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Abstract

We compute the Hall viscosity and conductivity of non-relativistic two-dimensional chi-
ral superconductors, where fermions pair due to a short-range attractive potential, e.g.
p + ip pairing, and interact via a long-range repulsive Coulomb force. For a logarithmic
Coulomb potential, the Hall viscosity tensor contains a contribution that is singular at
low momentum, which encodes corrections to pressure induced by an external shear
strain. Due to this contribution, the Hall viscosity cannot be extracted from the Hall con-
ductivity in spite of Galilean symmetry. For mixed-dimensional chiral superconductors,
where the Coulomb potential decays as inverse distance, we find an intermediate behav-
ior between intrinsic two-dimensional superconductors and superfluids. These results
are obtained by means of both effective and microscopic field theory.
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1 Introduction

Two-dimensional chiral pairing, with its fully gapped Fermi surface and Cooper pairs that co-
herently carry a finite angular momentum, is a theoretical paradigm of a quantum topological
phase of matter [1–3]which is nowadays under intense experimental investigation. It was dis-
covered recently that the chiral A-phase of superfluid 3He becomes stable at zero temperature
under nanoscale confinement [4, 5]. New experimental signatures of topological supercon-
ductivity [6] were also reported in thin superconducting films [7, 8]. A recent experiment
with the 5/2 quantum Hall state [9], which theoretically is believed to be some chirally paired
superconductor of composite fermions, reignited the long-term debate about the nature of
topological order of this state.

Fermionic chiral paired states exhibit non-dissipative Hall responses because the chiral
order parameter breaks time-reversal T and parity P symmetries spontaneously. The well-
known Hall conductivity tensor σi j

H(ω,q) quantifies the response of the U(1) current J(ω,q)
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to a monochromatic electric field E(ω,q). The Hall conductivity in a two-dimensional neutral
chiral superfluid at zero temperature was computed in [10–14]. In addition to the Hall conduc-
tivity, a clean two-dimensional system is characterized by a supplementary non-dissipative Hall
response, the Hall (or odd) viscosity tensor ηi jkl

o (ω,q), that fixes the (odd under time-reversal)
response of the stress tensor to the strain rate [15, 16], see [17] for a review. Recently, ob-
servable signatures of the Hall viscosity have been vigorously studied in classical and quantum
fluids both theoretically [18–31] and experimentally [32,33]. In a two-dimensional isotropic
system that is invariant under the combined PT symmetry the odd viscosity tensor reduces to
two independent components [34], in this paper to be denoted η(1)o (ω,q2) and η(2)o (ω,q2),
respectively. If the Hall viscosity tensor is regular in the limit q = 0, only the component η(1)o
survives as q → 0 [15, 16]. For gapped quantum fluids the ratio of the Hall viscosity to the
particle number density n0 was argued to be quantized in the units of ħh as follows [35,36]

η(1)o

n0
=

1
2

s, (1.1)

where s is a rational number that is equal to the average angular momentum per particle. In
a neutral l-wave chiral superfluid, though gapless, the same relation holds. Here s = ±l/2
with the sign fixed by the chirality of the condensate. As a result, at q = 0 the Hall viscosity
coefficient η(1)o does not depend on the topology of the fermionic ground state and thus cannot
be used as a diagnostics of topological superconductivity that is characterized by protected
chiral Majorana edge modes. It was shown however in [34] that the q2 dependence of the
Hall viscosity tensor contains information about the chiral central charge of the boundary
theory, which is determined by the topology of the fermionic ground state.

In single-component Galilean-invariant fluids and solids with a particle number symmetry,
the momentum density is proportional to the particle number current, resulting in a Ward iden-
tity that ties together the viscosity and conductivity tensors [37–40]. For the two-dimensional
chiral superfluid the relation acquires a simple form in the uniform limit q = |q| → 0

η(1)o (ω) = −
m2ω2

2
∂ 2

q σH(ω,q)
�

�

q=0. (1.2)

As a result, in this system one can extract the AC Hall viscosityη(1)o (ω) only from the knowledge
of the Hall conductivity at small momentum.

The main aim of this paper is to compute the Hall conductivity and viscosity of a two-
dimensional chiral superconductor, where chirally paired fermions couple to a fluctuating elec-
tromagnetic field. Two different types of such superconductors can be considered. In a mixed-
dimensional superconductor, fermions are restricted to a surface, but the electromagnetic field
extends in full three-dimensional space. In such a superconductor plasma oscillations are gap-
less and charges and vortices exhibit long-range interactions [41]. Electromagnetic response
in the mixed-dimensional chiral superconductor was computed in [13].1 Alternatively, one
may consider an intrinsic two-dimensional chiral superconductor, where akin to fermions the
electromagnetic field is restricted to the surface. As a result, plasma oscillations are gapped.
While this case might seem somewhat contrived, there are two physical motivations to in-
vestigate it: (i) In quantum Hall fluids composite fermions couple to a fluctuating emergent
u(1) gauge field that is defined in (2+ 1)-dimensional spacetime [43, 44]. As a result, chiral
paired states of composite fermions are intrinsic two-dimensional chiral superconductors. (ii)
Sufficiently small planar Josephson junction arrays can realize an intrinsic two-dimensional

1It was also argued recently in [42] that the order parameter and Coulomb fluctuations do not contribute to
the Meissner effect in the chiral p-wave superconductor.
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conventional superconductor [45–48]. This naturally suggests that a planar Josephson junc-
tion array of chiral superconducting islands can give rise to an intrinsic two-dimensional chiral
superconductor.

In this work we consider non-relativistic fermions, and accordingly, approximate the in-
teraction mediated by the gauge field by an instantaneous Coulomb potential. As a result
the problem we study is Galilean invariant. Within this setting we develop a unified theoret-
ical framework for intrinsic and mixed-dimensional chiral superconductors, which we use to
extract electromagnetic and gravitational linear responses and investigate the conductivity-
viscosity relations following from Galilean symmetry.

Our main results are summarized in Section 2. The rest of the paper is structured as fol-
lows: In Section 3 we present a general discussion of electromagnetic and geometric linear
responses and the Ward identities which tie them together in Galilean-invariant systems. In
Section 4 we develop a low-energy effective field theory of different types of chiral supercon-
ductors and present a streamlined calculation of the Hall conductivity and Hall viscosities. In
Section 5 we reproduce our results for the Hall responses directly from a canonical micro-
scopic fermionic model of a two-dimensional chiral superconductor. We conclude our work
with Section 6, where we provide an outlook for future research.

2 Main results and physical picture

In this section, we summarize and explain our main results for the intrinsic two-dimensional
chiral superconductor. The derivation of these results and their extension to an arbitrary long-
range Coulomb interaction can be found in the following sections.

2.1 Setup

Before presenting our results, we emphasize that the Hall conductivity and viscosity computed
in this paper are defined as linear responses to external sources, as opposed to total fields.
As is well known, the total electric field E −∇χ contains the externally applied field E and
the internal contribution −∇χ, where χ is the electric potential generated by charges in the
system. The conductivity we compute is then defined as the response of current to an applied
E, and accounts, in particular, for the potential χ induced due to the applied electric field.
This conductivity is physically relevant when an external field E is applied in the bulk of the
system, away from boundaries.

Less appreciated is the analogous decomposition of the strain-rate in the context of the
viscosity calculation. The total strain-rate tensor u̇i j + ∂(i v j) contains the externally applied
strain ui j , which corresponds to a background spatial metric gi j = δi j + 2ui j , as well as the
internal strain-rate ∂(i v j), where v j is the velocity of particles in the system and the parenthesis
denote symmetrization [14]. The viscosity we compute in this paper is defined as the response
of stress to an applied u̇i j , and accounts, in particular, for the velocity vi induced due to the
applied external strain ui j . This viscosity is physically relevant when an external strain rate u̇i j
is applied in the bulk of the superconductor away from boundaries, as in Fig. 1. This should be
contrasted with standard hydrodynamic scenarios, where ui j = 0 and the system is perturbed
via boundary conditions [49].

In a crystalline superconductor the strain ui j naturally describes the crystal structure of
the ion background [50], and the odd viscosity we compute modifies the dispersion of the
corresponding phonon excitations, à la Ref. [51]. It will be useful to analyze our results in
terms of the ion displacement field ξ (x) = δx, assumed to be in-plane for simplicity. Then
ui j = ∂(iξ j), and the total strain rate is given by ∂(iξ̇ j) + ∂(i v j), where the ion velocity ξ̇i and
electron velocity vi enter symmetrically.
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(a) Superfluid. (b) Superconductor.

Figure 1: Pressure profile induced through the Hall viscosity coefficient η(2)o by an
applied external strain in a chiral superfluid (left) and superconductor (right). A disk
of radius R is rotated at a frequency ω around its center, the rotation corresponding
to a radial displacement field ξi = Φ(t, r)εi j x

j with Φ(t, r) independent of r inside
the disk and vanishing outside. The displacement field at a given time is represented
by its effect on a black grid, with the untransformed points plotted in grey. The cor-
responding vorticity Ω= −2Φ̇− r∂r Φ̇ induces through Eq. (2.4) a change in pressure
δp shown in color, with red, blue and white corresponding to δp positive, negative
and vanishing, respectively. In the superfluid case η(2)o is independent of q at long
wavelengths cs|q| � ω [see Eq. (4.4)] and the pressure shift δp ∼ ∇2Ω is localized
at the edge of the disk. On the other hand, for a superconductor, where η(2)o ∼ 1/q2

for cs|q|, ω � ωp [see Eq. (2.3)], the vorticity inside of the disk is directly related
to the pressure shift, δp ∼ Ω. For a given vorticity, the sign of the resulting pressure
change is determined by the chirality of the superfluid/superconductor.

2.2 Hall conductivity and viscosity

The Hall conductivity at finite frequency ω and momentum q that we find is given by

σH(ω,q2) =
1
2
εi jσ

i j(ω,q) =
sn0

2m2

−q2

ω2 −ω2
p − c2

s q2
, (2.1)

where we introduced the plasma frequency ωp =
p

e2n0/m. In contrast to the neutral chi-
ral superfluid, where e = 0, the energy gap of the plasmon excitation ensures that the Hall
conductivity always vanishes as q2 in the limit ω, q→ 0.

The Hall viscosity tensor of an isotropic PT -invariant system is given by [34]

ηo(ω,q) = η(1)o (ω,q2)σxz +η(2)o (ω,q2)[(q2
x − q2

y)σ
0x − 2qxqyσ

0z], (2.2)

and is fixed by the two independent coefficients η(1)o (ω,q2) and η(2)o (ω,q2), where
σab = σa ⊗σb −σb ⊗σa , a, b = 0, x , z, are anti-symmetrized tensor products of symmetric
Pauli matrices, see Section 3. The physical content of Eq. (2.2) is as follows. The external
strain ui j = ∂(iξ j) can be decomposed into its trace, the compression u = ui

i = ∇ · ξ, and two

traceless shears. The viscous stress T i j = −ηi jkl
o u̇kl is similarly decomposed into the correction

to pressure δp = T i
i /2, and two shear stresses. While the usual odd viscosity η(1)o corresponds

to a Hall response of the shear stress to a shearing rate, and does not involve the pressure
and compression, the component η(2)o induces pressure in response to a shearing rate, and the
shear stress in response to a compression rate u̇.
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For the intrinsic chiral superconductor we find

η(1)o (ω,q2) =
sn0

2
, η(2)o (ω,q2) = −

sn0

2
1
q2

ω2
p + c2

s q2

ω2 −ω2
p − c2

s q2
. (2.3)

While the first component η(1)o coincides with the result found for the neutral chiral superfluid,
the second component η(2)o does not, and exhibits a peculiar 1/q2 singularity at low momenta.
Combining Eqs. (2.2) and (2.3), we see that due to this singularity, the contribution of η(2)o
to the odd viscosity tensor ηo does not vanish in the uniform limit q→ 0, as one may naively
expect from Eq. (2.2). In fact, the Hall viscosity tensor of the intrinsic two-dimensional su-
perconductor is ill defined at q = 0, though the superconductor is fully gapped! A similar
behavior occurs in the neutral chiral superfluid only when it is incompressible, and sound
waves propagate with an infinite speed, cs =∞.2

We currently understand the singularity in η(2)o as originating from the instantaneous long-
range nature of the Coulomb interaction. In Section 6 we provide an outlook for a future study
that will test this understanding.

In order to demonstrate the physical significance of η(2)o and its 1/q2 singularity, we note
that Eq. (2.2) implies

δp = η(2)o ∇
2Ω, (2.4)

where δp is the pressure relative to the ground state pressure, and Ω = εi j∂iξ̇ j is the applied
vorticity, to be distinguished from the electron vorticity εi j∂i v j , and η(2)o is the operator ob-
tained by Fourier transforming η(2)o (ω,q2) in Eq. (2.3). We see that η(2)o encodes an exotic
dissipationless response of pressure to applied vorticity. As follows from Eq. (2.4), a region
of space rotating uniformly, where Ω is constant, does not support pressure variations, unless
η(2)o ∼ 1/q2 as q→ 0, which is illustrated in Fig. 1.

A pressure in response to uniform vorticity is currently believed to appear only in the pres-
ence of angular momentum non-conservation, as recently discussed in Ref. [60]. In contrast,
chiral superconductors and superfluids, studied here, break rotation symmetry only sponta-
neously, and are therefore isotropic and angular momentum conserving.3 Nevertheless, we see
that, due to the 1/q2 singularity in η(2)o , chiral superconductors mimic the response δp ∼ Ω of
angular momentum non-conserving fluids, as shown in Fig. 1b.

In addition to the relation (2.4), Eq. (2.2) also implies

∇× f= η(2)o ∇
4u̇, (2.5)

where f i = −∂ j T
j

i is the force density exerted on a test particle by the electron fluid,4 and
∇ × f = εi j∂i f j is its curl. We see that circulating forces are generated in response to an
applied, space-dependent, compression rate. The 1/q2 singularity in η(2)o leads to a reduction
∇4→∇2 in Eq. (2.5).

Eq. (2.5) describes a fully geometric chiral analog of the London diamagnetic response,
∇ × J = −ρL∇2B, that leads to the Meisner effect in superconductors, where ρL ∼ 1/q2 as

2Naively, a similar 1/q2 singularity appears in the compressible neutral chiral superfluid at ω = 0. However,
the viscosity is a response to strain-rate, and is only meaningful for ω 6= 0.

3Technically, Eq. (2.4) stems from the momentum dependence of the tensor multiplying η(2)o in Eq. (2.2), while
in angular momentum non-conserving fluids, a pressure in response to vorticity derives from the asymmetry of
ηi j,kl

o under k↔ l.
4The force is defined as the time derivative of the momentum density, fi = Ṗi . The momentum conservation

equation Ṗi = −∂ j T
j

i holds only in flat space and in the absence of external forces. Here we apply a space-dependent
compression, which modifies it to Ṗi = −∂ j T

j
i +p0∂iu, where p0 is the ground state pressure. The momentum source

∂iu is longitudinal, and does not contribute to εi j∂i f j .
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q → 0. In fact, in chiral superconductors, this generalizes to ∇ × J = −ρL∇2[B + (s/2)R],
where R = ∂i∂ jui j −∇2u is the (linearized) curvature, leading to spontaneous magnetization
on curved surfaces [52]. Since, in a Galilean invariant system, the force is related to the
electron current by f= mJ̇, Eq. (2.5) implies an additional contribution

∇× J= (η(2)o /m)∇
4u (2.6)

due to η(2)o , which should be taken into account in future studies of geometrically induced
magnetization.

2.3 Galilean viscosity-conductivity relation

Another consequence of the 1/q2 singularity in Eq. (2.3) is observed in the relation between
the Hall conductivity and the Hall viscosities. Since the theory of a two-dimensional supercon-
ductor, where electromagnetic interactions are approximated by an instantaneous Coulomb
potential, is Galilean invariant, the Hall conductivity and viscosities are related via the Ward
identity

m2ω2σH(ω,q2) = −q2[η(1)o (ω,q2)− q2η(2)o (ω,q2)], (2.7)

see Section 3. Due to the 1/q2 singularity of η(2)o , the relation (1.2) for the uniform Hall
viscosity η(1)o (ω) = η

(1)
o (ω,q= 0) does not hold, and the Hall viscosity tensor ηo(ω,q) cannot

be extracted from the Hall conductivity alone, even in the uniform limit q→ 0.
Our results for the intrinsic two-dimensional superconductor demonstrate that the two

independent components of the Hall viscosity, and η(1)o in particular, cannot generally be ex-
tracted from the Hall conductivity. This does not contradict, but should be contrasted, with
recent theoretical and experimental work extracting η(1)o from the Hall conductivity or from
current profiles [18–22,33,38].

As opposed to the intrinsic two-dimensional chiral superconductor, we find that the Ward
identity still takes the simple form (1.2) in the mixed-dimensional chiral superconductor.

3 Symmetries and transport coefficients

Consider a quantum field theory at zero temperature in two spatial dimensions. The response
of the system coupled to an external U(1) gauge field Aµ and a spatial metric gi j is encoded
into the induced action W[Aµ, gi j]. The induced action can be obtained from the microscopic
action S by integrating out the fluctuating degrees of freedom,

eiW[A,g] =

∫

D[· · · ]eiS[··· ;A,g], (3.1)

where the dots stand for the fluctuating fields.
In this Section, we focus on the symmetry properties of the induced action and thus do

not specify the precise form of the action S, nor the dynamic degrees of freedom we consider,
which depend on the scale at which we seek to describe the system. Following [17,39,40,53]
we present results in real time5 and x = (t,x) stands for a (2 + 1)-dimensional space-time
variable with Fourier transform q = (ω,q). We use

∫

x as a shorthand for
∫

dt d2x.

5However, getting a proper derivation of some expressions, e.g. Eqs. (3.7) and (3.8) or Eq. (3.19) is better done
using the imaginary time formalism.
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3.1 Current, stress tensor and linear response from induced action

In this paper the U(1) gauge field Aµ and the metric gi j are not dynamical fields but rather act
as external sources. By differentiating the microscopic action with respect to the sources, one
gets the current densities

Jµ(x) = −
1

p

g(x)

δS
δAµ(x)

, T i j(x) =
2

p

g(x)

δS
δgi j(x)

, (3.2)

with g = det(gi j). The expectation values of the operators Jµ and T i j can be obtained by
replacing the action S in Eq. (3.3) with the induced action W , i.e.,

〈Jµ(x)〉= −
1

p

g(x)

δW
δAµ(x)

, 〈T i j(x)〉=
2

p

g(x)

δW
δgi j(x)

. (3.3)

The transport coefficients of the theory relate the response of the expectation values of the
current densities to an infinitesimal change of the sources. Introducing hi j = gi j−δi j , one has
to leading order in the sources

δ〈J i(x)〉=
∫

x ′
σi j(x − x ′)[∂tA j(x

′)− ∂ jAt(x
′)] +O(A2, h), (3.4)

δ〈T i j(x)〉= −
1
2

∫

x ′
λi jkl(x − x ′)hkl(x

′)−
1
2

∫

x ′
ηi jkl(x − x ′)∂thkl(x

′) +O(A, h2), (3.5)

which defines the conductivity tensor σi j(x), the elastic modulus tensor λi jkl(x) and the vis-
cosity tensor ηi jkl(x).

As W is the generating functional of connected correlation functions of currents, the trans-
port coefficients can be expressed in terms of its functional derivatives

W(n,m){µa},{ib jb}[{xa}, {yb}; A, g] =
δn+mW[A, g]

δAµ1
(x1) . . .δAµn

(xn)δgi1 j1(y1) . . .δgim jm(ym)
. (3.6)

In the following we denote the vertices evaluated in flat space hi j = 0 and vanishing U(1)
gauge field Aµ by W(n,m){µa},{ib jb}({xa}, {yb}). Due to translation invariance the two-point
vertices are diagonal in Fourier space, for instance W(2,0)i j(q, q′) =W(2,0)i j(q)δq,−q′ .

By further differentiating Eq. (3.3) and using the definitions Eqs. (3.4) and (3.5) one gets

W(2,0)i j(ω,q) = iω+σi j(ω,q), (3.7)

W(0,2)i jkl(ω,q) =
1
4
〈T i j〉δkl −

1
4
λi jkl(ω,q) +

iω+

4
ηi jkl(ω,q), (3.8)

with 〈T i j〉 = 〈T i j(ω = 0,q = 0)〉 being the homogeneous expectation value of the stress
tensor for vanishing sources. In Eqs. (3.7) and (3.8), the left-hand-sides stand for the retarded
correlation functions andω+ =ω+i0+. The infinitesimal imaginary part 0+ enforces causality
in Eqs. (3.4) and (3.5).

3.2 Tensor decompositions of conductivity and viscosity

Both conductivity and viscosity must transform as tensors under SO(2) rotations. The conduc-
tivity of an isotropic system can be decomposed as6

σi j(ω,q) = (qiq j/q2)σL(ω,q2) + (δi j − qiq j/q2)σT(ω,q2) + εi jσH(ω,q2) , (3.9)

6We exclude in Eq. (3.9) an SO(2) invariant term ∝ qiε jkqk + εikqkq j . Such a term leads to dissipation J i Ei

with an unconstrained sign, which is in conflict with the second law of thermodynamics.
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with εx y = +1, εi j = −ε ji the Levi-Civita symbol, and σL, σT and σH being the longitudinal,
transverse and Hall conductivities, respectively. The longitudinal and transverse components
constitute the symmetric part of the conductivity tensor, satisfying σi j = σ ji , while the Hall
component fixes its antisymmetric part, σi j = −σ ji , and describes dissipationless transport of
particles. The Hall conductivity σH(ω,q) vanishes unless time-reversal symmetry is broken.

A similar decomposition is possible for the viscosity tensor. First, we note that by con-
struction, it must be invariant under exchange of either the first or second pair of indices,
ηi jkl = η jikl = ηi jlk, since the metric is symmetric, gi j = g ji . It can be written as a sum of the
even and odd tensors ηe and ηo satisfying

ηi jkl
e = ηkli j

e , ηi jkl
o = −ηkli j

o . (3.10)

The symmetric part includes shear and bulk viscosities, as well as, at finite q, other even tensors
which can be constructed using additionally the momentum qi . In this paper we restrict our
attention to the antisymmetric part of the viscosity tensor, known as Hall or odd viscosity
[15,16]. Much like for the conductivity, the dissipationless7 odd viscosity is a signature of the
breaking of time-reversal symmetry. It has been shown in [34] that, in an isotropic system that
is symmetric under the combination of parity and time-reversal symmetries (PT symmetry)
the Hall viscosity tensor is fixed by only two independent components η(1)o and η(2)o

8

ηo(ω,q) = η(1)o (ω,q2)σxz +η(2)o (ω,q2)[(q2
x − q2

y)σ
0x − 2qxqyσ

0z], (3.11)

where the σab matrices are antisymmetrized tensor products of the Pauli matrices σa

(σab)i jkl = (σa)i j(σb)kl − (σb)i j(σa)kl . (3.12)

Since the momentum-dependent tensor that multiplies η(2)o in Eq. (3.11) vanishes at q= 0,
one expects the response to the homogenous (q= 0) perturbation to be fully determined by the
first term proportional to η(1)o [16], often identified in the literature with the Hall viscosity [15,
35,39]. However, as we discuss later in Sections 4 and 5, in some cases the coefficient η(2)o is

singular like 1/q2 in the q→ 0 limit, such that ηi jkl
o (ω,q = 0) 6= limq→0η

i jkl
o (ω,q). Indeed,

when this happens the second term in Eq. (3.11) doesn’t vanish at small but finite q and cannot
be dropped carelessly, while the viscosity in the homogenous limit is determined by the single
coefficient η(1)o .

3.3 Galilean Ward identities

In a Galilean-invariant system composed of a single species of particles, the conductivity and
viscosity are not independent, as the transport of electrical charge is tied to the transport of
momentum density. The formal expression of this statement comes from the Ward identities
relating the correlation fuctions of the current J i and the stress tensor T i j to each other [37,
39,40].

Consider a non-relativistic theory whose action S is invariant under global U(1) transfor-
mations as well as under global spatial translations. By coupling to an external U(1) gauge

7Dissipation can arise from σH and ηo, if these are not even functions of ω. However, this does not occur for
systems at equilibrium, like the chiral superfluids and superconductors we consider. Indeed, the relations (3.7)
and (3.8) together with the fact that the functional derivatives in Eq. (3.6) can be taken in any order imply
σi j(ω) = −σ ji(−ω) and ηi jkl(ω) = −ηkli j(−ω).

8Our definition of the viscosity tensor η in Eq. (3.5) follows the standard hydrodynamic convention. It agrees
with Refs. [14,39] and is opposite to that used in [34]. Our definition Eq. (3.11) of the viscosity coefficients from
η follows [34]. In particular, comparison with Refs. [14,39] is obtained via ηH = ηH = −η(1)o .

9

https://scipost.org
https://scipost.org/SciPostPhys.9.1.006


SciPost Phys. 9, 006 (2020)

field Aµ and defining the theory in space with a spatial metric gi j , we can promote these two
global symmetries to local gauge invariance, provided Aµ and gi j transform as [53]

δAt = −∂tα− ξk∂kAt − Ak∂tξ
k, (3.13)

δAi = −∂iα− ξk∂kAi − Ak∂iξ
k +mgik∂tξ

k, (3.14)

δgi j = −ξk∂k gi j − gik∂ jξ
k − gk j∂iξ

k (3.15)

under infinitesimal U(1) gauge transformations and spatial diffeomorphisms with respective
parameters α(x) and ξi(x). The induced action inherits the symmetries of the original action
and as a result,

W[Aµ +δAµ, gi j +δgi j] =W[Aµ, gi j]. (3.16)

As the invariance is valid for any infinitesimal transform, Eq. (3.16) implies two indepen-
dent identities that holds at any point in spacetime and any value of the sources. Expressed in
terms of expectation values, these read

1
p

g
∂t(
p

g〈J t〉) +∇i〈J i〉= 0, (3.17)

1
p

g
m∂τ(

p
g〈Jk〉) +∇i〈T i

k〉= Ek〈J t〉+ εik〈J i〉B. (3.18)

Eqs. (3.17) and (3.18) are respectively the continuity equations for the U(1) current and
momentum density in the background of a general U(1) gauge field Aµ and the metric gi j .
Here we introduced the covariant Levi-Civita derivative∇i , the Levi-Civita tensor εi j =

p
gεi j ,

εi j = (1/pg)εi j , the electric field E j = ∂tA j − ∂ jAt and the magnetic field B = εi j∂iA j .
Since Eqs. (3.17) and (3.18) are valid for any configurations of the sources, it is possible

to take further derivatives to obtain relations between n-point correlation functions. For the
two-point functions we derive these in Appendix A. As a result, we find a relation between the
transport coefficients9

m2(ω+)2σi j(ω,q) = qkqlη
ik jl(ω,q)−

1
iω+

qiq jκ−1, (3.19)

where κ−1 = −V
�

∂ P/∂ V
�

S,N is the inverse compressibility. Projecting it on the antisymmetric
part gives

m2(ω+)2σH(ω,q2) = −q2[η(1)o (ω,q2)− q2η(2)o (ω,q2)], (3.20)

which is valid for all q, ω provided λi jkl(ω,q) has no odd part.

4 Effective field theory

At low energies and long wave-lengths the collective degrees of freedom of a nonrelativis-
tic superfluid are determined by spontaneous symmetry breaking and the Galilean-invariant
dynamics can be encoded in a non-linear effective action of Goldstone bosons [53, 54]. The
chiral ground state of two-dimensional fermions paired in the l th partial wave has the order
parameter 〈ψqψ−q〉 ∼ ∆q = (qx + iqy)l |∆0| [1, 3] which has a non-trivial phase winding
around the Fermi surface.10 As a result, the global particle number U(1)N symmetry and the

9As one can see in Appendix A, to get (3.19) we must replace the elastic tensor λi jkl(ω,q) with its q= 0, ω= 0
expression; the Ward identity is thus valid for all momenta and frequencies up to finite q corrections that originate
from λi jkl(ω,q).

10Due to the Pauli principle, the chirality parameter l for spinless fermions must be odd, while that of spin-full
fermions where 〈ψ↑,qψ↓,−q〉 ∼∆q = (qx + iqy)l |∆0| must be even.
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rotation SO(2)R symmetry are both spontaneously broken by the condensate, while a special
linear combination U(1)D of these two symmetries leaves the order parameter invariant. The
spontaneous symmetry breaking thus has the form U(1)N × SO(2)R → U(1)D implying that
there is only one Goldstone mode in the energy spectrum. The effective field theory (EFT) of
this Goldstone boson in a Galilean-invariant two-dimensional chiral superfluid was developed
in [14,34,55].

We first briefly review this theory in Section 4.1 and present the Hall conductivity and Hall
viscosity that were extracted from it. Subsequently, we develop in Section 4.2 the effective
theory of a two-dimensional intrinsic superconductor by incorporating the effects of the in-
stantaneous Coulomb interaction and extract from the induced action the Hall responses of
these chirally paired superconducting states. Finally, in Section 4.3 we extend the calculation
to the case of general long-ranged interactions, encompassing the case of mixed-dimensional
chiral superconductors. A comprehensive analysis of linear response in chiral superconductors
is presented in Appendix C.

4.1 Chiral superfluid

To first order in derivatives, the effective action of the Goldstone field θ , coupled to a back-
ground spatial metric gi j and U(1)N gauge field Aµ, is fixed by the thermodynamic pressure
as a function of chemical potential P(µ) by

S[θ ; A, g] =

∫

x

p
gP(X ), (4.1)

where X = Dtθ −
g i j

2m DiθDjθ and the covariant derivative Dµθ = ∂µθ − Aµ − sωµ [14, 53].
Here the chirality parameter is s = ±l/2 for a chiral superfluid paired in the l th partial wave,
and the spin connection ωµ is constructed from a pair of orthonormal vielbein vectors11 ea

i as

ωt =
1
2

�

εabea j∂t e
b
j + B

�

, ωi =
1
2
εabea j∇ie

b
j =

1
2

�

εabea j∂ie
b
j − ε

jk∂ j gik

�

. (4.2)

The superfluid density is given by n = −
�

1/
p

g
�

δS/δAt = P ′(X ), where the prime indicates
a derivative. In the ground state θ = µt + const., in which case X reduces to the chemical
potential µ and the density n reduces to the thermodynamic expression n0 = P ′(µ).

Following a standard linear response calculation, the Hall transport coefficients were ex-
tracted from the EFT (4.1) in [14, 34, 55]. The Hall conductivity was found to be equal to

σH(ω,q2) =
sn0

2m2

−q2

ω2 − c2
s q2

, (4.3)

where cs =
p

∂ P/∂ n is the speed of sound. The two independent components of the Hall
viscosity tensor (3.11) were calculated,12

η(1)o (ω,q2) =
sn0

2
, η(2)o (ω,q2) = −

sn0

2

c2
s

ω2 − c2
s q2

. (4.4)

The action (4.1) is invariant under local U(1) gauge transformations and spatial diffeo-
morphisms [14,34,55] resulting in the Ward identity (3.20) that relates the Hall conductivity

11Out of the vielbein pair ea
i one can construct the spatial metric gi j = ea

i ea
j and the Levi-Civita tensor

εi j = εabea
i eb

j . Both of these tensors are invariant under local SO(2)ν rotation of vielbeins in internal space la-
beled by the index a. Hence, for a given metric gi j the vielbeins are not uniquely defined, and while we write for
clarity the action (4.1) as a functional of the metric, it should rather read S[θ ; A, e].

12The relative sign between η(1)o and η(2)o in Eq. (4.4) corrects a typo in Ref. [34].
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and viscosity tensors. In the homogeneous limit q→ 0 the Hall viscosity tensor ηo(ω) (3.11)
reduces to only one component η(1)o (ω) and the odd version of the conductivity-viscosity Ward
identity takes the simple form (1.2).

It is clear from Eq. (4.4) that the componentη(2)o (ω,q2) of the Hall viscosity tensor becomes
formally singular at q = 0 in the incompressible limit cs →∞. We will see in the following
that a similar singularity arises in a chiral two-dimensional intrinsic superconductor.

4.2 Intrinsic two-dimensional chiral superconductor

In order to incorporate an instantaneous logarithmic Coulomb interaction between fermions,
we couple the superfluid effective theory to a mediating, or Hubbard-Stratonovich, scalar field
χ. The effective action of an intrinsic two-dimensional chiral superconductor is then

S[θ ,χ; A, g] =

∫

x

p
g
�

P(X −χ) + n̄χ +
1

2e2
g i j∂iχ∂ jχ

�

. (4.5)

The uniform background density n̄ ensures that the overall system is electrically neutral, and
e corresponds to the electric charge of a microscopic fermion. The equation of motion for χ is
the two-dimensional Poisson equation

1
p

g
∂i

�

g i jpg∂ jχ
�

= −eδQ, (4.6)

where δQ = e[P ′(X −χ)− n̄] is the total charge density.
Since the Coulomb potential is instantaneous, it does not break Galilean symmetry. More

generally, we impose that the Coulomb field χ transforms as a scalar under spatial diffeomor-
phisms and does not transform under local U(1)N transformations. As a result, the action (4.5)
is invariant under both transformations, and the Ward identity (3.20) remains intact.

We now turn to the computation of linear response functions, namely the Hall conduc-
tivity and viscosity, based on the action Eq. (4.5). We perform the computation within the
random phase approximation (RPA), and to leading order in derivatives. These approxima-
tions amount to a quadratic expansion of the action Eq. (4.5) in all fields, and are discussed
in Appendix C.1.3. We write the Goldstone field θ = µt −ϕ, where the first term represents
the ground state contribution, while the second term denotes the fluctuating part of the field.
We define the Lagrangian density L by S =

∫

x
p

gL. Expanding L to quadratic order in the
fluctuations ϕ and the Coulomb field χ, we find

L= P(µ)− P ′(µ)
�

χ + Dtϕ +
g i j

2m
DiϕDjϕ

�

+
1
2

P ′′(µ)
�

χ2 + (Dtϕ)
2 + 2χDtϕ

�

+ n̄χ +
1

2e2
g i j∂iχ∂ jχ, (4.7)

where Dµϕ = ∂µϕ + Aµ + sωµ and primes denote derivatives with respect to the chemical
potential. Introducing P0 = P(µ), n0 = P ′(µ) and P ′′(µ) = n0/mc2

s , applying the charge
neutrality condition n0 = n̄ and rearranging the terms, we get

L= P0−n0Dtϕ−
n0

2m
g i j DiϕDjϕ+

1
2

n0

mc2
s
(Dtϕ)

2+
n0

mc2
s
χDtϕ+

1
2e2

g i j∂iχ∂ jχ+
1
2

n0

mc2
s
χ2. (4.8)

At this stage we would like to compute the induced action W[A, g] by preforming the
Gaussian functional integration over the Coulomb and Goldstone fields χ and ϕ.13 First, we
integrate over the Coulomb field χ and find

13 Gaussian functional integration in the presence of a background metric gi j is briefly summarized in Appendix B.
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L= P0 − n0Dtϕ −
n0

2m
g i j DiϕDjϕ

+
1
2

n0

mc2
s
(Dtϕ)

2 +
1
2

�

n0

mc2
s

Dtϕ

�

1

∇2/e2 − n0/mc2
s

�

n0

mc2
s

Dtϕ

�

= P0 − n0Dtϕ −
n0

2m
g i j DiϕDjϕ +

1
2

n0

m
Dtϕ c̃−2

s Dtϕ, (4.9)

where we introduced the renormalized momentum-dependent speed of sound operator as

c̃2
s = c2

s −ω
2
p/∇

2, (4.10)

withωp =
p

e2n0/m the plasma frequency. The Lagrangian (4.9) can alternatively be obtained
following the derivation in Appendix C.1. We are now ready to integrate out the Goldstone
field ϕ. First, we put the functional integral into the standard Gaussian form by performing
several integrations by parts. Next, we follow Appendix B and obtain the induced action

W[A, g] =

∫

x

p
g
§

P0 − n0

�

At +
g i j

2m
AiA j

�

+
1
2

n0

m
At c̃

−2
s At

−
n0

2m

�

mḟ +∇ ·A− ∂̃t c̃
−2
s At

� 1

∇2 − ∂̃t c̃−2
s ∂t

�

mḟ +∇ ·A− ∂̃t c̃
−2
s At

�

ª

, (4.11)

where we introduced f = log
p

g, ∂̃t = ∂t+ ḟ and Aµ = Aµ+sωµ. Expanding now the induced
action around flat space and following Appendix C.2, the induced action can be written in the
covariant form in Fourier space

W[A, g] =

∫

x

�

2P0h− n0At

+
1
2

n0

m

c̃2
s B

2 −E2 + (is/m)EiqiB − (s2/4m2)q2B2

ω2 − c̃sq2

+ 2n0
c̃2
s h[iqiE

i + (s/2m)q2B]−mc̃2
sω

2h2

ω2 − c̃2
s q2

�

, (4.12)

where hi j = gi j−δi j , h= hi
i , and Ei = ∂tAi−∂iAt andB= εi j∂iA j are the electric and magnetic

fields constructed with Aµ. As we argue in Appendix C, the induced action of the chiral su-
perconductor is identical to the one found for the chiral superfluid provided the renormalized
speed of sound c̃s is used.

It is straightforward now to extract electromagnetic and gravitational linear responses from
either (4.11) or (4.12). Their comprehensive calculation and analysis based on the latter
expression of the induced action is performed in Appendix C.2. Here we present results for
the Hall conductivity and viscosities. Using Eq. (3.7) we find the Hall conductivity in flat space
and Aµ = 0

σH(ω,q2) =
1
2
εi jσ

i j =
sn0

2m2

−q2

ω2 −ω2
p − c2

s q2
. (4.13)

This result resembles the Hall conductivity of the chiral superfluid (4.3) with the only differ-
ence in the denominator stemming from the gapped nature of the collective plasmon mode. As
a result, at small frequency ω and momentum q the Hall conductivity vanishes as a quadratic
function of the momentum

σH(ω→ 0,q→ 0) =
s

2me2
q2. (4.14)
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In contrast to the Hall conductivity of the gapless superfluid (4.3), this result is unique and
does not depend on the order of limits.

Using now Eqs. (3.8) and (3.11) we extract the two independent components of the Hall
viscosity tensor

η(1)o (ω,q2) =
sn0

2
, η(2)o (ω,q2) = −

sn0

2
1
q2

ω2
p + c2

s q2

ω2 −ω2
p − c2

s q2
. (4.15)

We find that the component η(1)o is identical to the one found for the chiral superfluid (4.4). In
other words, the instantaneous Coulomb interaction does not affect η(1)o . On the other hand,
the component η(2)o is modified. Most notably, in the homogeneous limit q → 0 it diverges
as 1/q2. We thus conclude that due to the long-range Coulomb potential the homogeneous
limit of the Hall viscosity tensor (3.11) is ill-defined since the result depends on the direction
of the vanishing vector q. We attribute this peculiar singularity to the instantaneous nature of
the Coulomb potential, and in Section 6 will provide an outlook on its fate in a model which
involves photons that propagate with a finite speed of light.

It is straightforward to check that the Hall conductivity and viscosity found above satisfy
the Ward identity (3.20) that follows from the Galilean symmetry of the chiral superconductor,
where the electromagnetic interaction is approximated by the instantaneous Coulomb interac-
tion. In the regime of small momentum q, in contrast to the chiral superfluid, the contribution
of η(2)o to the Ward identity does not drop. The Hall conductivity encodes information about
a particular combination of the two independent components of the Hall viscosity tensor, but
is not sufficient to fix either of them separately.

4.3 Mixed-dimensional chiral superconductor

In a mixed-dimensional superconductor the Coulomb potential decays as 1/|r| at large dis-
tances which is dictated by the three-dimensional nature of the electromagnetic field. It is
straightforward to generalize the effective theory developed in the previous section to this
case. To include a generic power-law decaying interaction, we start from the effective action

S[θ ,χ; A, g] =

∫

x

p
g
�

P(X −χ) + n̄χ +
1

2e2
χ(−∇2)α/2χ

�

, (4.16)

where ∇2 is the covariant Laplace operator and 0 ≤ α ≤ 2. In flat space the scalar field
χ mediates an instantaneous repulsive central potential that decays as |r|α−2. The special
case α = 1 corresponds to the mixed-dimensional superconductor. The case α = 2 is the
intrinsic superconductor discussed in the previous subsection, where the Coulomb potential is
logarithmic.

Following the steps of the previous subsection one arrives at the induced action (4.11),
where now the inverse square of the renormalized speed of sound is

c̃−2
s =

(−∇2)α/2

c2
s (−∇

2)α/2 +ω2
p

. (4.17)

Here as before we introduced ω2
p = e2n0/m. We stress that ωp is a frequency that defines the

plasmon gap only in the case of the intrinsic superconductor, i.e., for α= 2. For all 0< α < 2
plasmon collective modes are gapless and the units of ωp are [ωq(α−2)/2].

The induced action defined by Eq. (4.11) contains all necessary information to extract
electromagnetic and gravitational linear responses. This is discussed in detail for a generic
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value of α in Appendix C.2. Here we present the Hall responses. The Hall conductivity is

σH(ω,q2) =
1
2
εi jσ

i j =
sn0

2m2

−q2

ω2 −ω2
p|q|2−α − c2

s q2
. (4.18)

In a mixed-dimensional superconductor (α= 1) the plasmon mode is gapless and disperses as
p

|q| as low momenta. This implies that the limits ω→ 0 and q→ 0 of the Hall conductivity
do not commute. The Hall viscosities extracted from the induced action are

η(1)o (ω,q2) =
sn0

2
, η(2)o (ω,q2) = −

sn0

2
1
|q|α

ω2
p + c2

s |q|
α

ω2 −ω2
p|q|2−α − c2

s q2
. (4.19)

The component η(2)o diverges as |q|−α in the homogeneous q→ 0 limit. We thus conclude that
for any 0 ≤ α < 2 the η(2)o contribution to the Hall viscosity (3.11) tensor vanishes for q→ 0.
As a result, the gapped intrinsic superconductor, where the Hall viscosity tensor is ill-defined
in the limit q→ 0, is an exceptional case.

An explicit calculation confirms that the conductivity-viscosity Ward identity (3.20) is sat-
isfied for a generic value of α. In the homogeneous case, if α 6= 2, this Ward identity simplifies
to the form (1.2).

5 Microscopic theory

In this Section, starting from a microscopic theory of fermions we derive the transport coeffi-
cients of the chiral paired states. First, we consider the case of the neutral chiral superfluid,
where spinless fermions attract each other via a short-range potential. Next, we study the su-
perconductor by including into the microscopic model the effects of the long-range repulsive
Coulomb interaction.

The starting point of our discussion is the action of spinless fermions ψ interacting via a
separable p-wave short-range potential in space with arbitrary metric gi j and in presence of a
U(1)N gauge field Aµ,

S =

∫

x

p
g
§

ψ∗
�

∂τ − iA0 +
g i j(pi − Ai)(p j − A j)

2m
−µ

�

ψ−λg i j(ψ∗piψ
∗)(ψp jψ)

ª

, (5.1)

where x = (τ, r) is the (2+ 1)-dimensional space-time coordinate, pi = −i∇i the momentum
operator, m the fermion mass and λ the interaction strength. Note that the U(1)N gauge field
doesn’t appear in the interaction term due to the Pauli principle.

In Section 5.1, we derive from Eq. (5.1) the Bardeen–Cooper–Schrieffer (BCS) theory of
p-wave pairing. An induced action for the external fields is formally obtained in Section 5.2,
from which we compute the transport coefficients in Section 5.3. In Section 5.4, we extend
these results in presence of long-range interactions such as the Coulomb interaction.

In this Section the microscopic action Eq. (5.1) is formulated in Euclidian (imaginary) time,
t → −iτ, which is more convenient for the linear response computation. The induced action
is given by the functional integral

exp(−W[A, g]) =

∫

D[ψ,ψ∗]exp(−S[ψ,ψ∗; A, g]) (5.2)

and like its real-time counterpart, it is the generating functional of the connected correlation
functions. We compute two-point correlation functions f (iωn, qx , qy) depending on a Matsub-
ara frequency iωn from which the real-time, retarded dynamical correlation functions f R(ω,q)
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are obtained after analytic continuation iωn→ω+ =ω+ i0+. Notice that upon going to imag-
inary time, the time component of the U(1)N gauge field At transforms like a time derivative,
At → iA0. This should be taken into account when going back to real time to determine the
retarded correlation functions.

5.1 BCS action

To decouple the p-wave interaction, we introduce an auxiliary two-component bosonic (com-
plex) field ∆, and perform a Hubbard-Stratanovitch transform to get

S[ψ,ψ∗,∆; A, g] =

∫

x

p
g
§

ψ∗
�

∂τ − iA0 +
g i j(pi − Ai)(p j − A j)

2m
−µ

�

ψ

−
1
2
(∆

i
)∗(ψpiψ)−

1
2
∆

i
(ψ∗piψ

∗) +
1

4λ
|∆|2

ª

. (5.3)

In absence of external sources (gi j = δi j , Aµ = 0), the saddle point for the pairing field ∆
is given by

∆=∆eiθu, u= (1,±i), (5.4)

with ∆ ≥ 0. ∆ is the magnitude of the order parameter for the symmetry breaking pattern
discussed in Section 4, for the specific case of p-wave (l = 1) superfluidity. While in the
normal phase ∆ = 0, in the superfluid regime ∆ 6= 0. We also define the global phase θ
of the order parameter. The sign ± in u distinguishes the two ground states with opposite
chiralities, characterized by the angular momentum per particle s = ±1/2. Both the U(1)N
gauge symmetry and the SO(2)R rotation symmetry are spontaneously broken, while p · ∆
remains invariant under the so-called diagonal U(1)D symmetry. Furthermore, the ground
states break down the time reversal (T) and parity (P) symmetries, while remaining invariant
under the PT combination.

Fluctuations of the pairing field around the saddle-point value correspond to the four col-
lective modes of the superfluid. In particular, the gapless phase mode is crucial to preserve the
U(1)N gauge invariance of the theory. The other three modes are gapped and to investigate
the theory at the BCS level, we discard their fluctuations while retaining the phase mode to
Gaussian (quadratic) order.

For non-vanishing sources, the saddle point value of ∆ depends on both Aµ and gi j . We
will now transform the action (5.3) in a manner where the U(1)N gauge invariance and dif-
feomorphism invariance are manifest at the mean-field level. First, since under U(1)N gauge
transforms ψ → exp(iα)ψ the pairing field has to transform as ∆ → exp(2iα)∆, we now
decompose

∆=∆e2iθ , (5.5)

with θ the fluctuating global phase of the pairing field, and perform the unitary transform
ψ→ exp(iθ )ψ. That is equivalent to making the substitution in the action

∆→∆, Aµ→Aµ = Aµ − ∂µθ , (5.6)

with each term being now manifestly U(1) gauge invariant.
Furthermore, we introduce the a pair of vielbein vectors eia which satisfy eiaδabe j b = g i j .

We now decompose ∆
i
= ∆aeai . In curved space, the mean-field configuration is given by

∆a∝ ua = (1,±i) [1,34,56,57].
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After these manipulations, the action reads

S[ψ,ψ∗;A, g] =

∫

x

p
g
§

ψ∗
�

∂τ − iA0 +
g i j(pi −Ai)(p j −A j)

2m
−µ

�

ψ

−
1
2
∆∗aeia(ψpiψ)−

1
2
∆aeia(ψ∗piψ

∗)
ª

(5.7)

and the BCS approximation is obtained by setting ∆ to its mean-field value, ∆a = ∆ua with
∆> 0. We have discarded the constant |∆|2/4λ contribution to the action which is important
to determine the saddle point but doesn’t further contribute to the calculation. As the viel-
beins transform like vectors under general coordinate transformations, the mean-field action
remains diffeomorphism-invariant. Combined with the U(1)N gauge invariance, this justifies
the form of the mean-field action and implies that transport coefficients derived from this
theory must satisfy the Ward identities (3.19) and (3.20).

5.2 Induced action

The action is quadratic in the fermion fields. We introduce the Nambu spinors

Ψ†
x = (ψ

∗
x ,ψx), Ψ x = (ψx ,ψ∗x)

T (5.8)

to rewrite the action

S[Ψ,Ψ†;A, h] = −
1
2

∫

x ,x ′
Ψ†

xG
−1
x ,x ′Ψ x ′ , (5.9)

where G−1 is the inverse Nambu propagator, depending on Aµ and hi j = gi j −δi j . It reads

G−1
x ,x ′ =

p
g
§

− ∂τσ0 + iA0σ
z +

1
2
(∂τ f )σz − ξp,c(A, h) +∆ei

apiσ̃
a
ª

δ(x − x ′) . (5.10)

In Eq. (5.10), we introduce the shorthand notations f = log
p

g,

ξp,c(A, h) =
g i j

2m
[pi p jσ

z − (piA j + Ai p j)σ
0 + AiA jσ

z]−µσ0, (5.11)

ξp,c(A = 0, h = 0) = ξpσ
z , ξp = p2/2m − µ and the “twisted” Pauli matrices σ̃ defined by

σ̃y = ∓σy , σ̃a = σa for a 6= y , where ∓ is fixed by the chirality of the p± ip state.
The inverse bare propagator G−1

0 , obtained by dropping h and A, is diagonal in Fourier
space,

G−1
0,q = iωnσ0 − ξqσz +∆qaσ̃

a =

�

iωn − ξq ∆u · q
∆u∗ · q iωn + ξq

�

, (5.12)

with q = (iωn,q). Inverting G−1
0 yields

G0,q =

�

Gq Fq
F∗q −G−q

�

, (5.13)

where we introduce the normal and anomalous Green functions, Gq and Fq respectively,

Gq = −〈ψqψ
∗
q〉= −

iωn + ξq

ω2
n +∆2q2 + ξ2

q
, Fq = −〈ψqψ−q〉=

∆q · u
ω2

n +∆2q2 + ξ2
q

. (5.14)
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For future convenience, we also introduce

fq =
∆

ω2
n +∆2q2 + ξ2

q
(5.15)

such that Fq = (q · u) fq.
The next step is to integrate the fermions to obtain an induced action S[A, h] for the phase

mode θ and the sources A and h. Using the standard perturbation theory [13], we expand the
inverse propagator in powers of the sources, writing G−1 = G−1

0 − Γ , with

Γx ,x ′ = (1−
p

gx)G−1
0,x ,x ′ −

§

∆(ei
a−δ

i
a)piσ̃

a+
�

iA0+
1
2
∂τ f

�

σz − (ξp,c(A, h)−ξpσ
z)
ª

δ(x − x ′)

(5.16)
being a vertex representing the coupling of the fermions to the phase mode and the sources.

The effective action then reads up to second order in h and A

S[A, h] = −Tr ln(−G−1
0 + Γ ) = −Tr ln(−G−1

0 ) + TrG0Γ +
1
2

TrG0ΓG0Γ + o(A2, h2) , (5.17)

where the trace Tr runs over both the spinor indices and space-time coordinates. Due to the
presence of both sources h and A, keeping track of all terms in the expansion is cumbersome.
Because of this we first reorganize Eq. (5.17) in powers of A,

S[A, h] = S0[h] +

∫

x
Aµ,x Nµx [h] +

1
2

∫

x ,x ′
Aµ,xQµνx ,x ′[h]Aν,x ′ , (5.18)

where S0[h], Nµx [h] and Qµνx ,x ′[h] are functionals of the metric h which can be inferred by
identifying Eqs. (5.17) and (5.18). By construction Qµνx ,x ′[h] is symmetric, Qµνx ,x ′[h] =Qνµx ′x[h].

Now we integrate out the phase field θ to get the induced action

W[A, h] =W0[h] +

∫

x
Aµ,x Nµx [h] +

1
2

∫

x ,x ′
Aµ,xQµνx ,x ′[h]Aν,x ′

−
1
2

∫

x ,x ′
∂xµ

�

Nµx [h] +

∫

y
Qµνx ,y[h]Aν,y

�

[∂µ∂νQ
µν]−1

x ,x ′

× ∂x ′µ

�

Nµx ′[h] +

∫

y
Qµνx ′,y[h]Aν,y

�

, (5.19)

where [∂µ∂νQµν]−1
x ,x ′ is understood as the inverse of ∂yµ∂y ′ν

Qµνy,y ′ in the operator sense.

5.3 Hall transport coefficients of a chiral superfluid

From the induced action (5.19), the transport coefficients σi j , ηi jkl are deduced by computing
functional derivatives of W wrt A and h, see Eqs. (3.7) and (3.8).

5.3.1 Conductivity

To determine the conductivity σi j , it is sufficient to investigate the theory in flat space h = 0.
In that case the calculation reduces to that in Ref. [13]; we present its outline in Appendix D.1.
To present the results in a compact way, and anticipating the analytic continuation, we make
the replacement iAτ→ Aτ and introduce q0 = −iωn such that iA0,q = i(A0,q+ iωnθq) becomes
A0,q = A0,q − iq0θq. After that replacement, the induced action for A becomes

S[A] = 1
2

∫

q
A−q,µQ

µν(q)Aq,ν, (5.20)
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κµ κν

(a) Bubble contribution to Qµν(q).

κµ κσqσ qρκ
ρ

κν

qαqβQ
αβ

(b) Phase mode contribution to Kµν(q).

Figure 2: Diagrammatic representations of the loop integral contributions to the cor-
relators (a) Qµν(q) and (b) Kµν(q). The solid line stands for the bare fermion Nambu
propagator G0, the dashed line for the phase mode θ propagator, the wavy line for
the external U(1)N gauge field Aµ insertions, and the dots for the interaction vertices
κµ, see Eq. (5.21).

with the correlation (polarization) functions Qµν(q) defined by

Qµν(q) =
n0

m
δµ=ν6=0 +

1
2

∫

p
tr[κµp,qG0,pκ

ν
p,qG0,p+q], κ0

p,q = σ
z , κ j

p,q =
q j + 2p j

2m
σ0, (5.21)

with tr denoting the trace only over the internal spinor indices and
∫

p = (2π)
−3
∫

d2pdωn the
summation over both momenta p and Matsubara frequencies iωn. While the first term on the
rhs of Eq. (5.21) is the diamagnetic contribution to the current-current correlation function,
the second term is a polarization bubble represented diagramatically in Fig. 2a.

Upon integrating out the phase mode θ we obtain the induced action for the U(1)N gauge
field Aµ,

W[A] = 1
2

∫

q
A−q,µKµν(q)Aq,ν, (5.22)

Kµν(q) =Qµν(q)−
Qµρ(q)qρqσQσν(q)

qαqβQαβ(q)
, (5.23)

where the phase mode contribution to Kµν(q) is represented in Fig. 2b. Since an arbitrary
gauge transform reads Aµ→ Aµ−iqµβ(q) for some scalar function β , qµKµν(q) = Kµν(q)qν = 0
enforces the U(1)N gauge invariance of the induced action. Eq. (5.22) gives

W(2,0)i j(q) = K i j(q) (5.24)

from which the conductivity σi j(ω,q), defined by Eq. (3.7), is deduced after analytic contin-
uation,

σi j(ω,q) =
1

iω+
KR,i j(ω,q), (5.25)

where KR,i j(ω,q) = K i j(iωn → ω+,q) denotes the retarded part of the correlation func-
tion K i j(iωn,q). The evaluation of the one-loops diagrams contributing to it is done in Ap-
pendix D.2. The resulting Hall conductivity, in the small momentum and frequency regime, is

σH(ω,q2) =
sn0

2m2

−q2

ω2 − c2
s q2

, (5.26)

where s = ±1/2 is the angular momentum per particle in the p-wave chiral ground state and
cs =

p

2πn0/m2 is the speed of sound. This result is in agreement with the effective field
theory result (4.3) and the previous microscopic calculation [13].

In the above calculation, two ingredients are necessary to obtain a non-vanishing Hall
conductivity. First, preserving the U(1)N gauge invariance of the theory is crucial. Indeed,
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since Qi j(q) =Q ji(q), σH would vanish if we hadn’t kept the phase mode θ . Furthermore, we
stress the role of the current-density correlation function, Q0i(q), which is a sum of an even
and odd parts, see Eq. (D.11),

Q0i(q) =Q0i
e (q) +Q0i

o (q), Q0i
e (q) =Q0i

e (−q), Q0i
o (q) = −Q0i

o (−q). (5.27)

In particular, while the density-density Q00, current-current Qi j and even current-density Q0i
e

correlators are defined in a similar manner as in a non-chiral superfluid (up to the precise form
of the gap function), the presence of the odd current-density correlator Q0i

o is only possible
due to the time-reversal symmetry breaking. For σH(q) to be finite, it is necessary to have a
nonvanishing Q0i

o (q). Changing the chirality of the ground state from q · u = qx ± iqy into
qx ∓ iqy flips the sign of Q0i

o (q) implying σH→−σH.

5.3.2 Viscosity

To determine the Hall viscosity, it is sufficient to work with the induced action (5.19) with
hi j 6= 0 and Aµ = 0. Only the fist and last term of Eq. (5.19) remain. Furthermore, as a
consequence of Eq. (D.4) ∂xµNµx [h] = O(h), so it is enough to expand Nµx [h] and Qµνx ,x ′[h]
to respectively first and zeroth order in h to get W[h] to second order in h. In particular,
Qµνx ,x ′[h = 0], i.e. Qµν evaluated in flat space, has been computed above and is given by
Eq. (5.21). The action (5.19) thus simplifies to

W[A, h] =W0[h] +Wθ [h], (5.28)

where we introduced

Wθ [h] = −
1
2

∫

q
Nµ−q[h]

qµqν
qαqβQαβ(q)

Nνq [h]. (5.29)

The two terms on the rhs of Eq. (5.28) have different origins. W0[h] is the contribution to
the induced action one would get at the mean-field level; i.e., by discarding the phase mode
θ , and we dub it the pure geometric contribution. On the other hand, we call Wθ [h] the phase
contribution, as it corresponds to what is obtained by integrating out the phase mode, with
two vertices qµNµq [h] representing an effective interaction between the metric h and the phase
mode θ linked by the inverse Goldstone propagator qαqβQαβ(q).

Since we are interested only in determining η(1)o and η(2)o at leading order in momentum
and frequency, we organize the computation accordingly. Dimensional analysis suggests that,
at leading order, η(1)o = O(|q|0) and η(2)o = O((c−2

s ω
2 − q2)−1), an intuition confirmed by the

effective field theory calculation [see Eq. (4.4), and [34] for the calculation up to the next-to-
leading order]. Either term W0[h] and Wθ [h] brings a different contribution to the viscosity
tensor. The one-loop integrals appearing in W0[h] and the vertices qµNµq [h] are all regular in
the infrared limit q→ 0, ω→ 0 and thus, the only way a term of order O(|q|−2) can appear
in the calculation is through the inverse Goldstone propagator ∼ (c−2

s ω
2−q2) from the phase

contribution. Hence, the leading contribution to η(2)o is entirely fixed by Wθ [h]. Conversely,
as the Goldstone propagator does not appear in η(1)o at the leading order, η(1)o is determined
by W0[h]. We now compute each contribution to the viscosity separately.

Contribution from the pure geometric part Here we start from the fermionic action defined
by the inverse propagator (5.10), discarding for now the phase mode θ . We work at vanishing
U(1)N gauge field, i.e. A= 0. The fermions are integrated out following Eq. (5.17), where Γ is
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γij γkl

(a) Bubble contribution to W0[h].

Iij Ikl

(b) Phase mode contribution to Wθ [h].

Figure 3: Diagrammatic representation of the loop integrals contributions to the
pure geometric (a) and phase parts (b) of the induced action. The curly line stands
for the metric hi j insertions, the dots for the fermion-metric interaction vertices
γi j [Eq. (5.32)] and the grey blobs for the phase-metric interaction vertices I i j

[Eq. (5.36)].

given by Eq. (5.16) with A set to zero. The detailed calculation is presented in Appendix D.3.
The end result is

W0[h] =
1
2

∫

q
h−q,i jR

i j,kl(q)hq,kl , (5.30)

with

Ri j,kl(q) =
1
2

∫

p
tr[G0,pγ

i j
p,−p−qG0,p+qγ

kl
p+q,−p], (5.31)

γ
i j
q,−q′ =

1
2
δi j
�

(2q0 − q′0)σ
0 −

q · q′

2m
σz +∆q′kσ̃

k
�

−
q(iq′ j)

2m
σz +

1
2
∆q′(iσ̃ j). (5.32)

The tensor Ri j,kl(q) is defined by a one-loop integral analogous to the polarization bubble Qi j

[Eq. (5.21)] that is relevant in the calculation of the conductivity. It is represented diagramat-
ically in Fig. 3a. From Eq. (3.7), it is related to the odd viscosity through

ηi jkl
o (ω,q) =

4
iω+

RR,i jkl(ω,q), (5.33)

where RR,i jkl(ω,q) = RR,i jkl(iω→ω+,q). The odd viscosities are obtained by projecting onto
the odd tensors σxz for η(1)o and σ0x or σ0z for η(2)o , as done in Appendix D.4. At small
frequency and momentum, one gets

η(1)o (ω,q2) =
sn0

2
+O(ω2,q2), (5.34)

while the contribution to η(2)o is of order O(|q|0), i.e. is subleading.

Contribution from the phase We now compute the contributions to the viscosity tensor that
originate from the phase mode. The linear term Nµq [h] is determined to leading order in hi j
in Appendix D.5, yielding

qµNµq [h] = hi j,q I i j
q , (5.35)

I i j
q = −

1
2

tr

∫

p
G0,p

�

q0σ
z +
(2p+ q) · q

2m
σ0
�

G0,p+q

�

(p+ q)(i p j)

2m
σz +

1
2
∆σ̃(i p j)

�

. (5.36)

The resulting contribution to the viscosity tensor ηi jkl is given by

ηi jkl
o (ω,q) =

4
iω+

SR,i jkl(ω,q), (5.37)
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with SR,i jkl(ω,q) the retarded part of

S i jkl(q) = −
I i j
−q I kl

q

qαqβQαβ(q)
, (5.38)

represented diagramatically in Fig. 3b.
The projection of the corresponding viscosity tensor onσab matrices is done in Appendix D.5.

For η(1)o , the projection vanishes, hence the contribution from the phase mode to η(1)o is at most
of order O(|q|4/(c−2

s ω
2 − q2)). For η(2)o , the direct calculation yields

η(2)o (ω,q2) = −
sn0

2

c2
s

ω2 − c2
s q2

. (5.39)

Having determined the odd conductivity (5.26) as well as the two components of the odd
viscosity tensor, (5.34) and (5.39), one checks that the Ward identity (3.20) is satisfied. Con-
trary to the case of the conductivity, where the incorporation of the phase mode is crucial to
preserve the U(1)N gauge invariance and get the correct result for the associated transport
coefficient σH, it is not obvious a priori whether including the phase mode is important or
not to obtain the viscosity tensor. This is reflected in the calculation as the phase mode does
not affect the value of η(1)o but is crucial to obtain η(2)o . We notice that only by going beyond
mean-field is the Ward identity (3.20) fulfilled, as expected since the mean-field theory breaks
down U(1)N gauge invariance which the identity relies on.

5.4 Inclusion of Coulomb and non-local interactions

In this section, we now additionally incorporate a non-local Coulomb interaction between the
fermions, for which the corresponding Euclidean action reads in flat space

SC,f[ψ,ψ∗] =
1
2

∫

x ,x ′
(ψ†ψ− n̄)V (r− r′)(ψ†ψ− n̄), (5.40)

with V (r) the interaction potential, e the electric charge and n̄ the background density. We
consider potentials satisfying V (q) ∼ |q|−α at long distances (q → 0), with 0 ≤ α < 2. The
case α= 0 corresponds to of short-ranged interactions, α= 1 to a mixed-dimensional Coulomb
interaction, and α = 2 to an intrictically two-dimensional Coulomb potential, see Section 4.3
for a more thourough discussion.

The density-density interaction in Eq. (5.40) is decoupled by means of a Hubbard-Stratanovitch
transform, with an auxiliary field χ, yielding

SC,f[ψ,ψ∗,χ] =
1
2

∫

x
χV−1χ +

∫

x
(ψ∗ψ− n̄)(−iχ), (5.41)

where V−1 = (−∇2)α/2/e2 is the inverse propagator for the Coulomb field. The expression
(5.41) allows to generalize the theory to arbitrary curved space14

SC[ψ,ψ∗,χ; g] =
1
2

∫

x

p
gχV−1χ +

∫

x

p
g(ψ∗ψ− n̄)(−iχ), (5.42)

with the Laplace operator in V−1 replaced by the covariant Laplacian g i j∇i∇ j .

14To formulate the theory in curved space starting from the action (5.40), one would need to replace the distance
r− r′ by the geodesic distance [39]
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Q̃µν
κµ κν

=
κµ κν

+
κµ κ0 κ0 κν

V (q)
+ · · ·

Figure 4: Renormalization of the polarization bubbles Qµν(q) due to the Coulomb
interaction. The crossed line denotes the Coulomb potential V (q)which only couples
to fermions through the density vertices κ0.

The Coulomb interaction couples to the fermions like the time-component of the U(1)N
gauge field. Hence, the total action ST = S + SC reads

ST[Ψ,Ψ†; Ã, h] = S[Ψ,Ψ†; Ã, h] +
1
2

∫

x

p
gχV−1χ + in̄

∫

x

p
gχ, (5.43)

where S is the action (5.9) and we introduced Ã0 = Ã0 + χ, Ãi = Ai . We integrate out the
fermions following Eqs. (5.17) and (5.18) to obtain the effective action for φ, χ, A, and h to
quadratic order in fields and sources,

ST[Ã, h] =W0[h] +

∫

x
Ãµ,x Nµx [h] +

1
2

∫

x ,x ′
Ãµ,xQµνx ,x ′[h]Ãν,x ′

+ in̄

∫

x

p
gχ +

1
2

∫

x

p
gχV−1χ. (5.44)

At this stage, we integrate out the Coulomb interaction. The linear terms in χ proportional
to Nµx [h] and to n̄ in Eq. (5.44) compensate each other to ensure charge neutrality and the
effective action for A and h reads

S[A, h] =W0[h] +

∫

x
Aµ,x Nµx [h] +

1
2

∫

x ,x ′
Aµ,xQ̃µνx ,x ′[h]Aν,x ′ , (5.45)

where Q̃[h] is defined by

Q̃µν[h] =Qµν[h] +Qµ0[h]
V

p
g − VQ00

Q0ν[h], (5.46)

with the products defined in the operator sense. In the specific case of flat space,
Q̃µν = Q̃µν[h= 0] reduces to

Q̃00(q) =
Q00(q)

1− V (q)Q00(q)
, Q̃ j0(q) =

Q j0(q)

1− V (q)Q00(q)
, (5.47)

Q̃ i j(q) =Q i j(q) +
V (q)Q i0(q)Q0 j(q)

1− V (q)Q00(q)
. (5.48)

Expanding the Coulomb field to quadratic order and integrating it out is equivalent to the ran-
dom phase approximation (RPA) and expressions (5.46) to (5.48) can equivalently be obtained
through resummation of the bubble diagrams illustrated in Fig. 4.

Comparing the actions (5.18) and (5.45), the only difference is that the kernel Qµν[h] has
been replaced by Q̃µν[h]. It is straightforward now to extract the Hall transport coefficients.
Following Section 5.3.1, one finds the induced action for the U(1)N gauge field in flat space
to be

W[A] = 1
2

∫

q
A−q,µK̃µν(q)Aq,ν, K̃µν(q) = Q̃µν(q)−

Q̃µρ(q)qρqσQ̃σν(q)

qαqβQ̃αβ(q)
, (5.49)
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yielding the Hall conductivity

σH(ω,q2) =
sn0

2m2

−q2

ω2 −ω2
p|q|2−α − c2

s q2
. (5.50)

As for the viscosity, we follow Section 5.3.2. The calculation of η(1)o does not involve Q̃ and
η(1)o is thus unaffected by the interaction. On the other hand, η(2)o is related to

S̃ i jkl(q) = −
I i j
−q I kl

q

qαqβQ̃αβ(q)
, (5.51)

through Eq. (5.37), and thus becomes

η(2)o (ω,q2) = −
sn0

2
1
|q|α

c2
s |q|

α +ω2
p

ω2 −ω2
p|q|2−α − c2

s q2
(5.52)

in presence of the long-range interaction V (r)∼ |r|2−α.
The Hall conductivity and viscosities obtained here agree with what was found in Sec-

tions 4.2 and 4.3 from the effective field theory approach.

6 Discussion and outlook

In this paper we computed electromagnetic and geometric linear responses in non-relativistic
two-dimensional chiral superconductors, where in addition to short-range attractive interac-
tions that lead to chiral pairing, elementary fermions interact via an instantaneous long-range
Coulomb potential. For the two-dimensional logarithmic Coulomb interaction we found that
the homogeneous q→ 0 limit of the Hall viscosity tensor ηo is ill-defined because the result
depends on the direction of the momentum vector q. We believe that this peculiar behavior
is an artifact of the instantaneous nature of the Coulomb potential. It is expected that the
problematic q2 denominator of the component η(2)o in Eq. (4.15) is replaced by q2 −ω2/c2

after the Coulomb potential is replaced by a retarded electromagnetic interaction that prop-
agates with a finite speed of light c. In this way at a finite frequency ω the 1/q2 singularity
will be regularized. To clarify this issue in a future work we are planning to compute the Hall
viscosity and conductivity in the Lorentz-invariant chirally paired model [58] coupled to the
Maxwell electromagnetism. This approach can also shed new light on the geometric Meissner
effect [52] and the geometric induction [59] in chiral superconductors.

It would be interesting to extend the ideas presented in this paper to non-abelian quan-
tum Hall states (such as Pfaffian, anti-Pfaffian, particle-hole symmetric Pfaffian) which can be
viewed as chiral paired states of composite fermions [1, 44] that couple to a dynamical 2+ 1
dimensional abelian gauge field.

Inspired by recent work on viscoelastic linear response of anisotropic systems [60, 61], it
would be interesting and straightforward to extend this work to anisotropic chiral supercon-
ductors.
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A Ward identities

In this Appendix we derive the continuity equations (3.17) and (3.18) and the Ward identity
(3.19). Our starting point is Eq. (3.16) which implies that for the infinitesimal transforms
defined by (3.13) to (3.15)

∫

x
δAµ(x)W(1,0)µ[x; A, g] +δgi j(x)W(0,1)i j[x; A, g] = 0. (A.1)

This holds for any choice of α(x), ξi(x) and thus

∂µW(1,0)µ = 0, (A.2)

m∂t(W
(1,0)
k )− [(∂ j gik + ∂i g jk − ∂k gi j)W(0,1)i j + (gik∂ jW(0,1)i j + g jk∂iW(0,1)i j)]

= (∂µAk − ∂kAµ)W(1,0)µ, (A.3)

where every quantity is evaluated at arbitrary spacetime point and for any value of the sources
and k is an arbitrary space index. The indices are raised and lowered using the spatial metric
tensor g. Using now Eq. (3.3) one gets the continuity equations, Eqs. (3.17) and (3.18).

By taking a further derivative of Eq. (A.3) wrt Aν and setting A= 0, g = δ we get in Fourier
space

−mω+W(2,0)kν(q)− [q jW(1,1)ν,k j(−q) + qiW(1,1)ν,ik(−q)]

+
1
p

V
{qkW(1,0)ν(q = 0) +δk

ν[ω
+W(1,0)t(q = 0)− qiW(1,0)i(q = 0)]}= 0. (A.4)

We also differentiate Eq. (A.3) wrt gab. This gives15

−mω+W(1,1)k,ab(q)− 2q jW(0,2)(k j),ab(q)

=
1
p

V

�

δkbq jW(0,1)(a j)(q = 0) +δkaq jW(0,1)(b j)(q = 0)− qkW(0,1)ab(q = 0)
	

. (A.5)

We contract Eq. (A.5) with qa and cancel the resulting qaW(1,1)k,ab term with the one appearing
in Eq. (A.4) to get

m2(ω+)2W(2,0)i j(q) = 4qkqlW(0,2)ik jl(q) +
1
p

V
{2δi jqkqlW(0,1)kl(q = 0)

−mω+[qiW(1,0) j(q = 0) +δi j(ω+W(1,0)t(q = 0)− qkW(1,0)k(q = 0))]}. (A.6)

The second derivatives of the induced action W can be related to physical observables via
Eqs. (3.7) and (3.8). For vanishing sources

〈Jµ〉= 0, 〈T i j〉= Pδi j (A.7)

15To get a fully symmetric expression we remark that W (0,1)i j = W (0,1)(i j) = (W (0,1)i j +W (0,1) ji)/2 and use
δgab/δg i j = (δa

i δ
b
j +δ

a
j δ

b
i )/2.
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and to leading order in momentum

λi jkl(q,ω) = P(δikδ jl +δilδ jk) +κ−1δi jδkl +O(|q|), (A.8)

with P the pressure and κ−1 = −V
�

∂ P/∂ V
�

S,N the inverse compressibility. Using these results
in Eq. (A.6) yields the Ward identity (3.19).

B Gaussian functional integration in curved space

Here we provide some details on how Gaussian functional integration is performed in the
presence of a general background metric gi j(t,x).

Consider a d-dimensional Gaussian scalar theory defined in a general coordinate system
by the Euclidean action

SE =

∫

x

p
g
�

1
2
ϕaϕ + bϕ

�

, (B.1)

where g = det gi j , a is a symmetric operator and b is some given scalar function of space and
time.

The general-coordinate invariant inner product in the space of scalar fields is given by

〈ϕ1|ϕ2〉=
∫

x

p
gϕ1ϕ2, (B.2)

where the volume element
p

g(t,x) can be viewed as a (diagonal) metric tensor in the space
of scalar fields. It follows that the general-coordinate invariant functional measure is [62–64]

D[ϕ] =
∏

x

g1/4(x)dϕ(x). (B.3)

As a result, the Gaussian functional integral in Euclidean time can be performed as follows,

∫

D[ϕ]e−
∫

x
p

g
�

1
2ϕaϕ+bϕ

�

=

∏

x g1/4

q

det
�p

ga/2π
�

e
1
2

∫

x

�p
g b(pga)−1p

g b
�

=
1

p

det(a/2π)
e

1
2

∫

x
p

g ba−1 b. (B.4)

C Linear response from EFT of two-dimensional chiral supercon-
ductors

In this Appendix we compute to leading order in derivatives and within RPA the induced action
resulting from the EFT (4.16) which describes a chiral superconductor, where charged fermions
interact via a two-body potential whose form in Fourier space is V (q)∼ |q|−α. We consider the
range 0≤ α≤ 2, which includes short range interactions at α= 0, the 3d Coulomb interaction
V (r)∼ 1/|r| at α= 1, and the 2d Coulomb interaction V (r)∼ log |r| at α= 2.

In Appendix C.1 we do so using a formalism based on the Legendre transform of the pres-
sure functional. That calculation, complementary to what is done in Sections 4.2 and 4.3,
unifies the superconductor EFTs (4.5) and (4.16) with the superfluid EFT (4.1) by introducing
the renormalized speed of sound. We then derive and analyze the resulting linear response
functions in Appendix C.2.
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C.1 Legendre transform interpretation of the effective theory and renormalized
speed of sound

C.1.1 Generalities

We start by generalizing Eq. (4.16) to

S =

∫

x

p
g
�

P(X −χ) + n0χ +
1
2
χ

1

V (−∇2)
χ

�

, (C.1)

where V (q2) is the Fourier transform of a density-density interaction between microscopic
fermions. We then rewrite P(X ) = Xρ − ε (ρ), where ρ is a new dynamical field which phys-
ically corresponds to the density, and ε = L{P} is the Legendre transform of P, the internal
energy density of the superfluid [14]. Eq. (C.1) can then be written as

S =

∫

x

p
g
�

Xρ − ε(ρ)− (ρ − n0)χ +
1
2
χ

1

V (−∇2)
χ

�

. (C.2)

Since χ appears quadratically it can be integrated out exactly, leading to

S =

∫

x

p
g(ρX − ε̃[ρ]), (C.3)

where ε̃[ρ] = ε(ρ)−(ρ−n0)V (−∇2)(ρ−n0)/2 is the internal energy density of the superfluid,
supplemented by the interaction energy. The square brackets indicate that ε̃ is generally a
functional, as opposed to the function ε. Integrating out ρ is now equivalent to a (functional)
Legendre transform from ε̃ to P̃ = L{ε̃},16

S =

∫

x

p
g P̃[X ]. (C.4)

The superconductor EFT (4.16) is therefore equivalent to the superfluid EFT (4.1), with a
renormalized pressure functional P̃[X ] which simply accounts for the additional interaction
energy V (q2) of microscopic fermions.

C.1.2 Quadratic pressure functional and speed of sound

Let us now assume that the pressure functional P(X ) is quadratic,

P(X ) = P0 + n0(X −µ) +
1
2

n0

mc2
s
(X −µ)2. (C.5)

In this case the Legendre transform P̃[X ] can be computed explicitly and one finds

P̃[X ] =P0 + n0(X −µ) +
1
2

n0

mc2
s
(X −µ)

1

1+ n0V (−∇2)/mc2
s

(X −µ). (C.6)

Comparing with Eq. (C.5), we see that the only effect of the interaction V (q2) is to renormalize
the speed of sound, c2

s → c̃2
s = c2

s +n0V (−∇2)/m, where c̃s has been promoted from a number
to an operator. This reads in Fourier space

c2
s → c̃2

s (q
2) =c2

s +ω
2
p|q|

−α (C.7)

16Note that the Legendre transform is an involution, L−1 = L.

27

https://scipost.org
https://scipost.org/SciPostPhys.9.1.006


SciPost Phys. 9, 006 (2020)

for V (q2) = e2|q|−α. Thus, for quadratic P, the superconductor EFT is identical to the super-
fluid EFT with a renormalized speed of sound. Note that this renormalization is trivial for the
contact interaction α = 0, since in this case cs is independent of q, as in the superfluid. Us-
ing the thermodynamic expression K−1 = n−1(δn/δP̃)T = n0mc2

s , Eq. (C.7) implies the (zero
temperature) inverse compressibility

K−1(q) =n0m(c2
s +ω

2
p|q|

−α). (C.8)

In particular, for all α > 0 the superconductor is incompressible with respect to a uniform
compression, K(q = 0) = 0. In Appendix C.2 we will use Eq. (C.7) to deduce the induced
action of the superconductor from that of the superfluid.

C.1.3 Approximations: linear response, derivative expansion, and RPA

The pressure functional P is not quadratic in general, and in particular in the microscopic
model of Section 5. However, for the purpose of computing linear response functions, to
lowest order in derivatives, and within RPA, only an expansion of P to quadratic order (C.5)
around µ is sufficient, because the effective theory Eq. (C.1) can be expanded to second order
in all fields. Indeed, linear response is extracted from the quadratic expansion in background
fields. To lowest order in derivatives, diagrams with the Goldstone fieldϕ running in loops can
be neglected [34,53], which amounts to a quadratic expansion in ϕ. Finally, the RPA amounts
to neglecting diagrams with χ running in loops, i.e a quadratic expansion in χ. Explicitly, to
second order in all fields Eq. (C.1) reduces to

S =

∫

x

p
g
§

P0 − n0Dtϕ +
n0

2m
[c−2

s (Dtϕ)
2 − (Dϕ)2]

+
n0

mc2
s

�

χDtϕ +
1
2
χ(c2

sω
−2
p (−∇

2)α + 1)χ
�ª

, (C.9)

and integrating over χ leads to the speed of sound renormalization

S =

∫

x

p
g
§

P0 − n0Dtϕ +
n0

2m
[c̃−2

s (Dtϕ)
2 − (Dϕ)2]

ª

, (C.10)

which is nothing but the action (4.9). We note that space and time derivatives are counted
equally, and that the leading derivative corrections to (C.10) are due to second order terms that
add to P (X ) in the superfluid EFT [34,53], rather thanϕ loops. As a result, the linear response
functions obtained in Appendix C.2 below, which can formally be expanded to infinite order
in derivatives, receive corrections at order L+2, where L is their leading order in derivatives.
In particular, σH in Eq. (C.13) below, is of order α, and receives derivative corrections at order
α+2. Additionally, η(2)o in Eq. (C.19) is of leading order −2, and receives corrections at zeroth
order.

C.2 Induced action and linear response

Since the quadratic effective action (C.10) is identical to that of the superfluid under the re-
placement cs→ c̃s, the quadratic induced action in the superconductor can be directly obtained
from that of the superfluid by applying the same replacement. The induced action in chiral
superfluids was computed and analyzed in Refs. [14, 34], and below we use the results of
Appendix D of Ref. [34]. Replacing cs → c̃s, the induced action of the chiral superconductor
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expanded around flat space is we obtain

W[g, A] =

∫

x

�

2P0h− n0At

+
1
2

n0

m

c̃2
s B

2 −E2 + (is/m)EiqiB − (s2/4m2)q2B2

ω2 − c̃sq2

+ 2n0
c̃2
s h[iqiE

i + (s/2m)q2B]−mc̃2
sω

2h2

ω2 − c̃2
s q2

�

, (C.11)

where hi j = gi j − δi j and h = hi
i . This expression encodes the entire linear response of the

chiral superconductor in flat space within RPA and to the lowest order in derivatives, as we
now discuss.

First, note that the terms in W , and the corresponding linear response functions, can be
split into three groups, according to their dependence on c̃s. The terms in the first group are
independent of c̃s, and accordingly, they are unaffected by the additional fermion interaction
V that distinguishes the superconductor from the superfluid. These appear in the first line of
(C.11), and include the ground state pressure P0 and density n0, as well the first odd viscosity
η(1)o = sn0/2 [Eq. (4.19)].

The second group of terms in W includes those where c̃s appears only in the denominator,
and include the terms −E2+(is/m)E iqiB be derived from −E2+(is/m)EiqiB in the second line
of (C.11), which encode the longitudinal and Hall conductivities, σ and σH. To write down
the conductivities we will use the explicit plasmon propagator

1
ω2 − c̃2

s (q2)q2
=

1
ω2 − c2

s q2 −ω2
p|q|2−α

, (C.12)

which is gapped in the case α = 2, but has a gapless dispersion relation ω ∼ |q|1−α/2 for
0≤ α < 2. We then find the longitudinal and Hall [Eq. (4.18)] conductivities,

σ(ω,q) =
n0

m
iω

ω2 − |q|2−αω2
p − c2

s q2
, σH(ω,q) =

sn0

2m2

−q2

ω2 − |q|2−αω2
p − c2

s q2
. (C.13)

Note that here and below, the superfluid expressions can be obtained by setting ωp = 0. We
can also extract the density-density response χnn = iq2σ/ω and verify using Eq. (C.8), the
compressibility sum-rule K−1(q) = n2

0/χnn(ω = 0,q), which follows from the thermodynamic
identity K−1 = n2 (δµ/δn)T .

The third group of terms in W includes those in which c̃s appears in both the numerator
and the denominator. Since

c̃2
s (q

2)

ω2 − c̃2
s (q2)q2

=
1
|q|α

c2
s |q|

α +ω2
p

ω2 − c2
s q2 −ω2

p|q|2−α
∼



















c2
s +ω

2
p

ω2 (α= 0)
1
|q|α

ω2
p

ω2 (0< α < 2)
1
q2

ω2
p

ω2−ω2
p
(α= 2)

(C.14)

as q → 0 at ω 6= 0, response functions of this kind may diverge in this limit, for 0 < α ≤ 2.
On the other hand, as is clear from the right hand side of Eq. (C.14), response functions in
this group are identical in the superfluid and superconductor at ω = 0 and q 6= 0. A basic
example is given by the term B2 included in B2 in the second line of Eq. (C.11), which implies
the London diamagnetic response,

ρL(ω,q) = −
n0

m
1
|q|α

c2
s |q|

α +ω2
p

ω2 − c2
s q2 −ω2

p|q|2−α
. (C.15)
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Another term in this group is the h2 term in the third line of Eq. (C.11), which implies that
the“dynamic compressibility” is given by

K−1
d (ω,q) = n0m

ω2

|q|α
c2
s |q|

α +ω2
p

ω2 − c2
s q2 −ω2

p|q|2−α
. (C.16)

The dynamic compressibility is defined as the pressure response to volume changes, K−1
d =

−4δ2W/δh2, and vanishes at ω = 0. On the other hand, limω→∞ K−1
d (ω,q) = K−1(q), and

K−1
d (ω,q)∼ K−1(q)∼ q−α as q→ 0.

The mixed responses κi j,k = δT i j/δEk = 2δJ k/δ∂thi j and χ i j = 2δn/δhi j are encoded in
E i∂ih coming from hqiE

i in the third line of (C.11),

κi j,k(ω,q) = n0δ
i j iqk 1
|q|α

c2
s |q|

α +ω2
p

ω2 − c2
s q2 − |q|2−αω2

p
, (C.17)

χ i j(ω,q) = −n0δ
i j|q|2−α

c2
s |q|

α +ω2
p

ω2 − c2
s q2 − |q|2−αω2

p
. (C.18)

Finally, the second odd viscosity comes from hqi(∂tω
i−∂ iωt) contained in hqiE

i in the induced
action, and is given by [Eq. (4.19)]

η(2)o (ω,q2) = −
1
2

sn0
1
|q|α

c2
s |q|

α +ω2
p

ω2 − c2
s |q|2 − |q|2−αω2

p
. (C.19)

D Details of microscopic calculation

In this Appendix we provide details for the computations outlined in Section 5.

D.1 Flat space induced action

In flat space (hi j = 0), we rewrite the action (5.9) for the Nambu spinors in Fourier space as

S[Ψ†,Ψ,A] = −1
2

∫

q
Ψ†

qG
−1
0,qΨq +

1
2

∫

q,q′
Ψ†

q[Γ1,q,−q′ + Γ2,q,−q′]Ψq′ , (D.1)

where the mean field propagator is given by Eq. (5.12) and we have split the vertex
Γ = G−1

0 − G−1 introduced in Eq. (5.16) into two vertices Γ1,2 defined by

Γ1,q,−q′ = −iA0,q−q′σz −
1

2m
(q+ q′) ·Aq−q′σ0, Γ2,q,−q′ =

1
2m

∫

p
Ap ·Aq−q′−pσz . (D.2)

In terms of these vertices, the contributions to Eq. (5.17) to first and second order in A are

S[A] = 1
2

Tr[G0Γ1] +
1
2

Tr[G0Γ2] +
1
4

Tr[G0Γ1G0Γ1]. (D.3)

The first two sums yield

−
1
2

TrG0Γ1 = −iA0,q=0n0, −
1
2

TrG0Γ2 =
n0

2m

∫

p
Ap ·A−p, (D.4)
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with n0 =
1
2〈Ψ

†σzΨ〉 =
1
2 Tr[G0σz] the density of electrons in the ground state in absence of

external sources. The first term does not contribute to the response functions as it is linear in
Aµ and ∂µθ vanishes when evaluated at q = 0.

To evaluate the last integral, we use that with the shorthand notations κµ [Eq. (5.21)],

Γ1,p+q,−q = −(iA0,pκ
0
p,q +A j,pκ

j
p,q) , (D.5)

hence

1
4

Tr[G0Γ1G0Γ1] =
1
2

∫

q

§

Ai,−qA j,q

∫

p

1
2

tr[κi
p,qG0,pκ

j
p,qG0,p+q]

+ (iA0,−q)A j,q

∫

p

1
2

tr[κ0
p,qG0,pκ

j
p,qG0,p+q]

+Ai,−q(iA0,q)

∫

p

1
2

tr[κi
p,qG0,pκ

0
p,qG0,p+q]

+ (iA−q,0)(iAq,0)

∫

p

1
2

tr[κ0
p,qG0,pκ

0
p,qG0,p+q]

ª

. (D.6)

Introducing the correlators Qµν(q) [Eq. (5.21)] and transforming back to real time gives Eq. (5.20).
Integrating out the phase mode θ yields Eq. (5.22).

D.2 Conductivity from the loop integrals

The correlations functions Qµν(q) are expressed in terms of the normal and anomalous prop-
agators Gq and Fq ,

Q00(q) =

∫

p
GpGp+q −Re[F∗p Fp+q], (D.7)

Qi0(q) =
1

2m

∫

p
(qi + 2pi){GpGp+q + i Im[F∗p Fp+q]}, (D.8)

Qi j(q) =
n0

m
δi j +

1
4m

∫

p
(qi + 2pi)(q j + 2p j){GpGp+q +Re[F∗p Fp+q]}. (D.9)

These expressions can be further simplified by exploiting the space rotation symmetry of the
theory and noticing that the functions are either odd or even under ωn→−ωn. In particular,
Qi0(iωn,q) can be split into an even and an odd part,

Qi0(iωn,q) =Qi0
e (iωn,q) +Qiτ

o (iωn,q), (D.10)

Qi0
e (q) =

1
2m

∫

p
(qi + 2pi)GpGp+q, Qi0

o (q) =
i

2m

∫

p
(qi + 2pi) Im F∗p Fp+q. (D.11)

While both Qi0
e and Qi0

o transform like vectors, the latter is odd under both time-reversal and
parity. The decomposition for all Qµν(iωn,q) reads

Q00(iωn,q) =Qτ(ω2
n,q2), (D.12)

Qi0
e (iωn,q) = −iωnqiQe(ω2

n,q2), Qi0
o (iωn,q) = iεikqkQo(ω2

n,q2), (D.13)

Qi j(iωn,q) = δi jQA(ω2
n,q2) + qiq jQB(ω2

n,q2). (D.14)

Each of the five scalar functions Qτ, Qe, Qo, QA, QB can be obtained by projecting the Qµν onto
the corresponding tensors.
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This decomposition allows us to write the projection of the conductivity tensor onto its
antisymmetric part as

σH(ω,q) =
εi j

2
1

iω+
KR,i j(ω,q) =

q2Qo(q2QB +QA+ω2Qe)
q4QB + q2QA+ω2(2q2Qe +Qτ)

, (D.15)

with the functions on the rhs evaluated at the momentum q and analytically continued to the
real frequency ω. The polarisation bubbles are regular at small q and ω and in that limit
Eq. (D.15) reduces to

σH(ω→ 0,q→ 0) =Qo(0, 0)
q2QA(0,0)

q2QA(0, 0) +ω2Qτ(0, 0)
(D.16)

up to order ω2, q2. These loop integrals evaluate to

Qτ(0, 0) = −
m
2π

, QA(0, 0) =
n0

m
, Qo(0, 0) = ±

1
8π

. (D.17)

Substituting these results into Eq. (D.16) gives rise to Eq. (5.26).

D.3 Pure geometric induced action

In this Appendix, we determine the contributions to the odd viscosities coming from S0[h]. In
the first step we compute S0[h] to quadratic order in hi j = gi j − δi j . To that end, we expand
Γ = G−1

0 − G−1, defined by Eq. (5.16), in powers of h, setting A= 0.
First, we recall the expansions

p
g = 1+

1
2
δi jhi j +

1
2

h−
1
8
δi jδklhi jhkl +O(h3), (D.18)

eia = δia −
1
2

hia +
3
8

hikhk
a +O(h3). (D.19)

In the above expressions, we denote h = det(hi j) = εikε jlhi jhkl and the indices of hi j (and
δi j) are raised and lowered using the flat metric, as well as the second index of the vielbeins.
Using this, one has

Γx ,x ′ = −
�

1
2
δi jhi j +

1
2

h−
1
8
δi jδklhi jhkl

�

G−1
0 −

�

1+
1
2
δi jhi j

�

×
§

1
4
∂τ

�

δi jhi j + h−
1
2
δi jδklhi jhkl

�

−
hi j p

i p j

2m
+∆(

1
2

hia −
1
8

hikhk
a)p

iσ̃a
ª

δ(x − x ′) +O(h3). (D.20)

There are two contributions of quadratic order in hi j to the induced action: Tr Γ (2)G0 and
Tr Γ (1)G0Γ

(1)G0, with Γ (i) the term of i-th order in hi j in Γ . A first remark is that the tadpole
term Tr Γ (2)G0 does not contribute to the anti-symmetric part of the viscosity. To see it, one
notes that Γ (2) can be expressed as

Γ
(2)
x ,x ′ = [hi jhkl D

i j,kl
1 + ∂τ(hi jhkl)D

i j,kl
2 ]δ(x − x ′), (D.21)

with Di j,kl
1,2 differential operators satisfying Di j,kl

1,2 = Dkl,i j
1,2 . The corresponding induced action

is∝
∑

p h−p,i jhp,kl

∫

q G0(q)D
i j,kl
1 (q) which is symmetric under the exchange of the two pairs

of indices (i j) and (kl).

32

https://scipost.org
https://scipost.org/SciPostPhys.9.1.006


SciPost Phys. 9, 006 (2020)

It is thus sufficient to expand Γ to order one in hi j and, in Fourier space,

Γ
(1)
q,−q′ = hi j(q− q′)

§

1
2
δi j
�

q′0σ
0 −

qkq′ l

2m
σz +∆q′kσ̃

k
�

+
�

1
4
(q− q′)0δ

i jσ0 −
qiq′ j + q′ iq j

4m
σz +

1
4
∆[q′ iσ̃ j + σ̃iq′ j]

�ª

, (D.22)

which yields the induced action S0 = Tr[Γ (1)G0Γ
(1)G0]/4, see (5.30).

D.4 Pure geometric contribution to the odd viscosities

The odd viscosities are obtained by projecting Ri j,kl onto the odd tensorsσab, using the identity
(σab)i jkl(σcd) jilk/8 = δa,cδb,d − δa,dδb,c . All loop integrals obtained while computing the
trace are regular at small q, ω and the contribution to η(2)o is of order O(|q|,ω). As for η(1)o ,
one has in terms of the propagators (5.14) and (5.15)

η(1)o (ω,q) =
1

iω
is∆
16m

∫

p
p(p+ q){[p(2p+ q) fp +m∆Gp]G−p−q

− [p(2p+ q) fp +m∆G−p]Gp+q}. (D.23)

To compute this expressions, we first recall that the fermion density is given by

n0 =
1
2

Tr[G0σz] = −
1
2

∫

q,ωn

(iωn + ξq)eiωnν + (−iωn + ξq)e−iωnν

ω2
n + q2∆2 + ξ2

q

=
1
2

∫

q

1−
ξq

q

q2∆2 + ξ2
q

=

∫

q

q2∆2(q2/m− ξq)

4(q2∆2 + ξ2
q)3/2

. (D.24)

We have introduced a convergence factor ν→ 0+ to take care of the time ordering of the opera-
tors. The last integral is obtained by performing an integration by parts
∑

q f (q2) = −
∑

q q2 f ′(q2), discarding the boundary term. Evaluating Eq. (D.23) at q = 0
and carrying the integral over Matsubara frequencies, one gets

η(1)o = s

∫

q

q2∆2(q2/m− ξq)

8(q2∆2 + ξ2
q)3/2

=
sn0

2
, (D.25)

which is Eq. (5.34) in the main text.

D.5 Phase term contribution to the odd viscosities

In this Appendix, we determine the contribution to the odd viscosities from the phase mode
part of the induced action. To that end, we determine first Nµ[h], the coefficient of the term
linear in Aµ in the induced action S[A, h]. We expand Γ , defined by Eq. (5.16) in powers of
A.17 Denoting Γ (i) the term of order O(Ai),18 we have

Γ
(0)
p,−p′ =∆0p′i(e

ia
p−p′ −δ

iaδp,p′)σ̃a +
pi p
′
j + p′i p j

4m
(g i j

p−p′ −δ
i jδp,p′)σz , (D.26)

Γ
(1)
p,−p′ =

∫

q
A−q,µγ

(1)µ
p,−p′,q, γ

(1)0
p,−p′,q = −eδp−p′+qσ

z , γ
(1)i
p,−p′,q = −

e
2m
(p j + p′j)g

i j
p−p′+qσ

0.

(D.27)

17Anticipating the analytic continuation we replace iAτ by Aτ.
18Note that this convention is different to that of Appendix D.3 where A is dropped and Γ (i) denotes the terms

of order O(hi).
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By identifying the induced action (5.17) with the expansion (5.19), we find

Nµq [h] =
1
2

tr

∫

p
G0,pγ

(1)µ
p,−p,q +

1
2

∫

p
trG0,pγ

(1)
p,−p−q,qG0,p+qΓ

(0)
p+q,−p. (D.28)

Computing Nµq at order O(h) is done by evaluating the bubble diagram TrG0Γ
(1)G0Γ

(0), setting
hi j = 0 in Γ (1) and keeping Γ (0) to linear order in hi j , which produces Eqs. (5.35) and (5.36).

To project the viscosity tensor deduced from Eqs. (5.37) and (5.38) onto the antisymet-
ric tensors σab, we expand I i j

q in the limit of small momentum at order O(q2). I i j
q can be

decomposed onto symmetric rank-two tensors that transform like q under SO(2) rotations,19

I i j
q = [Iδ(iωn) + q2 Iδ,1(iωn)]δ

i j + [Iuu(iωn) + q2 Iuu,1(iωn)]u
(iu∗ j)

+ Iqu(iωn)q
(iu j)(q · u∗) + Iqu∗(iωn)q

(iu∗ j)(q · u∗) + Iqq(iωn)q
iq j +O(q2), (D.29)

where the integrals Iα are functions of the external frequency iωn.
No matter what are the values of the integrals Iα, the projection of S i jkl onto σxz vanishes

and there is no contribution to η(1)o . We now extract the viscosity η(2)o from the integrals Iα de-
fined by Eq. (D.29). Expanding at small frequencies and noting Iα(iωn) = Iα(0)+iωn I ′α(0)+O(ω

2
n),

the projection yields

η(2)o (q,ω) = 8s
Iqu(0)[I ′δ(0) + I ′uu(0)]

n/m(c2
sω

2 − q2)
. (D.30)

To get this result, we have used that Iqu(0) = −Iqu∗(0), I ′qu(0) = I ′qu∗(0), and as shown in

Appendix D.2 qαqβQαβ(q) = −n/m(c−2
s ω

2 − q2) at small frequency and momentum. The
relevant integrals are

Iδ(iωn) =−
iωn

8m

∫

p,iωm

p2[p2 f (p, iωm) f (p, iωm)− G(−p,−iωm)G(−p,−iωm)

− G(p, iωm)G(p, iωm)] +O(ω2
n), (D.31)

Iuu(iωn) =
iωn

8m

∫

p,iωm

p2{ f (p, iωm)[2∆m(G(−p,−iωm) + G(p, iωm))− p2 f (p, iωm)]

+ 2∆m(G(−p,−iωm) + G(p, iωm)) f (p, iωm)}+O(ω2
n), (D.32)

Iqu(iωn) =
4∆m
32m2

∫

p,iωm

p2G(−p,−iωm)[ f (p, iωm) + p2 f ′(p, iωm)]

− |p|4 f (p, iωm)[ f (p, iωm) + 4∆mG′(p, iωm)] +O(ωn), (D.33)

where G′ = ∂q2 G, f ′ = ∂q2 f . As in Appendix D.3, we perform for each integral the sum over
Matsubara frequencies and obtain ultraviolet-divergent integrals. We regularize them using a
hard momentum cutoff and compare these integrals to those defining the density by identifying
the leading logarithmic term. We thus obtain Iqu(0) = n0/32m, I ′

δ
(0)+I ′uu(0) = −2n0 to finally

get Eq. (5.39).
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