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Abstract

Dynamical response functions are standard tools for probing local physics near the equi-
librium. They provide information about relaxation properties after the equilibrium state
is weakly perturbed. In this paper we focus on systems which break the assumption
of thermalization by exhibiting persistent temporal oscillations. We provide rigorous
bounds on the Fourier components of dynamical response functions in terms of exten-
sive or local dynamical symmetries, i.e., extensive or local operators with periodic time
dependence. Additionally, we discuss the effects of spatially inhomogeneous dynamical
symmetries. The bounds are explicitly implemented on the example of an interacting Flo-
quet system, specifically in the integrable Trotterization of the Heisenberg XXZ model.
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1 Introduction

Response functions, or susceptibilities, can be used to probe the symmetry breaking phenom-
ena. In analogy with static susceptibilities, which probe transition from the ordered to disor-
dered phase and, for example, characterize the spontaneous breaking of the space-translation
symmetry in crystals [1], the dynamical susceptibilities carry information about the dynamical
phases of matter. For instance, ideal conductivity, which is a particular manifestation of ergod-
icity breaking, can be related to the Drude weight, which corresponds to the zero-frequency
behavior of the dynamical response function [2]. More generally, non-vanishing dynamical
response functions at finite frequencies imply breaking of time-translation symmetry of equi-
librium states.

Obtaining rigorous or explicit results in quantum strongly interacting many-body systems
is a formidable task even in the presence of “exact” solvability. Typically one has to rely on
numerical simulations, which, however, are bound to fail, either due to finite-size effects or
because of the entanglement growth. One of the most important rigorous results explaining
the origins of non-ergodic behavior is Mazur’s lower bound on asymptotics or time-averages
of dynamical correlation functions [3]. Through the scope of this bound, non-ergodicity can
be understood as a consequence of underlying extensive or local symmetries of the system.
In particular, local symmetries can be related to localization phenomena in many-body sys-
tems [4–6], while extensive symmetries lead to ideal transport at arbitrary temperature and
lack of thermalization in integrable models [2,7–9].

A large amount of recent publications deal with systems that avoid relaxation to equilib-
rium. Roughly speaking, they can be divided into two categories. The first class comprises
quantum scarred models [10–13] that avoid relaxation for special but physically relevant ini-
tial conditions. The second class of systems that defy relaxation to equilibrium are quantum
time crystals [14–32], where time-translation symmetry breaking occurs for typical states, or
equivalently, on the level of dynamical response functions [30,33].

The emergence of time-translation symmetry breaking in strongly interacting systems has
recently been related to extensive dynamical symmetries [30], calling for the development of
a rigorous framework. In this paper we provide such a framework by deriving strict lower
bounds on AC dynamical response functions in terms of dynamical symmetries. The lower
bounds are derived for autonomous Hamiltonian dynamics as well as for periodically driven
(Floquet) systems. We apply our results to a nontrivial example of a many-body Floquet system
that breaks the discrete time-translation symmetry, specifically to the integrable Trotterization
of the spin-1/2 XXZ model [34,35].

2 Breaking of time-translation symmetry

Breaking of the time-translation symmetry is associated with a failure of a perturbed station-
ary state to return to stationarity, even in the infinite-time limit t →∞. Analogously, we can
consider the space-translation symmetry breaking from a dynamical point-of-view: it occurs,
when the information about spatial inhomogeneities induced by the perturbation is retained
indefinitely after the perturbation has been switched off. In general we will consider stationary
states ρ(µ), where µ denotes the set of chemical potentials. Typically, only few chemical po-
tentials describe the complete steady-state manifold pertaining to the system. In Hamiltonian
systems, one of the chemical potentials is the inverse temperature µ1 = β . Assuming that the
(unnormalized) thermal state of the system ρ(β) = exp(−βH) is slightly perturbed at t = 0,
say by a Hermitian operator B, i.e., H → H − (δ/β)B, we probe the dynamics of the local
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observable A by considering the first order

∂δ〈A(t)〉δ
�

�

δ=0 =

∫ β

0

dλ
β
〈A(t)ρ(β−λ)Bρ(β−λ)−1〉 − 〈A〉〈B〉 (1)

in the expansion of its expectation value. Here, we have introduced the averages with re-
spect to the perturbed, 〈A〉δ = tr (Aρ)/ tr (ρ), and thermal state, 〈A〉 ≡ 〈A〉0. The response of
expectation values to a perturbation can be interpreted in terms of the canonical Kubo-Mori-
Bogoliubov inner product [36]

〈A, B〉=
∫ β

0

dλ
β
〈A†ρ(β−λ)Bρ(β−λ)−1〉 − 〈A〉〈B〉. (2)

Physically sensible perturbations of extensive Hamiltonians H are either extensive, e.g., a sum
of local operators acting on a spin lattice, or themselves local.

In order to probe the frequency dependence of the response, it is useful to introduce the
dynamical response function

fAB(ω) = lim
T→∞

1
2T

∫ T

−T
dt eiωt〈A(t), B〉. (3)

At zero frequency it represents the time-averaged perturbative correction (1) to 〈A〉0. Now,
the system is called non-thermal, provided that fAB(0) 6= 0 and fHB(0) = 0. The condition
fHB(0) = 0 ensures that the energy is conserved in the first order of the perturbative expan-
sion, and in turn implies that the thermal ensemble with associated expectation values should
remain the same under the assumption of thermalization. However, due to fAB(0) 6= 0, the
time average of the expectation value does not coincide with the old thermal average 〈A〉0. If,
in addition, the finite-frequency response function does not vanish, i.e., fAB(ω) 6= 0, for some
ω 6= 0, the system does not relax to any stationary distribution, for arbitrarily weak pertur-
bation of the equilibrium ensemble. This, then, characterizes the breaking of time-translation
symmetry.

Similarly, the breaking of space-translation symmetry on the lattice can be probed by spa-
tially modulated extensive observables

Ak =
∑

n

eiknan, (4)

with local densities an, via the frequency and wavevector-dependent response function

fAB(k,ω) = lim
T→∞

1
2T

∫ T

−T
dt eiωt〈Ak(t), Bk〉. (5)

As before, the nonvanishing susceptibility fAB(k,ω) 6= 0 for a nonzero value of the wavevector,
k 6= 0, implies that the system will retain memory related to the spatial modulation of the
perturbation. Here, we have assumed that the Hamiltonian H is translationally invariant,
implying 〈Ak(t), Bk′〉 = 0, if k 6= k′. If the stationary state 〈•〉 is not translationally invariant,
one might wish to study also the off-diagonal elements limT→∞

1
2T

∫ T
−T dt eiωt〈Ak(t), Bk′〉 for

different k and k′.
Note that our definitions (3) and (5) differ from the standard definitions of dynamical

response functions by an extra factor of 1/T in the Fourier transformation. This factor ensures
that fAB(ω) is finite, and not a Dirac delta singularity, for a perfectly harmonic response at
frequency ω.
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3 Local and extensive dynamical symmetries

Analogously to how the non-thermal behavior can be understood as a consequence of local
and extensive conservation laws [8], the time-translation symmetry breaking relates to the
existence of local and extensive dynamical symmetries [30].

For a concise presentation let us revisit the notions of locality and extensivity, as they play
a prominent role in our story. We consider extended quantum systems defined on a regular
lattice of N sites with finite-dimensional local Hilbert space. Prominent examples of such
systems are spin chains or spin lattices. The notions of (effective) locality and extensivity are,
in general, state-dependent [37]. Operator a is local with respect to the thermal state ρ (or
generic clustering state that is invariant under the time evolution), if its Kubo-Mori-Bogoliubov
norm is finite in the thermodynamic limit

0< lim
N→∞

〈a, a〉<∞. (6)

Operator A is extensive with respect to the state ρ, if its norm is proportional to the volume of
the system (i.e., the number of local physical sites, N) in the thermodynamic limit,

0< lim
N→∞

1
N
〈A, A〉<∞, (7)

and has a nonvanishing overlap with at least one local operator b

lim
N→∞

〈b, A〉> 0. (8)

Extensivity, as defined here, is sometimes also referred to as pseudo-locality [38]. While exten-
sive dynamical symmetries are of central importance when considering extensive perturbations
of stationary states, local dynamical symmetries are crucial when dealing with local perturba-
tions. Such symmetries should be employed to study discrete time crystals that can arise in
many-body localized systems [15]. In systems with multiple extensive conserved quantities Q j ,
i.e., [H,Q j] = 0, the array of equilibrium ensembles is naturally enlarged and local observables
are expected to relax to their equilibrium values, described by the associated set of general-
ized inverse temperatures (or chemical potentials) β j [39, 40]. The set of stationary states
can be rigorously established using extensive charges as flows on the space of operators [37].
Such systems behave non-thermally, and are well-described by non-thermal maximum-entropy
states, the so-called generalized Gibbs states ρGGE = exp(−

∑

j β jQ j), provided that the com-
plete set of extensive integrals of motion Q j has been identified. Upon a slight perturbation
of the state ρGGE by an extensive operator, the expectation values of local observables will
relax back to a slightly perturbed stationary state ρ′GGE . Similarly, if the system admits local
(non-extensive) integrals of motion q j , [H, q j] = 0, it fails to relax to the thermal state even if
the perturbation of the initial stationary ensemble is local.

In order to be considered as extensive (or local) dynamical symmetries, operators Q j should
satisfy the definition of extensivity (or locality), as well as the eigenoperator condition

[H,Q j] =ω jQ j . (9)

Clearly, extensive dynamical symmetries admit a simple periodic time-dependence
Q j(t) = exp(iω j t)Q j . The simplest example are dynamical symmetries responsible for the
spin precession occurring in magnets with SU(2) invariant interaction HSU(2) in the presence
of external magnetic field Sz =

∑

n sz
n, i.e., H = HSU(2)+hSz . They are given by the remaining

generators of the sl2 algebra, S± =
∑

n s±n , which satisfy [H, S±] = ±hS±. From a more general
perspective, systems with dynamical symmetries can be obtained from models described by a
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Hamiltonian H with at least a pair of non-abelian local symmetries, [H, X ] = 0, [H, Y ] = 0,
that form a closed algebra, for instance [X , Y ] = αY . Then, Y is the dynamical symmetry for
the system described by H ′ = H+γX , with the corresponding frequencyω= αγ. The existence
of systems with dynamical symmetries that cannot be obtained in this manner is unknown.

The notion of (dynamical) symmetries can be trivially extended to non-autonomous time-
periodic (Floquet) systems. In this case the dynamics of local observable a is generated by a
periodic, time-dependent Hamiltonian H(t) = H(t +τ)

∂t a = i[H(t), a], (10)

with a period τ. In the case of time dependent Hamiltonians we will focus on the stroboscopic
time evolution of observables

M̂τ[a] =
−→exp

�

i

∫ τ

0

dt H(t)

�

a←−exp

�

−i

∫ τ

0

dt H(t)

�

, (11)

where←−exp is the time-ordered exponential, the arrow denoting the direction of increasing time
in the time-ordering. In the case of non-autonomous systems, local or extensive dynamical
symmetries can again be defined by locality or extensivity and quasi-periodicity of their time-
dependence

M̂τ[Q j] = exp(iω jτ)Q j . (12)

Quasi-periodicity arises since ω jτ/(2π) is, in general, not a rational number, meaning that,
for any integer n> 0, (M̂τ)n[Q j] 6=Q j .

Thermalization and equilibration in quantum systems can be understood through the scope
of eigenstate thermalization hypothesis (ETH). It is thus instructive to clarify the role of dynam-
ical symmetries also in this regard. Clustering property of the initial state ensures that the
dynamics is restricted to states within a narrow window of energy and expectation values of
other extensive conservation laws. After a short time, the off-diagonal elements of the time-
evolved observables vanish due to dephasing and suppression in the thermodynamic limit, and
we observe the onset of stationarity, which can be described either by a representative eigen-
state, or equivalently, by a statistical ensemble. Systems with dynamical symmetries avoid
equilibration by circumventing two assumptions of the ETH. As a consequence of the eigen-
operator condition (9), there exists an eigenstate |ψ′〉 corresponding to the energy E+ω j , for
any eigenstate |ψ〉 with energy E, provided that Q j|ψ〉 6= 0 (then, in fact, Q j|ψ〉 ∝ |ψ′〉).This
implies that (i) dephasing does not occur for eigenstates with the energy difference of the order
O(1) and (ii) that the corresponding off-diagonal elements are not exponentially suppressed
in the thermodynamic limit, resulting in perpetual oscillations of some local (or extensive)
observables.

4 Bounds on susceptibilities

The purpose of this section is twofold. We first generalize the bound provided by Mazur [3] to
AC response functions and secondly, provide general bounds on the off-diagonal components
of the susceptibility matrix. We will first focus on time-independent Hamiltonian systems. Let
us start by considering the following operator

OA(ω) =
1
T

∫ T

0

dt e−iωtA(t)−
∑

j

α jQ j , (13)
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where Q j are either extensive or local dynamical symmetries. To obtain the lower bound on
the Fourier components we consider the Kubo-Mori-Bogoliubov norm (1) of the operator (13),
with respect to some stationary state ρ(β), which is clearly non-negative

〈OA(ω), OA(ω)〉 ≥ 0. (14)

Writing out all of the components explicitly, we obtain the bound

1
T2

∫ T

0

dt1

∫ T

0

dt2 eiω(t1−t2)〈A(t1), A(t2)〉 ≥

≥
∑

j

1
T

∫ T

0

dt
�

ei(ω−ω j)tα j〈A,Q j〉+ c. c.
�

−
∑

j,l

ᾱ jαl〈Q j ,Q l〉.
(15)

To study the susceptibilities in the thermodynamic limit N →∞, the latter has to be taken
after dividing each term by the system size N . Equivalently, we can, in this case, substitute the
Kubo-Mori-Bogoliubov bracket 〈A, B〉 by limN→∞〈A, B〉/N . Only then we take the infinite-time
limit T →∞ of each term in the inequality (15).

The optimal set of coefficients α j can be obtained by maximizing the quadratic form on
the right-hand side of Eq. (15), yielding the set of equations

δω,ω j
〈Q j , A〉=

∑

l

〈Q j ,Q l〉αl , (16)

where the Kronecker delta on the left-hand side emerges from time-averaging

δω,ω j
= lim

T→∞

1
T

∫ T

0

dt exp(−i[ω−ω j]t). (17)

Remember that in the standard definition of response functions the prefactor 1/T is absent,
whence the integral over time instead results in the Dirac delta peak. We remark that the over-
laps 〈Q j ,Q l〉 in Eq. (16) are nonzero only if ω j =ωl , which follows from the time-translation
invariance of the thermal state. It thus suffices to consider only the dynamical symmetries Q j
that correspond to the same frequency ω j ≡ωl in the eigenoperator condition (9).

In order to represent the results compactly, we now introduce a hermitian matrix of kernels
Q = Q†, with elements Q j,l = 〈Q j ,Q l〉. Additionally, we require the knowledge of overlaps
between the observable A and dynamical symmetries Q j , namely A j = δω,ω j

〈Q j , A〉, gathered
into the vector A. Plugging the solution of the set of equations (16) into Eq. (15) and taking
the limit T →∞, yields the lower bound

lim
T→∞

1
T2

∫ T

0

dt1

∫ T

0

dt2 eiω(t1−t2)〈A(t1), A(t2)〉 ≥A†Q−1A. (18)

The left-hand side of the above equation can be further simplified to

lim
T→∞

1
2T

∫ T

−T
dt eiωt〈A(t), A〉, (19)

if a weak requirement that the Fourier components of the dynamical response function asymp-
totically approach their averaged value

lim
T→∞

1
T

∫ T

−T
dt
|t|
T

eiωt〈A(t), A〉= lim
T→∞

1
2T

∫ T

−T
dt eiωt〈A(t), A〉, (20)
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is satisfied. The lower bound thus reads

fAA(ω)≥A†Q−1A. (21)

The result (21) straightforwardly generalizes to the off-diagonal elements of the suscep-
tibility tensor. Specifically, considering a pair of different observables A, B and defining the
overlaps B j = δω,ω j

〈Q j , B〉, we obtain the following bound

eiφ fAB(ω)≥ eiφA†Q−1B ≥ 0, (22)

where the phase φ is chosen appropriately, to render the right-hand-side of the first inequal-
ity (22) real and nonnegative. In order to arrive at the bound (22), we substituted
A→ αA+ βeiφB in the inequality (21) and took the derivatives w.r.t. α and β̄ at α = β = 0.
Note that the above result can be further generalized to systems with spatially modulated
response functions

eiφ fAB(k,ω)≥ eiφA†
kQ
−1
k Bk, (23)

where the overlaps Ak, Qk, and Bk contain only the contributions of spatially modulated ex-
tensive symmetries Q j , associated with the wave vector k, i.e.,

Ŝ[Q j] = eikQ j . (24)

Here, Ŝ denotes conjugation by a single-site lattice shift (one-site translation).
In the discrete-time (Floquet) case the dynamical susceptibility can be defined as

fAB(k,ω) = lim
L→∞

1
2L

L
∑

l=−L

eiωlτ〈Ak(lτ), Bk〉, (25)

where l ∈ Z counts the steps in the stroboscopic time evolution. In this case the lower bounds
can be obtained by replacing the continuous-time variable with stroboscopic steps, t → lτ, and
time averages with sums, limT→∞

1
2T

∫ T
−T dt → limL→∞

1
2L

∑L
l=−L , in the above derivations.

5 Driven Heisenberg chain at root-of-unity anisotropies

To illustrate how persistent oscillations of extensive many-body observables occur, we con-
sider a Floquet driven spin-1/2 chain of even size N ∈ 2N, introduced in Refs. [34, 35] as
an integrable Trotterization of the anisotropic Heisenberg (XXZ) model. For simplicity we as-
sume that the thermal ensemble corresponds to the infinite-temperature state ρ(0) = 2−N

1,
although the results can be generalized to arbitrary time-translation invariant state generated
by extensive conserved quantities of the model. We fix a unit period τ= 1 here, and consider
a discrete (stroboscopic) evolution, where time t is an integer. Specifically, for an arbitrary
observable A we define dynamical map A(t + 1) = M̂1[A(t)] where

M̂1[A(t)] = U−1 A(t)U . (26)

The two half-steps of the propagator U= Uo Ue read

Ue = U1,2 . . . UN−1,N , Uo = U2,3 . . . UN ,1. (27)

Each of them comprises local unitary quantum gates

Un,n+1 = e−i[J(sx
n sx

n+1+s y
n s y

n+1)+∆(s
z
nsz

n+1−1)+
h
2 (s

z
n+sz

n+1)], (28)
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2n−3 2n−2 2n−1 2n 2n+1 2n+2

... U U U ...

... U U ...

t

Figure 1: One time step of the discrete time evolution of an observable, represented
by the propagator U = Uo Ue. The half-steps are given in (27) and the time flows
upwards.

acting on pairs of neighboring sites. Operators sα, for α ∈ {x , y, z}, denote the spin-1/2 ma-
trices. The circuit representation of a single time step is shown in Fig. 1

Here we focus on an interesting regime of the model characterized by (i) extensive sym-
metries that break the spin-flip (Z2) symmetry, and more importantly, (ii) extensive dynamical
symmetries that break its U(1) invariance, corresponding to the conservation of magnetiza-
tion. While the first set of symmetries prevents decay of spin-current fluctuations and leads to
ideal spin transport [35], the second set, which is the focus of this paper, prevents relaxation of
local observables that couple different magnetization sectors, provided that the magnetic field
is nonzero, i.e., h 6= 0. Since dynamical symmetries are related to the integrability structure
of the model, it proves useful to parameterize the Floquet operator in terms of real anisotropy
parameter γ ∈R and imaginary staggering δ ∈ iR

∆=
1
i

log
�

sin(γ−δ)
sin(γ+δ)

�

, J =
1
i

log
�

sinγ− sinδ
sinγ+ sinδ

�

. (29)

Through this mapping the local unitary gate (28) is related to the trigonometric R-matrix,
which constitutes the local conservation laws of the XXZ model; see Appendix A for the review
of the integrability structure. In order to reproduce the continuous-time Heisenberg evolution,
the propagator (26) should be expanded in δ to the leading order.

Dynamical symmetries Y (λ) of the model are continuously parametrized: the discrete
index j in Eq. (12) is substituted by a complex spectral parameter λ ∈C. They stem from the
so-called semicyclic complex-spin representation of the XXZ model’s symmetry group that lacks
the lowest-weight state and exists only for

γ ∈
§

π
`

m

�

�

�m+ 1,` ∈ 2N, ` < m
ª

, (30)

that is, for commensurable anisotropies of odd order m [30,41,42]. In the absence of magnetic
fields, i.e., for h= 0, these operators are invariant under the time evolution and form a family
of extensive conservation laws of the Floquet driven XXZ model; the reader is invited to consult
Appendix B for elaborate details on their construction. In short, the semicyclic representation
of the symmetry group is spanned by m×m matrices Sα(β), α ∈ {0,+,−, z}, which depend on
the real representation parameter β and encode coefficients in the operator-basis expansion
of Y (λ) according to1

Y (λ) =
∑

α1,...,αN

∂β〈0|Sα1(β) . . .SαN (β)|0〉
�

�

β=0 sα1
1 . . . sαN

N . (31)

1Eq. (31) serves only for illustrative purposes, as many details have been disregarded. The accurate matrix-
product form of Y (λ) is presented in Appendix B.
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|0〉 |1〉
. . . . . .

|m− 2〉 |m− 1〉

∂βS−(0)

S−(0)

Figure 2: Combined periodic action of S−(0) (in blue) and ∂βS−(0) (in red) on the
auxiliary degree of freedom. Operator S−(β) is one of the matrices that encode the
coefficients in the operator-basis expansion (31) of the dynamical symmetries Y (λ).
Since it is coupled to the spin raising matrix s+, its m-step periodic action connecting
the state |0〉 to itself produces a surplus of m operators s+ acting on different sites in
the spin chain.

Here, s0 = 1 denotes a 2× 2 identity matrix and s± = sx ± is y , while |0〉 is the highest-weight
state of the semicyclic representation, used to project out the auxiliary degree of freedom,
upon which operators Sα(β) act. For β = 0 these operators become tridiagonal, however, due
to the absence of the lowest-weight state in the auxiliary space, S−(0) and ∂βS−(0) together
act periodically, as sketched in Fig. 2. This periodicity lies at the origin of the U(1) symmetry
breaking.2

Due to this periodic action, each term of the continuously-parametrized extensive symme-
tries Y (λ) possesses a surplus of m spin raising operators s+. In the presence of magnetic fields
this results in the oscillatory time-dependence

U−t Y (λ)Ut = eihmt Y (λ) (32)

with a frequency, proportional to the order of the anisotropy m and the magnetic field strength
h. Note that the evolution equation (32) associates Y (λ)† to the negative frequencyω= −hm.
Since all terms in Y (λ)† contain a surplus of m spin-lowering operators s−, the continuous fam-
ily {Y (λ)†} of adjoint dynamical symmetries is independent of {Y (λ)} and should be included
in the bounds on the Fourier components of dynamical susceptibilities.

In Appendix B we show that Y (λ) are extensive in the size of the system, whenever
|Reλ − π/2| < π/(2m). In this strip in the complex plane one can compute their overlap
Y(λ,µ) = 〈Y (λ̄), Y (µ)〉 according to a conjectured and numerically thoroughly checked for-
mula3

Y(λ,µ) =

�

cos(λ−µ+δ) + cos(λ−µ−δ)− 2cos(λ+µ)
�

sin(λ+µ)

2(sinγ)2(cos 2λ− cosδ) (cos 2µ− cosδ) sin(m[λ+µ])
, (33)

which is essential in the computation of the bounds on the dynamical susceptibilities. We
remind the reader that the inner product has been rescaled by the system size N , and the
thermodynamic limit N →∞ has been taken.

To relate to the discussion of the dynamical susceptibilities, we will now consider a set of
extensive observables

A= 2m
N
∑

n=1

m−1
∏

r=0

sx
n+r , (34)

2The term highest-weight state comes from the fact that |0〉 is annihilated by the spin raising operator S+(β) on
the auxiliary space (see Appendix B).

3The formula is conjectured similarly as in Ref. [35], by considering various limits with less elaborate calculation
of the overlap 〈Y (λ̄), Y (µ)〉, such as the continuous-time limit [41].
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Figure 3: In the left figure we plot numerical tDMRG data (red dots) and analytical
result (blue line) for the Fourier component of the dynamical susceptibility. Param-
eters are γ = 2π/3 and δ = 0.15. Strength of the magnetic field is h = 1/2 and the
frequency of oscillations is hm = 3/2. The period of oscillation is clearly discernible
in the inset. In the figure on the right, we plot the power spectrum obtained from
the tDMRG data on the left, and denote the expected frequency of oscillations by a
red dotted line.

overlapping with dynamical symmetries Y (λ) and their adjoint counterparts Y (λ)†. The linear-
response susceptibility of observable A evidently possesses nonzero Fourier components asso-
ciated with frequencies ω = ±hm, arising from terms

∏m−1
r=0 s±n+r . They can be bounded from

below by means of the system of integral equations
∫

dµY(λ,µ)y(µ) =A(λ), fAA(ω)≥ D =

∫

dλ y(λ)A(λ̄), (35)

which generalize the bound (21) to the case, where dynamical symmetries are enumerated
by a continuous parameter λ instead of a discrete index (following Ref. [38]). The projection
A(λ) = 〈Y (λ̄), A〉 onto the dynamical symmetries reads

A(λ) =
csc(λ+) + csc(λ−)

4
m+1

2 [sin(λ−) sin(λ+)]
m−1

2

m−1
∏

k=2

sin(kγ) (36)

and can be discerned from the matrix product form of Y (λ), shown in Appendix B.
Assuming that {Y (λ)} and {Y (λ)†} form a complete set of dynamical symmetries, the

lower bound, computed by solving the linear integral equation (35), saturates. We can then
conjecture the asymptotic behaviour of the temporal auto-correlation function to be

〈A(t)A〉
〈A2〉

∼ 2D cos(hmt). (37)

This result is indeed corroborated by the numerical evidence obtained via the time-dependent
density-matrix renormalization group method (tDMRG) shown in Fig. 3.

The time translation symmetry breaking is not specific to the Floquet driven XXZ model, but
can be observed also in its continuous-time limit; see Ref. [30] for an elaborate discussion. The
corresponding dynamical symmetries are simply Y (λ) evaluated at δ = 0, while the dynamical
equation then reads

[H, Y (λ)] = hmY (λ). (38)
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6 Conclusion

In this article we derived rigorous bounds on AC dynamical response functions, providing
insight into the spontaneous time-translation symmetry breaking of the underlying dynamics.
The research outlines a rigorous approach towards the study of quantum time crystals, and
probing of the spatial symmetry breaking phenomena, such as dimerization, by shedding the
light on its microscopic origins.

From the broader point of view our study centers on types of information that can be
preserved in interacting many-body quantum systems, and might thus prove lucrative from the
point of view of quantum information processing and storage. From this perspective, finding
concrete examples of systems, which go beyond the toy models presented in this paper, is
of paramount importance. There are two somewhat related properties that should be at the
forefront of this endeavour. The first one is stability to perturbations, and the second one the
viability of implementing these systems in experimental setups.

While we focused on close-to-equilibrium setup in this paper, the dynamical symmetries
have a profound effect on the long-time description when the system is initially prepared in the
state that is far from equilibrium as well. It was conjectured that, in this case, the appropriate
description is provided by time dependent maximum entropy ensembles [30], however any
clear theoretical account of this phenomena is yet to be provided.

It was recently proposed [43–45] that less-local conservation laws might have effects on the
equilibration rate and normal conductivity. The effects of, for example, quadratically extensive
dynamical symmetries is yet to be explored in this context.
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Appendix

A Integrability of the driven XXZ model

In this appendix we comment on the integrability structure of the Floquet driven XXZ spin-1/2
chain. Under the parameter mapping (29), the local quantum unitary gate (28) transforms
into the trigonometric R-matrix of the spin-1/2 XXZ model [35]. Explicitly

Un,n+1 = Pn,n+1Rn,n+1(δ)e
−i h

2 (s
z
n+sz

n+1), (39)
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where Pn,n+1 is a permutation (transposition) that exchanges the one-particle states of two
neighbouring spins, while the trigonometric R-matrix reads

R(λ) =









1 0 0 0
0 sinλ

sin(λ+γ)
sinγ

sin(λ+γ) 0

0 sinγ
sin(λ+γ)

sinλ
sin(λ+γ) 0

0 0 0 1









. (40)

For h = 0, the propagator U = Uo Ue with half-steps (27) can be recovered from the integra-
bility structure as

U= [T (−δ2 )]
−1T (δ2 ), (41)

where we have introduced a continuous family of transfer matrices

T (λ) = tr 0[R0,1(λ+)R0,2(λ−) . . . R0,N (λ−)], (42)

in which λ± = λ±δ/2 denote shifts in the spectral parameter. As a consequence of the Yang-
Baxter equation

R1,2(λ−µ)R1,3(λ)R2,3(µ) = R2,3(µ)R1,3(λ)R1,2(λ−µ), (43)

satisfied by the trigonometric R-matrix (40), the transfer operators commute for all pairs of
spectral parameters λ and µ, i.e., [T (λ), T (µ)] = 0. This establishes integrability of the model,
which holds also when h 6= 0, due to the U(1) symmetry

[ei h
2 (s

z
n+sz

n+1), Rn,n+1(δ)] = 0 (44)

of the trigonometric R-matrix (40). The standard hierarchy of local conservation laws is pro-
duced by logarithmic derivatives of the transfer matrix (42), namely

Q±j = ∂
j
λ

log T (λ) |λ=± δ2 . (45)

B Extensive dynamical symmetries in the driven XXZ model

The extensive dynamical symmetries in the driven XXZ spin-1/2 model originate in the transfer
matrix

T̃ (λ) = tr a

�

La,1(λ+)La,2(λ−) . . .La,N (λ−)
�

, (46)

in which R-matrices have been substituted by Lax operators

La,n(λ) = 1 cos[γSz
a] + 2 cotλ sz

n sin[γSz
a] + cscλ sinγ

�

s+n S−a + s−n S+a
�

(47)

that form the higher-spin transfer matrices of the XXZ model [8]. Here, 1 is the identity
operator, sz

n and s±n = sx
n ± is y

n act on the n-th spin-1/2 degree of freedom, while operators in
bold act over the auxiliary space, labeled by index a. They generate a complex spin-s algebra,
also known as quantum group Uq(sl2), where q = exp(iγ). Focusing on root-of-unity q (i.e.,
qk = 1, for some k ∈N, which yields γ= `π/k, ` ∈ 2N), we choose a semicyclic representation

Sz =
m−1
∑

k=0

(s− k)|k〉〈k|,

S+ =
m−2
∑

k=0

sin[γ(2s− k)]
sinγ

|k〉〈k+ 1|,

S− =
m−2
∑

k=0

sin[γ(k+ 1)]
sinγ

|k+ 1〉〈k|+ β |0〉〈m− 1|

(48)
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of the quantum group. Its dimension is set by the order of the root of unity, defined as
m=min{k ∈N | qk = 1}. The oscillatory behaviour of the dynamical symmetries

Y (λ) = (cscγ)2∂β T̃ (λ)
�

�

β ,s=0 (49)

originates in the absence of the lowest-weight4 state, i.e., S−|m−1〉= β |0〉. Before examining
them in detail, we state several important properties:

1. They can be computed according to Eq. (49) only for odd orders m of the root-of-unity
parameter q (see, however, Ref. [41] for the details on how to treat the anisotropies
parametrized by the root-of-unity q of even order).

2. They satisfy

U−t Y (λ)Ut = eihmt Y (λ), t ∈N. (50)

3. For |Reλ−π/2|< π/(2m) they are extensive (pseudo-local).

The first property is a consequence of the fact that the auxiliary representation (48) is
only irreducible for odd m. A detailed discussion of this peculiar character of the semicyclic
representations has been presented in Ref. [41]. For simplicity, we will restrict ourselves to
the set of anisotropies, given in Eq. (30). Regarding the second property note that, in the
absence of magnetic fields Y (λ) are exactly conserved. This follows from the specific type of
Yang-Baxter equation, the so-called RLL relation

R1,2(λ−µ)La,1(λ)La,2(µ) = La,2(µ)La,1(λ)R1,2(λ−µ), (51)

which implies [T̃ (λ), T (µ)] = 0, provided that h = 0. We proceed to examine the second and
the third property in detail.

B.1 Explicit form of the dynamical symmetries

Due to cyclicity of the trace over the auxiliary space in Eq. (46), the derivative on β can always
be translated to the leftmost position in the string of Lax operators. Then, using

∂βLa,n(λ) |β ,s=0= cscλ sinγ s+n |0〉a〈m− 1|a (52)

and denoting L0
a,n(λ) = La,n(λ) |β ,s=0, the operator (49) can be rewritten as

Y (λ) = cscγ
N/2−1
∑

n=0

¦

csc(λ+) Ŝ2n
�

s+1 〈m− 1|a

string of Lax operators
︷ ︸︸ ︷

L0
a,2(λ−)L

0
a,3(λ+) . . .L0

a,N (λ−) |0〉a
�

+

+ csc(λ−) Ŝ2n+1
�

s+1 〈m− 1|aL0
a,2(λ+)L

0
a,3(λ−) . . .L0

a,N (λ+)|0〉a
�

©

. (53)

Here and below, symbol Ŝ denotes the conjugation by a one-site lattice shift, e.g., Ŝ(sαn ) = sαn+1,
for which the periodic boundary conditions imply ŜN = 1.

We observe that, in each term, the highest-weight and the lowest-weight vectors in the
auxiliary space have to be coupled by the string of Lax operators. For any n ∈ {1, 2, . . . N} we
have (recall that β = s = 0)

L0
a,n(λ±)|0〉a=1|0〉a+sinγ csc(λ±)s

+
n |1〉a, (54)

4The state |m− 1〉 is termed the lowest-weight state, if destroyed by the spin lowering operator, that is, when
S−|m− 1〉= 0.
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so the string of Lax operators either lowers the auxiliary state and produces a spin raising
operator s+n , or leaves the highest-weight state |0〉a in the auxiliary space intact, meanwhile
contributing the identity operator 1 to the action on the total Hilbert space. This results in

Y (λ)=
N/2−1
∑

n=0

� N/2−1
∑

r=bm/2c

�

Ŝ2n
�

q[2r+1,−](λ)
�

+ Ŝ2n+1
�

q[2r+1,+](λ)
��

+

+
N/2
∑

r=dm/2e

�

Ŝ2n
�

q[2r,−](λ)
�

+ Ŝ2n+1
�

q[2r,+](λ)
��

�

, (55)

where the local densities read

q[2r+1,±](λ) = csc(λ∓)
2s+1 〈m− 1|aL0

a,2(λ±)L
0
a,3(λ∓) . . .L0

a,2r(λ±)|1〉as+2r+1,

q[2r,±](λ) = csc(λ+) csc(λ−)s
+
1 〈m− 1|aL0

a,2(λ±)L
0
a,3(λ∓) . . .L0

a,2r−1(λ∓)|1〉as+2r .
(56)

Except on the first 2r + 1 (respectively 2r) sites, these local densities act trivially, i.e., as
identities. Importantly, they contain a surplus of m spin raising operators s+n acting on the
physical degrees of freedom, as the string of Lax operators still needs to connect the states |1〉
and |m−1〉 in the auxiliary space. This can only be achieved via the auxiliary spin operator S−

[see the representation (48)], which is coupled to s+n in the Lax operator (47). Local densities
with a surplus of less than m spin raising operators vanish, explaining the lower boundaries
on the sums in Eq. (55). Due to the surplus of exactly m spin raising operators in each term
of Y (λ) we now have

U−t Y (λ)Ut = eiht
∑N

n=1 sz
n Y (λ)e−iht

∑N
n=1 sz

n = eihmt Y (λ), (57)

where relation [sz
n, s+n ] = s+n has been used. We proceed to examine the extensivity of dynamical

symmetries Y (λ).

B.2 Extensivity of the dynamical symmetries

For simplicity, let us consider infinite-temperature susceptibilities, so that the state entering
the inner product (2) corresponds to the featureless identity matrix ρ = 2−N

1, while the inner
product itself becomes of the Hilbert-Schmidt type. Being interested in the thermodynamic
limit, we rescale it by the system size:

〈A, B〉= lim
N→∞

1
N

�

〈A†B〉 − 〈A〉〈B〉
�

. (58)

To determine the extensivity of the dynamical symmetries, we need to consider the kernel of
overlaps

Y(λ,µ) = 〈Y (λ̄), Y (µ)〉 (59)

that will be referred to as the Hilbert-Schmidt kernel. For ease of notation we have conjugated
the spectral parameter in the first factor of the inner product.

The local densities (56) of Y (λ) are orthogonal w.r.t. the Hilbert-Schmidt inner prod-
uct; their overlaps vanish if the corresponding supports do not match perfectly. The Hilbert-
Schmidt kernel is thus

Y(λ,µ) =
1
2

∞
∑

r=1

∑

s∈{+,−}

�

〈q[2r,s](λ̄), q[2r,s](µ)〉+ 〈q[2r+1,s](λ̄), q[2r+1,s](µ)〉
�

. (60)
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Its computation is further facilitated by employing the matrix product structure of the local
densities. In particular, we can define the auxiliary transfer matrix

Ta1,a2
(λ,µ) =

1
2

trn

�

[L0
a1,n(λ)]

T L0
a2,n(µ)

�

, (61)

where (•)T denotes the partial transposition of the operators over the physical degrees of
freedom, namely those, indexed by n in Eq. (47). Two indices a1 and a2 denote two copies of
the auxiliary space.

The auxiliary transfer matrix now facilitates the computation of overlaps in the Hilbert-
Schmidt kernel (60), for example

〈q[2r,±](λ̄), q[2r,±](µ)〉=
〈m− 1, m− 1|

�

T(λ∓,µ±)T(λ±,µ∓)
�r−1|1,1〉

4 sin(λ+) sin(λ−) sin(µ+) sin(µ−)
, (62)

while the extensivity of the dynamical symmetries Y (λ) now depends on the spectrum of its
projection onto the subspace W = lin{|k, k〉 | 1≤ k ≤ m−1} that is invariant under its action,
namely T(λ,µ)W ⊂ W . In particular, the sums over the support-size index r in Eq. (60)
converge, if the spectrum lies inside the unit circle in the complex plane. Linear extensivity
of dynamical symmetries Y (λ), i.e., finiteness of Y(λ,µ), now follows from the following
observation, proven in Ref. [38]:

Proposition 1 For |λ−π/2|< π/(2m) the eigenvalues of the auxiliary transfer matrixT(λ,µ)
projected onto its invariant subspace W = lin{|k, k〉 | 1 ≤ k ≤ m− 1} are strictly below 1 in the
absolute value.

Evidently, the imaginary shifts of the spectral parameters by ±δ/2 do not cause violation
of this condition as it constraints only the real part of λ. The explicit form of the Hilbert-
Schmidt kernel Y(λ,µ) can be conjectured, similarly as was done in Ref. [35], and is given in
Eq. (33). It has been extensively numerically and analytically checked that it also reproduces
the normalized inner product of the semicyclic symmetries in the continuous-time limit δ→ 0;
see Ref. [41].
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