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Abstract

Scalar unitary representations of the isometry group of d-dimensional de Sitter space
SO(1,d) are labeled by their conformal weights ∆. A salient feature of de Sitter space
is that scalar fields with sufficiently large mass compared to the de Sitter scale 1/` have
complex conformal weights, and physical modes of these fields fall into the unitary con-
tinuous principal series representation of SO(1,d). Our goal is to study these represen-
tations in d = 2, where the relevant group is SL(2,R). We show that the generators of the
isometry group of dS2 acting on a massive scalar field reproduce the quantum mechani-
cal model introduced by de Alfaro, Fubini and Furlan (DFF) in the early/late time limit.
Motivated by the ambient dS2 construction, we review in detail how the DFF model must
be altered in order to accommodate the principal series representation. We point out a
difficulty in writing down a classical Lagrangian for this model, whereas the canonical
Hamiltonian formulation avoids any problem. We speculate on the meaning of the vari-
ous de Sitter invariant vacua from the point of view of this toy model and discuss some
potential generalizations.
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1 Introduction

An elegant feature of general relativity is the appearance of certain universal geometries at the
edges of parameter space. An intimately familiar instance of this phenomenon is the emer-
gence of an AdS2 throat in the near horizon region of black holes cooled to zero temperature,
in any spacetime dimension. AdS2 is so pertinent that uncovering its underlying microscopic
nature was deemed imperative early on [1–6], with renewed interest more recently [7–14].
A guiding principle in the study of AdS2 is its SL(2,R) group of isometries, which are used to
classify the particle states in, and spacetime excitations around, the background geometry.

There exists a similarly universal geometry, which also exhibits an SL(2,R) symmetry, that
emerges at the edge of parameter space when the cosmological constant is positive. This
spacetime is dS2 and it appears in the near horizon region of black holes in de Sitter space
whose Schwarzschild radius is pushed towards the de Sitter horizon, again in any spacetime
dimension. These are known as Nariai black holes [15, 16], and their holography has also
received some interest [17,18] (see [19–24] for recent work relevant to dS2).

Since time immemorial, we have used the fact that the AdS isometry group coincides with
that of a conformal field theory in one less dimensions. Exploring the allowed set of particle
dynamics in AdS thus amounts to mapping out the space of consistent conformal field theories.
The latter has now been codified as “the bootstrap program” [25–29]; and for various impor-
tant reasons [30, 31], the starting point is always a Hamiltonian bounded from below such
that the dynamics generated and mediated through interactions is stable. Particle states in
this case are labeled by their conformal dimensions ∆ which are taken to be real and positive.

However, in de Sitter space for fields with mass-squared above the de Sitter scale, the con-
formal dimensions are complex. We will review this fact below. This is not surprising from a
group theoretic standpoint; SL(2,R) admits unitary representations with complex conformal
weights. These representations are known as the continuous principal series [32, 33], an in-
triguing feature of which is that the L0 spectrum is unbounded above and below, meaning it
does not fall within the framework of the conventional bootstrap. Nevertheless the principal
series representation makes an appearance in numerous settings of physical interest:

• As one of the allowed boundary modes of AdS2 [34].

• In the operator spectrum of complex SYK [35].

• In the spectrum of particle states in the ergo-region of a rotating black hole, indicating
the onset of superradiance [14,36].
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• In the celestial decomposition of scattering states [37–39].

• In the decomposition of conformal four-point functions [40].

Given the ubiquity of the principal series, it would be useful to have a toy model to ground
ourselves. The simplest example would be an SL(2,R) invariant quantum mechanics, such as
the de Alfaro, Fubini, Furlan (DFF) model [41]. Depending on the value of∆ appearing in the
Hamiltonian, this model is known to fill out the discrete and continous series representations of
SL(2,R), but not the principal series representation. In fact, the DFF model must be modified
in order to accommodate the principal series [42,43], a fact that we will review in detail below.
We will also show how the modified DFF model is born out by the dS2 isometries acting on a
massive scalar field, at late times.

The structure of our paper is as follows: section 2 starts with a review of the unitary
representations of SL(2,R). In section 3 we study the DFF model of [41], suitably altered to
accommodate the principal series [42, 43]. In section 4 we describe the geometry of dS2 in
global coordinates, including its isometries. In section 5 we study free massive scalar field
theory in dS2 with m2`2 > 1/4. We solve for the modes at late times and show that the dS2
isometries acting on these late time modes reduces to the DFF model discussed in the previous
section. We end this section by speculating on a possible analog of the family of de Sitter
invariant vacua for the DFF model. Section 6 is saved for speculation and future directions.

2 Review of unitary irreducible representations of SL(2,R)

Our goal in this section is to briefly review the unitary irreducible representations of SL(2,R),
first classified in [32,33]. Both dS2 and AdS2 have an isometry algebra given by SL(2,R), but
an important distinction is that the states in AdS2 fall under irreducible representations of the
universal cover fSL(2,R). Since this is a subtle point, we will use this section to point out some
of the key differences that arise between SL(2,R) and its universal cover.

We start with the generators of SL(2,R) which satisfy:

[D, H] = iH , [D, K] = −iK , [K , H] = 2iD . (2.1)

While much of this section is abstract, we have in mind that H is the Hamiltonian, D generates
dilatations and K is the special conformal generator. The group elements all commute with
the following quadratic Casimir:

C2 ≡
1
2
(HK + KH)− D2 . (2.2)

We will label the eigenvalues of C2 as∆(∆−1) with∆ the conformal dimension that labels the
representation. To build such a representation, we follow [44–46] and start with a conformal
primary, which is a state annihilated by K:1

K |0〉= 0 , D|0〉= i∆|0〉 . (2.3)

Starting from the primary, we use the Hamiltonian to ‘translate’ the state:

|t〉 ≡ e−iH t |0〉 . (2.4)

Using the Baker-Campbell-Hausdorff equation in conjunction with the algebra (2.1) gives:

H|t〉= i∂t |t〉 , D|t〉= i(t∂t +∆)|t〉 , K |t〉= i
�

t2∂t + 2t∆
�

|t〉 . (2.5)

1Usual presentations take D to be anti-Hermitian, with its eigenvalue∆ real (see e.g. [44]). In our conventions,
D is Hermitian, which explains the appearance of the factor of i when acting on a primary.
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It will be convenient to work in a basis of energy eigenstates |E〉. These can be obtained from
the |t〉 states by Fourier transforming:

|E〉 ≡
ˆ ∞
−∞

d t eiE t |t〉 . (2.6)

We can integrate by parts to reveal that the action of the algebra on this basis is:

H|E〉= E|E〉 , D|E〉= −i(E∂E +∆s)|E〉 , K |E〉= −
�

E∂ 2
E + 2∆s∂E

�

|E〉 , (2.7)

where
∆s ≡ 1−∆ (2.8)

is known as the shadow conformal dimension. In order to classify the unitary representations,
we must define an inner product such that the operators in (2.1) are self-adjoint. For H this
implies:

0= 〈E′|H|E〉 − 〈E′|H|E〉= (E′ − E)〈E′|E〉 ,

where we act with H on the left in the first term, whereas in the second H acts on the right.
From this equality we determine

〈E′|E〉= f (E)δ(E − E′) . (2.9)

The same analysis with the dilatation operator D further constrains the inner product as fol-
lows:

0= 〈E′|D|E〉 − 〈E′|D|E〉= (i(E′∂E′ +∆
∗
s ) + i(E∂E +∆s))〈E′|E〉

,→ (E′∂E′ + E∂E)〈E′|E〉= −(∆s +∆
∗
s )〈E

′|E〉 .

From this we conclude

f (E) = |E|1−∆s−∆∗s [c−Θ(−E) + c+Θ(E)] , (2.10)

where Θ(x) is the Heaviside step function and c± are arbitrary constants. Finally the same
analysis on the special conformal transformation gives:

(∆s −∆∗s )(1−∆s −∆∗s ) = 0 . (2.11)

The final condition leaves us with two options: either∆s ∈ R or∆s =
1
2(1− iν)with ν ∈ R, the

latter is known as the principal series representation, and is the main focus of this paper. Note
that these are the only two choices that result in a real Casimir eigenvalue ∆(∆ − 1). Also
note that in (2.10), we have allowed for the inner product to distinguish between negative
energy states and positive energy states. This is motivated by the fact that the original DFF
model [41] analyzes a system where c− = 0, meaning the Hilbert space is spanned only by
positive energy states.

A generic state can be written as a superposition of energy eigenstates

|ψ〉=
ˆ

dEψ(E)|E〉 (2.12)

and the above analysis gives that the inner product between any two states is:

〈χ|ψ〉=
ˆ

dE f (E)χ∗(E)ψ(E) , f (E) = [c−Θ(−E) + c+Θ(E)]

¨

|E|2∆−1 ∆ ∈ R
1 ∆ ∈ 1

2(1+ iν)
.

(2.13)
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The action of the generators (2.7) on the wavefunctions ψ(E) can be infered by integration
by parts:

Hψ(E) = Eψ(E) , Dψ(E) = i(E∂E+∆)ψ(E) , Kψ(E) = −(E∂ 2
E +2∆∂E)ψ(E) . (2.14)

A crucial feature in this construction appears if we want to introduce a ‘position’ basis, which
we will label as |x〉, along with a resolution of the identity

ˆ
d x |x〉〈x |= 1 . (2.15)

In this basis the inner product is then

〈χ|ψ〉=
ˆ ˆ

d x d y 〈y|x〉χ∗(y)ψ(x) (2.16)

and the overlap 〈y|x〉 is determined by the particular position space representation we choose
for the energy eigenstates, along with compatibility with (2.13). The content of this paper will
rely on the possibility of interesting position bases for the generators of SL(2,R).

Ladder operators and normalizability

The standard way of classifying the unitary SL(2,R) representations starts by defining the
following operators

L0 =
1
2
(H + K) , (2.17)

L± =
1
2
(H − K)∓ iD . (2.18)

We now proceed as follows: we take the generator L0 to be compact, meaning it has a discrete
spectrum and its eigenvalues are integers. The operators L± raise and lower this eigenvalue
by 1. A crucial difference between the case at hand and the universal cover fSL(2,R) is that the
universal cover allows the eigenfunctions of L0 to not be single valued, meaning its eigenvalues
are not necessarily integers.

The Hilbert space is spanned by states ψn(E) that satisfy:

L0ψn = −nψn , L±ψn = −(n±∆s)ψn±1 . (2.19)

The general solution to these equations is:

ψn(E) =
ˆ ∞
−∞

d t(1+ i t)−n−∆s(1− i t)n−∆s e−iE t . (2.20)

We must now determine whether these states are normalizable with respect to the inner prod-
uct (2.13).

Principal Series: ∆= 1
2(1+ iν)

The states with ∆ = 1
2(1 + iν) are normalizable for any integer n if f (E) = 1 in (2.13). As

mentioned before, this representation is known as the principal series and will be our main
concern in what follows.
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Complementary series: ∆ ∈ R

We now move on to the case of ∆ ∈ R, where we have to determine the conditions for nor-
malizability of the wavefunctions. Without loss of generality, we restrict to the case n = 0, as
states with different n can be obtained by repeated application of L±. The Fourier transform
(2.20) can be readily done and gives

ψ0(E)∝ |E|
1
2−∆K 1

2−∆
(|E|) , (2.21)

where Kν(x) is a modified Bessel function. It is easy to check that normalizability with respect
to (2.13) (for any choice of positive c±) requires 0<∆< 1. Thus states in the complementary
series are labeled by n ∈ Z and 0<∆< 1.

Discrete series: ∆s ∈ Z+

The last case pertains to ∆s ∈ Z+. If this is the case, two more representations can be defined:
those in the discrete series. These are often called highest/lowest weight representations. It
is straightforward to infer by looking at (2.19) that for n= ±∆s:

L±ψn=∓∆s
= 0 . (2.22)

These states are explicitly given by

ψn=±∆s
(E)∝ |E|2∆s−1e∓EΘ(±E) (2.23)

and are normalizable with respect to (2.13) (again with arbitrary choices for c±) so long as
∆s ∈ Z+. The highest weight states are obtained by acting with powers of L− onψn=−∆s

. These
states are spanned by n = −∆s,−∆s − 1 . . . . The lowest weight states are obtained similarly
by acting with L+ on ψn=∆s

with eigenvalues labeled by the set n=∆s,∆s + 1, . . . . We pause
here to mention that the discrete series representations only existing for integer ∆s may seem
unfamiliar in the context of AdS. This is because the relevant group in AdS2 is actually the
universal cover fSL(2,R) and we need not have integer ∆s in this case. For dS2 this implies
that the masses of e.g. scalars need to be tachyonic and fine tuned in order to expect these
representations to appear.

Summary

These exhaust the unitary irreducible representations of SL(2,R). We provide a summary of
these representations in the following table for convenience:

Representation Range of ∆ Range of n
Principal series ∆= 1

2(1+ iν) with ν ∈ R n ∈ Z
Complementary series 0<∆< 1 n ∈ Z
Discrete highest weight ∆s = 1−∆ ∈ Z+ n= −∆s,−∆s − 1,−∆s − 2 . . .
Discrete lowest weight ∆s = 1−∆ ∈ Z+ n=∆s,∆s + 1,∆s + 2 . . .

In the next section we will review a particular model that furnishes the principal series repre-
sentation of this algebra.
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3 The DFF model and the principal series representation

In this section, we work with a particular representation of the operators (2.1). Precisely, we
will consider the following SL(2,R) generators acting on wavefunctions of a single degree of
freedom θ ∈ [0,2π):

H = 2i cos
�

θ

2

��

∆ sin
�

θ

2

�

− cos
�

θ

2

�

∂θ

�

, (3.1)

K = −2i sin
�

θ

2

��

∆ cos
�

θ

2

�

+ sin
�

θ

2

�

∂θ

�

, (3.2)

D = −i [∆ cosθ + sinθ ∂θ ] . (3.3)

These operators satisfy the algebra:

[D, H] = iH , [D, K] = −iK , [K , H] = 2iD . (3.4)

We will show that this is actually none other than the de Alfaro, Fubini, Furlan (DFF) model
[41] in disguise—suitably altered to accommodate the the principal series representation. This
observation was first made in [42, 43]. The reader may recall that the original DFF model
describes a particle moving in a repulsive 1/r2 potential. We will make contact with this
presentation in section 3.1.

The Hilbert space of this model fills out one of the unitary irreducible representations of
SL(2,R) labeled by∆. As we summarized in the previous section, the representation is unitary
if the quadratic Casimir

C2 =
1
2
(HK + KH)− D2 =∆(∆− 1) (3.5)

is real, and if the operators are self-adjoint with respect to a particular inner product. Let us
pick the standard inner product on Hilbert space:

( f , g) =
ˆ 2π

0
dθ f ∗(θ ) g(θ ) , (3.6)

then the operators (3.1-3.3) are self adjoint with respect to this inner product if and only if
∆= 1

2(1+ iν) is in the principal series.

Hilbert space labeled by L0 eigenvalues

Recall that to build the Hilbert space, we construct the compact operator L0 and raising/lowering
operators L±. For the case at hand, these are :

L0 =
1
2
(H + K) = −i∂θ , L± =

1
2
(H − K)∓ iD = e∓iθ (∓∆− i∂θ ) , (3.7)

with ∆ = 1
2(1 + iν) for the remainder of the paper. The Hilbert space is spanned by the L0

eigenstates ψn(θ ) satisfying:

L0ψn(θ ) = −nψn(θ ) , L±ψn(θ ) = −(n±∆)ψn±1(θ ) , (3.8)

with n ∈ Z. The wavefunctions are easy to compute:

ψn(θ ) =
1
p

2π
e−inθ (3.9)
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and are orthonormal with respect to the standard inner product

(ψk,ψn) =
ˆ 2π

0
dθ ψ∗k(θ )ψn(θ ) = δkn . (3.10)

Note that n can be any integer, so the state space is unbounded above and below. We also have
the following completeness relation:

∞
∑

n=−∞
ψ∗n(θ )ψn(θ

′) = δ(θ − θ ′) . (3.11)

Phrased in a slightly different manner, we can label the set of principal series states by a ket
|n〉 such that

〈θ |n〉=
1
p

2π
e−inθ . (3.12)

The completeness relation is then the standard one:

〈θ |θ ′〉= δ(θ − θ ′) . (3.13)

H and K eigenstates

Instead of working with the basis of L0 eigenstates, we could instead work with H or K eigen-
states. The wavefunctions

χE(θ ) =
1

2
p
π

eiE tan
�

θ
2

�

�

cos
�

θ

2

��−2∆

(3.14)

satisfy
(H − E)χE(θ ) = 0 , (χE′ ,χE) = δ(E − E′) . (3.15)

Note that these wavefunctions are singular at θ = π, but are nevertheless delta-function nor-
malizable. They are the continuous Fourier modes of the energy-basis on the circle. It is also
straightforward to show that:

ˆ ∞
−∞

dE χ∗E(θ )χE(θ
′) = δ(θ − θ ′) . (3.16)

(We remind the reader that ∆∗ = 1−∆). Similarly, the wavefunctions

ρκ(θ ) =
1

2
p
π

e−iκ cot
�

θ
2

�

�

sin
�

θ

2

��−2∆

(3.17)

satisfy
(K −κ)ρκ(θ ) = 0 , (ρκ′ ,ρκ) = δ(κ−κ′) . (3.18)

As well as ˆ ∞
−∞

dκρ∗κ(θ )ρκ(θ
′) = δ(θ − θ ′) . (3.19)

Given the above properties we can define the following transform and its inverse:

ψ(κ) =
ˆ 2π

0
dθ ρ∗κ(θ )ψ(θ ) , ψ(θ ) =

ˆ ∞
−∞

dκρκ(θ )ψ(κ) . (3.20)
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3.1 Standard presentation of the DFF model

The classic DFF paper [41] describes the following SL(2,R) invariant quantum mechanics,
with generators

H =
1
2

�

−∂ 2
r +
(4∆− 1)(4∆− 3)

4r2

�

, (3.21)

K =
r2

2
, (3.22)

D = −
i
2

�

r ∂r +
1
2

�

, (3.23)

where r is a radial variable r > 0 . For ∆(∆− 1) ≥ −1/4, the above Hamiltonian describes
the radial dynamics of a charged particle particle interacting with a magnetic monopole at the
origin [47]. On the other hand, as described in [47,48], for ∆= 1

2(1+ iν), the potential

V = −
ν2 + 1

4

2r2
(3.24)

is attractive, and in this case, the Hamiltonian operator H fails to be self-adjoint with respect
to the inner product on the half-line:

ˆ ∞
0

dr f ∗(r)g(r) (3.25)

and thus this model does not seem to accomodate the principal series representation as a
Hilbert space. Fortunately or unfortunately, this is precisely the representation we are inter-
ested in.

Based on the discussion in the previous section [42, 43] we notice that the tension arises
from the fact that (3.22) fixes the eigenvalues of K to be positive definite. However, note
that the completeness relation (3.19) required the eigenvalues of K in the principal series to
be valued in κ ∈ (−∞,∞). In this sense, the coordinate κ, being the eigenvalue of K , is a
coordinate on the representation, and the principal series representation is two-sided.

Thus to make contact with the principal series version of this model in these coordinates,
we will define κ= sign(r)r2/2 and take −∞< r <∞. To see how this works, let us work in
the κ basis and define a modified transform:

ψ̂(κ) = |2κ|
3
4−∆
ˆ 2π

0
dθ ρ∗κ(θ )ψ(θ ) (3.26)

along with a new inner product

�

ψ̂, φ̂
�′
=
ˆ ∞
−∞

dκ
|2κ|1/2

ψ̂∗(κ)φ̂(κ) . (3.27)

This norm is selected such that the overlap is preserved
�

ψ̂(κ), φ̂(κ)
�′
= (ψ(θ ),φ(θ )) . (3.28)

Acting on the function space ψ̂(κ) the operators take the form:

H =
1
2

�

−2κ∂ 2
κ − ∂κ +

(4∆− 1)(4∆− 3)
8κ

�

, (3.29)

K = κ , (3.30)

D = −i
�

κ∂κ +
1
4

�

. (3.31)
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We can now make contact with the DFF model by taking κ= sign(r)r2/2. We find that acting
on functions of r, the operators take the form

H =
sign(r)

2

�

−∂ 2
r +
(4∆− 1)(4∆− 3)

4r2

�

, (3.32)

K = sign(r)
r2

2
, (3.33)

D = −
i
2

�

r ∂r +
1
2

�

, (3.34)

thus, in order for the standard DFF model to represent the Hilbert space of the principal se-
ries, we must extend r to negative values, and for r < 0 the Hamiltonian flips sign. This is
reminiscent of a horizon in general relativity, although it is difficult to speculate too much at
present.

Note that the inner product induced from (3.27) implies wavefunctions will be normalized
with respect to the standard L2 norm

ˆ ∞
−∞

dr f ∗(r)g(r) . (3.35)

Computing wavefunctions in the r basis is now a simple matter of transforming them from the
θ basis. And we emphasize, despite the bizarre behavior of the Hamiltonian across r = 0, that
the system is completely unitary. We provide expressions for the eigenstates of the DFF model
in the r coordinate in appendix A.

We note here that the transform from the θ variable to the r variable given through (3.20)
is reminsicent of the non-local map from dS to AdS described in [49].

Obstruction to supersymmetrization

As a paranthetical, we mention an obstruction to supersymmetrizing this model. In a follow-up
to the original DFF paper [41], [50] gave a supersymmetrization of the DFF model. We may
thus ask if this construction works for the principal series DFF model described above. This
would be unexpected given the general obstructions regarding unitary de Sitter superalgebras
[51, 52]. Nevertheless, conformal field theories are able to get around this obstruction [53],
and even [52] identified the dS2 superalgebra as a special case since its bosonic subgroup is
the same as AdS2’s.

However, following the steps in [50], one notices that role of the spin quantum number is
played by∆ and the action of the supercharge Q shifts∆ by 1/2, taking us out of the principal
series. This obstruction was noted in [54] and it remains unclear to us whether there is a
way around it. It may be possible to supersymmetrize a model furnishing the complementary
series, at least in the range 0<∆< 1/2.

3.2 Classical and path integral descriptions

What classical dynamical system gives rise to the DFF model with quantum operators (3.1-
3.3)? For this, one could imagine sticking with the r-variable, for which there is a ‘standard’
Lagrangian. But as we emphasized, the coordinate singularity at the origin means these vari-
ables only cover phase space patchwise.

The most natural choice is to simply use the θ variable and consider the following functions
on phase space (θ , p) which can be obtained by considering the symplectic structures on the
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group manifold SO(1, 2) [42]

H = 2cos
�

θ

2

��

−ν sin
�

θ

2

�

+ cos
�

θ

2

�

p
�

, (3.36)

K = 2sin
�

θ

2

��

ν cos
�

θ

2

�

+ sin
�

θ

2

�

p
�

, (3.37)

D = ν cosθ + sinθ p . (3.38)

In the above expressions, ν is the classical analog of the conformal dimension, which in the
quantum case is given by∆= 1

2(1+ iν), and p is the canonical momentum conjugate to θ . To
see this, we define the Poisson bracket

{ f , g}= ∂θ f ∂p g − ∂p f ∂θ g , (3.39)

such that p and θ form a canonical pair {θ , p} = 1. With this, the above set of functions,
although linear in p and therefore unbounded, define a classical dynamical system with an
SL(2,R) symmetry apparent from its Poisson bracket algebra:

{D, H}= H , {D, K}= −K , {K , H}= 2D . (3.40)

Note also that the combination
HK − D2 = −ν2 (3.41)

is a constant and therefore conserved with respect to dynamical evolution generated by any
possible linear combination of H, D and K .

Now we are at a crossroads when considering dynamical evolution. None of the operators
(3.36-3.38) is a natural choice of time evolution operator, since they are all unbounded above
and below. This is in stark contrast to the highest weight representation. For the quantum
problem in the highest weight representation, the natural choice is the linear combination
defining L0 whose spectrum is bounded and discrete, although any combination of dynamics
is equally valid and related by a time reparametrization [41,47].

Dynamics generated by L0

For simplicity we consider the classical dynamics generated by L0:

L0 =
1
2
(H + K) = p (3.42)

L± =
1
2
(H − K)∓ iD = e∓iθ (p∓ iν) , (3.43)

which satisfy
{L+, L−}= −2i L0 , {L±, L0}= ∓i L± . (3.44)

The classical solutions to d·
d t − {·, L0}= 0 are:

L0(t) = p(t) = l0 , L±(t) = l±e∓i t , θ (t) = θ0 + t , (3.45)

with l± = e∓iθ0(l0 ∓ iν).
This Hamiltonian system is linear in the momentum p, so it is difficult to pass to the the La-

grangian picture. To make this clear, let us pass to the quantum path integral for this dynamical
system:

〈θ f |e−i L0T |θi〉=
ˆ θ (T )=θ f

θ (0)=θi

DpDθ exp

�

i
ˆ T

0
d t p

�

θ̇ − 1
�

�

=
ˆ θ (T )=θ f

θ (0)=θi

Dθ δ
�

θ̇ − 1
�

, (3.46)
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where the final equality comes from integrating out p. In the Lagrangian presentation, the θ
path integral localizes!

We can compute the path integral by any means, such as spectral decomposition:

〈θ f |e−i L0T |θi〉= δ(θ f − θi − T ) . (3.47)

The purpose of this little exercise are two-fold. First we showed that the quantum dynamics
are criminally uninteresting. More importantly is that there is no simple, local Lagrangian
giving rise to them.

Dynamics generated by 1
2(H − K)

There is another natural choice of dynamics, hinted at by the dS2 construction which we will
give in the next section. The analog of the generator of static patch time, which is a boost in
global coordinates, is given by the combination K2 ≡ 1

2(H−K). We will organize the operators
as

L0 =
1
2
(H + K) = p , (3.48)

K2 =
1
2
(H − K) = −ν sinθ + cosθ p , (3.49)

D = ν cosθ + sinθ p , (3.50)

which satisfy the canonical Poisson bracket algebra:

{L0, K2}= D , {D, K2}= L0 , {L0, D}= −K2 . (3.51)

The classical solutions to d·
dτ − {·, K2}= 0 are:

L0(τ) = p(τ) = l0 coshτ+ d sinhτ , D(τ) = d coshτ+ l0 sinhτ . (3.52)

Again to obtain a Lagrangian, we look at the quantum path integral:

〈θ f |e−iK2T |θi〉=
ˆ θ (T )=θ f

θ (0)=θi

DpDθ exp

�

i
ˆ T

0
dτ

�

p(θ̇ − cosθ ) + ν sinθ
	

�

=
ˆ θ (T )=θ f

θ (0)=θi

Dθ δ
�

θ̇ − cosθ
�

ei
´ T

0 dτν sinθ . (3.53)

This can be calculated explicitly, giving

〈θ f |e−iK2T |θi〉= (cosh T + sinθi sinh T )∆−1δ

�

θ f − 2 tan−1

�

sinh T
2 + cosh T

2 tan θi
2

cosh T
2 + sinh T

2 tan θi
2

��

.

(3.54)
The late time limit of the above equation is

〈θ f |e−iK2T |θi〉 ∼ e−(1−∆)Tδ(θ f −π/2) , (3.55)

which seems to suggest that, according to this dynamics, localized wavepackets tend towards
the ‘horizon’ at θ = π/2.

Note in this example the Lagrangian again localizes, but in the presence of a “line operator.”
Perhaps this suggests that this description is emergent out of something more fundamental
[55–57]. Indeed, a path integral of this type was considered in [34], where they found it
necessary to replace smooth paths with jagged ones. Perhaps something similar is in order
here.
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4 The spacetime dS2

In this section we review the basic geometric features of dS2, including its ambient space
construction and isometries. Once the basics of the geometry are laid out, we will show how
the DFF model of the previous section arises when we consider a massive scalar field theory
in dS2.

4.1 The geometry

The metric in global coordinates is given by

ds2 = −dτ2 + `2 cosh2
�τ

`

�

dθ2 , (4.1)

where τ is the global time coordinate which ranges between τ ∈ (−∞,∞) and θ ∼ θ +2π is
a coordinate parametrizing a spatial S1. The parameter ` is the de Sitter length. This metric on
dS2 can be constructed by considering a hyperboloid in an ambient 3-dimensional Minkowski
space satisfying

−
�

X 0
�2
+
�

X 1
�2
+
�

X 2
�2
= `2 . (4.2)

The metric (4.1) is then induced from the 3d Minkowski metric on the solution to (4.2)

X 0 = ` sinh
�τ

`

�

, X 1 = ` cosθ cosh
�τ

`

�

, X 2 = ` sinθ cosh
�τ

`

�

. (4.3)

For the sake of completeness, we include the inverse relations:

τ= `arcsinh

�

X 0

`

�

, θ = arctan

�

X 2

X 1

�

. (4.4)

4.2 The isometries

The isometries of dS2 are inherited from the isometries of the hyperboloid (4.2). These include
the rotation:

J3 = −i
�

X 1∂X 2 − X 2∂X 1

�

, (4.5)

and boosts
K1 = −i

�

X 0∂X 1 + X 1∂X 0

�

, K2 = −i
�

X 0∂X 2 + X 2∂X 0

�

, (4.6)

of the ambient Minkowski space.
Written in terms of the global coordinates, these are:

J3 = −i ∂θ , (4.7)

K1 = −i
�

` cosθ ∂τ − sinθ tanh
�τ

`

�

∂θ

�

, (4.8)

K2 = −i
�

` sinθ ∂τ + cosθ tanh
�τ

`

�

∂θ

�

. (4.9)

These can be combined into

L0 = J3 = −i∂θ , (4.10)

L± = K2 ± iK1 = e∓iθ
�

−i tanh
�τ

`

�

∂θ ± `∂τ
�

, (4.11)

which satisfy the SL(2,R) algebra

[L+, L−] = 2L0 , [L±, L0] = ±L± . (4.12)
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This algebra admits a quadratic Casimir that commutes with all the elements:

C2 ≡ L2
0 −

1
2
(L−L+ + L+L−) (4.13)

and unitary irreducible representations are labeled by real eigenvalues of the quadratic Casimir

C2 =∆(∆− 1) . (4.14)

It is clear from the above construction that L0 is a compact generator of the dS2 isometries
(it generates a rotation) and therefore should have a discrete spectrum. On the other hand,
K2, is a boost,2 so its spectrum is necessarily continuous.

We can also consider the other canonical basis for the algebra SL(2,R) which we write
now:

H ≡ L0 +
1
2
(L+ + L−) , K ≡ L0 −

1
2
(L+ + L−) , D ≡

i
2
(L+ − L−) . (4.15)

We also note here that the boost generator K2 is given by:

K2 =
1
2
(L+ + L−) =

1
2
(H − K) , (4.16)

as we anticipated at the end of the previous section.

5 Scalar field theory in dS2

We will now attempt to make contact with the DFF model by studying a simple scalar field
theory in two-dimensional de Sitter space. We first proceed in steps, beginning with a review
of the classical scalar modes, then continuing on to quantization. We will see that the dS2
isometries acting on late time solutions of the scalar field equations precisely reproduce the
operators of the DFF quantum mechanical model.

5.1 Classical solutions

We are now ready to use all of this to study a simple quantum field theory in dS2. That of a
free scalar with action:

S = −
1
2

ˆ
d2 x

p

−g
�

gµν∂µφ∂νφ +m2φ2
�

. (5.1)

The equations of motion obtained from varying the above action with respect to φ are

1
p
−g
∂µ
p

−g gµν∂νφ = m2φ . (5.2)

It is not difficult to verify that the scalar Laplacian is none other than the quadratic Casimir
operator of the dS2 isometries (4.13)

1
p
−g
∂µ
p

−g gµν∂ν ≡ −
1
`2

C2 , (5.3)

thus, we expect based on the representation theory of SL(2,R) to identify

∆(∆− 1) = −m2`2 (5.4)

2The boost K2 can be identified with the generator of static patch time in certain coordinate choices.
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or

∆± =
1
2

�

1±
p

1− 4m2`2
�

. (5.5)

As in AdS, ∆± label the two possible falloffs (now in time) of the scalar field φ of mass m.
Interestingly, if m2`2 > 1/4, the falloffs ∆± become complex:

∆± =
1
2
(1± iν) , (5.6)

with ν ∈ R. As should be clear by now, the complex weights are no cause for concern. The
Casimir is, after all, real, and the states belong precisely to the continuous principal series
representations of SL(2,R), which are unitary. In this case, since ∆± are complex conjugates,
they actually represent the same state in the Hilbert space. We will label ∆≡∆+ throughout.

5.2 Behavior near τ→∞

Let us consider the Klein-Gordon equation for the scalar field in the late-time limit. Despite
the explicit time dependence in the metric, we will assume first, and later justify, the following
ansatz:

φ(τ,θ ) ≈
τ→∞

f
�τ

`

�

ψ(θ ) . (5.7)

Acting on this ansatz, the scalar wave equation (5.2) behaves as

ψ(θ )
h

−∆(∆− 1) f
�τ

`

�

+ tanh
�τ

`

�

f ′
�τ

`

�

+ f ′′
�τ

`

�i

= f
�τ

`

�

sech2
�τ

`

�

ψ′′(θ ) , (5.8)

where ′ denotes a derivative with respect to the argument. Thus in the τ→∞ limit, the right
hand side tends to zero and the Klein-Gordon equation is solved, to leading order, by

φ(τ,θ ) ≈
τ→∞

ψ(θ )
�

c1e−∆τ/` + c2e−(1−∆)τ/`
�

. (5.9)

Recall that since ∆ = (1+ iν)/2, it satisfies 1−∆ = ∆∗. We will now judiciously choose our

falloff conditions such that, c1 =
q

2
ν and c2 = 0. The Klein-Gordon inner-product between

two modes then reduces to:

(φ1,φ2) = −i
ˆ
Σ

dΣµ
�

φ1∂µφ
∗
2 −φ

∗
2∂µφ1

�

=
ˆ 2π

0
dθ ψ1(θ )ψ

∗
2(θ ) , (5.10)

which is presicely the L2 inner product on wavefunctions of a single compact degree of free-
dom. We will take the suggestion given to us by the geometry very seriously.

We end this section by writing down the action of the dS2 isometries (4.10-4.11) on the
modes that falloff as e−∆τ/` in the τ→∞ limit. These are:

L0 = −i∂θ , L± = e∓iθ (∓∆− i∂θ ) . (5.11)

We immediately recognize these as the generators of the DFF quantum mechanics (3.7). We
will quantize the scalar field in the next section. We note here that the inner product (5.10)
implies the following Hermitian conjugates for the operators

L†
0 = L0 , L†

± = L∓ . (5.12)
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5.3 Quantization

We now move on to a discussion of the quantized scalar field in dS2 given the above realiza-
tions, following [49,58,59]. We can decompose our scalar field in modes

φ(τ,θ ) =
∞
∑

n=−∞
anφ

out
n (τ,θ ) + a†

nφ
∗out
n (τ,θ ) , (5.13)

with
φout

n (τ,θ )≡ f out
n (τ)ψn(θ ) , (5.14)

and ψn(θ ) as in (3.9). The solutions f out
n are chosen such that they decay as

lim
τ→∞

f out
n (τ)≈

√

√2
ν

e−∆τ/` . (5.15)

Explicitly, we find

f out
n (τ) = 2|n|

√

√2
ν

e−(|n|+∆)
τ
` cosh|n|

�τ

`

�

2F1

�

1
2
+ |n|, |n|+∆,

1
2
+∆,−e−2 τ`

�

. (5.16)

The modes satisfy
(φout

n ,φout
m ) = δnm , (φout

n ,φ∗out
m ) = 0 , (5.17)

with respect to the Klein-Gordon norm and it is easy to verify that for generators (L0, L±) given
in (4.10)-(4.11):

L0φn = −nφn , L±φn = −(n±∆)φn±1 . (5.18)

It is now clear that the single-particle Hilbert space of this scalar field is in one-to-one corre-
spondence with the Hilbert space of the DFF model in the principal series representation.

To canonically quantize this theory, as usual, we promote the coefficients an and a†
n to

creation annihilation operators satisfying:

[an, a†
m] = δnm , [an, am] = [a

†
n, a†

m] = 0 , (5.19)

and denote a vacuum state |0〉out such that

an|0〉out = 0 ∀n . (5.20)

Now if we compute the two-point correlation function in the state |0〉out, we find:

lim
τ,τ′→∞ out〈0|φ(τ,θ )φ(τ′,θ ′)|0〉out =

2
ν

e−∆
τ−τ′
` −

τ′
` δ(θ − θ ′) . (5.21)

In [58] it was suggested this meant that the interactions at I+ are ultralocal in the state |0〉out,
but we may similarly interpret this in a more mundane manner, in light of (3.11) it seems that
the equal time Green’s function is computing the completeness relation of the coordinate basis
Hilbert space .

5.4 Euclidean modes

The vacuum |0〉out annihilated by the modes φout
n is but one of a family of de Sitter invariant

vacua. These are known as the Motolla-Allen, orα, vacua [60,61]. Among these, the Euclidean
or Bunch-Davies vacuum plays a prominent role for its particular entanglement structure [58,
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62]. The Euclidean vacuum is annihilated by modes that are analytic on the lower half-sphere
in the Euclidean continuation of the global coordinates (4.1). These modes are [58]:

φE
n (τ,θ ) = f E

n (τ)ψn(θ ) , (5.22)

with

f E
n (τ) =

i(−2)−|n|

Γ (1+ |n|)

√

√

√

(1− eπν)πΓ (|n|+ 1−∆)Γ (|n|+∆)
−2i(1− 2∆)Γ

�1
2 −∆

�

Γ
�

−1
2 +∆

�

e(|n|+1−∆) τ` cosh|n|
�τ

`

�

2F1

�

1
2
+ |n|, |n|+∆, 1+ 2|n|, 1+ e2 τ`

�

. (5.23)

By expanding at late times, it is not so difficult to verify that

φout
n =

eiγn

p
1− eπν

�

φE
n − e

πν
2 φ∗E−n

�

, (5.24)

where the phase eiγn is

e2iγn =
Γ
�1

2 −∆
�

Γ (∆+ |n|)

Γ
�

−1
2 +∆

�

Γ (1−∆+ |n|)
. (5.25)

This can be inverted to give

φE
n =

1
p

1− eπν

�

e−iγnφout
n − e

πν
2 eiγnφ∗out

−n

�

. (5.26)

We can now choose to expand our scalar field in these modes

φ(τ,θ ) =
∞
∑

n=−∞
bnφ

E
n (τ,θ ) + b†

nφ
∗E
n (τ,θ ) , (5.27)

where the coefficients bn, b†
n get promoted to operators upon quantization, with:

[bn, b†
m] = δnm , [bn, bm] = [b

†
n, b†

m] = 0 . (5.28)

The state annihilated by bn is the Euclidean vacuum:

bn|E〉= 0 ∀n . (5.29)

Now from (5.24), we can read off

an ≡
eiγn

p
1− eπν

�

bn − e
πν
2 b†
−n

�

, (5.30)

which gives

lim
τ→∞

〈E|φ(τ,θ )φ(τ,θ ′)|E〉=
2
ν

e−
τ
`

1+ eπν

1− eπν
δ(θ − θ ′)

−
e
πν
2

1− eπν

∞
∑

m=−∞

e−2∆ τ`

πν

Γ
�1

2 −∆
�

Γ (∆+ |m|)

Γ
�

−1
2 +∆

�

Γ (1−∆+ |m|)
e−im(θ−θ ′) + cc. (5.31)

The above equation is the late time limit of the Euclidean two-point function GE , meaning we
can obtain the sum using standard techniques [63]. Dropping the δ-function singularity gives:

lim
τ→∞

GE = e−2∆ τ`
4−(1−∆)Γ (∆)Γ (1− 2∆)

πΓ (1−∆)

�

�

�

�

sin
�

θ − θ ′

2

�

�

�

�

�

−2∆

+ (∆→ 1−∆) . (5.32)
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This expression for the two-point function is real, as expected for a real scalar field, but we
could alternatively construct the following complex field, as in Appendix B of [36]:

s(τ,θ ) =
∞
∑

n=−∞
anφ

out
n (τ,θ ) , (5.33)

which, by construction, has a single complex fall-off in its late time two-point function:

lim
τ→∞

〈E|s(τ,θ )s(τ,θ ′)|E〉= C e−2∆ τ`

�

�

�

�

sin
�

θ − θ ′

2

�

�

�

�

�

−2∆

. (5.34)

5.5 α-vacua in the DFF model?

In the hopes of building up a dictionary, we can ask how to compute the Euclidean two-point
function (5.32) or the the correlator of complex operators s(τ,θ ) in the state |E〉 from the
point of view of the DFF model— i.e. with the global time dependence stripped off. This
may give us some insight into what the Motolla-Allen vacua [60, 61] correspond to in the
putative holographic dual. And while (5.34) may look like a completeness relation from the
point of view of SL(2,R) it is good to remember that such a completeness relation only holds
for for certain choices of representations and choices of position space basis. For example,
a particular choice for the complementary series in [33] gives a completeness relation that
resembles (5.34), but as we described in section 2, these have 0<∆< 1.

To this end, we can try and guess the answer by using the bulk as our guide. Consider a
slightly modified basis of wavefunctions for the DFF model which differs only by a phase

ψ̃n(θ )≡ eiγnψn(θ ) , (5.35)

with ψn given in (3.9) and the phase specified in (5.25). The natural expectation is for these
phases to change very little in terms of the physics. The Bunch-Davies two-point function
(5.32), however, suggests we consider the following real combination:

1
2

∞
∑

n=−∞
ψ̃n(θ )ψ̃−n(θ

′) + ψ̃∗n(θ )ψ̃
∗
−n(θ

′) =
π1/2Γ (∆)

Γ
�

−1
2 +∆

�

�

�

�

�

sin
�

θ − θ ′

2

�

�

�

�

�

−2∆

+ cc. (5.36)

This clearly gives an SL(2,R) invariant function of the points (θ ,θ ′), but note that this expres-
sion is quite different from the completeness relation we found before in (3.11):

〈θ |θ ′〉= δ(θ − θ ′) . (5.37)

To see what modifications are needed to obtain this result, let us consider arranging our states
in a doublet |n) defined such that such that :

〈θ |n)≡
1
p

2

�

ψ̃n(θ )|0〉+ ψ̃n(θ )
∗|1〉

�

, (5.38)

where we have tensored our principal series Hilbert space with a two-dimensional ‘qubit’
Hilbert space. Let us also suggest a modification of the adjoint:

(n|θ 〉 ≡
1
p

2

�

ψ̃n(−θ )〈0|+ ψ̃∗n(−θ )〈1|
�

,

=
1
p

2

�

ψ̃−n(θ )〈0|+ ψ̃∗−n(θ )〈1|
�

. (5.39)
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Then (5.36) simply becomes3

â〈θ |θ ′〉 ≡ Tr0,1

∑

n

〈θ |n)(n|θ ′〉=
π1/2Γ (∆)

Γ
�

−1
2 +∆

�

�

�

�

�

sin
�

θ − θ ′

2

�

�

�

�

�

−2∆

+ cc. (5.40)

This way of presenting things suggests that (5.36) could be a completeness relation in a mod-
ified sense.

Studying equation (4.9) of [58] suggests the following potential generalization of the
above completeness relation corresponding to the α-vacua:

Gα(θ ,θ ′) =
∞
∑

n=−∞
ψ̃n(θ )ψ̃

∗
n(θ

′) +
1
2

�

1− eα+
πν
2

��

1− eα
∗−πν2

�

ψ̃n(θ )ψ̃−n(θ
′)

+
1
2

�

1− eα−
πν
2

��

1− eα
∗+πν2

�

ψ̃∗n(θ )ψ̃
∗
−n(θ

′) (5.41)

and we recover (3.11) for the choice α = πν/2. In this section we are suggesting that these
choices amount perhaps to a selection of an inner product on Hilbert space, in a similar spirit
to the CPT inner product suggested in [64]. It would be interesting to understand if there
exists a principle that fixes this choice corresponding to α. In [58] it was inferred that these
label a family of theories related by a marginal deformation. If so, perhaps such a deformation
can be written down for the DFF model (3.1)-(3.3); but we leave this speculation for future
work.

6 Future Directions

In this paper we have studied a simple quantum mechanical model whose Hilbert space cap-
tures the single particle states of a free massive scalar field in dS2. In this section we list some
related open questions that would be worth visiting in the future.

Multiparticle generalizations: The DFF model admits a multiparticle generalization known
as the Calogero model [65] whose operators also fulfill the SL(2,R) algebra [66,67]

H =



−
1
2

∑

i

∂ 2
x i
+
∑

i< j

λ2

(x i − x j)2



 , (6.1)

K =
∑

i

x2
i

2
, (6.2)

D = −
i
4

∑

i

�

x i ∂x i
+ ∂x i

x i

�

. (6.3)

As far as we are aware, a multipartical generalization of the principal series version of this
model, akin to (3.1)-(3.3) has not yet been formulated. More interestingly, there exists a
relationship between Calogero type models and the eigenvalue dynamics of matrix models
related to gauge theory [68, 69]. We have attempted to write down a generalization in this
spirit, but have so far only succeeded in writing down the trivial multiparticle generalization of

3We want to reaffirm that this is not a standard inner product, as for two arbitrary states |ξ) and |χ) this implies

á〈ξ|χ〉=
1
2

ˆ
dθ [ξ(−θ )χ(θ ) + ξ∗(−θ )χ∗(θ )] .
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(3.1)-(3.3)—that is a sum over single-body generators. We hope to write down the interacting
version of the multiparticle principal series Calogero model in the future, and work out its
connection to matrix models if such a connection exists.

2d field theory dual to dS3: The global isometries of dS3 consist of two copies of the SL(2,R)
algebra. It has been speculated that the asymptotic symmetry group gets enhanced to two
copies of the Virasoro algebra [70]. The single particle Hilbert space of a heavy scalar field in
dS3 again falls into the principal series representation and it would be interesting to explore the
possibility of constructing two-dimensional conformal field theories whose operator content
fills out these representations. Some implications of these ideas have been explored in [71,72]
and more recently in [73]. We want to note that there exist unitary irreducible principal series
representations of the Virasoro algebra, but these require the central charge c = 0 [74]. The
appearance of two copies of SL(2,R) in dS3 is intricately linked with the fact that the S2 at
τ→∞ admits a complex structure via the stereographic map. However, it must be said that
the individual L0 and L̄0 generators are not compact on their own—only the diagonal element
L0+ L̄0 is. This perhaps suggests, yet again, that we need to think carefully about how to build
quantum field theories dual to de Sitter, as these will not be obtained from AdS by a simple
analytic continuation.

Principal series bootstrap: This point was emphasized in [36] but nevertheless is worth
repeating. While the Euclidean conformal group in d dimensions SO(1, d + 1) admits con-
tinuous principal series representations, the choice is usually made to discard these represen-
tations from appearing in the crossing equations [75–77] due to their unbounded spectrum.
Given these representations’ relevance to massive quantum field theory in a fixed de Sitter
background, perhaps it would be fruitful to understand how the boostrap equations must be
modified to include them. This would then be relevant to the cosmological bootstrap pro-
gram [78–80].

Inversion formula: Standard conformal field theory is built out of states that furnish the
discrete highest weight representation of the conformal algebra. However, it is the conformal
blocks in the principal series that form a basis of functions [40]. That is, we can write any four
point function in standard Euclidean CFT as:

G(z) = 1+
ˆ 1

2+i∞

1
2−i∞

d∆
2πi

c(J ,∆)FJ ,∆(z) (6.4)

and c(J ,∆) must be an analytic function with poles on the highest weight states. For inter-
acting fields in de Sitter, the internal and external states may themselves live in the principal
series, meaning the poles of c(J ,∆) will generically be shifted. We would like to explore what
other ingredients are necessary to ensure a sensible four-point function.
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A Principal series DFF wavefunctions in r-space

We collect here expressions for the normalized principal-series wavefunctions for the DFF
model using the coordinate r. These are obtained by transforming either (3.9) or (3.14) using
the kappa-transform (3.26).

L0 eigenstates

We start with the L0 eigenstates:

ψn(θ ) =
e−inθ

p
2π

,

the κ transform of which is given by

ψ̂(κ) =
2

1
4−∆e−inπ

π
|κ|

3
4−∆
ˆ ∞
−∞

du (1− iu)n−∆(1+ iu)−n−∆e−iκu , (A.1)

where we changed coordinates θ → π+ 2 tan−1 u. This Fourier transform can be found e.g.
on page 119 of volume one of [81] and gives:

ψ̂n(r) =
2

3
2−2∆e−inπ

p

|r|







−
W−n, 1

2−∆
(r2)

Γ (−n+∆) r > 0
W

n, 1
2−∆
(r2)

Γ (n+∆) r < 0
, (A.2)

where Wn,m(x) are the Whittaker functions. To verify that these are properly normalized, it
suffices to use the following identity [82]:

ˆ ∞
0

d x
Wk,µ(x)Wλ,−µ(x)

x

=
π

(k−λ) sin(2πµ)

�

1

Γ
�1

2 − k+µ
�

Γ
�1

2 −λ−µ
� −

1

Γ
�1

2 − k−µ
�

Γ
�1

2 −λ+µ
�

�

. (A.3)

H eigenstates

The κ-transform of the energy eigenstates can be done straightforwardly in Mathematica.
We provide the wavefunctions here:

χ̂E(r) = 2
1
2−∆e−iπ∆|E|

1
2−∆

Æ

|r|



















−J−iν

�p

2|E|r2
�

E > 0, r > 0
2 sin(2π∆)

π Kiν

�p

2|E|r2
�

E > 0, r < 0

−2sin(2π∆)
π Kiν

�p

2|E|r2
�

E < 0, r > 0

Jiν

�p

2|E|r2
�

E < 0, r < 0

. (A.4)

From these expressions, it is clear that the Hamiltonian flips sign across the origin. At fixed
energy, the wavefunctions are oscillatory on one side and decaying on the other. These ex-
pressions are slightly different than those found in [43].
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[76] D. Mazáč and M. F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D
S-matrices, J. High Energ. Phys. 02, 162 (2019), doi:10.1007/JHEP02(2019)162.

25

https://scipost.org
https://scipost.org/SciPostPhys.9.3.028
http://dx.doi.org/10.1007/JHEP10(2019)071
http://dx.doi.org/10.1103/PhysRevD.65.104039
http://dx.doi.org/10.1007/JHEP06(2020)041
http://dx.doi.org/10.1103/PhysRevD.31.754
http://dx.doi.org/10.1103/PhysRevD.32.3136
http://dx.doi.org/10.1098/rspa.1978.0060
https://arxiv.org/abs/hep-th/0110007
https://arxiv.org/abs/hep-th/0106109
http://dx.doi.org/10.1063/1.1665604
http://dx.doi.org/10.1063/1.523384
http://dx.doi.org/10.1016/0375-9601(77)90359-0
http://dx.doi.org/10.1016/S0370-2693(97)00788-0
http://dx.doi.org/10.1016/0550-3213(94)90429-4
http://dx.doi.org/10.1088/1126-6708/2001/10/034
http://dx.doi.org/10.1103/PhysRevD.69.106008
http://dx.doi.org/10.1103/PhysRevD.72.046001
http://dx.doi.org/10.1103/PhysRevD.96.066031
http://eudml.org/doc/89921
http://dx.doi.org/10.1007/JHEP04(2017)146
http://dx.doi.org/10.1007/JHEP02(2019)162


SciPost Phys. 9, 028 (2020)
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