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Abstract

We consider the problems of calculating the dynamical order parameter two-point func-
tion at finite temperatures and the one-point function after a quantum quench in the
transverse field Ising chain. Both of these can be expressed in terms of form factor sums
in the basis of physical excitations of the model. We develop a general framework for
carrying out these sums based on a decomposition of form factors into partial fractions,
which leads to a factorization of the multiple sums and permits them to be evaluated
asymptotically. This naturally leads to systematic low density expansions. At late times
these expansions can be summed to all orders by means of a determinant representation.
Our method has a natural generalization to semi-local operators in interacting integrable
models.
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1 Introduction

As a consequence of the existence of extensive numbers of conservation laws with local densi-
ties the dynamical properties of quantum integrable models at finite energy densities are both
rich and unusual. The two main settings of interest are finite temperature equilibrium re-
sponse and time evolution after quantum quenches. In the first setting the aim is to determine
two-point functions of the form

χAB(x , t) =
1

Z(β)
Tr
�

e−βHA(x , t)B(0,0)
�

, (1)

where Z(β) = Tr(e−βH) and A(x , t) is a Heisenberg picture operator, while in the quench
setting one is interested in equal time expectation values

〈Ψ|O(x , t)|Ψ〉, (2)

where |Ψ〉 is an initial state that is a linear superposition of an exponentially (in system size)
large number of energy eigenstates.

1.1 Finite temperature dynamics

Early work on determining (1) focussed on the spin-1/2 XY chain in a magnetic field, which
can be mapped to a non-interacting model of free fermions [1]. In [2, 3] it was shown that
two-point functions fulfil systems of nonlinear differential equations, which in the transverse-
field Ising limit can be efficiently solved numerically [4]. The dynamics at the Ising critical
point was obtained in [5,6]. The long time and distance asymptotics of two-point functions in
the XX limit was obtained from the solution of a Riemann-Hilbert problem in [7] arising from a
Fredholm determinant representation [8,9]. A Fredholm determinant representation was also
derived for the Ising field theory [10]. A semiclassical approach to the low temperature regime
in interacting integrable models was pioneered in [11] and has proved very useful [12–14] due
to its relative simplicity. It is however limited in that it applies only to very low temperatures
and cannot be easily extended. Perhaps the most direct approach to evaluating (1) or (2) is
by introducing spectral representations, e.g.

χAB(`, t) =
1

Z(β)

∑

n,m

e−βEn〈n|A(0,0)|m〉〈m|B(0, 0)|n〉 ei t(En−Em)−i`(Pn−Pm), (3)

where |n〉 are normalized eigenstates of energy En and momentum Pn. Early investigations of
(3) focussed on integrable quantum field theories in the infinite volume [15–20], where the
spectral representations need to be regularized. This problem was solved in [21–23] and a
systematic low temperature expansion of dynamical two point functions in Fourier space was
obtained [23–26]. For some correlators this expansion exhibits divergences close to the zero
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temperature mass shell and needs to be summed to all orders is an open problem. A similar
approach was formulated for the case of the Ising field theory in [27] and used to obtain the
late-time asymptotic behaviour of the order parameter two-point function [28].

In order to go beyond the low temperature regime in interacting integrable models it is
useful to work in the micro-canonical ensemble and employ typicality ideas. This provides a
more efficient spectral representation of the form

χAB(`, t) =
∑

m

〈Eβ |A(0,0)|m〉〈m|B(0,0)|Eβ〉 ei t(Eβ−Em)−i`(Pβ−Pm), (4)

where Eβ is a typical energy eigenstate at the energy density corresponding to inverse temper-
ature β [9, 29]. The representation (4) can be analyzed numerically for finite systems [29].
Moreover, in particular limiting cases it appears to be very efficient in that only a small num-
ber of states need to be summed over [34]. In the zero temperature case it has proved possi-
ble to formulate, and evaluate asymptotically, a form factor expansion in the thermodynamic
limit [30–33]. Very recently an axiomatic approach aimed at extending these ideas to for-
mulate form factors between states at finite energy densities in the infinite volume limit was
proposed [35] and used to formulate a spectral representation. Using this representation to
obtain explicit results for dynamical two-point functions remains an open problem.

An alternative approach to finite temperature dynamics is based on the Quantum Trans-
fer Matrix approach [36, 37]. The latter is highly efficient for determining static proper-
ties [38–42] and can be extended to dynamical correlation functions [43]. Very recently this
method has been successfully applied to the XX model [44–46] and state-of-the-art results have
been obtained. The generalization to determine dynamical two-point functions in interacting
integrable models is an open problem.

The late time asymptotics of certain finite temperature two-point functions can also be
accessed by applying generalized hydrodynamics [48, 49] to the linear response regime, see
[50,51].

1.2 Quench dynamics

Early work on quench dynamics again focussed on models that can be analyzed by means of
free fermion techniques [52–60]. Notably, in [57,58] exact results for the late time behaviour
of one and two point functions of the order parameter in the transverse field Ising model
(TFIM) after quantum quenches were obtained. One way of going beyond free theories is to
employ a spectral representation

〈Ψ|O(x , t)|Ψ〉=
∑

n,m

〈Ψ|n〉〈m|Ψ〉〈n|O(0,0)|m〉 ei(En−Em)t−i(Pn−Pm)x . (5)

This was used to obtain the late time behaviour for small quenches in the TFIM [57,58,61–64]
and the sine-Gordon model [65–67]. The small quench regime is also accessible by semiclassi-
cal methods [68–72], which have the advantage of being significantly simpler to implement. A
much more efficient spectral representation is provided by the Quench Action Approach [73].
For translationally invariant initial states this allows one to express expectation values of local
operators after a quantum quench from an initial state |Ψ〉 as

lim
L→∞

〈O (t)〉= lim
L→∞

�〈Ψ |O (t)|Φs〉
2 〈Ψ|Φs〉

+
〈Φs |O (t)|Ψ〉

2 〈Φs|Ψ〉

�

, (6)

where |Φs〉 is a representative state fixed by two requirements: first, it is a simultaneous eigen-
state of the Hamiltonian and of the (quasi)local conservation laws I (n) of the theory under
consideration, and, second, it correctly reproduces the expectation values

lim
L→∞

〈Ψ|I (n)|Ψ〉
L

= lim
L→∞

〈Φs|I (n)|Φs〉
L

. (7)
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Expression (7) affords a more efficient spectral representation involving only a single sum over
energy eigenstates as

〈Ψ|O (t) |Φs〉=
∑

n

〈Ψ|n〉〈n |O (0)|Φs〉 ei t(En−Es) . (8)

The behaviour in the steady state reached in the limit t →∞ is given by the expectation value
in the representative state and this has been analyzed in a number of cases [77–82]. The time
dependence is significantly more difficult to obtain. So far results are restricted to a particular
one-point function for small quenches in the sine-Gordon model [65] and density correlations
at late times after a quench in the repulsive Lieb-Linger model [83].

1.3 Local vs semi-local operators

Locality properties of the operator of interest have important implications in both finite tem-
perature and quench contexts. For quantum quenches this was emphasized in [55, 56] and
clarified through explicit calculations in Refs [57,58,65,73]. A precise definition of the mutual
locality index ω(A, B) of two operators exists in the context of relativistic integrable quantum
field theory, see e.g. [84]; specifically, the product of operators A(x ,τ)B(0,0) as a function of
(x ,τ) has the property

AC

�

A(x ,τ)B(0, 0)] = e2πiω(A,B)A(x ,τ)B(0,0) , (9)

where AC denotes the analytic continuation along a counter-clockwise contour C around zero.
Let us for simplicity consider the case of a diagonal scattering theory with only a single “ele-
mentary” particle excitation created by the field Ψ(x). A convenient basis of energy eigenstates
is given in terms of scattering states of elementary excitations

|θ1, . . . ,θn〉 , (10)

where θ j are rapidity variables related to the energy and momentum of a single-particle ex-
citation by ε(θ ) = M cosh(θ ) , p(θ ) = M

v sinh(θ ). Spectral representations of correlation
functions (in the infinite volume) involve form factors like

〈θ1, . . . ,θN |A(0,0)|θ ′1, . . . ,θ ′M 〉 . (11)

As we will see below the case M = N is of particular interest. Local operators have vanishing
mutual locality index with Ψ(x). As a consequence of kinematic poles [85] the form factors
become singular when rapidities in the set {θ j} approach those in {θ ′j}. In the case N = M the
structure of singularities is [22]

〈θ1 + ε1, . . . ,θN + εN |A(0,0)|θ1, . . . ,θN 〉=
N
∑

iN=1

· · ·
N
∑

i1=1

ai1...iN (θ1, . . . ,θN )
εi1 . . .εiN

ε1 . . .εN
+ . . . (12)

In contrast, for semi-local operators B with ω(B,Ψ) = 1 one has instead

〈θ1 + ε1, . . . ,θN + εN |A(0, 0)|θ1, . . . ,θN 〉 =
2N 〈0|A(0,0)|0〉
ε1 . . .εN

+ . . . (13)

This shows that form factors of such semi-local operators are much more singular than the
ones for local operators. Form factors in integrable lattice models have analogous structures
of singularities.
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1.4 One and two-point functions of semi-local operators

The nature of singularities for semi-local operators (13) has been exploited previously to obtain
results for 1-point functions after small quantum quenches [65,73]. The aim of this work is to
extend this approach to general quantum quenches as well as to dynamical two-point functions
at finite temperatures. We focus on the case of the order parameter in the TFIM because the
form factors are particularly simple in this case. This allows us to exhibit in considerable detail
which states in the respective spectral representations contribute to the late time asymptotics of
one and two-point functions. These considerations can be generalized to interacting integrable
models, as will be shown in a following publication.

1.5 Outline and summary of the main results

We conclude our introduction with an outline of the following sections and a brief summary
of our key results.

• In Section 2 we briefly summarize a number of well known results on the TFIM and then
define in detail the two problems we study in this paper, namely dynamical correlation
functions at finite temperature and time evolution of the order parameter after a quan-
tum quench. Although these two problems are of a very different physical nature, we
explain how they can both be formulated in terms of sums over form factors and thus
be addressed with similar techniques.

• In Section 3 we develop a novel framework for organizing and (analytically) carrying out
the sums over form factors in both problems. It is based on a partial fraction decompo-
sition of the form factors, which organizes the sums according to the degree of the poles
the various terms exhibit, and naturally leads to an expansion of the correlation func-
tions in terms of the density of particles D =

∫

ρ(x)d x of the thermal/non-equilibrium
stationary state of interest, where ρ is its particle density. We present in detail how this
calculation works at order O(D2) in the case of finite temperature equilibrium dynamics.
In order to make the expansion uniform in space and time it is necessary to sum certain
contributions to all orders in D. In this way we obtain explicit expressions for the dynam-
ical spin-spin correlation function in an arbitrary macro-state |φ〉, in particular thermal
states. For a transverse magnetic field h< 1 the results reads

〈φ|σx
` (t)σ

x
0 (0)|φ〉 ≈ C exp

�

−2

∫ π

−π
ρ(x)(1+ 2πρ(x))|tε′(x)− `|d x

�

,

C = ξexp

�

−2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
� x−y

2

� d xd y

�

. (14)

The various quantities ε,ξ entering this expression are defined below in Section 2. This
result is exact at order O(D2), which means in particular that higher orders in the ex-
pansion will contribute additive terms in the exponents that involve third and higher
powers of the particle density ρ(p). The expansion can be pursued to higher orders in
D within the framework developed in Section 3.

We then turn to the time evolution of the order parameter after a quantum quench.
By combining our framework for carrying out form factor sums with the quench action
approach to quantum quenches [73] we obtain a systematic expansion of the order pa-
rameter one-point function in powers of the particle density.

A key insight derived from our approach is that the late time behaviour in both problems
arises from processes that involve an arbitrary number of particle-hole excitations over
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respectively the thermal and non-equilibrium steady state, but each of them is “small”
in a sense that we make precise below. We argue that this is a general feature of form
factor expansions involving semi-local operators, and represents a qualitative difference
to the case of local operators.

• In Section 4 we return to the quantum quench problem and show how to determine
the exact exponent that characterizes the exponential decay of the order parameter at
late times. This calculation is based on approximations valid at late times that allow the
spectral sum to be cast in the form of a determinant. This representation is similar to
one obtained for the impenetrable Bose gas in Ref. [91]. The late time asymptotics can
be extracted from the determinant representation and leads to the result

〈σx
` 〉= C exp

�

|t|
π

∫ π

0

|ε′(x)| log(1− 4πρ(x))d x

�

+ . . . , (15)

where the constant C is known up to order O(D2). This exponent is in agreement with
the exact expression of the decay time obtained in a very different way in Ref. [58],
while our result for C is new.

• In Section 5 we generalize the approach of Section 4 to the case of the dynamical spin-
spin correlation function in an arbitrary macro state |φ〉 described by a density ρ(p).
We obtain the following expression of the late time asymptotics

〈φ|σx
` (t)σ

x
0 (0)|φ〉= C exp

�

1
2π

∫ π

−π
|tε′(x)− `| log(1− 4πρ(x))d x

�

+ . . . . (16)

Here the exponent represents an exact result, while the constant C is again only known
to order O(D2). This result is to the best of our knowledge new. We compare (16)
to numerically exact results obtained using the representation of the finite temperature
correlator as a Pfaffian and find perfect agreement.

2 Transverse Field Ising Model

The TFIM Hamiltonian on a ring with L sites reads

H(h) = −J
L
∑

j=1

�

σx
j σ

x
j+1 + hσz

j

�

, (17)

whereσαj acts like the corresponding Pauli matrix at sites j and like the identity elsewhere. We
assume J , h > 0 and consider periodic boundary conditions. We refer the reader to Appendix
A of [57] for details about the diagonalization of this Hamiltonian. We simply recall here that
it can be expressed in terms of free fermions αk as

H(h) =
∑

k

ε(k)
�

α†
kαk −

1
2

�

, ε(k) = 2J
p

1+ h2 − 2h cos k , (18)

and that the Hilbert space is divided into a Neveu Schwartz (NS) sector with states of the form

|q1 . . . q2n〉= α†
q1

. . .α†
q2n
|0〉NS , qi =

2π
L

�

ni +
1
2

�

, ni = −
L
2

, . . . ,
L
2
− 1 , (19)

and a Ramond (R) sector

|p1 . . . p2m+1〉= α†
p1

. . .α†
p2m+1
|0〉R , pi =

2πni

L
ni = −

L
2

, . . . ,
L
2
− 1 , (20)
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where the energy E ({qi}) and momentum P ({qi}) of such states are given by

E ({qi}) =
2n
∑

i=1

ε (qi) , P ({qi}) =
2n
∑

i=1

qi , (21)

with an identical relation for the Ramond sector.
We will be interested in two problems involving the summation of form factors of the order

parameter over the full Hilbert space, which are given by [87–90]

NS〈q1, ..., q2n|σx
` |p1...pm〉R = e−i`(

∑2n
j=1 q j−

∑m
l=1 pm)ibn+m/2c(4J2h)(m−2n)2/4

Æ

ξξL

×
2n
∏

j=1

�

eηq j

Lε(q j)

�1/2 m
∏

l=1

�

e−ηpl

Lε(pl)

�1/2 2n
∏

j< j′

sin
q j−q j′

2

εq jq j′

m
∏

l<l ′

sin pl−pl′
2

εpl pl′

2n
∏

j=1

m
∏

l=1

εq j pl

sin
q j−pl

2

.
(22)

Here ξ= |1− h2|1/4, m is even (odd) for h< 1 (h> 1), and

εab =
ε(a) + ε(b)

2
. (23)

The terms ξL and eηk do not depend on the momenta (except k) and for large L approach 1
with exponential accuracy

ξL ≈ 1 , eηk ≈ 1 ; (24)

thus, they will be set to 1 in the following.

2.1 Quenches in the quench action framework

We consider the following quantum quench setup [57, 58]: at time t = 0 we prepare the
system in the ground state of the TFIM (17) at a magnetic field h0 < 1

|Ψ〉= |0; h0〉NS . (25)

At times t > 0 we evolve the system with Hamiltonian H(h) with h0 6= h < 1. As |Ψ〉 is not
an eigenstate of H(h) this results in interesting dynamics. The order parameter one-point
function at time t > 0 is given by (6), where the representative state |Φs〉 is characterized by
the root density [73]

ρ (k) =
1− cos∆k

4π
,

cos∆k =
hh0 − (h+ h0) cos k+ 1

p
1+ h2 − 2h cos k

q

1+ h2
0 − 2h0 cos k

. (26)

For later convenience we define the density of particles in the representative state

ρQ =

∫ π

−π
ρ(x)d x , (27)

where the index Q stands for ’quench’. In a large finite volume L we may choose [73]

|Φs〉= |q1,−q1, ...,qN ,−qN 〉NS , (28)

where the momenta qi are distributed according to the root density ρ(k). The time-evolved
initial state is given by

|ψ (t)〉=
∏

p>0

1+ ie−2i tε(p)K(p)α†
−pα

†
p

p

1+ K2(p)
|0〉 , (29)
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with K(p) = tan(∆p/2).
Equation (6) thus provides the following representation for the order parameter one-point

function




σx
` (t)

�

= Re

� ∞
∑

M=0

(−1)M

iM−N M !

∑

0<p1,...,pM
∈R

R〈p1,−p1, ..., pM ,−pM |σx
` |q1,−q1, ..., qN ,−qN 〉NS

×
N
∏

j=1

e−2i tε(q j)

K(q j)

M
∏

j=1

K(p j)e
2i tε(p j)

�

,

(30)

that is a sum of form factors over states that are expressed in terms of pairs of momenta.

2.2 Dynamical correlation functions at finite temperature

In the TFIM, the density of momenta q of the representative state |Eβ〉 in (4) is

ρ(q) =
1

2π
1

1+ eβε(q)
. (31)

For later convenience we define the corresponding density

ρβ =

∫ π

−π
ρ(x)d x . (32)

In practice a representative state is constructed from ρ(q) as follows. We first construct
the particle counting function z(q) by integrating the root density

z(q) =

∫ q

−π
ρ(y)d y . (33)

We then solve the equations

z(q(0)j ) =
2π j

L
, j = 1, . . . , N , (34)

where N is fixed by the requirement that |q(0)j | ≤ π. Finally we set

q j =
2π
L

�

� L
2π

q(0)j −
1
2

�

+
1
2

�

, j = 1, . . . , N . (35)

Inserting a resolution of the identity between the two spin operators in (4) leads to the
following spectral representation

χ x x (`, t) =
+∞
∑

M=0

1
M !

∑

p1,...,pM
∈R

|〈p1, ..., pM |σx
l |q1, ..., qN 〉|2ei t(E({q})−E({p}))+i`(P({p})−P({q})) . (36)

The terms in the sum depend on the regime of the TFIM: in the ordered phase, h< 1, M has the
same (even/odd) parity as N , whereas in the disordered phase, h > 1, it has opposite parity.
Moreover, in contrast to the quench case, (36) involves modulus squares of form factors, and
the intermediate states do not have a structure where momenta only appear in pairs {−pi , pi}.
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3 Systematic approach to form factor expansions for semi-local
operators

In this section we present a general framework for carrying out the form factor sums (30) and
(36) analytically at late times J t � 1. It is based on decomposing the form factors (22) into
partial fractions so that the sums over the p’s decouple and can be evaluated exactly. The key
observation is then that an oscillatory sum with a pole of order d like

∑

n
eint

(n+1/2)d grows as td−1,
so that the leading poles give the leading time behaviour, and the terms in the partial fraction
decomposition can be organized according to the total number of poles. This naturally leads
to an expansion in the number of particles per unit site – N/L – in the representative state,
which has already been proven very efficient for simpler quantities such as the free energy in
Bethe ansatz solvable interacting models [74,75].

In Sections 3.1 and 3.2 we consider the application of this framework in the context of the
finite temperature case (36), due to the more canonical sum over form factors that it involves.
Since the form factors differ for h< 1, h> 1 and h= 1, we will treat these cases separately.

We will be interested in large time or space asymptotics of correlation functions, generically
defined as requiring the phase i t(E ({q})− E ({p})) + i`(P ({p})− P ({q})) in (36) to be large.
This is in particular the case of the large time and distance asymptotics at fixed

α=
t
`

, (37)

on which we will focus. However, the static correlations case t = 0 and large ` is also covered
by our calculations; we refer the reader to Section 3.5.3 for details on this case. For later
convenience we introduce the following notations

ε(x) = ε(x)−
x
α

,

vmax = max
|x |≤π

ε′(x) , (38)

where vmax is the maximal group velocity of the elementary fermion excitations in the TFIM.
According to whether there exists an x0 such that ε′ (x0) = 0 (’time-like region’, t vmax > ` for
t,` ≥ 0) or not (’space-like region’, t vmax < ` for t,` ≥ 0), the next-to-leading terms in our
expansions differ. We will in the following compute these terms in the space-like region. Their
calculation in the time-like region is more involved and will be reported elsewhere.

In Section 3.4 we briefly present the application of our framework to the dynamics after
quantum quenches.

3.1 Case h < 1: identical number of particles

In this subsection we treat the case h< 1, for which the sum (36) includes intermediate states
with the same number N of particles as the representative state. We will show in Section 3.2
that the contributions of intermediate states with different particle numbers M 6= N is always
subleading in time. We exploit this result right away and focus on states with M = N in this
subsection.

3.1.1 Partial fraction decomposition of form factors

We recall that the partial fraction decomposition of a ratio of two polynomials P(X )
∏

i(X−x i)
ai with

distinct x i ’s is the writing

P(X )
∏

i (X − x i)
ai
= P0(X ) +

∑

i

ai
∑

ν=1

Bi,ν

(X − x i)
ν , (39)
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with P0(X ) a polynomial of degree deg(P) −
∑

i ai and Bi,ν independent of X , given by

Bi,ν =
1

(ai−ν)!

� d
dX

�ai−ν (P(X ) (X − x i)
ai )|X=x i

.
The squared form factor appearing in (36) can be written as

|NS〈q1, ...,qN |σx
l |p1, ..., pN 〉R|2 =

ξ

L2N
F {qi}
{pi}

, (40)

with1

F V
U =

�

�

�

�

∏

u6=u′∈U

sin
�

u− u′

2

�

∏

v 6=v′∈V

sin
�

v − v′

2

�

�

�

�

�

∏

u 6=v∈U ,V

sin2
�u− v

2

�

∏

u,v∈U ,V

ε2
uv

∏

u,u′∈U

εuu′

∏

v,v′∈V

εvv′
. (41)

The ε(p1) factors are not polynomial in p1 but are nevertheless bounded and without zeros.
Seen as a function of p1, the square of the form factor can thus be written
∑

i
Ai

sin2
� p1−qi

2

� + Bi

sin
� p1−qi

2

� + C with Ai , Bi independent of p1 and C a bounded function of p1.

Repeating the operation for the other momenta, one can write

|NS〈q1, ..., qN |σx
l |p1, ..., pN 〉R|2 =

ξ

L2N

2
∑

ν1,...,νN=0

∑

{ f~ν}

A ({q} , {p}, {ν} , f~ν)
N
∏

j=1

sinν j

� p j − q f~ν( j)

2

�

, (42)

where the second sum is over a complete set of functions f~ν : {i ∈ {1, . . . , N} |νi 6= 0} 7→ {1, . . . , N},
and where A ({q} , {p}, {ν} , f~ν) is a bounded function of p j if ν j = 0, and independent of p j
otherwise. In Fig. 1 we show examples of such functions f~ν. The important feature of (42) is
that each p appears at most once (however, the q’s may appear several times).

ν1 = 2 ν2 = 2 ν3 = 1 ν4 = 0 ν5 = 2 ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 1 ν5 = 2

Figure 1: Sketch of two examples of a function f from p’s in red to q’s in black.

3.1.2 Carrying the sum over the momenta pi

Let us briefly anticipate the method that we will use to carry out the sum over p in (36). If
there is a νi = 0 then the sum over pi is an oscillatory Riemann sum of a bounded function,
hence it decays to zero with time. Thus the leading behaviour is obtained for νi > 0 for all i.
Then (and only in this case) the coefficients A ({q} , {p}, {ν} , f~ν) are independent of the p’s and
the maps will no longer depend on {ν j}. These coefficients will be denoted by A({q} , {ν} , f )
and are obtained as

A({q} , {ν} , f ) =





 

∏

j

�

2
d

dp j

�2−ν j

sin2
� p j − q f ( j)

2

�

!

F
{qi}i=1,...,N

{pi}i=1,...,N





�

�

�

�

{p j=q f ( j)}
. (43)

1In F V
U the sets U and V can contain arbitrary momenta and are not meant to be each in the sectors R and NS

(this freedom will be indeed useful in Section 3.1.6 below). For this reason we impose in the denominator that the
momenta are different u 6= v, which is automatically satisfied if they are in different sectors, but not otherwise.
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This follows from the partial fraction decomposition, with a factor 2 because of the 1/2 inside
the sinus.

From here on we will only consider terms in the partial fraction decomposition such that
νi > 0 for all i, so that (43) applies. We denote the corresponding contribution to the spectral
representation (36) of χ x x(`, t) by S

S =
ξ

N !L2N

∑

p1,...,pN
∈R

�

� 2
∑

ν1,...,νN=1

∑

{ f }

A({q} , {ν} , f )
N
∏

j=1

sinν j
� p j−q f ( j)

2

�

�

× ei t(E({q})−E({p}))+i`(P({p})−P({q}))
�

, (44)

where the third sum is over a complete set of functions f : {1, ..., N} 7→ {1, ..., N}.
In this form one can perform the sums over p j using the following relations proven in

Appendix A

χ1(q)≡
∑

p∈R

e−i t
�

ε(p)−ε(q)
�

L sin
� p−q

2

� = −i sgn (tε′(q)) +O(L0 t−1/2) , (45)

χ2(q)≡
∑

p∈R

e−i t
�

ε(p)−ε(q)
�

L2 sin2
� p−q

2

� = 1−
2
�

�tε′(q)
�

�

L
+O(L−1 t−1/2) , (46)

with q ∈ NS, to obtain

S =
ξ

N !

2
∑

ν1,...,νN=1

∑

{ f }

A({q} , {ν} , f )
N
∏

i=1

χνi
(q f (i))

L2−νi
ei t(ε(qi)−ε(q f (i))) . (47)

Equations (46) are valid only when ε′(q) 6= 0. If there is a point where ε′(q) = 0, i.e. if we
are in the time-like region, corrections in time to (46) have to be taken into account, and they
are expected to modify significantly the subleading corrections in the correlation function. We
leave this matter of discussion for future work.

3.1.3 Constraints on the functions f

The set of functions f over which we need to sum is actually quite constrained. First, since

F
{qi}i=1,...N

{pi}i=1,...N
= 0 whenever pi = p j we must have f (i) 6= f ( j) whenever νi = ν j = 2.

We also need f (i) 6= f ( j) if νi = 1 and ν j = 2. Indeed, if f (i) = f ( j) then in (43) there

is a sin2 pi−p j
2 factor in the numerator of F

{qn}n=1,...,N

{pn}n=1,...,N
, but as there is only one derivative with

respect to pi and none with respect to p j this factor will make the coefficient A({q}, {ν}, f )
vanish upon taking pi = q f (i) = q f ( j) = p j .

More generally, if f takes k times the same value at points with νi = 1, then all the
k(k−1)/2 terms sin2 pi−p j

2 contribute to a zero of order k(k−1); since the number of derivatives
is equal to k, we must have k = 2.

These arguments show that the sum over f can be replaced by a sum over three disjoint
subsets I0, I1, I2 ⊂ {1, . . . , N}, where Ik is the set of points with ν = 1 attained k times by f .
The remaining points {1, ..., N} − (I0 ∪ I1 ∪ I2) all have ν = 2. There is a combinatorial factor
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N !
2|I2|

corresponding to the number of such functions with this precise ouput. It follows that
A({q} , {ν} , f ) depends only on the sets I0, I1, I2 and we have

S = ξ
∑

I0,I1,I2⊂{1,...,N}
|I0|=|I2|, all disjoint

A(I0, I1, I2)2
−|I2|ei t(

∑

i∈I0
ε(qi)−

∑

i∈I2
ε(qi))

×
∏

i∈I1

χ1 (qi)
L

∏

i∈I2

χ2
1 (qi)

L2

∏

i /∈I0,1,2

χ2 (qi) .

(48)

The expression for the coefficients A(I0, I1, I2) can be simplified as follows. We observe
that, whenever we have νi = 2 in (43), the various factors depending on pi and q f (i) pre-
cisely compensate one another. Hence we can work with a reduced form factor involving only
momenta in I0, I1, I2

A(I0, I1, I2) =





 

n+2m
∏

j=1

�

2
d

dp j

�

sin2
� p j − q f ( j)

2

�

!

F
{qi}i∈I0∪I1∪I2
{pi}i=1,...,n+2m





�

�

�

�

{p j=q f ( j)}
, (49)

for any function f such that { f (i)}i=1,...,n = I1, { f (i)}i=n+1,...,n+m = I2,
and { f (i)}i=n+m+1,...,n+2m = I2. The set I2 does appear twice by construction, and I0 does
not appear at all. The decomposition of {1, ..., n + 2m} into {1, ..., n}, {n + 1, ..., n + m},
{n+m+ 1, ..., n+ 2m} is arbitrary, and it needs only to involve one set with n elements and
two sets with m elements.

The sum of all the terms in (48) with |I1|= n, |I0|= |I2|= m will be denoted by Sn,2m. We
can factorize S0,0 and, using the explicit expression for χ1(q) and χ2(q), write

Sn,2m =
(−i)nS0,0

(−2)m Ln+2m

∑

I0,1,2⊂{1,...,N}
|I0|=|I2|=m
|I1|=n

all disjoint

A(I0, I1, I2)

∏

i∈I1

sgn (tε′(qi))

∏

i∈I0,1,2

�

1− 2|tε′(qi)|
L

�

× ei t(
∑

i∈I0
ε(qi)−

∑

i∈I2
ε(qi)) .

If n and m stay finite in the limit L →∞ we have
∏

i∈I0,1,2

�

1 − 2|tε′(qi)|
L

�

= 1 +O(L−1) and
hence

Sn,2m =
(−i)nS0,0

(−2)m Ln+2m

∑

q0
1<...<q0

m
q1

1<...<q1
n

q2
1<...<q2

m
all distinct

A({q0}, {q1}, {q2})ei t
∑m

i=1 ε(q
0
i )−ε(q

2
i )

n
∏

i=1

sgn (tε′(q1
i ) +O(L−1) .

(50)
Since the momenta selected by the sets I0,1,2 are drawn from the momenta {q j| j = 1, . . . , N}

of the representative state with density ρ, the term Sn,2m is of order (N/L)n+2m times S0,0.
Hence this expansion naturally leads to an expansion in N/L.

3.1.4 Example: correlation function at O(ρβ) uniformly in t at large t

Let us give some examples. With I0 = I1 = I2 = {} we have A(I0, I1, I2) = 1 hence the term

S0,0 = ξ
N
∏

i=1

�

1−
2
�

�tε′ (qi)
�

�

L

�

=ξexp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

+O(L−1) , (51)
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where, for a function f (x), we used

lim
L→∞

L−1
∏

k=0

�

1+
f (k/L)

L

�

= exp

∫ 1

0

f (x)d x . (52)

This term is the correlation function at order 1 in ρ uniformly in t at large t.

ν1 = 2 ν2 = 2 ν3 = 2 ν4 = 2 ν5 = 2

Figure 2: Sketch of configurations contributing to S0,0.

3.1.5 Example: correlation function at O(ρ2
β
)

With I1 = {i, j} and I0 = I2 = {} we have

A(I0, I1, I2) =
2

sin2
� qi−q j

2

� +
8ε′ (qi)ε′

�

q j

�

�

ε (qi) + ε
�

q j

��2 . (53)

This term leads to

S2,0 = −
S0,0

L2

∑

i< j





2

sin2
� qi−q j

2

� +
8ε′ (qi)ε′

�

q j

�

�

ε (qi) + ε
�

q j

��2



 sgn (ε′(q j)ε
′(qi)) . (54)

ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 2 ν5 = 2

Figure 3: Sketch of configurations contributing to S2,0.

For the choice I1 = {} and I0 = {i}, I2 = { j} we have

A(I0, I1, I2) = −
2

sin2
� qi−q j

2

� , (55)

and

S0,2 =
S0,0

L2

∑

i 6= j

ei t(ε(q j)−ε(qi))

sin2
� qi−q j

2

� sgn (ε′(q j)ε
′(qi)) . (56)

ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 2 ν5 = 2

Figure 4: Sketch of configurations contributing to S0,2.
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Although they are individually both divergent in L in the scaling limit L →∞, their sum
is not divergent and is, see Appendix A,

S2,0 + S0,2 = −S0,0

�

4π

∫ π

−π

�

�tε′(x)
�

�ρ2(x)d x + c

�

, (57)

with the following value in the space-like regime where sgn (ε′(x)) is constant

c =2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
� x−y

2

� d xd y . (58)

Contrarily to the previous case, this order ρ2 of the correlation function at fixed large t cannot
be uniform in t, since it diverges for t → ∞. In fact, the summation of other simple-pole
contributions will lead to an exponentiation of this ρ2 term and hence a correction of the
exponent in the exponential decay.

We remark that in the very different context of the master equation approach for zero-
temperature ground state correlations of a local operator in the XXZ spin chain, chains of
double poles arising in some cycle integrals were observed to yield sub-leading exponential
behaviours as well [76], which could suggest some yet not clear structural commonalities.

3.1.6 Recursive structure of A(I0, I1, I2)

In the general case the amplitudes A(I0, I1, I2) are obtained from (49), but the sums over
momenta associated with the index sets I0, I2 in (50) cannot be carried out as simply as in
the cases treated above. In fact, as we noted earlier, the derivatives corresponding to I2, I0 in
(49) have to be applied on the double zero sin2 pi−p j

2 in the numerator to give a non-vanishing
result, so that one actually has

A(I0, I1, I2) = (−2)|I2|
��

∏

i∈I1

�

2
d

dpi

�

sin2 pi − qi

2

�

F
{qi}i∈I1∪I0
{pi}i∈I1∪{qi}i∈I2

�

�

�

�

�

p j=q j , j∈I1

. (59)

The form factor F
{qi}i∈I1∪I0
{pi}i∈I1∪{qi}i∈I2

can itself be decomposed into partial fractions. One obtains

A(I0, I1, I2) = (−2)|I2|
∑

νi∈{0,1,2}
i∈I1∪I2

νi=1 if i∈I1

∑

f :{i∈I1∪I2|νi>0}
7→I1∪I0

f (i)=i if i∈I1

A({qi}i∈I1∪I0
, {ν}, f )

∏

j∈I2
sinν j

q j−q f ( j)
2

. (60)

We observe that the sum over {q2} in (50) will play a similar role to the sum over p’s in
(36), with however the important difference that they are drawn from the original q’s of the
representative state and are not arbitrary momenta as is the case for the p’s in (36).

3.1.7 Partial fraction in A(I0, I1, I2) leading in density

Relation (60) reveals a recursive structure in the calculation of A(I0, I1, I2). However, we will
not develop this recursion further here, but will rather focus on the leading partial fractions
of (60) obtained with a set {ν} such that νi = 2 for i ∈ I2 and νi = 1 for i ∈ I1, and functions
f : I1 ∪ I2 7→ I1 ∪ I0 that map I2 to I0 in a one-to-one fashion and fulfil f (i) = i for i ∈ I1.
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ν′1 = 2 ν′2 = 2 ν′3 = 1

ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 1 ν5 = 1 ν6 = 2 ν7 = 2 ν8 = 1

Figure 5: Sketch of the two functions f after one step of recursion. In red are in-
dicated the p’s, in blue the q’s that play the role of the p’s after the first step of the
recursion, that are those with index in I1 or I2. The ’new’ q’s on the last row are those
with index in I1 or I0.

The coefficient then reads

A({qi}i∈I1∪I0
, {ν}, f ) =

��

∏

i∈I1

�

2
d

dpi

�

sin2 pi − qi

2

�

F
{qi}i∈I1
{pi}i∈I1

�

�

�

�

�

pi=qi ,i∈I1

. (61)

Let us select one i ∈ I1 and introduce a reduced set I ′1 = I1 − {i}. Performing the derivative
with respect to pi gives

A({qi}i∈I1∪I0
, {ν}, f ) =





∏

k∈I ′1

�

2
d

dpk

�

sin2 pk − qk

2





2





∑

k∈I ′1

1
tan

qi−pk
2

− ε′(qi)
εqi pk
−
∑

k∈I ′1

1
tan

qi−qk
2

− ε′(qi)
εqi qk



 F
{qk}k∈I′1
{pk}k∈I′1

�

�

�

�

pk=qk ,k∈I ′1

.

(62)

We observe that the first factor in the second line has to be differentiated precisely one more
time for the result not to vanish (the fact that f is one-to-one on I1 to I1 is essential for this),
so that

A({qi}i∈I1∪I0
, {ν}, f ) =

∑

j∈I ′1

�

2

sin2 qi−q j
2

+ 2
ε′(qi)ε′(q j)

ε2
qiq j

�

×









∏

k∈I ′′1

�

2
d

dpk

�

sin2 pk − qk

2



 F
{qk}k∈I′′1
{pk}k∈I′′1





�

�

�

�

pk=qk ,k∈I ′′1

,

(63)

with I ′′1 = I1 − {i, j}. Applying the same reasoning to the remaining momenta yields

A({qi}i∈I1∪I0
, {ν}, f ) =

∑

P pairings of I1

∏

(i, j)∈P

�

2

sin2 qi−q j
2

+ 8
ε′(qi)ε′(q j)

(ε(qi) + ε(q j))2

�

≡ φ(I1) . (64)

3.1.8 Result: correlation function at O(ρ2
β
) uniformly in t at large t

In analogy with our notations for the first level of the recursive structure we denote by Sn,2m|0,0
all contributions to (50) that arise by specifying νi = 2 for i ∈ I2 in (60). We observe that in
(59) the form factor vanishes if there are coinciding momenta in I0 and in I2, or momenta that
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occur both in I1 and I0 or I2. Hence one only has to impose that momenta in I1 are distinct
among themselves, and that momenta in I0 are distinct from those of I2. This gives

Sn,2m|0,0 =
(−i)nS0,0

n!(m!)2 Ln+2m
×

∑

q1
1 ,...,q1

n
all distinct

∑

q0
1 ,...,q0

m
q2

1 ,...,q2
m

q0 distinct from q2

φ({q1})
∑

f :{q2}→{q0}
one-to-one

ei t
∑m

i=1 ε(q
0
i )−ε(q

2
i )

∏m
j=1 sin2 q2

j−q0
f ( j)

2

n
∏

i=1

sgn (tε′(q1
i )) . (65)

The two sets of sums factorize. We have

1
(m!)2 L2m

∑

q0
1 ,...,q0

m
q2

1 ,...,q2
m

q0 distinct from q2

∑

f :{q2}→{q0}
one-to-one

ei t
∑m

i=1 ε(q
0
i )−ε(q

2
i )

∏m
j=1 sin2 q2

j−q0
f ( j)

2

=
1

m!





1
L2

∑

qi 6=q j

ei t(ε(qi)−ε(q j))

sin2 qi−q j
2





m

.
(66)

As for the terms in the sum over {q1}, they vanish for n odd, while for even n= 2p they are

(−i)n

n!Ln

∑

q1
1 ,...,q1

n
all distinct

φ({q1})
n
∏

i=1

sgn (tε′(q1
i ))

=
(−1)p

(2p)!
(2p)!
p!2p





1
L2

∑

qi 6=q j

sgn (ε′(qi)ε
′(q j))

�

2

sin2 qi−q j
2

+ 8
ε′(qi)ε′(q j)

(ε(qi) + ε(q j))2

�





p

.

(67)

It follows that the infinite volume limit of the sum of all Sn,2m|0,0 reads

∑

n,m≥0

Sn,2m|0,0 = S0,0 exp





1
L2

∑

qi 6=q j

Σi j sgn (ε′(qi)ε
′(q j))





Σi j ≡
ei t(ε(qi)−ε(q j)) − 1

sin2 qi−q j
2

− 4
ε′(qi)ε′(q j)

(ε(qi) + ε(q j))2
.

(68)

We note that it involves the same sums as in S0,2 and S2,0 above. We obtain

∑

n,m≥0

Sn,2m|0,0 = S0,0 exp

�

−c − 4π

∫ π

−π
ρ(x)2|tε′(x)|d x +O

�

t−
1
2
�

�

, (69)

where S0,0 has been computed in (51). We have thus obtained the order O(ρ2
β
) contribution

to the correlation function uniformly in t

χ x x(t,`)≈ C exp

�

−2

∫ π

−π
ρ(x)(1+ 2πρ(x))|tε′(x)− `|d x

�

, (70)

with

C = ξexp

�

−2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
� x−y

2

� d xd y

�

. (71)

In the time-like region, the exponent would be the same, but the constant would differ.
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This result should be compared to the semiclassical approach of Sachdev and Young [11,
86], which gives

χ x x
SY (t,`)≈ ξexp

�

−
∫ π

−π

dk
π

e−βε(k)|tε′(k)− `|
�

. (72)

As expected our result reduces to the semiclassical one in the limit βJ � 1.

3.2 Case h > 1: different numbers of particles

We now turn to the case h > 1. Here the sum (36) involves only intermediate states with
numbers of particles that are different from that of the representative state. Hence we must
study form factor sums with M 6= N . We will compute the prefactors at order O

�

ρ1
β

�

in the

space-like region, and because of saddle points effects only at order O
�

ρ0
β

�

in the time-like
region.

3.2.1 General structure

We start by considering the general structure of contributions with N 6= M . This discussion
applies also to the h < 1 case and in particular shows that there the dominant contributions
arise from N = M . As in the case M = N , the form factor
|NS〈q1, ..., qN |σx

l |p1, ..., pM 〉R|2 can be decomposed into partial fractions

|NS〈q1, ..., qN |σx
l |p1, ..., pM 〉R|2 =

ξ(2J
p

h)(M−N)2

LN+M

2
∑

ν1,...,νM=0

∑

{ f~ν}

A({q} , {p}, {ν} , f~ν)
∏M

j=1 sinν j
� p j−q f~ν( j)

2

� , (73)

with f : {i ∈ {1, . . . , M} |νi 6= 0} 7→ {1, . . . , N} any function, and A({q} , {p}, {ν} , f~ν) is a
bounded function of p j if ν j = 0, and independent of p j otherwise.

The important difference from the case M = N is that we cannot always neglect the con-
tributions with ν j = 0. Indeed, let us denote by k the number of ν j = 0. The corresponding
contributions give rise to k oscillatory bounded integrals that will each decay with time. On
the other hand each of the M − k sums over the other momenta pi will generate an oscillating
factor e−i tε(q f~ν( j)

) according to (46), while N factors ei tε(qk) are already present. The result-
ing oscillatory sums may have singularities, but according to (46) summing these singularities
does not consume any oscillatory factor, it only lowers the number of singularities. Hence in
the end we will be left with |N − M + k| oscillatory bounded integrals to perform. In total,
there are thus k+|N−M+k| of such integrals. Hence if M ≤ N the case k = 0 is still dominant
at late times, but if M > N then all the cases 0 ≤ k ≤ M − N are a priori of the same order.
In both cases these leading terms involve |M − N | oscillatory bounded integrals, so that we
can conclude that the terms M 6= N are exponentially smaller than the case M = N in the
space-like regime, and typically around2 t−|M−N |/2 smaller in the time-like regime.

It follows that for h> 1 the dominant terms in (36) are obtained for M = N ±1, which we
now consider in turn.

3.2.2 Case M = N − 1

For M = N − 1 the dominant contribution in density in (73) is obtained with νi = 2 for all
i = 1, ..., N −1. The function f : {1, ..., N −1} 7→ {1, ..., N} has to be injective so there is one qi

2Clearly, there are specific degenerate cases where the stationary phase approximation will give a different
factor than 1p

t . Due to the possible time-dependence of the integrand apart from the oscillatory term this factor
may also be marginally corrected by logarithms.
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not attained by f , leaving (N − 1)! possible equivalent choices for f once qi is chosen. Then
one has A({q} , {p}, {ν} , f~ν) =

1
ε(qi)

. Using (46), the corresponding contribution to (36) is

S−0,0 =
2Jξ
p

h
L

N
∑

i=1

ei tε(qi)

ε(qi)

∏

j 6=i

χ2(q j) . (74)

This term is of order ρ, so in the time-like region it vanishes at the order of our computation.
In the space-like region we have

S−0,0 = 2Jξ
p

h

�∫ π

−π

ei tε(x)

ε(x)
ρ(x)d x

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

. (75)

There, ε(x) is monotonous and ei tε(x) is periodic (because the distance ` is an integer) so the
first integral decays with time faster than any power-law and cannot be simplified further.

ν1 = 2 ν2 = 2 ν3 = 2 ν4 = 2

Figure 6: Sketch of the leading configurations contributing to M = N − 1.

3.2.3 Case M = N + 1 and k = 1

For M = N + 1 with one νi = 0, the dominant contribution in (73) is obtained with the
remaining ν j = 2 for j 6= i. Thus f : {1, ..., N + 1} − {i} 7→ {1, ..., N} has to be one-to-one,
leaving N ! equivalent choices. Then one has A({q} , {p}, {ν} , f~ν) =

1
ε(pi)

. Using (46), the
corresponding contribution to (36) is

S+0,0 =
2Jξ
p

h
(N + 1)L

N+1
∑

i=1

∑

pi

e−i tε(pi)

ε(pi)

N
∏

j=1

χ2(q j) . (76)

In the infinite volume limit we obtain the following result in the space-like regime

S+0,0 = 2Jξ
p

h

�∫ π

−π

e−i tε(x)

2πε(x)
d x

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

, (77)

where the prefactor is accurate to first order in the density ρβ . In the time-like region the
prefactor is only accurate to O(ρ0

β
), because saddle point effects arise at order O(ρβ). A

saddle point approximation gives in this regime

S+0,0 =
2Jξ
p

h
p

2π|t|

�

∑

s∈SP

e∓iπ/4

ε(s)
Æ

|ε′′(s)|
e−i tε(s)

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

, (78)

where SP = {s,ε′(s) = 0} denotes the set of saddle points and ± the sign of tε′(s).

ν1 = 2 ν2 = 2 ν3 = 2 ν4 = 0 ν5 = 2

Figure 7: Sketch of the leading configurations contributing to M = N + 1 and k = 1.
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3.2.4 Case M = N + 1 and k = 0

For M = N + 1 and all νi 6= 0, the dominant contribution in (73) is obtained by {ν}, f~ν
such that νi = ν j = 1 with f~ν(i) = f~ν( j), and the remaining νl = 2 for l 6= i, j. Once
qk = q f~ν(i) = q f~ν( j) are chosen, there are

�N+1
2

�

N ! possibilities for f~ν. All of these lead to
A({q} , {p}, {ν} , f~ν) =

−2
ε(qk)

. Using (46), the corresponding contribution to (36) becomes

S+0,2 = −
2Jξ
p

h
L

N
∑

k=1

e−i tε(qk)

ε(qk)
χ2

1 (qk)
N
∏

j 6=k

χ2(q j) . (79)

Taking the infinite volume limit we obtain

S+0,2 = −2Jξ
p

h

�∫ π

−π

e−i tε(x)

ε(x)
χ2

1 (x)ρ(x)d x

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

. (80)

In the space-like region χ1(x) = i sgn (ε′(x)) and one has with the prefactor at order ρ1

S+0,2 = 2Jξ
p

h

�∫ π

−π

e−i tε(x)

ε(x)
ρ(x)d x

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

. (81)

In time-like region, this term vanishes at order ρ0.

ν1 = 2 ν2 = 2 ν3 = 1 ν4 = 1 ν5 = 2

Figure 8: Sketch of the leading configurations contributing to M = N + 1 and k = 0.

3.2.5 Result: correlation functions for h > 1 at leading order in ρβ

Putting everything together, in the space-like regime and at leading order in density we obtain
the following result

χ x x(`, t)≈ 2Jξ
p

h

�∫ π

−π
d x

e−i tε(x)

2πε(x)

�

1+ 4πρ(x)
�

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ (x) d x

�

, . (82)

In the time-like regime we have instead

χ x x(`, t)≈
2Jξ
p

h
p

2π|t|

�

∑

s∈SP

e∓iπ/4

ε(s)
Æ

|ε′′(s)|
e−i tε(s)

�

exp

�

−2

∫ π

−π

�

�tε′(x)
�

�ρ(x)d x

�

, (83)

where the sum is over the saddle points s of ε(x).
This result should be compared to the semiclassical approach of Sachdev and Young [11,

86], which gives

χ x x
SY (t,`)≈ 2Jξ

p

h

∫ π

−π

d x
2π

e−i tε(x)

ε(x)
exp

�

−
∫ π

−π

dk
π

e−βε(k)|tε′(k)− `|
�

. (84)

As expected our result reduces to the semiclassical one in the limit βJ � 1.
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3.3 Case h = 1

In the case h= 1 the structure of the form factor (22) is modified compared to the case h 6= 1:
since ε(0) = 0, there are additional poles. The nature of these poles is moreover different
from those appearing in the partial fraction decomposition of the previous sections, since they
involve pairs of momenta: for εpp′ to vanish we must have p = p′ = 0.

We note that at zero temperature the model becomes critical at h = 1 and correlation
functions should exhibit power-law decays. These issues are beyond the scope of this work.

3.4 Quantum quench case

We now turn to the time evolution of the order parameter one-point function after a quench of
the transverse field within the ordered phase. Our aim is to evaluate the spectral representation
(30) obtained in the framework of the quench action approach.

3.4.1 Generalities

The sum over form factors appearing in the context of quantum quench dynamics (30) differs
from the finite temperature case (36) notably because now in both states of the form factors
the momenta come in pairs pi ,−pi . One can then write

R〈p1,−p1, ..., pN ,−pN |σx
` |q1,−q1, ..., qN ,−qN 〉NS =

(−4)N
p

ξ

L2N

N
∏

j=1

sin q j sin p j

×
N
∏

i, j=1

ε4
q j pi

ε2
q jqi
ε2

p j pi

N
∏

i 6= j=1

(cos qi − cos q j)(cos pi − cos p j)

N
∏

i, j=1

(cos qi − cos p j)
2

.

(85)

Focusing again on M = N in (30), we have




σx
` (t)

�

= Re

� p

ξ

N !L2N

∑

0<p1,...,pN
∈R

N
∏

j=1

4
f (p j)

f (q j)
sin p j sin q je

2i t(εp j
−εq j

)

×
∏

i, j

ε4
q j pi

ε2
q jqi
ε2

p j pi

∏

i 6= j(cos qi − cos q j)(cos pi − cos p j)
∏

i, j(cos qi − cos p j)2

�

,

(86)

with

f (p)≡ K(p) =

√

√ 2πρ(p)
1− (2πρ(p))2

. (87)

3.4.2 Differences from the finite temperature case

We apply a partial fraction decomposition to the second line of (86), seen as a ratio of poly-
nomials in the cos p j . The procedure is the same as in Section 3.1. More precisely, we define

eF V
U =

�

�

�

�

∏

u6=u′∈U

�

cos u− cos u′
�

∏

v 6=v′∈V

�

cos v − cos v′
�

�

�

�

�

∏

u6=v∈U ,V

(cos u− cos v)2

∏

u,v∈U ,V

ε4
uv

∏

u,u′∈U

ε2
uu′

∏

v,v′∈V

ε2
vv′

, (88)
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which we decompose into partial fractions with cos u taken to be the relevant variables. This
gives

eF {qi}
{pi}
=

2
∑

ν1,...,νN=0

∑

{ f~ν}

A ({q} , {p}, {ν} , f~ν)
N
∏

j=1

(cos p j − cos q f~ν( j))
ν j

,
(89)

where the second sum is over any function f : {i ∈ {1, . . . , N} |νi 6= 0} 7→ {1, . . . , N}, and where
A ({q} , {p}, {ν} , f~ν) is a bounded function of p j if ν j = 0, and independent of p j otherwise.

There are however some noteworthy differences from Section 3.1 brought by the presence
of factors involving the function f (p) and the fact that there is still a pi dependence in the sum
(86) outside the partial fraction decomposition. In place of (46) we now have

4
L

∑

p>0,∈R

sin p sin q′ f (p)/ f (q′)
cos q− cos p

e2i tε(p) = 2i sgn (tε′(q)) sin q′
f (q)
f (q′)

e2i tε(q) +O(L0 t−1/2)

4
L2

∑

p>0,∈R

sin p sin q f (p)/ f (q)
(cos q− cos p)2

e2i tε(p) =
�

1−
4t|ε′(q)|

L
+

2i sgn (ε′(q))
L

f ′(q)
f (q)

�

e2i tε(q)

+O(L−1 t−1/2) ,

(90)

as shown in Appendix A. The analog of equation (50) is given by

Sn,2m =
(2i)nS0,0

(−2)m Ln+2m

∑

q0
1<...<q0

m
q1

1<...<q1
n

q2
1<...<q2

m
all distinct

A({q0}, {q1}, {q2})
m
∏

j=1

�

4 sin q0
j sin q2

j

f (q2
j )

f (q0
j )

�

× e2i t
∑m

i=1 ε(q
2
i )−ε(q

0
i )

n
∏

i=1

sin q1
i sgn (ε′(q1

i )) ,

(91)

with

S0,0 =
p

ξexp

�

−4

∫ π

0

�

�tε′(x)
�

�ρ(x)d x

�

. (92)

Here we used that f (p) (87) fulfils
∫ π

0

f ′(x)
f (x)

ρ(x)d x = 0 . (93)

The possibility of differentiating f (p) also modifies the derivation of (64), which now takes
the form

A({qi}i∈I1∪I0
, {ν̃}, f̃ ) =

∑

K⊂I1

∏

k∈K

f ′(qk)
f (qk)

∑

P pairings of I1−K

∏

(i, j)∈P

�

1
(cos qi − cos q j)2

+ 4
∂cos kε(qi)∂cos kε(q j)

(ε(qi) + ε(q j))2

�

.
(94)

Because of (93), however, only K = {} remains after the sum over qk.

3.4.3 Result: O(ρ2
Q) uniformly in t at large t

The final result of the above calculation for the time evolution of the order parameter one-point
function after a quench of the transverse field within the ordered phase is




σx
` (t)

�

= C exp

�

−4

∫ π

0

ρ(x)(1+ 2πρ(x))|tε′(x)|d x

�

, (95)
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where

C =
p

ξexp

�

−4

∫ π

0

d x

∫ π

0

d yρ(y)
� ρ′(x) sin y

cos y − cos x
− 2

|ε′(x)ε′(y)|
(ε(x) + ε(y))2

ρ(x)
�

�

. (96)

This result holds at the second order in the density O(ρ2
Q). The reader may have noted

that, since ε′(0) = ε′(π) = 0, the quantum quench dynamics is a ’time-like region’ case, so
the saddle point effects might modify this prefactor at order ρ1. It turns out, however, that
ρ(0) = ρ′(0) = ρ(π) = ρ′(π) = 0, so the saddle point corrections are higher order in time
and do not affect the prefactor.

3.5 Comments on the form factor summation

Having carried out form factor summations to obtain the leading late-time asymptotics in the
low-density regime in both the finite temperature and the quantum quench contexts it is useful
to take stock and stress some features that we expect to be of a general nature.

3.5.1 Which states govern the late time dynamics?

The leading late time behaviour follows from equations (46) that enter the sum over p’s of the
partial fraction decomposition (42). These formulas are obtained by isolating the singularity
and dropping the integral of an oscillatory bounded function, cf. Appendix A. The singular
part involves momenta p j in (36) that are at distance O(L−1) of any of the qi . The aim of
this section is to quantify more precisely the number of p j that have to be summed in order to
recover the late time dynamics. In other words, we would like to know the smallest function
η(L) such that

Lη(L)
∑

n=−Lη(L)

ei t(ε(q)−ε(pn))

L2 sin2
� pn−q

2

� =

�

1−
2
�

�tε′(q)
�

�

L

�

+O(L−1 t−1/2) +O(L−2) , (97)

with pn = q + 2π
L (n+ 1/2). We first observe that if Lη (L)→ N0 remains finite when we take

L→∞, then

Lη(L)
∑

n=−Lη(L)

ei t(ε(q)−ε(pn))

L2 sin2
� pn−q

2

� ≈
Lη(L)
∑

n=−Lη(L)

1

L2 sin2
� pn−q

2

� +O(t2/L2)

≈
N0
∑

n=−N0

1
π2(n+ 1/2)2

<

∞
∑

n=−∞

1
π2(n+ 1/2)2

= 1 .

(98)

As our spectral representation involves N ∝ L sums of this kind we obtain an infinite product
over factors that are strictly smaller than 1 and obtain a vanishing answer. Hence retaining
only a finite number of p j ’s in our sum is clearly insufficient.

Conversely, if η(L) = η stays finite we do have (97) at leading order in time because
the terms we drop compared to having limits ±∞ contribute to an oscillatory integral of a
bounded function

∫ ∞

η

ei t x

x2
d x +

∫ −η

−∞

ei t x

x2
d x , (99)

that vanishes at large times.
What if now η(L)→ 0 with Lη(L)→∞? We have, by turning the sum into an integral

with Euler-Maclaurin correction terms

∑

n>η(L)L

ei θL (n+1/2)

(n+ 1/2)2
=

1
L

∫ ∞

η

eiθ x

x2
d x +O

�

1
Lnηn

, n≥ 3
�

, (100)
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and
∫ ∞

η

eiθ x

x2
d x =

1
η

E2(−iθη) =
i
η2θ

eiηθ +O
�

1
θ n+2ηn+3

, n≥ 0
�

, (101)

obtained from the expansion of the exponential integral E2(x) =
∫∞

1
e−xu

u2 du. If we want this
term to become negligible compared to (46) at late times in the scaling limit, then we need
Lηn+2(L) → ∞ for all n ≥ 0 in order to ensure that both the Euler MacLaurin correction
terms in (100) and (101) are negligible. Hence any power-law η(L) = L−ν with ν > 0 will
not suffice. Stated differently, the number Lη(L) has to be larger than any Lν for 0 < ν < 1,
but any macroscopic fraction εL with ε > 0 is sufficient. We will denote by mesoscopic this
number of states (in contrast with microscopic O(1) and macroscopic O(L)).

Finally, it is clear from e.g. (51) that in order to recover an exponential decay in time,
one should multiply a O(L) number of terms like (46), and to recover the right exponent one
should take into account ’almost all’ these terms at each momentum q.

We conclude that if the sum over the p j in (36) is viewed in terms of particle-hole exci-
tations over the qi , the leading late time behaviour emerges from a mesoscopic number (i.e.
larger than any Lν for 0 < ν < 1, but smaller than εL for any ε > 0) of particle-hole excita-
tions around each qi . It represents an exponential number of states, but still sub-entropic, in
the sense that it includes only states whose macroscopic state is the representative state itself.
We expect this to be a general feature of form factor expansions of semi-local operators that
holds also in interacting theories.

. . . . . . . . . . . . . . . . . . . . .

Figure 9: Sketch of the states contributing to the leading asymptotics: position of the
momenta of the representative state (empty circles), position of the momenta of the
intermediate state (filled circles), and position of the holes (dots).

3.5.2 Non-vanishing low-density limit of form factors

The leading order term both in time and density (51), obtained by keeping only the double
poles in the partial fraction decomposition (42), has an interesting physical interpretation in
terms of low-density limit of the form factor (22). This limit consists in assuming that ρ(x) is
small everywhere, i.e. that L(qi+1 − qi) →∞ when L →∞ in the scaling limit3. One can
observe then that the square of the form factor (40) vanishes in the scaling limit L→∞ unless
each p is at a distance of order O(L−1) from a q, and because of the low-density assumption
this q becomes unique in the limit L→∞. Thus one can write

pi = qi +
2π
L
(ni + 1/2) , (102)

with ni an integer. In the low-density limit we have

lim
L→∞

sin
q j−q j′

2 sin
p j−p j′

2

sin
q j−p j′

2 sin
q j′−p j

2

= −1 , lim
L→∞

εq j p j′
εq j′ p j

εq jq j′
εp j p j′

= 1 , for j < j′ , (103)

3Strictly speaking, this is a different limit than merely N/L � 1, since this latter one does not require
ρ(x) =O(N/L) everywhere. For example, a ground state at zero temperature and high chemical potential would
have N/L� 1 but not ρ(0)� 1.
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and so in the scaling limit

|〈q1, ..., qN |σx
l |p1, ..., pN 〉|2 =

ξ

π2N

N
∏

j=1

1
�

n j + 1/2
�2 , (104)

which constitutes the low-density approximation of the form factor in the case it is not van-
ishing in the scaling limit.

Now, we trade the 1/N ! in (36) for an ordering p1 < ... < pN and choose an ordering
q1 < ... < qN . In the low-density limit, we have L(qi+1 − qi)→∞ in the large L limit: Hence
whenever the integers ni in (102) are O(L0) the constraint on the p′s is automatically satisfied,
and one can sum, in the large L limit, on arbitrary integers. The fact that both the 1/N ! and
the constraint p1 < ... < pN are removed in the low-density limit is a simplifying feature very
specific to this regime.

Hence in the low density limit we have

χ x x (`, t) =
∞
∑

n1=−∞
...

∞
∑

nN=−∞

ξ

π2N

N
∏

j=1

e−2iπt
∑N

j=1 ε
′(q j)

(n j+1/2)
L

�

n j + 1/2
�2 . (105)

This expression factorizes and can be computed along (51) with formulas (161).

3.5.3 Static correlations

Results (70), (82), (83) and their analogues hereafter (143), (150) for the finite temperature
correlations are obtained in the regime `, t →∞ at fixed α = t/`. In their derivation, how-
ever, we have only used that the phase i t(E ({q})− E ({p})) + i`(P ({p})− P ({q})) in (36) is
large, therefore our calculations are also applicable to static correlations t = 0 at large `. It
amounts to replacing tε(x) by −`x in all the phases e−i tε(x). All the oscillatory integrals that
we neglected because of their large time behaviour ∼ t−1/2 will now decay at large distances
at least as `−1 (and in general much faster). In particular (46) still hold, but with correc-
tions O(L0`−1) and O(L−1`−1) respectively. Static correlations are then obtained by replacing
|tε′(x)| (i.e., |tε′(x)− `|) by |`| in the final results.

4 Quantum quench dynamics beyond low densities

The framework presented in Section 3 is general and permits us to compute the late time
behaviour and subleading corrections of form factor sums, order by order in ρQ = N/L. In
particular, it yields the expression of the observables of interest as Ce−t/τ, where both C and
τ are the exact expressions at a given order (here second order) in ρQ. The computation of
a generic order in the density is however rather involved. In this section and in the following
one we focus on the exponent τ of the exponential decay, for which another more efficient but
less general approach can be used to calculate it at all orders in ρQ, i.e. writing the correlation
function as e−t/τ where τ includes all orders in ρQ.

This first section treats the quantum quench problem introduced in Section 2.1.

4.1 Determinant representation

As shown in Section 3.2, the leading contribution in (30) is obtained for N = M , on which we
will focus. The starting observation is that the last term of (85) can be written as a Cauchy
determinant. Indeed we have
∏

i 6= j(cos qi − cos q j)(cos pi − cos p j)
∏

i, j(cos qi − cos p j)2
= (det C)2 = det C T C , Ci j =

1
cos pi − cos q j

. (106)
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Let us define M̄ = C T C and M j
ik = Ci jCk j , so that M̄ik =

∑

j M j
ik. The determinant of M̄ can

be expanded as follows

det M̄ =
∑

τ∈SN

sgn (τ)M̄1τ(1)...M̄Nτ(N)

=
∑

j1,..., jN∈{1,...,N}

∑

τ∈SN

sgn (τ)M j1
1τ(1)...M

jN
Nτ(N) .

(107)

The term M ja
aτ(a)M

jb
bτ(b) is invariant under the replacement τ→ τ · (a b) if ja = jb, whereas the

sign of the permutation changes. Hence the sum over τ vanishes unless all the j’s are distinct,
i.e., if they are a permutation of 1, ..., N . In conclusion we find

det M̄ =
∑

σ∈SN

det Mσ , (108)

with Mσ
ik = Mσ(i)

ik . This relation permits one to eliminate the 1/N ! factor in (86), which then
reads




σx
` (t)

�

= Re

�p

ξ

L2N

∑

0<p1,...,pN

N
∏

j=1

4
f (p j)

f (q j)
sin p j sin q je

2i t(ε(p j)−ε(q j))
∏

i, j

ε4
q j pi

ε2
q jqi
ε2

p j pi

det M

�

,

(109)
where f (p) is defined in (87) and M is explicitly given by

Mi j =
1

cos qi − cos pi

1
cos q j − cos pi

. (110)

4.1.1 Approximation

In order to proceed we now drop one of the factors in (109), which we argue is justified at
late times. The factor involving the εk,k′ in (109) is a function

g{q1,...,qN }(p1, ..., pN ) =
∏

i, j

ε4
q j pi

ε2
q jqi
ε2

p j pi

, (111)

such that for σ ∈SN

(i) g{q1,...,qN }(p1, ..., pN ) is regular, symmetric and has no poles in p1, ..., pN ;

(ii) g{q1,...,qN }(qσ(1), ..., qσ(N)) = 1;

(iii) ∀k = 1, ..., N , g{q1,...,qN }(p1, ..., pN )|∀ j=k+1,...,N , p j=qσ( j) = g{qσ(1),...,qσ(k)}(p1, ..., pk);

(iv) ∀i = 1, ..., N , ∂pi
g{q1,...,qN }(p1, ..., pN )|∀ j p j=qσ( j) = 0 . (112)

The first two properties (i) and (ii) follow immediately from the definition (23). The third
one (iii) means that if some p’s are set to some q’s in a one-to-one fashion, then one recovers
the same function g with the remaining p’s and q’s. As for property (iv), it means that (ii)
holds at order (pi − qσ(i))2.

We will now argue that by virtue of these properties setting g to 1 does not affect the
leading behaviour at late times t. First, property (i) ensures that g does not modify the general
structure (42) by allowing e.g. for higher order poles, or poles at other momenta. Property
(ii) ensures that g does not modify the values A(I0, I1, I2) when I1 = {}, because in these cases
there is always a double zero to differentiate and g is then evaluated at a permutation of the
momenta. When I1 6= {}, the function g does change A(I0, I1, I2), but, because of property
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(iv), it will not modify the pairing structure of (64), and will only modify the factors in (64)
by an extra additive term. Finally, property (iii) allows one to repeat these steps recursively in
(59). We now observe that the resulting partial fraction decomposition will always boil down
to evaluating sums of the form (188). The contribution of g is an additional term to (188),
and so the leading time behaviour will never depend on g.

Based on these arguments we now make the approximation of setting g = 1

〈σx
` (t)〉 ≈ Re

4N
p

ξ

L2N

∑

0<p1,...,pN
∈R

det
i, j

�

�

�

�

ei t(2ε(pi)−ε(qi)−ε(q j)) sin pi sin q j f (pi)/ f (q j)

(cos qi − cos pi)(cos q j − cos pi)

�

�

�

�

=
p

ξdet
�

A
�

,

(113)

where the matrix A is given by

Ai j =
4
L2

∑

0<p∈R

ei t(2ε(p)−ε(qi)−ε(q j)) sin p sin q j f (p)/ f (q j)

(cos qi − cos p)(cos q j − cos p)
, i, j = 1, . . . , N . (114)

We note that the above analysis is very similar to the one employed by Korepin and Slavnov
in their work on the single-particle Green’s function in the impenetrable Bose gas [91].

4.2 Asymptotic forms of the matrix elements

In the next step we work out the large-L asymptotics of the matrix elements Ai j .

4.2.1 Diagonal matrix elements

The diagonal matrix elements were already computed in (90), cf. Appendix A. They read

Aii = 1−
|θi|
π
+

2i sgn (tε′(qi))
L

f ′(qi)
f (qi)

+O
�

L−1 t−1/2
�

, (115)

where we have defined

θi =
4πtε′ (qi)

L
. (116)

4.2.2 Off-diagonal matrix elements

To compute the off-diagonal elements, we write

1

(cos qi − cos p)
�

cos q j − cos p
� =

1
cos qi − cos q j

�

1
cos q j − cos p

−
1

cos qi − cos p

�

, (117)

and use the first equation in (90), see also Appendix A. We obtain

Ai j =
2i sgn (tε′(q j)) sin q j

L(cos qi − cos q j)

�

ei t(ε(q j)−ε(qi)) −
f (qi) sgn (ε′(q j)ε′(qi))

f (q j)
ei t(ε(qi)−ε(q j))

�

. (118)

4.2.3 Approximate determinant representation

Combining (115) and (118) provides the following approximate determinant representation



σx
` (t)

�

≈ Re
p

ξdet(I −Ξ) , (119)
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where

Ξi j =δi j

� |θi|
π
−

2i sgn (tε′(qi))
L

f ′(qi)
f (qi)

�

+(1−δi j)
2i sgn (tε′(q j)) sin q j

L(cos q j − cos qi)

�

ei t(ε(q j)−ε(qi)) −
f (qi) sgn (ε′(q j)ε′(qi))

f (q j)
ei t(ε(qi)−ε(q j))

�

+O
�

L−1 t−1/2
�

.
(120)

4.3 Evaluating the determinant

We now write det M = exp tr log M and use the expansion

log(I −Ξ) = −
∑

n≥1

Ξn

n
. (121)

4.3.1 First order

The first order gives

trΞ= 4|t|
∫ π

0

|ε′(x)|ρ(x)d x + 2i

∫ π

0

f ′(x)
f (x)

ρ(x)d x +O(L0 t−1/2)

= 4|t|
∫ π

0

|ε′(x)|ρ(x)d x +O(L0 t−1/2) .

(122)

4.3.2 Second order

Since
∑

i Ξ
2
ii =O

�

L−1
�

the second order reads

tr (Ξ2) =
∑

i 6= j

Ξi jΞ ji +O(L−1) = S1 + S2 +O(L−1) , (123)

where

S1 =
8
L2

∑

i 6= j

sin qi sin q j
�

cos qi − cos q j

�2 , S2 = −
8
L2

∑

i 6= j

sin qi sin q j
f (qi)
f (q j)

�

cos qi − cos q j

�2 e2i t(ε(qi)−ε(q j)) . (124)

These sums are computed in Appendix A. We obtain

tr (Ξ2) = 4|t|
∫ π

0

d x |ε′(x)|4πρ(x)2 + 8

∫

d xd y
sin y

cos y − cos x
ρ′(x)ρ(y) +O

�

t−1/2
�

.

(125)
Once exponentiated in the determinant, we recognize the terms obtained earlier with the
partial fraction decomposition approach (95), (96), but without the contributions involving
the ε in the prefactor C . This difference is a direct consequence of our approximation g = 1.

4.3.3 Leading late-time contribution at all orders

In order to compute the O(t) term at higher orders in ρ, we first notice that it can only arise
from the second order poles in the matrix entries, hence by pairs of momenta separated by
o(L0). In this regime the matrix elements become

Ξi j = δi j
|θi|
π
+
�

1−δi j

� −i sgn (θ )
π

eiθi Ti∆i j/2 − e−iθi Ti∆i j/2

Ti∆i j
, (126)
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with ∆i j = i − j. We obtain in this regime

tr (Ξn) =
∑

i1,i2,...,in

Ξi1 i2 ...Ξin i1

= −
∑

i

1
(i sgn (θi)π)nT n

i

∑

∆1,...,∆n−1 6=0

�

n−1
∏

m=1

1− e−iθi Ti∆m

∆m

�1− eiθi Ti(∆1+...+∆n−1)

∆1 + ...+∆n−1
.

(127)

The sums over ∆ j can be carried out using that for ∆′ 6= 0

∑

∆6=0,−∆′

1− e−iθ∆

∆

1− eiθ(∆+∆′)

∆+∆′
= 2i(π− |θ |) sgn (θ )

1− eiθ∆′

∆′
, (128)

which is obtained from 1
∆(∆+∆′) =

1
∆′ (

1
∆ −

1
∆+∆′ ) and relations (161) by carefully treating the

cases ∆= 0,−∆′. Using that θ =O(L−1) to neglect the |θ | term in (128) we arrive at

tr (Ξn) = −
∑

i

(2i sgn (θi)π)n−2

(i sgn (θi)π)nT n
i

∑

∆1 6=0

(1− e−iθi Ti∆1)(1− eiθi Ti∆1)
∆2

1

+O(L−1)

=
∑

i

2n−1

π2T n
i
(2Li2 (1)− Li2 (e

iθi Ti )− Li2 (e
−iθi Ti )) +O(L−1)

=
∑

i

2n−1|θi|
πT n−1

i

+O(L−1)

= 4|t|
∫ π

0

|ε′(x)|(4πρ(x))n−1ρ(x)d x +O(L−1) .

(129)

4.3.4 Influence of the boundaries

In the discussion above the momenta p are constrained to be positive. In order to use equations
(46) we therefore had to neglect possible boundary effects for q’s close to zero. We now verify
that this does not influence the result. We have

η2 L
∑

n=−η1 L

ei(n+1/2) w
L t

(n+ 1/2)2
=

∞
∑

n=−∞

ei(n+1/2) w
L t

(n+ 1/2)2
−

1
η2 L

E2 (−iwη2 t)−
1
η1 L

E2 (iwη1 t) , (130)

with E2(x) =
∫∞

1
e−x t

t2 d t the exponential integral function. Lη1,2 are the number of vacancies
between 0,π and qi . They are η1 =

qi
2π and η2 =

π−qi
2π . Hence the correction to trΞ is

−
2
π

∫ π

0

�

E2

�

−2iε′(x)x t
�

x
+

E2

�

2iε′(x) (π− x) t
�

π− x

�

ρ(x)d x , (131)

which goes to zero for large t because the density vanishes quadratically at 0 and π.

4.4 Result: late-time asymptotics of the order parameter after a quench

Substituting (122), (125) and (129) into (121) we arrive at the following result for the late-
time asymptotics of the order parameter one-point function after a quench within the ferro-
magnetic phase

〈ΨN (t)|σx
`
|Ψs(t)〉

〈ΨN (t)|Ψs(t)〉
= C exp

�

|t|
π

∫ π

0

|ε′(x)| log(1− 4πρ(x))d x

�

≡ Ce−t/τ , (132)

with C given in (96) at order O(ρ2
Q). The decay rate reproduces the exact result obtained

in [57,58]. However, the prefactor C differs from the one conjectured in [57,58]. We address
this difference in Section 4.5 below.
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4.5 Numerical Checks

We now present some numerical checks of equation (132) for the time evolution of the order
parameter. In the limit of large separations `� 2J t, using the Lieb-Robinson bound and the
clustering properties of the initial state |Ψ〉, the two-point function factorizes into the product
of two one-point functions that are identical by translational invariance




Ψ|σx
`+1 (t)σ

x
1 (t) |Ψ

�

=



Ψ|σx
1 (t) |Ψ

�2
+O(e−γ(`−2J t)) , (133)

with γ a constant of order 1. We can then obtain the one-point function



Ψ|σx
1 (t) |Ψ

�

as the
square root of the two-point function




σx
`+1 (t)σ

x
1 (t)

�

in the limit ` � 2J t, which can be
efficiently computed numerically, as it can be expressed as the determinant of a block Toeplitz
matrix even in the thermodynamic limit [58].

Numerical checks of the exponential decay in (132) have already been reported in [58].
Since our prediction (96) differs from the one conjectured in [58], we will focus on the prefac-
tor C x

FF(α) of the asymptotic behaviour of the two-point function in the limit `, t →∞, α= t/`
fixed




Ψ|σx
`+1 (t)σ

x
1 (t) |Ψ

�

' C x
FF(α)exp

�

`

∫ π

0

dk
π

log |cos∆k|θH

�

2ε′h(k)t − `
�

�

× exp
�

2t

∫ π

0

dk
π
ε′h(k) log |cos∆k|θH

�

`− 2ε′h(k)t
�

�

. (134)

In [58] it was assumed that the constant C x
FF(α) is independent of α. Calculating the asymp-

totics of the correlator for α→∞ then leads to [59]

C x
FF(∞) =

1− hh0 +
q

(1− h2)(1− h2
0)

2
p

1− hh0
4
q

1− h2
0

. (135)

From (96) it however follows C 6=
Æ

C x
FF(∞), suggesting in turn that C x

FF(α) is in fact α-
dependent. This is indeed supported by our numerical results, even though the difference
|C −

Æ

C x
FF(∞)| is tiny. In Figs 10 we show that our results (132) and (96) are in agreement

with numerical calculations of the order parameter one-point function.

5 Dynamical correlation functions at arbitrary finite temperatures

In this section we follow the same reasoning as in Section 4 but for dynamical correlation
functions at finite temperature. We again treat the two cases h< 1 and h> 1 separately.

5.1 Ordered phase h < 1

In the ordered phase, the sum in (36) involves states with the same number of particles as in
the quench case (30). However, it is not possible to express each term as a Cauchy determinant
as in Section 4. This can nevertheless be overcome for the leading late time behaviour, where
one can work with an approximate version of the form factor (22).

We focus again on intermediate states with M = N in (36), which were argued in Section
3.2 to give the leading late time behaviour. As discussed in Section 4.1.1, the dominant con-
tribution to the correlation function arises from the sums (170), and the term proportional to
t on the right-hand side of (170) has its origin in the isolated singularity 1

x2 in 1
sin2 x

. Hence,

30

https://scipost.org
https://scipost.org/SciPostPhys.9.3.033


SciPost Phys. 9, 033 (2020)

40 60 80 100 120 140

0.9652

0.9654

0.9656

Æ

C x
FF(∞)

J t
0.2 0.4 0.6 0.8

1.00

1.01

1.02

1.03

1.04

1.05

h

0.2 0.4 0.6 0.8

1.00

1.01

1.02

1.03

1.04

1.05

h

Figure 10: Left: Numerical results for 〈σx
1 (t)〉e

t/τ with τ defined in (132) as a
function of t for a quench from h0 = 0.1 to h = 0.5, corresponding to a den-
sity ρQ = 0.0218. The prefactor at order O(ρ2

Q) (96) is shown in blue and is
seen to be compatible with our numerical results. For comparison we also show
Æ

C x
FF(∞) = 0.96525. Right: Numerically determined (red) and calculated leading

order (blue) prefactor (96) divided by
p

ξ, for quenches from h0 = 0.1 to h as a
function of h. Because of the oscillations, the measured value is an average of six
points between times t = 75 and 100.

replacing terms of the form 1
sin2 x

by 1
x2 in the form factor (22) will not affect the leading

behaviour at late times. It follows that if we define

χ̃ x x (`, t) =
1
N !

∑

p1,...,pN
∈R

F̃ {q1,...,qN }
{p1,...,pN }

ei t(E({q})−E({p}))+i`(P({p})−P({q})) , (136)

F̃ {q1,...,qN }
{p1,...,pN }

=
ξ

L2N

∏

i 6= j
qi−q j

2
pi−p j

2
∏

i, j

� qi−p j
2

�2 , (137)

then we have
χ x x(`, t) = eχ x x(`, t)κ(`, t) , (138)

with κ(`, t) a function that is subleading in `, t with respect to χ x x(`, t).
The form factor F̃ has the same Cauchy determinant structure we encountered in the

quench case (106). Hence we can follow through the same steps and obtain

χ̃ x x (`, t) = ξ det
i, j=1,...,N





4
L2

∑

p∈R

ei
t
2 (ε(qi)+ε(q j)−2ε(p))
(q j − p)(qi − p)



 . (139)

The leading time behaviour of the coefficients of this matrix can be computed as in Section
4.2 with formulas (161). One obtains

χ̃ x x (`, t) = ξdet(1−Ξ) , (140)
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with

Ξi j =δi j
|2tε′(qi)|

L

+(1−δi j)
2i sgn (tε′(q j))

L(q j − qi)

�

ei
t
2(ε(qi)−ε(q j)) − sgn (ε′(q j)ε

′(qi))e
i

t
2(ε(q j)−ε(qi))

�

+O
�

L−1 t−1/2
�

.

(141)

Since one is interested only in the late time dynamics, we can focus on terms i, j such that
qi − q j = o(L0) as in (126). Then one obtains the same formula as in (126)

Ξi j = δi j
|θi|
π
+
�

1−δi j

� −i sgn (θ )
π

eiθi Ti∆i j/2 − e−iθi Ti∆i j/2

Ti∆i j
, (142)

with ∆i j = i − j, Ti =
1

2πρ(qi)
and θi =

2πtε′(qi)
L .

5.1.1 Two-point dynamical correlation functions in the ordered phase

Following through the same steps as in the quench case we arrive at

χ x x(`, t) = C exp

�

1
2π

∫ π

−π
|tε′(x)− `| log(1− 4πρ(x))d x

�

, (143)

where, using the results of Section 3,

C =

(

ξexp
�

−2
∫ π

−π

∫ π

−π
ρ(y)ρ′(x)
tan( x−y

2 )
d xd y

�

in the space like-region at order ρ2
β

ξ in the time like-region at order ρ0
β

.
(144)

As far as we know the result (143) has not previously been obtained in the literature.

5.1.2 Numerical checks

In order to check the accuracy of (143) at finite times we have carried out numerical simu-
lations following Ref. [92], where the finite temperature dynamical two-point function for a
finite open chain is computed exactly as a Pfaffian of a known matrix. As long as the two
points are sufficiently far from the boundaries, then they take almost the same values as in an
infinite chain. In Fig. 11 we compare (143) to numerical results in the space-like region by
considering the logarithm of the correlator

L(`, t) = log
�

〈σx
`+1(t)σ

x
1 (0)〉

�

. (145)

For simplicity we take the extreme case α = 0, which corresponds to setting t = 0. We recall
indeed that static correlations are also covered by our calculations, as explained in Section
3.5.3. In the left panel we plot (143) as a function of distance ` and mark by red crosses
numerical results obtained for a chain of L = 200 sites. We see that the asymptotic result
(143) is in excellent agreement for α= 0. In the right panel we test the accuracy of the O(ρ2

β
)

value of the prefactor (144) by considering the quantity

Γ (β) =
ξ−




σx
`+1 (0)σ

x
1 (0)

�

e`
∫ π

−π
d x
2π log(1−4πρ(x))

ξ− C
, (146)

where C is given by (144).
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Figure 11: Left: L(`, 0) for h = 0.5 and β = 2,1, 0.25 (top to bottom). Numerical
results for a L = 200 site open chain are shown as red crosses and equation (143)
by a continuous blue line. Right: Numerically determined Γ (β) as a function of ρβ
for `= 30 and h= 3/4, 1/2, 1/4 from top to bottom; in blue is the expected value as
ρβ → 0.

We see that Γ (β) approaches 1 for small values of ρβ , which means that the prefactor
(144) is indeed correct to order O

�

ρ2
β

�

. The linear increase in ρβ shows that the correction

to our result for C is O
�

ρ3
β

�

.
We now turn to the time-like region. In Fig. 12 we compare numerical results for L(`, t) as

a function of t for different values of ` to (143). We recall that in the time-like region equation
(143) only gives the leading time behaviour, i.e. the exponent of the exponential decay. Hence
only the slope of our analytic result for L(`, t) has to match the numerics. This is indeed seen
to be the case in Fig. 12. In the space-like regime, i.e. at sufficiently short times, (143) is again
seen to be in very good agreement with the numerical results.

In order to have a more quantitative check on the exponential factor in (143) it is useful
to consider the difference

L(`, t)− logχ x x(`, t) , (147)

where χ x x(`, t) is given by (143). If our exponential factor is exact, the difference should
decay at late times more slowly than exponential, i.e. supposedly as a power law. In Figure
13 we plot (147) as a function of log J t and indeed observe a linear behaviour. This confirms
that the exponential factor in (143) is exact and moreover establishes that the subleading
asymptotics is a power law in time.

5.2 Disordered phase h > 1

5.2.1 An approximate mapping to the ordered case

In the disordered phase the form factors in (36) still differ from the finite temperature ordered
case by the fact that there are no intermediate states with the same number of momenta
as in the representative state. From Section 3.2 we know that the terms M = N + 1 and
M = N − 1 are equally important at late times, but the subleading terms are dominant in ρβ
for M = N + 1. Since we are interested in the leading time behaviour only, with the order ρ0

β
subleading corrections, we will restrict our analysis to the case M = N + 1.

In this case the partial fraction decomposition (73) of |NS〈q1, ..., qN |σx
l |p1, ..., pM 〉R|2 nec-

essarily involves one ν j = 0. To obtain the p j dependence of the corresponding A’s in (73),
it suffices to decompose the form factor |NS〈q1, ..., qN |σx

l |p1, ..., pM 〉R|2 by starting to write the
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Figure 12: L(`, t) as a function of t for h= 0.5 and β = 2, 0.5,0.286, 0.2 from top to
bottom inside each panel, with `= 0,2, 5,10 from top left to bottom right. Numerical
results for a L = 200 site open chain are shown by red crosses and equation (143)
by a straight blue line. The slopes of the numerical results are correctly reproduced
by (143) in the time-like region, i.e. for vmax t > `.
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Figure 13: L(`,t)− logχ x x(`, t) with χ x x(`, t) given by (143) as a function of log J t
for h= 0.5 and β = 0.5,0.286, 0.2 from bottom to top inside each panel, with `= 0
(left) and `= 5 (right) in red. In green is indicated a linear fit in the time-like region
vmax t > `.

partial fraction decomposition with respect to p j and retaining only the ν j = 0 part (which
corresponds to P0(X ) in (39)), and decomposing with respect to the other momenta in the
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usual fashion. This part is

∏N
i=1 ε

2
p j qi

∏N+1
i=1 εp j pi

, that is 1
ε(p j)

times

∏N
i=1 ε

2
p j qi

∏N+1
i=1 6= j εp j pi

. This latter factor satisfies

the hypotheses of (112) which allows us to replace it by 1 as long as we are interested only in
the leading time behaviour. It follows that under this approximation the ν j = 0 terms in the
partial fraction decomposition (73) of |NS〈q1, ..., qN |σx

`
|p1, ..., pM 〉R|2 contribute to (36) as

2J
p

hξ
(N + 1)!L

∑

p j∈R

e−i tε(p j)

ε(p j)

∑

pi∈R,i6=j

|R〈p1, ..., p j−1p j+1, ..., pN+1|σx
` |q1, ...,qN 〉NS|2

× ei t[E({q})−E({p}−{p j})]+i`[P({p}−{p j})−P({q})] .

(148)

Taking into account all the possible j = 1, ..., N + 1 for which one can have ν j = 0 in (73), we
obtain

χ x x(`, t)≈

 

2J
p

hξ
L

∑

p∈R

e−i tε(p)

ε(p)

!

×
1
N !

∑

p1,...,pN
∈R

|R〈p1, ..., pN |σx
` |q1, ..., qN 〉NS|2ei t(E({q})−E({p}))+i`(P({p})−P({q})) ,

(149)

where {p}= {p1, ..., pN} has now the same number of momenta as in the representative state.
The second factor in (149) is precisely of the same form as the one we considered in the
ordered phase.

5.2.2 Two-point dynamical correlation functions in the disordered phase

Putting everything together we obtain the following result for the leading late time behaviour
of the two-point function

χ x x(`, t)≈ C(`, t)exp

�

1
2π

∫ π

−π
|tε′(x) + `| log(1− 4πρ(x))d x

�

, (150)

where (cf. section 3.2)

C(`, t) =

(

2J
p

hξ
∫ π

−π

�

e−i tε(x)

2π + 2ρ(x) cos(tε(x))
�

d x
ε(x) if vmax t < ` at O(ρβ)

2J
p

hξ
∫ π

−π
e−i tε(x)

2πε(x)d x if vmax t > ` at O(ρ0
β
) ,

(151)

`, t ≥ 0, and vmax is defined in (38).

5.2.3 Numerical checks

We have checked the accuracy of (150) by comparing it to numerical calculations following
Ref. [92]. In the following we show results for

R(`, t) = Re
�

〈σx
`+1(t)σ

x
1 (0)〉

�

. (152)

In the space-like region vmax t < ` we furthermore check our result for the prefactor C(`, t)
(151) by computing

Λ(`,β) =
R(`, 0)e−`

∫ π

−π
d x
2π log(1−4πρ(x)) − C0(`, 0)

C(`, 0)− C0(`, 0)
, (153)

where C0(`, t) = J
p

hξ
π

∫ π

−π
d x
ε(x) e

−i tε(x) is the O(ρ0
β
) contribution to C(`, t). If and only if the

prefactor in (151) is correct at order O(ρβ), Λ(`,β)→ 1 when β → 0.
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In Fig. 14 we compare our analytic expression (150) in the space-like region to numerical
results for R(`, t).
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Figure 14: Left: log
�

R(`, 0)
�

as a function of ` for h= 1.5 and β = 2,0.5, 0.285,0.2
from top to bottom. Numerical results for a L = 200 site open chain are shown as
red crosses and equation (150) as straight blue lines. Right: numerical results for
Λ(` = 30,β) as a function of ρβ for h = 3/2 (red line). The expected result when
ρβ = 0 is shown in blue.

Our analytic expression is seen to be in good agreement with the numerical results and the
remaining discrepancy is due to O(ρ2

β
) corrections to the prefactor.

In Fig. 15 we present results for R(`, t) in the time-like region vmax t > ` at low tempera-
tures. We see that the analytical result is in excellent agreement with the numerics.
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Figure 15: R(`, t) as a function of t with h= 1.5 and β = 3 for `= 0 (left) and `= 5
(right). Numerical results for a L = 200 site open chain are shown as red crosses and
equation (150) as a solid blue line.

In order to check the accuracy of our result for the exponential decay of the two-point func-
tion for intermediate and high temperatures we compare (150) to numerical results log |R(`, t)|
in Fig. 16. As our result for the prefactor C(`, t) only holds at low temperatures we expect
the numerical results to differ from our analytical prediction by an essentially constant offset.
This is indeed what we observe.
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Figure 16: log |R(`, t)| as a function of t for h = 1.5 and β = 2, 0.5,0.286, 0.2 from
top to bottom inside each panel, with ` = 0 (left) and ` = 10 (right). Numerical
results for a L = 200 site open chain are shown as red crosses and equation (150) as
a solid blue line.

6 Summary and Discussion

In this work we have considered two problems in the transverse field Ising model: (i) The
time dependence of the order parameter after a quantum quench; (ii) The dynamical order
parameter two point function in equilibrium at finite temperatures. Using the quench action
approach for (i) and a micro-canonical formulation combined with typicality ideas for (ii)
these problems can both be formulated in terms of spectral representations using Hamiltonian
eigenstates, i.e. sums over form factors.

These highly intricate sums over a macroscopic quantity of momenta of a form factor with
many singularities represent however a considerable technical challenge. We showed that in
the case of semi-local operators such as σx

j in the TFIM, this difficulty can be addressed by
decomposing the form factor into partial fractions, which permits the sums over momenta to
be decoupled and the late time behaviour to be determined. These partial fractions can be
organized in terms of the degree and the position of their poles, which naturally leads to an
expansion in the density of particles of the representative state. The leading behaviour at late
times can be then computed at all orders in the density through a determinant representation
of these poles, which leads invariably to an exponential decay.

Our analysis provides a precise characterization of the excitations over the representative
state that contributes to the late time behaviour of correlation functions of semi-local operators.
We find that simultaneous particle-hole excitations of all particles in the representative state
contribute to the correlation function, and we altogether have to sum over O

�

(εL)N
�

excited
states, where ε is a fixed number that can be taken as small as desired and N/L is the density.
In particular, this implies that the appealing picture of an expansion in terms of a finite number
of particle-hole excitations over the full momentum space fails for semi-local operators at finite
temperatures. The form factor sum is dominated by mesoscopic excitations (in the sense given
in Section 3.5.1) around each single particle, which is an exponential number of states, but
subentropic in the sense that includes only states whose macroscopic state is the representative
state itself.

We have compared our analytic results to numerical computations in both the finite tem-
perature and quench contexts. In the absence of saddle points, thus where the sums (46) are
valid at all momenta, we find remarkable agreement at all times. In cases where saddle points
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occur our numerical results indicate the presence of a multiplicative power-law behaviour as
a subleading correction to the exponential decay. We believe that this will emerge from saddle
point effects of these classes of excitations, due to the fact that (46) is not valid anymore close
to the saddle point. Higher-order corrections in time will also arise from contributions with
νi = 0 in (42); in this case there is no singularity and the full momentum space should be
summed over to take them into account. We believe that partial fraction decompositions for
form factors of semi-local operators are not only suited for extracting the late time asymptotics,
but should also be useful for determining intermediate and short time behaviours.

In interacting models, the singularity structure of the form factors of semi-local operators
is not fundamentally changed and a partial fraction decomposition will provide a useful or-
ganizing principle as well. A notable difference is that the Bethe equations link the different
particles so that the momenta sums can never fully decouple. This will be the subject of a
subsequent paper.

For local operators however, the story is radically different. The singularity structure of the
form factors (12) is completely dissimilar the states that dominate the late time asymptotics
are selected by different principles. Excitations over the full momentum space and not only
near the singularities will play equally important roles. This will be discussed elsewhere.
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A Riemann sums of singular functions

Sums of form factors lead to Riemann sums of functions with a quadratic singularity of the
form

1
L

L
∑

k=−L+1

f
� k

L

�

with f (x) ∼
x→0

1
x2

. (154)

Since the integral of f (x) is divergent, the limit L→∞ cannot be directly taken as for regular
functions and needs special treatment. The purpose of this appendix is to explain techniques
to compute them. We note that an alternative way of treating such sums is to employ contour
integral techniques [93].

A.1 One-dimensional sums

Oscillatory Riemann sums of functions with a quadratic singularity cannot be estimated with
the usual results on stationary phase approximation to obtain their large time behaviour. The
principle is then to add and remove an elementary function with the same singularity, but
whose Riemann sum can be computed directly, so that the remaining function has no singu-
larity and thus has an oscillatory Riemann sum that vanishes at large times.

A.1.1 Generic example

For concreteness, let us illustrate this procedure with the Riemann sum

SL (θ ) =
1
L

L
∑

k=−L+16=0

f
� k

L

�

ei k
L θ , (155)
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for f (x) a function such that f (x) = 1
x2 +O(x0) for x → 0, f being regular otherwise. Then

SL (θ ) =
1
L

L
∑

k=−L+1 6=0

� L
k

�2
ei k

L θ +
1
L

L
∑

k=−L+1

f̄
� k

L

�

ei k
L θ , (156)

with f̄ (x) = f (x)− 1/x2 a regular function. The second term on the right-hand side can be
turned into an integral, while we rewrite the first as follows

1
L

L
∑

k=−L+16=0

� L
k

�2
ei k

L θ = L
+∞
∑

k=−∞,6=0

1
k2 ei k

L θ −
1
L

+∞
∑

k=L+1

� L
k

�2
ei k

L θ −
1
L

−L
∑

k=−∞

� L
k

�2
ei k

L θ . (157)

The second and third Riemann sums can now be turned into integrals without any problems,
which gives

SL (θ ) = L
+∞
∑

k=−∞,6=0

ei k
L θ

k2
+

∫ 1

−1

f̄ (x)eiθ x d x −
∫ ∞

1

eiθ x

x2
d x −

∫ −1

−∞

eiθ x

x2
d x +O

�

L−1
�

. (158)

The three integrals are oscillatory integrals of bounded functions and hence vanish for large
θ . We conclude that

SL (θ ) = L
+∞
∑

k=−∞,6=0

ei k
L θ

k2
+O

�

L0θ−1/2
�

+O
�

L−1
�

. (159)

A.1.2 Elementary oscillatory sums with singularities

The above analysis shows that the leading asymptotics of Riemann sums with simple or double
poles involves the following sums

∑

n∈Z

eiw(n+α)

(n+α)
=

π

sinπα
eiπα sgn (w) , for −π < w≤ π

∑

n∈Z

eiw(n+α)

(n+α)2
=
� π

sinπα

�2
+

iπ
sinπα

weiπα sgn (w) , for −π < w≤ π .

(160)

These are readily obtained by computing the Fourier series coefficients of the right-hand sides
multiplied by e−iwα and seen as a 2π-periodic function of w. In particular we have

∑

n∈Z

eiw(n+1/2)

(n+ 1/2)m
=

¨

π2
�

1− |w|π
�

if m= 2 ,

iπ sgn(w) if m= 1 .

∑

n∈Z\{0}

eiwn

nm
=

¨

π2
�1

3 −
|w|
π +

w2

2π2

�

if m= 2 ,

i(π− |w|) sgn(w) if m= 1 .

(161)

A.1.3 Sums arising in finite-temperature dynamics

Following the steps outlined above we obtain for q ∈ NS

∑

p∈R

e−i tε(p)

L sin2
� p−q

2

� =L
+∞
∑

k=−∞

e−i tε(q+2π(k+1/2)/L)

π2(k+ 1/2)2
−
∫ ∞

π

4e−i tε(x)

(x − q)2
d x
2π
−
∫ −π

−∞

4e−i tε(x)

(x − q)2
d x
2π

+

∫ π

−π
e−i tε(x)

�

1

sin2 x−q
2

−
1

(x − q)2/4

�

d x
2π
+O

�

L−1
�

.

(162)
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At leading order in time, one can Taylor expand the ε in the remaining sum to fall back on
an elementary oscillatory sum. The three integrals involve oscillatory bounded functions and
hence decay to zero with time.

Similarly we obtain for q ∈ NS

∑

p∈R

e−i tε(p)

L sin
� p−q

2

� =
+∞
∑

k=−∞

e−i tε(q+2π(k+1/2)/L)

π(k+ 1/2)
−
∫ ∞

π

2e−i tε(x)

(x − q)
d x
2π
−
∫ −π

−∞

2e−i tε(x)

(x − q)
d x
2π

+

∫ π

−π
e−i tε(x)

�

1

sin x−q
2

−
1

(x − q)/2

�

d x
2π
+O

�

L−1
�

,

(163)

where the integrals are again integrals of oscillatory bounded functions and vanish at late
times.

Finally we use (161) to obtain the asymptotic values of the sums in (162) and (163) for
q ∈ NS and ε′(q) 6= 0

∑

p∈R

e−i tε(p)

L sin
� p−q

2

� = −i sgn (tε
′
(q))e−i tε(q) +O

�

L0 t−1/2
�

+O
�

L−1
�

,

∑

p∈R

e−i tε(p)

L2 sin2
� p−q

2

� =

�

1−
2
�

�tε′(q)
�

�

L

�

e−i tε(q) +O
�

L−1 t−1/2
�

+O
�

L−2
�

.

(164)

A.1.4 Sums arising in quantum quench dynamics (90)

We now turn to momentum sums of the form

Σ(n)(q, q′, t) =
4
Ln

∑

0<p∈R

sin p sin q′ f (p)
(cos q− cos p)n f (q′)

e2i t(ε(p)−ε(q)) , n= 1,2 , (165)

where f (q) is defined in (87). Using that sin x f (x)
cos q−cos x −

f (q)
x−q is a bounded function of x we can

proceed along the same lines as in Section A.1.3 to conclude that for q ∈ NS

Σ(1)(q, q′, t) =
4
L

∑

0<p∈R

sin q′

p− q
e2i t(ε(p)−ε(q)) f (q)

f (q′)
+O(L0 t−1/2) . (166)

At leading order in time we may then Taylor expand ε(p) around p = q, and write
p = q + 2π

L (n + 1/2) to fall back on one of the oscillatory sums in (161). In this way we
obtain our final result

Σ(1)(q, q′, t) = 2i sgn (tε′(q)) sin q′
f (q)
f (q′)

+O(L0 t−1/2). (167)

The analysis of the Σ(2)(q, q′, t) proceeds in complete analogy: we use that
sin x f (x)

(cos x−cos q)2 −
f (q)

sin q(x−q)2 −
f ′(q)

sin q(x−q) is a bounded function of x to conclude that

Σ(2)(q, q′, t) =
4
L2

∑

p>0,∈R

e2i t(ε(p)−ε(q))

(p− q)2
+

4
L2

∑

p>0,∈R

f ′(q)
f (q)

e2i t(ε(p)−ε(q))

p− q
+O(L−1 t−1/2) .

(168)
Taylor expanding ε(p) around p = q and using (161) we finally arrive at

Σ(2)(q, q′, t) = 1−
4|tε′(q)|

L
+

2i sgn (tε′(q))
L

f ′(q)
f (q)

+O(L−1 t−1/2) . (169)
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A.2 Two-dimensional sums

In this subsection we calculate the two-dimensional sums arising in Sections 3.1.5 and 3.4.
Apart from being two-dimensional, the sums treated in this section differ from the previous
section by the fact that they are performed over the particles of the representative state, and
not over arbitrary, regularly spaced momenta in the Ramond sector.

A.2.1 Sums arising in finite-temperature dynamics

We consider

Ω1(t) =
1
L2

∑

i 6= j

ei t(ε(q j)−ε(qi))

sin2
� qi−q j

2

� sgn (ε′(q j)ε
′(qi)) . (170)

This sum is divergent when L→∞. It grows as∝ L and the proportionality constant depends
on the realization of the root density ρ in finite-size through the qi ’s, and as a consequence
cannot be written in terms of the root density. However, this prefactor does not depend on
t, and the difference Ω1(t) − Ω1(0) which appears in the main text is not divergent in the
thermodynamic limit.

We have by symmetrizing the sum over i, j

Ω1(t)−Ω1(0) =
1

2L2

∑

i 6= j

ei t(ε(q j)−ε(qi)) + ei t(ε(qi)−ε(q j)) − 2

sin2
� qi−q j

2

� sgn (ε′(q j)ε
′(qi)) . (171)

The summand does not have poles anymore, so that the sum can be turned into an integral in
the L→∞ limit

Ω1(t)−Ω1(0) =

1
2

∫ π

−π

∫ π

−π

ei t(ε(v)−ε(u)) + ei t(ε(u)−ε(v)) − 2

sin2
�u−v

2

� sgn (ε′(u)ε′(v))ρ(u)ρ(v)dudv +O(L−1) .
(172)

We now have to determine the large t behaviour of this expression. We first write

Ω1(t)−Ω1(0) = −2

∫ π

−π

∫ π

−π

sin2[t(ε(v)− ε(u))/2]
sin2

�u−v
2

� sgn (ε′(u)ε′(v))ρ(u)ρ(v)dudv , (173)

and perform a change of variable v = u+η/t

Ω1(t)−Ω1(0) =

− 2

∫ π

−π
du

∫ (π−u)|t|

(−π−u)|t|
dη

sin2[t(ε(u+ η
t )− ε(u))/2]

|t| sin2
� η

2t

� sgn (ε′(u)ε′(u+ η
t ))ρ(u)ρ(u+

η
t ) .

(174)

At leading order in t, it yields

Ω1(t)−Ω1(0) = −8|t|
∫ π

−π
du

∫ ∞

−∞
dη

sin2[ε′(u)η/2]
η2

ρ(u)2 + o(|t|) . (175)

Using
∫∞
−∞

sin2 x
x2 d x = π, we obtain

Ω1(t)−Ω1(0) = −4π

∫ π

−π
|tε′(u)|ρ(u)2 + o(|t|) . (176)
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Let us determine the sub-leading term o(|t|) in the space-like regime, i.e. when sgn (ε′(u)) is
constant, and when the root density ρ is continuous. In this case, coming back to (172), we
integrate by part to obtain

Ω1(t)−Ω1(0) = 2t

∫ π

−π

∫ π

−π
ε′(v)

sin[t(ε(v)− ε(u))]
tan

�u−v
2

� ρ(u)ρ(v)dudv

+ 2

∫ π

−π

∫ π

−π

1

tan
�u−v

2

�ρ(u)ρ′(v)dudv

−
∫ π

−π

∫ π

−π

ei t(ε(v)−ε(u)) + ei t(ε(u)−ε(v))

tan
�u−v

2

� ρ(u)ρ′(v)dudv ,

(177)

where the last two double integrals are understood in principal value.
Let us focus first on the last double integral, that we separate into two integration regions,

one with |u− v| > ε and one with |u− v| < ε for a small fixed ε > 0. In the first region, the
term is an oscillatory integral of a bounded function, hence decays to zero with time. In the
second region, the v integral at fixed u may be approximated by

≈ 2ρ′(u)

∫ f+(u)

− f−(u)

ei t xε′(u) + e−i t xε′(u)

x
d x , (178)

with 0 < f±(u) < ε, where f±(u) are some limits that depend on u. Assuming without loss of

generality f−(u) < f+(u), this integral is
∫ f+(u)t

f−(u)t
ei yε′(u)

y d y −
∫ − f−(u)t
− f+(u)t

ei yε′(u)

y d y , which decays to
zero when t →∞. Hence

Ω1(t)−Ω1(0) = 2t

∫ π

−π

∫ π

−π
ε′(v)

sin[t(ε(v)− ε(u))]
tan

�u−v
2

� ρ(u)ρ(v)dudv

+ 2

∫ π

−π

∫ π

−π

1

tan
�u−v

2

�ρ(u)ρ′(v)dudv

+ o(t0) .

(179)

We now focus on the first double integral. First, since in the space-like regime ε′(u) never
vanishes, ε(u) is one-to-one from [−π,π] to [εmin,εmax]. Hence one can perform a change of
variable x = ε(u), y = ε(v) to obtain

∫ π

−π

∫ π

−π
ε′(v)

sin[t(ε(v)− ε(u))]
tan

�u−v
2

� ρ(u)ρ(v)dudv =

∫ εmax

εmin

∫ εmax

εmin

1

ε′(ε−1(x))

sin[t(y − x)]

tan
�

ε−1(x)−ε−1(y)
2

�ρ(ε−1(x))ρ(ε−1(y))d xd y .
(180)

We now make the following observation. For any regular function f (x , y), the integral
∫ εmax

εmin

∫ εmax

εmin

sin[t(y − x)] f (x , y)d xd y (181)

is o(t−1). Indeed, by integrating by part the y integral we make appear a 1/t, and the re-
maining integrals are oscillatory integrals, hence decay to zero with time. By adding and
subtracting the appropriate term to the right-hand side of (180) so as to cancel the pole, we
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conclude from this
∫ εmax

εmin

∫ εmax

εmin

1

ε′(ε−1(x))

sin[t(y − x)]

tan
�

ε−1(x)−ε−1(y)
2

�ρ(ε−1(x))ρ(ε−1(y))d xd y

= 2

∫ εmax

εmin

∫ εmax

εmin

sin[t(y − x)]
x − y

ρ(ε−1(x))2d xd y + o(t−1) .

(182)

We now split the x integral into several pieces [xn, x x+1] with xn+1− xn small enough so that
ρ can be approximated to be constant on these pieces. Then we have

∫ xn+1

xn

d x

∫ εmax

εmin

d y
sin[t(y − x)]

x − y
= −

1
t

∫ |t|(εmax−xn)

|t|(εmax−xn+1)
Si (u)du+

1
t

∫ |t|(εmin−xn)

|t|(εmin−xn+1)
Si (u)du ,

(183)
with Si (u) =

∫ u
0

sin x
x d x the sinus integral. Using the expansion at large u> 0

Si (u) =
π

2
−

cos u
u
+O(u−2) , (184)

one obtains
∫ xn+1

xn

d x

∫ εmax

εmin

d y
sin[t(y − x)]

x − y
= −π sgn (t)(xn+1 − xn) +O(t−2) . (185)

Summing over the windows [xn, xn+1] we obtain
∫ εmax

εmin

∫ εmax

εmin

sin[t(y − x)]
x − y

ρ(ε−1(x))2d xd y = −π sgn (t)

∫ εmax

εmin

ρ(ε−1(x))2d x +O(t−2) ,

(186)
which yields in the space-like regime

Ω1(t)−Ω1(0) = −4π

∫ π

−π
|tε′(u)|ρ(u)2 + 2

∫ π

−π

∫ π

−π

1

tan
�u−v

2

�ρ(u)ρ′(v)dudv + o(t0) .

(187)

A.2.2 Sums arising in quantum quench dynamics

We consider

Ω2(t) =
8
L2

∑

i 6= j

sin qi sin q j

(cos qi − cos q j)2
e2i t(ε(qi)−ε(q j))

Ω̃2(t) =
8
L2

∑

i 6= j

sin qi sin q j

(cos qi − cos q j)2
f (qi)
f (q j)

e2i t(ε(qi)−ε(q j)) .
(188)

Again, Ω2(t) and Ω̃2(t) diverge as L in the thermodynamic limit. But the coefficient of the
divergence does not depend on t and is the same for Ω2(t) and Ω̃2(t). The differences
Ω̃2(t)−Ω2(0) are well-defined in the thermodynamic limit. Using the same approach as in the
previous section, one obtains

Ω̃2(t)−Ω2(0) = −16π

∫ π

0

ρ(x)2|tε′(x)|d x − 8

∫ π

0

∫ π

0

d xd y
sin y

cos y − cos x
ρ′(x)ρ(y)

+ o(t0) +O(L−1) .
(189)
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