using high-dimensional, low-level inputs, as the uncertainty co-
variance is highly constrained. If the sensitivity to such a nuisance parameter is removed,
it does not mean that the network is insensitive to fragmentation - it only means that it is
not sensitive to the fragmentation variations encoded by the single nuisance parameter. This
may also apply to other sources of theory uncertainty such as scale variations for estimating
uncertainties from higher-order effects. In some cases, higher-order terms may be known to
be small and can justify reducing the sensitivity to scale variations [67], but these terms are
typically not known.

The above arguments can be complicated when the two features are not independent and
the background is estimated entirely from data via the ABCD method15 or a sideband fit. In that
case, the strength of the feature dependence can increase the background uncertainty. When
the dependence is strong enough, it may no longer be possible to estimate the background.
There are a variety of neural network [68, 69] and other [70–73] approaches to achieve this
decorrelation.

Instead of removing the dependence on uncertain features, a potentially more powerful
way to reduce precision systematic uncertainties is to do exactly the opposite - depend ex-
plicitly on the nuisance parameters [24, 25]. By parameterizing a neural network fθ as a
function of the nuisance parameters θ , one can achieve the best performance for each value
of θ (such as the ±1σ variations). Furthermore, this can be combined with profiling so
that when the data are fit to determine θ and constrain its uncertainty, the neural network
is accordingly modified. The left plot of Fig 7 shows that the idea of parameterized classi-
fiers [24, 25] works well for the toy example from Sec. 2. The training was performed with
values σ = 0.02,0.04, 0.08,0.16, 0.32. The right plot of Fig. 7 shows the uncertainty on µ
when performing a statistical test with a neural network trained with a sample generated with
nuisance parameter σ′. As expected, the uncertainty is smallest when σ′ = σ so that fσ is the
optimal classifier for that value of the nuisance parameter (clearly, the uncertainty is worse
when σ is large). Therefore, if the fitted value of σ is the true value (as is hopefully true when
it is profiled), the statistical procedure will make the best use of the data.

In practice, it may be challenging to generate multiple training datasets with different
values of σ. Neural networks are excellent at interpolating between parameter values, but
there must be enough σ values to ensure an accurate interpolation. This can be especially
challenging if σ is multi-dimensional. In practice, learning to profile will likely work well
for nuisance parameters that only require a variation in the final analysis inputs (such as the
jet energy scale variation) and not for parameters that require rerunning an entire detector
simulation (such varying fragmentation model parameters). For the latter case, one may be
able to use high-dimensional reweighting to emulate parameter variations without expensive
detector simulations [33].

4.4 High-dimensional bias uncertainties

The single biggest challenge to using high-dimensional features for neural networks is esti-
mating high-dimensional uncertainties. Many sources of experimental uncertainty factorize
into independent terms for each object. However, physics modeling uncertainties are often

15For this method, there are two independent features which are used to form four regions called A, B, C , D based
on threshold cuts on the two features. One of these regions is enriched in signal and the other three are used to
estimate the background.
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Figure 7: Left: The functional form of fσ(y) alongside a binned version of the like-
lihood ratio for values of σ not presented to the neural network during training:
σ ∈ {0.03, 0.06}. Right: The statistical uncertainty on the value of µ when perform-
ing a statistical test with fσ′(y) where σ′ is the value of the nuisance parameter used
in the training. The true value of σ (the one used in testing) is indicated by vertical
dashed lines. This test used |Y|= 104.

grouped into two-point variations that cover many physical effects all at once. These uncer-
tainties may no longer be appropriate when the input features are high-dimensional (see also
Sec. 4.3). There are additional complications when computing uncertainties beyond 1σ and
even for the 1σ uncertainties if the NN is a non-monotonic transformation of the input as
quantiles are not preserved.

The fact that this section is short is an indication that new ideas are needed in this area.

5 Conclusions and Outlook

This paper has reviewed how deep learning can be used to make the best use of data for new
particle searches at the LHC. Deep learning-based classifiers can serve as surrogates to the
likelihood ratio in order to achieve an optimal test statistic. Nuisance features can improve
the performance of such classifiers even if they are not individually useful for distinguishing
signal and background. The ways in which uncertainties affects deep learning-based inference
were discussed and categorized into precision uncertainties related to the optimality of the
procedure and accuracy uncertainties related to the bias of the method. While both sources
of uncertainty are useful to quantify, the latter is much more important for the utility of the
results. Precision uncertainties can be reduced by letting the deep learning models depend
explicitly on the nuisance parameters and then profiling them during the statistical analysis.

As deep learning-based search strategies become more common, it will be important to
discuss all of these topics in more detail and develop strategies to ensure that the precious
data from the LHC are used in the best way possible to learn the most about the fundamental
properties of nature.
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A Loss functions and asymptotic behavior

The results presented here16 can be found (as exercises) in textbooks, but are repeated here for
completeness. Let X be some discriminating features and Y ∈ {0,1} is another random variable
representing class membership (signal versus background). Consider the general problem of
minimizing an average loss for the function f (x):

f = argmin f ′E[loss( f ′(X ), Y )], (A.1)

where E means ‘expected value’, i.e. average value or mean (sometimes represented as 〈·〉).
The expectation values are performed over the joint probability density of (X , Y ). One can
rewrite Eq. (A.1) as

f = argmin f ′E[E[loss( f ′(X ), Y )|X ]. (A.2)

The advantage17 of writing the loss as in Eq. (A.2) is that one can see that it is sufficient to
minimize the function (and not functional) E[loss( f ′(x), Y )|X = x] for all x . To see this, let
g(x) = argmin f ′E[loss( f ′(x), Y )|X = x] and suppose that h(x) is a function with a strictly
smaller loss in Eq. (A.2) than g. Since the average loss for h is below that of g, by the
intermediate value theorem, there must be an x for which the average loss for h is below that
of g, contradicting the construction of g.

As a first concrete example, consider the mean-squared error loss:
loss( f ′(X ), Y ) = ( f ′(X )− Y )2. One can compute

g(x) = argmin f ′E[loss( f ′(x), Y )|X = x] (A.3)

= argmin f ′E[( f
′(x)− Y )2|X = x] (A.4)

= argmin f ′E[( f
′(x))2 + Y 2 − 2 f ′(x)Y |X = x] (A.5)

= argmin f ′
�

( f ′(x))2 +E[Y 2|X = x]− 2 f ′(x)E[Y |X = x]
�

(A.6)

= argmin f ′
�

( f ′(x))2 − 2 f ′(x)E[Y |X = x]
�

(A.7)

= argminz

�

z2 − 2zE[Y |X = x]
�

, (A.8)

16Heavily borrowed from the appendix in Ref. [33].
17The derivation below for the mean-squared error was partially inspired by Appendix A in Ref. [24].

15

https://scipost.org
https://scipost.org/SciPostPhys.8.6.090


SciPost Phys. 8, 090 (2020)

where the last line follows since f ′(x) is simply a number. The value of z that minimizes
z2 − 2zE[Y |X = x] is simply E[Y |X = x], leading to the well-known result that the mean-
squared error results in the average value of the target18. Since Y is binary
E[Y |X = x] = p(Y = 1|X ), the conditional probability. Similarly for binary cross-entropy:

g(x) = −argmin f ′E[Y log
�

f ′(x)
�

+ (1− Y ) log
�

1− f ′(x)
�

|X = x] (A.9)

= −argmin f ′
�

E[Y |X = x] log
�

f ′(x)
�

+ (1−E[Y |X = x]) log
�

1− f ′(x)
��

(A.10)

= −argminz (E[Y |X = x] log(z) + (1−E[Y |X = x]) log(1− z)) . (A.11)

The derivative of the last line is

E[Y |X = x]
z

−
1−E[Y |X = x]

1− z
= 0 =⇒ z = E[Y |X = x], (A.12)

where again, the optimal value is p(Y = 1|X ). The same analysis can be applied to the loss in
Eq. (3.11):

g(x) = −argmin f ′E
�

Y f ′(x)−
1
2
(1− Y ) f ′(x)2

�

�

�

�

X = x

�

(A.13)

= −argmin f ′

�

E[Y |X = x]z −
1
2
(1−E[Y |X = x])z2

�

. (A.14)

The derivative of the last line is

E[Y |X = x]− (1−E[Y |X = x])z = 0 =⇒ z =
E[Y |X = x]

1−E[Y |X = x]
. (A.15)

Equation (3.10) in the text shows that the above is proportional to the likelihood ratio.
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