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Abstract

Motivated by applications to critical phenomena and open theoretical questions, we
study conformal field theories with O(m) × O(n) global symmetry in d = 3 spacetime
dimensions. We use both analytic and numerical bootstrap techniques. Using the ana-
lytic bootstrap, we calculate anomalous dimensions and OPE coefficients as power series
in ε = 4 − d and in 1/n, with a method that generalizes to arbitrary global symmetry.
Whenever comparison is possible, our results agree with earlier results obtained with di-
agrammatic methods in the literature. Using the numerical bootstrap, we obtain a wide
variety of operator dimension bounds, and we find several islands (isolated allowed re-
gions) in parameter space for O(2) × O(n) theories for various values of n. Some of
these islands can be attributed to fixed points predicted by perturbative methods like
the ε and large-n expansions, while others appear to arise due to fixed points that have
been claimed to exist in resummations of perturbative beta functions.
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1 Introduction

The Landau theory of phase transitions [1] has provided a powerful framework for the search
of emergent critical behavior for decades. It has served as a solid foundation for the develop-
ment of renormalization group (RG) methods like the ε expansion [2,3], Monte Carlo [4] and
functional RG [5,6]. These methods have been very successful in predicting critical behavior
in a wide variety of situations, but there is still a surprising number of discrepancies and dis-
agreements in the literature, pointing to potentially deep underlying physical principles. More
recently, following pioneering work of [7–9] and especially [10], old conformal bootstrap ideas
have morphed into an an entirely new and computationally rigorous approach for the study
of conformal field theories (CFTs)—for a review see [11] and for an introduction [12].

In this work we use the conformal bootstrap method, both analytically and numerically,
to study CFTs with O(m)×O(n) symmetry. The importance and relevance of this undertaking
is highlighted both by the experimental applications of such CFTs, as well as their inherent
theoretical interest. CFTs with symmetry O(2)×O(2) and O(2)×O(3) should describe second
order phase transitions in a wide variety of materials [13, 14], and indeed such transitions
have been claimed to be observed in various experiments. Our work is also of pure theoretical
interest, since it attempts to shed light on the possible existence of fixed points that arise due
to resummations of perturbative beta functions. The existence of such fixed points has been
questioned by some functional RG studies [15–17]. Thus, theoretically the state of affairs
regarding these fixed points has remained murky despite decades of effort, with conflicting
results obtained by different RG methods.

The most unequivocal results for O(m)×O(n) CFTs have been obtained by taking n large
and m finite. The existence of a well-defined large-n expansion was established in [18], and
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the strongest results to date have appeared in [19–21]. The ε expansion has been widely used
as well, see e.g. [13,14,18,22–26], with the highest-loop study (six loops) performed recently
in [27].1 Here we will use the analytic bootstrap method of large spin perturbation theory,
introduced in [28, 29] and developed further in [30–32], to confirm existing results in the
literature and obtain some new large-n ones. The analytic bootstrap gives the same type of
results as diagrammatic methods, but simplifies the computation of certain quantities, such as
scaling dimensions of spinning operators, OPE coefficients and central charges.

1.1 Analytic bootstrap

The analytic bootstrap relies on the fact that conformal four-point correlators can be computed
from their double-discontinuities, up to potential contributions from operators with spin zero
or one. The double-discontinuity measures the singularities that arise in the lightcone limit,
corresponding to operators approaching pairwise null separation in Lorentzian signature, and
is sensitive to operators of large spin in the operator product expansion (OPE). Spinning con-
formal primary operators group into twist families, where the scaling dimensions and OPE
coefficients, collectively the CFT-data, are given by functions analytic in spin extracted from
the double-discontinuity. All operators in a twist family have approximately equal value of the
twist, defined as the difference between scaling dimension and spin: τ` =∆` − `. In [33,34]
it was shown that such twist families must exist in any CFT in dimension d > 2, and that the
CFT-data is sourced by operators appearing in the OPE decomposition of the crossed channel.
Specifically, the identity operator 1 in the φ four-point function gives rise to the leading order
OPE coefficients for double-twist operators φ∂ `φ with τ` → 2∆φ . Other crossed-channel
operators induce corrections to the CFT-data in the twist families.

Large spin perturbation theory [28, 29] combined with the Lorentzian inversion formula
[35] constitutes a systematic framework for analytic bootstrap for theories with a small ex-
pansion parameter. It applies to both week coupling and strong coupling expansions, as well
as to expansions in inverse number of degrees of freedom. At each order in the expansion,
the whole double-discontinuity can be generated from an ansatz of contributions from a small
set of crossed-channel operators, and the undetermined constants of this ansatz can later be
fixed by consistency conditions, for instance conservation of symmetry currents. The method
applies to a wide range of theories, and in particular it has been used to study the ε expansion
for the Wilson–Fisher fixed point [30] and in the large-N expansion for the O(N)model [32].2

In this paper we show how to generalize these implementations to critical φ4 theories with
any global symmetry group.

Consider a field φ transforming in some (vector) representation V of the global symmetry.
For the case of O(m)×O(n) we will take φ = φar in the bifundamental representation, where
a = 1, . . . , m and r = 1, . . . , n. Operators and twist families in the OPE decomposition of the
φ four-point function will transform in all irreducible representations R in the tensor product
V⊗V . Looking first at the ε expansion, the identity 1 and bilinear operators φ2

R will source the
complete CFT-data of double-twist families in all representations to order ε3. Moreover, these
bilinear operators are the spin zero operators of the same twist families. Despite the fact that
spin zero is beyond the formal validity of the inversion formula, it was shown in [30] that it is
possible to analytically continue to the formula for the scaling dimensions in the twist families
to include the scalar operators. Encouraged by this observation, we conjecture that the same
is true for φ4 theories with any global symmetry, which leads to a set of quadratic equations

1Note that the ε expansion can be performed with m, n generic, but the resulting expressions at higher loops
get very large. Below we will present ε expansion results expanded in n.

2The critical O(N) model has also been studied from the bootstrap perspective by the methods of multiplet
recombination [36,37] and Mellin space bootstrap [38]. We briefly revisit the Mellin space bootstrap in Appendix D.
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for ∆φ2
R
. By solving these equations we can determine all perturbative fixed points in the ε

expansion consistent with the given global symmetry.3

For the φ4 theories with O(N) symmetry, it is well-known that the large-N limit admits
a description in terms of a Hubbard–Stratonovich transform. In this description, the bilinear
singlet operator φ2

S gets replaced by an auxiliary field σ of approximate dimension 2. At
criticality, the large-N expansion and the ε expansion are compatible—using the perturbative
results one can for instance confirm that ∆φ2

S
→ 2 + O(1/N). For certain global symmetry

groups, the Hubbard–Stratonovich transformation can be generalized, where N corresponds
to a specific group parameter.4 More precisely, if certain bilinear operatorsφ2

R have dimensions
approaching 2, they should be promoted to auxiliary fieldsR. In large spin perturbation theory,
these auxiliary fields will, together with 1, source the generalized 1/N expansion, and play
the role same role as σ in the treatment of the O(N) model in [32].

For the symmetry group of this paper, O(m) × O(n), we will expand in 1/n for fixed m.
From the results in the ε expansion, we note that two representations furnish scalars that can
be promoted to auxiliary fields: S in the singlet representation, and Wab in the irrep that is a
traceless symmetric tensor in O(m) and singlet in O(n). Like in the ε expansion, we can derive
quadratic equations, and the solutions will determine all CFT-data at order 1/n. Apart from
the free theory, we find that these equations generate all three non-trivial fixed points from
the literature: the O(mn) symmetric fixed point, where we have only S; the chiral fixed point,
where we have both S and W; and the antichiral fixed point, where we have only W . Amongst
the results that we derive are the order 1/n scaling dimensions of the leading scalar operators
in all (even) O(m)×O(n) irreps, and the order 1/n corrections to the central charges.

1.2 Numerical bootstrap

The numerical implementation of our work involves the study of both single and mixed cor-
relator bootstrap systems. In our study we exclude values of scaling dimensions of various
operators that are not compatible with the combined requirements of unitarity and crossing
symmetry; the latter is also known as associativity of the OPE. First, we probe the correlator
〈φarφbsφc tφdu〉 for self consistency; this is our single correlator system. Previous studies of
O(2)×O(n) single correlator systems have appeared in [42] and [43]. We extend their results
and match with analytic predictions from the large-n expansion.

For m = 2 and sufficiently large n (e.g. n ¦ 10), we find excellent agreement between
the numerical bootstrap predictions and the analytic ones. This can be clearly seen in Figs. 2
and 3. The comparison is performed by comparing the position of the kinks in the exclusion
bounds in Figs. 2 and 3 with the values of the analytically predicted scaling dimensions of the
corresponding operators. This reinforces the empirical notion that kinks in bootstrap bounds
correspond to the position in parameter space of actual CFTs. We find that the antichiral
fixed points appear as kinks in our W sector, which is a representation furnished by operators
that transform in the two-index traceless symmetric representation of O(2) and the singlet
representation of O(n). The chiral fixed points coincide with kinks in our X sector; operators
in this representation transform as singlets of O(2) and two-index traceless symmetric tensors
of O(n). As expected, for smaller values of n the agreement between large-n and numerical
predictions becomes progressively worse. For n = 2 we find a pronounced kink that appears
to correspond to a known fixed point of the ε expansion as discussed in [39]. In the n = 3
case, there exist mild kinks that we study extensively with a mixed correlator system.

3Apart from O(m)×O(n) symmetry considered here, we have checked this reproduces all known fixed points
also in the case of MN [39], hypercubic and hypertetrahedral symmetry [40].

4For O(N) symmetry, the analytic continuation in N was recently put on a more solid basis using Deligne
categories [41].
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A mixed-correlator bootstrap for O(2)×O(n) CFTs is studied for the first time in this work.5

It consists of probing self consistency for four-point functions involving both φ and S, where
S denotes the smallest dimension scalar operator (above 1) in the singlet representation. Our
goal is to obtain closed isolated regions (islands) in parameter space, which may correspond
to physical CFTs. This method has so far produced extremely accurate calculations of critical
exponents in the Ising and O(2) critical theories [45,46]. Islands have also been discovered in
other theories with relevance to three dimensional statistical field theory [47–50]—for a more
comprehensive list of references we refer the reader to [11].

We find two sets of islands, which we identify with two qualitatively different types of
fixed points. The first set corresponds to the theories predicted by the large-n and ε expan-
sions; these are found by saturating bounds in the W and X sectors as discussed in the previous
paragraph. We have found these islands for n as low as 6, which appears to be in agreement
with the predictions of [27]—below n = 6 these fixed points are expected to be nonunitary.
The second set of islands appears to correspond to fixed points that have been claimed to
arise after resummations of perturbative beta functions [51–53]. These are not the same fixed
points that are found in the standard large n and ε expansions, and their existence is not widely
accepted [15–17]. In our bootstrap studies these islands are found by saturating bounds in the
W and Z sectors, where operators in the Z sector transform in the antisymmetric representa-
tion of both the O(2) and the O(n). We find such islands for n= 3, which is an experimentally
relevant value of n. The corresponding fixed points are called chiral and collinear.

For the O(2)× O(3) chiral fixed point, we find an island by saturating a bound in the W
sector. The associated critical exponents are

β = 0.344(5) , ν= 0.639(7) . (1)

This result is of particular interest, since the experimentally observed critical point of certain
frustrated Heisenberg antiferromagnets is conjectured to be the O(2)×O(3) chiral fixed point—
see [18, 51]. Our exponent ν in (1) agrees very well with experimental determinations [14,
Table 37], while β does not. Despite our results, which appear to support the existence of the
O(2) × O(3) chiral and collinear fixed points, we believe that further research is required to
conclusively settle outstanding issues related to criticisms of some authors in the functional
RG community [15–17]. Another issue that remains unresolved is related to the assertion of
some authors that the O(2)×O(3) chiral and collinear fixed points are of the focus type and
thus nonunitary [53–56].

We note that in the O(2)×O(3) case, the two islands we find are consistent with a second
scalar singlet that has a scaling dimension above three, i.e. the corresponding fixed points are
both stable in the context of the RG. This is something that cannot hold for fixed points found
in the ε expansion [26,57,58]. We also note that all previously mentioned islands are obtained
by making assumptions on the second B sector operator, which contains odd-spin operators
among which the first spin-one operator is the conserved vector of the O(n) contained in
O(2)×O(n). The fact that the allowed region presents a sensitivity to assumptions specifically
on the B sector was observed empirically. The dependence of bootstrap bounds on assumptions
in sectors that contain conserved operators have been studied in other cases in e.g. [59–62].

The structure of this paper is as follows. In section 2 we review known perturbative results
obtained in the ε and large n expansions. In section 3 we lay out the general formalism of the
analytical bootstrap, applicable to anyφ4 theory. In section 4 we apply the formalism of section
3 specifically to O(m)×O(n) theories and present explicitly numerous results. In section 5 we
study O(2)×O(n) theories with the numerical bootstrap and compare to all previous results.
We conclude in section 6.

5The manuscript [44], which studies the O(3) × O(15) case with the same mixed-correlator bootstrap as us,
appeared on the arXiv the same day as our original submission.

5

https://scipost.org
https://scipost.org/SciPostPhys.9.3.035


SciPost Phys. 9, 035 (2020)

2 Review of perturbative results

2.1 ε expansion

Here we review results regarding CFTs with global symmetry Om,n = O(m) × O(n). In the
ε = 4− d expansion, such CFTs are reached as endpoints of the RG flow of the two-coupling
Lagrangian [13,14,18,22–25]

L = 1
2 ∂µφar ∂

µφar +
1
8λ(φarφar)

2 + 1
24 gφarφbrφasφbs . (2)

The mn scalar fields are arranged into a matrix, φar , with row indices running from 1 to m
and column indices from 1 to n. The standard summation convention for repeated indices is
used in (2). The O(m) part of the symmetry group acts on the row indices and the O(n) part
on the column indices. Since both O(m) and O(n) contain the same Z2 symmetry generated
by φ→−φ, the correct global symmetry group is obtained by modding O(m)×O(n) out by a
Z2. In this work we will use Om,n, O(m)×O(n) and O(m)×O(n)/Z2 interchangeably.

An equivalent Lagrangian, introduced in [24] and commonly used in subsequent literature,
takes the form

L = 1
2

∑

a

∂µ ~φa · ∂ µ ~φa +
1
24u

�∑

a

~φ 2
a

�2
+ 1

24 v
∑

a,b

�

( ~φa · ~φb)
2 − ~φ 2

a
~φ 2

b

�

, (3)

where ~φa are m vectors of size n each. The couplings u, v of (3) are related to the couplings
λ, g of (2) by

u= 3λ+ g , v = g . (4)

Fixed points with v < 0 are called collinear or sinusoidal and fixed points with v > 0 chiral,
helical or noncollinear. With m¶ n stability of the scalar potential requires u> 0 if v ¶ 0 and
u> (1− 1/m)v if v > 0.

The number of fixed points of the Lagrangian (3) depends on the values of m and n. There
are four regimes:

(I) For n> n+(m) there are four fixed points (Gaussian, O(mn), chiral, antichiral). Stable6

fixed point: chiral.

(II) For n−(m) < n < n+(m) there are two fixed points (Gaussian and O(mn)). They are
both unstable.

(III) For nH(m)< n< n−(m) there are four fixed points (Gaussian, O(mn), sinusoidal, antis-
inusoidal). Stable fixed point: sinusoidal.

(IV) For n < nH(m) there are four fixed points (Gaussian, O(mn), chiral, sinusoidal). Stable
fixed point: O(mn).

The Gaussian fixed point has u = v = 0, while the O(mn) fixed point has u > 0, v = 0. The
fully-interacting fixed points (i.e. the ones besides Gaussian and O(mn)) both have uv 6= 0
and Om,n global symmetry. These fixed points move around in the λ-g coupling plane as m, n
change. For every m there is a value of n, indicated by n+(m) above, for which the chiral and
antichiral fixed points collide in the real u-v plane and subsequently move to the complex u-v
plane. For n> n+(m) the chiral fixed point is stable, but for n< n+(m) there is no stable fixed
point. However, for some n−(m) < n+(m) two fixed points reappear in the u-v plane—this
time they are called sinusoidal and antisinusoidal because they have v < 0, and the sinusoidal

6A fixed point with only one relevant scalar singlet operator, namely the mass operator φarφar , is called stable.
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fixed point is stable. Furthermore, there is a value nH(m) < n−(m) below which the O(mn)
fixed point is stable, for one of the fully interacting fixed points of the nH(m) < n < n−(m)
regime crosses the v = 0 line and acquires v > 0 (chiral), while the other remains with v < 0
(sinusoidal). The situation is summarized in Fig. 1.

u

v

G
H

C+

C−

(I)

u

v

G
H

(II)

u

v

G
H

S+

S−

(III)

u

v

G
H

C

S

(IV)

Figure 1: Flow diagrams corresponding to the various regimes mentioned in the text.
The hatched regions represent the basins of attraction of the stable fixed point. This
figure is a reproduction of [13, Fig. 7].

The values of n±(m) and nH(m) can be estimated in the ε expansion [18,19,24,25]:

n±(m) = 5m+ 2± 2
Æ

6(m− 1)(m+ 2)−
�

5m+ 2±
25m2 + 22m− 32

2
p

6(m− 1)(m+ 2)

�

ε +O(ε2) , (5)

nH(m) =
2
m

�

2− ε +O(ε2)
�

. (6)

In a recent paper, these results have been extended to six loops, or order ε5 [27]. After resum-
mation techniques are employed, the authors of [27] give, for m= 2, the estimates

n+(2) = 5.96(19) , n−(2) = 1.970(3) , nH(2) = 1.462(13) . (7)

Numerical estimates for other values of m can be found in [27, Table 8]. In this work we will
attempt to use our bootstrap bounds to independently estimate these quantities, particularly
n+(2), and compare with (7). For m = 3 a similar study was performed in [42], while the
existence of O(2)×O(n) theories in d = 5 was examined with perturbative methods in [63].

As mentioned in the introduction, it has been suggested that fixed points beyond the ones
we just reviewed exist in O(2)×O(2) and O(2)×O(3) theories. Confusingly, the terminology
“chiral”, “collinear”, etc., is still used for those fixed points, depending on their sign of the
coupling v.

For scalar theories in the ε expansion below d = 4, it is a theorem that a stable fixed point,
if it exists, is unique [26, 57, 58]. For the numerical studies in this work, we will fix m to a
small value, specifically m = 2, and obtain bounds for increasing n. Thus, we expect that if
kinks appear at large n, they will be due to fixed points of regime (I). In that case, we expect
from the ε expansion that since the chiral fixed point is stable, the antichiral is unstable. This
prediction is also expected to hold in the large-n limit in d = 3, to which we now turn.
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2.2 Large n

As mentioned in the introduction, it was realized a long time ago that Om,n theories admit a
large-n expansion [18]. For the chiral fixed point in d = 3, large-n computations give [19–21]7

∆φ+ =
1
2
+

2(m+ 1)
3π2

1
n
+

8(m2 − 7m− 26)
27π4

1
n2
+O

� 1
n3

�

,

∆S+ = 2−
16(m+ 1)

3π2

1
n
−

64(7m2 + 5m− 20) + 108(m2 + 3m+ 4)π2

27m2π4

1
n2
+O

� 1
n3

�

,

∆S′+ = 4−
32(m+ 1)

3π2

1
n
+O

� 1
n2

�

,

∆S′′+ = 4−
8(m+ 4)

3π2

1
n
+O

� 1
n2

�

,

∆W+ = 2−
4(m+ 4)

3π2

1
n
+O

� 1
n2

�

,

∆Z+ = 1+
4(m− 2)

3π2

1
n
+

2
�

8(m+ 1)(m2 − 7m− 26)− 27(5m+ 11)π2
�

27(m+ 1)π4

1
n2
+O

� 1
n3

�

, (8)

while for the antichiral fixed point in d = 3 at large n the results are [19,21]

∆φ− =
1
2
+

2(m− 1)(m+ 2)
3mπ2

1
n
+

8(m− 1)(m+ 2)(m2 − 8m− 2)
27m2π4

1
n2
+O

� 1
n3

�

,

∆S− = 1+
16(m− 1)(m+ 2)

3mπ2

1
n

+
4(m− 1)(m+ 2)

�

16(7m2 − 2m+ 40) + 27(m− 2)(m+ 4)π2
�

27m2π4

1
n2
+O

� 1
n3

�

,

∆S′′′− = 4−
8(m2 + 4m− 8)

3mπ2

1
n
+O

� 1
n2

�

,

∆W− = 2−
4(m2 + 4m− 8)

3mπ2

1
n
+O

� 1
n2

�

. (9)

Here we denote singlet operators in the φ×φ OPE with the letter S, operators that transform
as two-index traceless symmetric tensors under O(m) and singlets under O(n) by the letter W ,
and operators that transform as two-index antisymmetric tensors under both O(m) and O(n)
with the letter Z .8 As usual, primes denote the order in scaling dimension of these operators,
i.e. S is the leading singlet, S′ the next-to-leading singlet and so on. We have not found large-
n results for ∆S′− in the literature, but it is widely believed that ∆S′− < 3, i.e. the antichiral
fixed point is unstable. By explicitly constructing singlet operators we find the ones in Table 1,
where we tabulate the spectrum of the lowest dimension scalar singlet operators in the three
fixed points at large n.

The results in (8) and (9) were obtained with the use of a Hubbard–Stratonovich trans-
formation, extending a procedure used first in the O(N) models by [64, 65]. Two Hubbard–
Stratonovich auxiliary fields, S and Wab, are introduced in this case. S is a singlet, while
Wab transforms as a traceless symmetric tensor under O(m) and a singlet under O(n). The
Lagrangian is [19,21]

L =
1
2
∂µ ~φa · ∂ µ ~φa +

1
2
S ~φa · ~φa +

1
2
Wab

~φa · ~φb −
3S2

2w
−

3
2v

WabWab , (10)

7These computations are done in the more general setting of arbitrary d at large n, but here we present the
d = 3 results only. In [20], the operator C corresponds to our Z , and ηc computed there is given by ηc =∆Z − 1.
In [21], the operator T corresponds to our W , and χT computed there is given by χT = 3− 2∆φ −∆W .

8Note that there are in total nine irreps containing bilinears of φ, and five of them contain scalars. We will
determine dimensions of these operators in the ε and large-n expansions in section 4 using analytic bootstrap
techniques.
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where repeated indices are summed over and w = u+ (1− 1/m)v with u, v the couplings in
(3). The equations of motion for S and Wab can be used to go back to (3). Below we will
reproduce (8) and (9) and obtain more results at order 1/n following the analytic bootstrap
logic of [32].

Table 1: The lowest scalar singlet operators at the three non-trivial fixed points and
their scaling dimensions. In the chiral fixed point, the operators S′ and S′′ arise from
resolving a mixing, where O is either S or W .

O(mn) Chiral Antichiral
S = σ 2+O( 1

mn) S = S 2+O( 1
n) S = φ2

S 2∆φ +O( 1
n)

S′ = σ2 4+O( 1
mn) S′ = 〈[O,O]S,0,0〉1 4+O( 1

n) S′ = φ4
S 4∆φ +O( 1

n)
S′′ = [σ,σ]1,0 6+O( 1

mn) S′′ = 〈[O,O]S,0,0〉2 4+O( 1
n) S′′ = φ6

S 6∆φ +O( 1
n)

S′′′ = σ3 6+O( 1
mn) S′′′ = [W ,W]S,0,0 4+O( 1

n)

3 Analytic bootstrap for any global symmetry

In this section we outline an implementation of the analytic bootstrap that can be applied to
φ4 theories with any global symmetry. We begin with a brief review of large spin perturbation
theory. This is followed by a summary of relevant results from the literature, in terms of a
toolbox containing the explicit solution to the inversion problems we will encounter. We then
give a general recipe for applying these tools, first to the ε expansion and then to the large-N
expansion, where the latter is applicable to φ4 theories which admit a Hubbard–Stratonovich
description.

For the analytic bootstrap, we will consider the four-point function of φ i ∈ V , written in
the form

〈φ i(x1)φ
j(x2)φ

k(x3)φ
l(x4)〉=

1

(x2
12 x2

34)
∆φ

∑

R

Ti jkl
R GR(u, v) . (11)

In this expression, Ti jkl
R are tensor structures for the irreducible representations R ∈ V ⊗ V ,9

and u, v are the usual cross-ratios defined by

u= zz̄ =
x2

12 x2
34

x2
13 x2

24

, v = (1− z)(1− z̄) =
x2

14 x2
23

x2
13 x2

24

. (12)

The crossing equation follows from exchanging operators at x2 and x4, and can we written as

GR(u, v) = MReR

�u
v

�∆φ
G
eR(v, u) , (13)

where the explicit form of the matrix M can be worked out from the tensor structures for the
symmetry group under consideration. Here we choose normalizations in agreement with [32],
so that the matrix in the O(N) case takes the form

MO(N) =





1/N (N + 2)(N − 1)/(2N2) (1− N)/(2N)
1 (N − 2)/(2N) 1/2
−1 (N + 2)/(2N) 1/2



 , (14)

where the representations are the singlet S, rank-two traceless symmetric T and antisymmetric
A representations of O(N). For any symmetry group, we reserve the letter S for the singlet
representation.

9More precisely, the Ti jkl
R are the projectors that can be used to decompose the four-point function into invariant

subspaces labeled by R.
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Each of the functions GR(u, v) admits a decomposition in conformal blocks,

GR(u, v) =
∑

O∈R

c2
φφO G∆O ,`O(u, v) , (15)

where the sum runs over conformal primary operators O appearing with OPE coefficient cφφO
in the OPE φ i × φ j|R, and the conformal blocks G∆,`(u, v) are functions which sum up the
contributions of descendants to that primary.

The OPE expansion (15) is regular in the limit z, z̄ → 0. However, we will expand in the
lightcone limit, defined by z � 1− z̄ � 1. Taking z → 0, the conformal blocks as functions of
z, z̄ simplify as

G∆,`(z, z̄) = z
∆−`

2 k∆−`
2
(z̄) +O

�

z
∆+`

2 +1
�

, (16)

where kβ(z̄) = z̄β2F1(β ,β; 2β; z̄), and 2F1 is Gauss’s hypergeometric function. The lightcone
limit therefore emphasizes the contribution from the operators of smallest value of the twist,
defined as τ=∆−`, which shows that it is useful to organize the OPE in terms of twist families
of operators of approximately equal twist. In addition, the specific form of the hypergeometric
function contains a single logarithmic divergence at z̄→ 1, but no power or log2 divergence.

A generic CFT contains families of double-twist operators, written as [O1,O2]R,n,`, where
n = 0,1, 2, . . . , where O1 ∈ R1 and O2 ∈ R2 are operators in the theory and R ∈ R1 ⊗ R2.
For Lagrangian theories these operators have the schematic form O1∂

µ1 · · ·∂ µ`�nO2, up to
contributions from descendants. In the theories we consider, φ is near the unitarity bound,
∆φ =

d−2
2 + γφ , which means that the leading double-twist operators are weakly broken cur-

rents JR,` = [φ,φ]R,0,`. Our main objective is to determine the CFT-data of these operators,
which consist of their scaling dimensions ∆R,` and their OPE coefficients aR,` = c2

φφJR,`
. Of

particular interest are the conserved currents: the stress-energy tensor Tµν = JS,2, and in the
case of continuous global symmetry, Noether currents JµR = JR,1 in one or several representa-
tions R. They have conserved dimensions, ∆S,2 = d, ∆R,1 = d − 1 and their OPE coefficients
are related to central charges CT and CJR

by the relations10

aS,2 =
d2∆2

φ

4(d − 1)2CT
, aR,1 = −

1
CJR

, (17)

following from conformal Ward identities [7,66].
Our main tool is the Lorentzian inversion formula, derived in [35]:

CR(`,∆) =
�

1± (−1)`
� κ∆+`

4

∫

[0,1]2

dzdz̄µ(z, z̄)Gd−1+`,1−d+∆(z, z̄)dDisc[GR(z, z̄)] , (18)

where the double-discontinuity dDisc is defined as the difference between the correlator and
its analytic continuations around z̄ = 1, dDisc[ f (z̄)] = f (z̄)− 1

2 f �(z̄)− 1
2 f �(z̄). In particular,

a single conformal block has vanishing double-discontinuity. The sign in (18) depends on the
symmetry of GR(z, z̄) under exchanging x1 and x2, and the normalization constants are given

by κβ =
Γ (β/2)4

2π2Γ (β)Γ (β−1) and µ(z, z̄) = |z − z̄|d−2(zz̄)−d . The poles in ∆ of the function CR(`,∆)
are located at the scaling dimensions of the operators OR, with OPE coefficients given by the
residue; more precisely

aR,` = −
∫

d`

∮

d∆
2πi

CR(`
′,∆)δ(`− `′) . (19)

10We use the conventions of [32], where the normalization of the conformal blocks differ with a factor (−2)`

from e.g. [7].
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The inversion formula is valid for ` > 1. If a power zτ/2 appears in dDisc[G(z, z̄)], it signals
the existence of a family of operators of twist near that value. This follows from the scaling
µ(z, z̄)Gd−1+`,1−d+∆(z, z̄)∼ z

`−∆−2
2 , which induces poles in CR(`,∆) from the z→ 0 limit of the

z integral:

CR(`,∆)∼ −
aR,`

∆− (τ+ `)
. (20)

We now focus on the leading twist family in each representation, and assume that
τR,` = 2∆φ + γR,` for small anomalous dimensions γR,`. In that case, following the manipula-
tions of [35, Sec. 4], the z integral can be computed and (18) reduces to the one-dimensional
inversion problem given in [67]: the CFT-data aR,` and γR,` are given by

âR,h̄(γR,`)
p = U (p)

R,h̄
+

1
2
∂h̄U (p+1)

R,h̄
+

1
8
∂ 2

h̄
U (p+2)

R,h̄
+. . . , aR,` =

Γ
�∆R,`+`

2

�2

Γ (∆R,` + `)
âR,h̄, h̄=∆φ+` , (21)

where

U (p)
R,h̄
=

2pp!Γ (h̄)
π2Γ (2h̄− 1)

1
∫

0

dz̄
z̄2

kh̄(z̄)dDisc
�

GR(z, z̄)
�

�

z∆φ logp z

�

. (22)

These expressions were derived in [67], by assuming that γR,` ∼ g � 1 and expanding all
quantities in g. This expansion generates terms proportional to z∆φ logp z in the double-
discontinuity, which under the z integral are converted to higher order poles in ∆ in (20).
These poles are responsible for the derivatives ∂h̄ appearing in (21), following from changing
variables from (∆,`) to (τ, h̄) in (19). An alternative heuristic derivation of (22) starting from
the collinear conformal blocks is given in [30].

The success of large spin perturbation theory stems from the fact that dDisc[GR(z, z̄)] can
be computed through the crossing equation (13). At each order in the expansion parame-
ter, the whole double-discontinuity is computed from the conformal blocks of a small set of
crossed-channel operators. In particular, the double-twist operators [φ,φ]R,n,` themselves do
not contribute at leading order. This is because the power (1 − z̄)−∆φ from crossing is can-

celled by (1− z̄)
τn,`

2 from the conformal blocks, as seen from the expansion (16) evaluated in
the crossed channel, z → 1 − z̄. Expanding τR,n,` = 2∆φ + n + γR,n,`, we note that the first

non-zero double-discontinuity arises from the term
γ2

R,n,`
8 log2(1− z̄). In the two cases relevant

in this paper, the leading double-discontinuities will be generated by scalar operators, and the
weakly broken currents JR,` = [φ,φ]R,0,` will only contribute at subleading order.

3.1 Inversion toolbox

In this section we collect all inversion formulas from the literature that are required to find the
leading order CFT-data in the ε expansion and in the large-N expansion. The entries take the
form

{O} −→ U (0)
h̄
+

1
2

U (1)
h̄

log z + . . . , (23)

where {O} is a crossed channel operator or a family of such. The results have been computed
from the inversion integral (22) where GR(z, z̄) is replaced by the crossing factor

�u
v

�∆φ mul-
tiplied by a (sum of) conformal blocks in crossed variables. Up to an overall prefactor, the
resulting functions U (p)

h̄
expand in inverse integer powers of the conformal spin

J2 = h̄(h̄− 1) , (24)

a statement referred to in the literature as reciprocity and proved in the context of CFT in [68].
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Inversion 1. The identity operator 1 contributes with

{1} −→ A[∆φ](h̄) =
2(2h̄− 1)Γ (h̄+∆φ − 1)

Γ (∆φ)2Γ (h̄−∆φ + 1)
, (25)

which contributes to U (0)
h̄

only. This holds for generic ∆φ , and applies in both the ε expansion
and in the large-N expansion. This result can be directly computed from the integral (22)
using an integral representation for kh̄(z̄) (see e.g. eq. (4.7) of [35]).

Inversion 2. In the ε expansion, a bilinear scalar ∆φ2 = 2∆φ +γ with OPE coefficient c2
φφφ2 ,

assuming γ= g ε (1+ g(2)ε + . . .), expanded to order ε3, contributes with

{φ2} −→
c2
φφφ2

2
γ2 2h̄− 1

J2

�

−1− γ+ ε + γS1(h̄− 1)
�

log z

+
c2
φφφ2

2
γ2 2h̄− 1

J4

�

−1+ (J2ζ2 + 1)ε + (S1(h̄− 1)− J2ζ2 − 1)γ
�

. (26)

This was derived in eq. (2.34) of [30] using the explicit form of the scalar conformal block as
an infinite sum [7] and taking the small z limit. Here S1(h̄−1) denotes the harmonic numbers.

Inversion 3. The leading contribution from a scalar O with ∆O = 2, where ∆φ = µ − 1 in
generic spacetime dimension d = 2µ is

{O} −→ (µ− 2)2c2
φφO

A[µ− 1](h̄)
J2

�

− log z + S1[µ− 1](h̄)−
1
J2

�

, (27)

where
S1[α](h̄) = 2S1(h̄− 1)− S1(h̄− 2+α)− S1(h̄−α) . (28)

This was derived in eqs. (2.25) and (2.29) of [32].

Inversion 4. The leading contribution from an infinite sum over ` ∈ I± of broken currents J`
with anomalous dimensions γ` =

κ
J2 and OPE coefficients αaGFF

0,` |µ−1 (where aGFF
n,` |∆φ are the

generalized free field OPE coefficients given in (84)) is

{J`}`∈I±,γ= κ

J2
−→−ακ2 2h̄− 1

2(µ− 2)2J2
[±1+ (µ− 2)π csc(πµ)] ln z + E± , I± =

¨

{0,2, 4, . . .}
{1,3, 5, . . .}

.

(29)
Here E± are lengthy expressions given explicitly in (85). This formula was derived in [32] by
summing over blocks on the unitarity bound and subsequently inverting the sum.

3.2 General solution in the ε = 4− d expansion

Consider first the contribution from the identity operator, appearing in the singlet (S) repre-
sentation. This will give rise to the leading contribution to U (0)

R,h̄
in all representations. Since

this is the only operator contributing until order ε2, we get, using Inversion 1,

U (0)
R,h̄
= MRS A[∆φ](h̄) +O(ε2) , (30)

where ∆φ = 1 − ε/2 + γφ with γφ = O(ε2). From this expression, the leading order OPE
coefficients can be extracted:

c2
φφJR,`

=
2Γ (`+ 1)2

Γ (2`+ 1)
MRS +O(ε) . (31)
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Here ` takes even (odd) values for R being an even (odd) representation. The scalar bilinears
φ2

R in the even representations have OPE coefficients

c2
φφφ2

R
= 2MRS +O(ε) . (32)

These scalars are the next operators to contribute to the double-discontinuity. Assume that
they have dimension ∆φ2

R
= 2∆φ + gRε +O(ε2). Then, using Inversion 2 we get the order ε2

corrections

U (1)
R,h̄
= −MRS Γ

{2}
R

2(2h̄− 1)
J2

ε2 +O(ε3) , (33)

U (0)
R,h̄
= MRS A[∆φ](h̄)−MRS Γ

{2}
R

2h̄− 1
J4

ε2 +O(ε3) , (34)

where

Γ
{2}
R =

1
MRS

∑

eR even

MReR g2
eR

M
eRS . (35)

Using (21) we can thus write down the leading correction to the anomalous dimension,

∆R,` = 2∆φ + `+ γR(h̄), γR(h̄) = −
Γ
{2}
R ε2

J2
, (36)

where h̄=∆φ + ` and J2 = h̄(h̄− 1).
Next, as observed in [30], we assume that it is possible to analytically continue the result

γR(h̄) to spin zero, by making the change of variables h̄→ h̄f =
∆+`

2 , i.e. we replace the bare
with the full conformal spin (eigenvalue of the quadratic Casimir). For spin zero we should
evaluate this at h̄f =∆φ2

R
/2= 1− ε/2+ gRε/2+O(ε2). This leads to a system of equations

gR
!
= γR(h̄)

�

�

h̄=∆φ+
gR
2

, R even , (37)

at order ε, where now one power of ε in the γR(h̄) cancels against the factor h̄f−1= (gR−1)ε/2
in the denominator. This simplifies to

MRS gR(gR − 1) + 2
∑

eR even

MReRM
eRS g2

eR
= 0 , R even , (38)

which is a system of k quadratic equations for the k constants gR, where k is the number of
even representations, or equivalently the number of scalar bilinears. Solving (38) gives all
possible fixed points in the ε expansion with the given symmetry.

As an example, consider the O(N) model with crossing matrix (14). The even representa-
tions are S and T , and the bilinear scalars are φ2

S = φ
iφ i and φ2

T = φ
{iφ j}. There are two

solutions to (38), gS = gT = 0, which is the Gaussian theory, and

gS =
N + 2
N + 8

, gT =
2

N + 8
, (39)

which is exactly the critical O(N) model [31]. With these values we have Γ {2}S = 3(N+2)
(N+8)2 ,

Γ
{2}
T = N+6

(N+8)2 and Γ {2}A = N+2
(N+8)2 .

The singlet spin-two current in any global symmetry group is the stress-energy tensor with
dimension ∆S,2 = d = 4− ε. This gives the constraint

γ
(2)
φ
= 1

12Γ
{2}
S , (40)
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where ∆φ = 1 − ε/2 + γ(2)
φ
ε2 + O(ε3). Using this we write down the full dimension of the

broken currents to order ε2:

∆R,` = 2− ε + `+ 2γ(2)
φ
ε2 −

Γ
{2}
R ε2

`(`+ 1)
+O(ε3) . (41)

The OPE coefficients are extracted using (21),

aR,` = MRSaGFF
0,` +MRS

Γ
{2}
R ε2

`(`+ 1)

�

S1(2`)− S1(`) +
1
`+ 1

�

2Γ (`+ 1)2

Γ (2`+ 1)
+O(ε3) , (42)

where aGFF
0,` is the generalized free field OPE coefficients for ∆φ = 1− ε/2+ γ(2)

φ
ε2 expanded

to order ε2, which we give in (83) in Appendix B.
From the spin two singlet OPE coefficient we can extract the central charge correction

given by (17)

CT

CT,free
= 1−

5γ(2)
φ

3
ε2 +O(ε3) = 1−

5Γ {2}S

36
ε2 +O(ε3) , (43)

which is consistent with [25, Eq. (E.1)]. We emphasize that the considerations here are valid
with any global symmetry group. The input needed to specialize to a given symmetry group
is the crossing matrix MReR and the division of the representations into even and odd spin. By
solving the system of equations (38) one finds all fixed points in the ε expansion compatible
with that symmetry group and derives the leading (order ε) anomalous dimensions of the
bilinear scalars. Conservation of the stress-energy tensor allows one to compute the leading
(order ε2) anomalous dimension of φ.

In one or several of the odd representations R, the current at spin `= 1 may be conserved,
being a generator of global symmetry. This therefore gives further constraints ∆R,` = d − 1,
which must be explicitly checked. By (17) the corresponding OPE coefficient is related to the
CJ of that symmetry current:

CJR

CJR,free
= 1− 3γ(2)

φ
ε2 +O(ε3) = 1−

3Γ {2}R

4
ε2 +O(ε3) . (44)

Let us discuss the extension to higher orders in the ε expansion. To order ε3, the operators
contributing with a nonzero double-discontinuity are the same as at the previous order, namely
the bilinear scalars φ2

R. At higher orders, infinite families of operators contribute. In the O(N)
model, the only such families at order ε4 are operators of approximate twist 2 and 4, and
subsequently the problem was solved there. We expect that this generalises to any global
symmetry. However, to compute the contribution from approximate twist 4 requires detailed
knowledge of the operator content of the theory in question. This was done in the case of the
O(N) model in [31]. To order ε5 the same operators will contribute but now with subleading
corrections. To work this out, even in the N = 1 (Ising) case, is still an open problem.

We have seen that at order ε2 all constants that enter the problem can be fixed using
continuation to spin zero and conservation of the stress-energy tensor. This is no longer true
at higher orders. At order ε3 a total of 2k + 1 new constants appear: γ(3)

φ
, the second order

correction to γφ2
R
= gRε(1+ g(2)R ε)+ . . . , and the corrections αR to the OPE coefficients defined

by
c2
φφφ2

R
= 2MRS(1+αRε) +O(ε2) . (45)

Based on experience from the O(N)model [31], the order ε2 continuation to spin zero requires
order ε4 results for the currents, so the only new equations at order ε3 are the conservation
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of the symmetry currents (including the stress-energy tensor). In general this will not provide
enough equations to fix all constants, but in many cases we can still make progress. Firstly,
we will use that the correction to the OPE coefficient takes the form αR = −gR. This holds
for any global symmetry, and follows from analytic bootstrap in Mellin space, as we show in
Appendix D. Secondly, the second order corrections g(2)R to the bilinear scalar dimensions are
in many cases known from the literature, and one can proceed using these as input.

Using Inversion 2, it is straightforward to derive expressions for U (p)
R,h̄

at order ε3. The

anomalous dimensions extracted from these expressions take the form

γR(h̄) = −
Γ
{2}
R

J2
ε2 +

Γ
{2}
R − 2Γ {2,1}

R +
�

Γ
{3}
R − Γ {2}R

�

S1(h̄− 1)

J2
ε3 +O(ε4) , (46)

where h̄= 1− ε
2 + `+O(ε2) and

Γ
{3}
R =

1
MRS

∑

eR even

MReR g3
eR
M
eRS , Γ

{2,1}
R =

1
MRS

∑

eR even

MReR g2
eR

g(2)
eR

M
eRS . (47)

From the corresponding expression for the OPE coefficients using Inversion 2, we can
extract the central charge correction:

CT

CT,free
= 1−

5
3

�

γ
(2)
φ
ε2 + γ(3)

φ
ε3
�

−
29
18
γ
(2)
φ
ε3 +

5
48
Γ
{3}
S ε3 +O(ε4) . (48)

Here we used that the stress-energy tensor conservation eliminates the dependence on g(2)R in

favour of γ(3)
φ

. For two-coupling theories as considered in [25] we may find

Γ
{3}
S = 1

90(N + 2)
�

58(a g2
∗ + 6λ2

∗)− 258(N + 8)λ3
∗ − 129a (b g∗ + 6λ∗)g

2
∗

�

, (49)

where λ∗, g∗ are the coefficients of the order-ε values of the two couplings at the fixed point,
i.e. λ = λ∗ε + O(ε2) and g = g∗ε + O(ε2), and a, b are defined in [25, Eq. (5.2)]. For the
O(N)model, where λ∗ = 1/(N+8) and g∗ = 0, this gives Γ {3}S = (N+2)/(N+8)2, in complete
agreement with (47).

Similarly, for the current central charges we derive the expression

CJR

CJR,free
= 1− 3

�

γ
(2)
φ
ε2 + γ(3)

φ
ε3
�

−
9
4
γ
(2)
φ
ε3 +

1
4
Γ
{3}
R ε3 +O(ε4) . (50)

3.3 General solution in the large N expansion

Let us now describe the computation of CFT-data in the large-N expansion for a generic sym-
metry group, parametrised by some number N . Compared to the ε expansion the situation
is a bit more complicated, since the parameter N enters in the crossing matrix MReR itself.
In a given even representation R, we assume that there are two possibilities for the smallest
dimension scalar. It is either a scalar bilinearφ2

R with dimension 2∆φ+O(N−1), or a Hubbard–
Stratonovich field R with dimension 2+O(N−1). If one has access to results in the ε expansion,
one can assess the situation by taking the large N limit of the order ε scalar dimensions. For
instance, in the O(N) model we get, using (39),

∆φ2
S
= 2− ε + gS ε→ 2+O(N−1) , ∆φ2

T
= 2− ε + gT ε→ d − 2+O(N−1) , (51)

so we see that the singlet representation admits a Hubbard–Stratonovich field S (in the litera-
ture denoted by σ), but not the traceless symmetric representation (whence we keep the nota-
tionφ2

T ). We assume that the Hubbard–Stratonovich fieldsR have dimension∆R = 2+O(N−1)
and OPE coefficient c2

φφR = aR/N +O(N−2).
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In order to provide some structure of the subsequent computations we define the following
subsets of the representations in V ⊗ V = I ∪ II:

• Group I: Representations whose only corrections at order 1/N come from crossed chan-
nel Hubbard–Stratonovich fields.

• Group II: Representations where the corrections at order 1/N come from Hubbard–
Stratonovich fields as well as from broken currents in Group I representations in the
crossed channel.

• Group III: Representations that admit a Hubbard–Stratonovich field. Typically III ⊂ II.

As an example, in the O(N)model we have S ∈ II∩III and T, A∈ I. Our strategy will then be the
following. First, as in the ε expansion, the identity operator creates the leading contribution to
U (0)

R,h̄
for all representations. Next we turn to the representations in Group I. The contributions

from Hubbard–Stratonovich fields will give the order 1/N anomalous dimensions in these
representations. Using Inversion 3 we see that these corrections will be proportional to 1/J2.
Finally we turn to representations in the Group II. Here we get contributions from both the
Hubbard–Stratonovich fields, using Inversion 3, and from the currents in Group I. Due to the
particular form of the anomalous dimensions of these currents, we can use Inversion 4 to find
the complete order 1/N CFT-data.

The expressions will depend on |III|+ 1 free parameters: the OPE coefficients aR = c2
φφR

for R ∈ III, and the leading order anomalous dimension of φ. The only consistency conditions
available to fix these constants are the conservation of the symmetry currents (including the
stress-energy tensor), and depending on the number of conserved currents this may or may not
be enough. As in the order ε3 results above, literature values can be used to fix the remaining
constants if the conservation equations are not sufficient. Finally, the leading anomalous di-
mensions of the Hubbard–Stratonovich fields may be extracted by imposing a shadow relation
similar to the one observed in the O(N) model [32]:

∆R +∆R,0
!
= d . (52)

Let us now execute the strategy in full generality. The contribution from the identity op-
erator gives

U (0)
R,h̄
= MRS A[∆φ](h̄) , (53)

where now ∆φ = µ− 1+ γ(1)
φ
/N +O(N−2) with d = 2µ. For the representations in Group I

we get the contributions from Hubbard–Stratonovich fields in Group III. Using Inversion 3 we
get

U (1)
R,h̄
= −

∑

eR∈III

MReR 2(µ− 2)2
a
eR

N
A[µ− 1](h̄)

J2
, R ∈ I , (54)

and a corresponding expression for U (0)
R,h̄

. From this we extract the order N−1 anomalous di-

mensions of currents in Group I representations:

γR,h̄ = −
2(µ− 2)2KR

J2N
+O(N−2) , KR =

1
MRS

∑

eR∈III

MReR a
eR , R ∈ I , (55)

where the scaling dimensions are given by ∆R,` = 2∆φ + ` + γR,` In step 3 we consider the
second group of operators, II. They get contributions both from R for R ∈ III and from JR,`
for R ∈ I. We get

U (1)
R,h̄
= −

∑

eR∈III

2MReR(µ− 2)2
a
eR

N
A[µ− 1](h̄)

J2
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−
∑

eR±∈I

4MReRK2
eR

M
eRS
(µ− 2)2(2h̄− 1)

J2N2
(±1+ (µ− 2)π csc(πµ)) , R ∈ II , (56)

where the + (−) sign is used if the operators in the eR representations have even (odd) spin.
This means that the anomalous dimensions of the group II double-twist operators are

γR,` = −
2(µ− 2)2KR

J2N
−

bKR

J2N2

(µ− 2)2Γ (µ+ 1)2Γ (`+ 1)
Γ (2µ+ `− 3)

, R ∈ II . (57)

In the above expressions J2 = (µ− 1+ `)(µ− 2+ `) and

bKR =
1

MRS

∑

eR±∈I

2MReRK2
eR

M
eRS (±1+ (µ− 2)π csc(πµ)) , R ∈ II . (58)

As an example, let us explicitly evaluate KR and bKR in the O(N) model. We get

KR = aS , R= S, T, A , bKS = 2N(µ− 2)π csc(πµ)a2
S +O(N0) . (59)

We have two conservation equations, a linear relation due to the global symmetry current
∆A,1 = d − 1, and a quadratic relation due to the stress tensor ∆S,2 = d. There are two

solutions, free theory aS = γ
(1)
φ
= 0 and the known O(N) model result [29,32]

γ
(1)
φ
=
(µ− 2)2

µ(µ− 1)
aS = η

O(N)
1 :=

(µ− 2)Γ (2µ− 1)
Γ (µ)Γ (µ+ 1)π csc(πµ)

. (60)

The extension to subleading orders in 1/N is a complicated task, which was achieved in [32]
for the T and A representations. This involved computing the contributions from operators
[σ,σ]n,`,which was found in the form of a Mellin space amplitude, using OPE coefficients
derived from the mixed correlator 〈φφσσ〉. We do not attempt to generalize it for generic
global symmetry group.

4 Analytic bootstrap of O(m)× O(n) CFTs

In this section we will apply the methods of section 3 to the global symmetry group O(m)×O(n).
The crossing matrix MReR in the basis {S, W, X , Y, Z , A, B, C , D}, where in terms of products

of representations of each orthogonal group we have

S = (S, S) , W = (T, S) , X = (S, T ) , Y = (T, T ) , Z = (A, A) , (61)

A= (A, S) , B = (S, A) , C = (A, T ) , D = (T, A) , (62)

where by S = (S, S) we mean that we take the singlet of each of O(m) and O(n) to form the
representation S of Om,n = O(m)×O(n) and similarly for the rest, takes the form


































1
mn

m2+m−2
m2n

n2+n−2
mn2

(m2+m−2)(n2+n−2)
m2n2

(m−1)(n−1)
mn

m−1
mn

n−1
mn

(m−1)(n2+n−2)
mn2

(m2+m−2)(n−1)
m2n

1
2n

m−2
2mn

n2+n−2
2n2

(m−2)(n2+n−2)
2mn2 − n−1

2n − 1
2n

n−1
2n − n2+n−2

2n2
(m−2)(n−1)

2mn
1

2m
m2+m−2

2m2
n−2
2mn

(m2+m−2)(n−2)
2m2n −m−1

2m
m−1
2m − 1

2m
(m−1)(n−2)

2mn −m2+m−2
2m2

1
4

m−2
4m

n−2
4n

(m−2)(n−2)
4mn

1
4 −1

4 −1
4 − n−2

4n −m−2
4m

1
4 −m+2

4m − n+2
4n

(m+2)(n+2)
4mn

1
4

1
4

1
4 − n+2

4n −m+2
4m

1
2n −m+2

2mn
n2+n−2

2n2 − (m+2)(n2+n−2)
2mn2

n−1
2n

1
2n

n−1
2n

n2+n−2
2n2 − (m+2)(n−1)

2mn
1

2m
m2+m−2

2m2 − n+2
2mn − (m

2+m−2)(n+2)
2m2n

m−1
2m

m−1
2m

1
2m − (m−1)(n+2)

2mn
m2+m−2

2m2

1
4 −m+2

4m
n−2
4n − (m+2)(n−2)

4mn −1
4

1
4 −1

4
n−2
4n

m+2
4m

1
4

m−2
4m − n+2

4n − (m−2)(n+2)
4mn −1

4 −1
4

1
4

n+2
4n

m−2
4m



































.

(63)

17

https://scipost.org
https://scipost.org/SciPostPhys.9.3.035


SciPost Phys. 9, 035 (2020)

This matrix is simply the tensor product MO(m) ⊗ MO(n) for MO(N) given in (14). The repre-
sentations are either even (S, W , X , Y and Z) or odd (A, B, C and D) under x1 ↔ x2. The
even (odd) representations have intermediate operators of even (odd) spins.

4.1 Results in the ε expansion

In the ε expansion, the operatorsφ2
R in the five even representations R introduce corrections to

weakly broken currents in all nine representations. Solving equations (38) for the constants gR
we find four sets of solutions, corresponding to the free theory and to the O(mn) (Heisenberg),
chiral and antichiral fixed points. For the latter two fixed points, of interest to this paper,
the explicit expressions for the gR are rather complicated, containing square roots. We give
complete results in an ancillary data file, which we describe in Appendix A. For presentation
purposes the expressions in the ε expansion in this section are expanded for at large n, but at
each order in ε presented here the complete function of m and n has been determined.

The constants gR correspond to the scaling dimensions of the scalar operators, which take
the form

∆φ2
S+
= 2− 3(m+ 1)

ε

n
− 3

�

m2 − 3m− 14
� ε

n2
+O

�

ε2, n−3
�

,

∆φ2
W+
= 2− (m+ 3)

ε

n
+
�

m2 + 7m+ 42
� ε

n2
+O

�

ε2, n−3
�

,

∆φ2
X+
= 2− ε + (m+ 1)

ε

n
−
�

m2 + 5m+ 10
� ε

n2
+O

�

ε2, n−3
�

,

∆φ2
Y+
= 2− ε +

ε

n
− (m+ 10)

ε

n2
+O

�

ε2, n−3
�

,

∆φ2
Z+
= 2− ε −

ε

n
+ (m− 2)

ε

n2
+O

�

ε2, n−3
�

, (64)

for the chiral fixed point, and

∆φ2
S−
= 2− ε +

3(m− 1)(m+ 2)
m

ε

n
+

3(m− 1)(m+ 2)
�

m2 − 4m+ 16
�

m2

ε

n2
+O

�

ε2, n−3
�

,

∆φ2
W−
= 2−

(m− 2)(m+ 5)
m

ε

n
+
(m− 4)

�

m3 + 11m2 + 14m− 40
�

m2

ε

n2
+O

�

ε2, n−3
�

,

∆φ2
X−
= 2− ε +

(m− 1)(m+ 2)
m

ε

n
−
(m− 1)(m+ 2)

�

m2 + 4m− 16
�

m2

ε

n2
+O

�

ε2, n−3
�

,

∆φ2
Y−
= 2− ε +

m− 2
m

ε

n
−

m3 − 2m2 − 24m+ 32
m2

ε

n2
+O

�

ε2, n−3
�

,

∆φ2
Z−
= 2− ε −

m+ 2
m

ε

n
+
(m+ 2)

�

m2 + 8m− 16
�

m2

ε

n2
+O

�

ε2, n−3
�

, (65)

for the antichiral fixed point. These results agree with [25, Eqs. (5.92) and (5.93)].11 The
operators φ2

S , φ2
W and φ2

Z correspond to S, W and Z , respectively, in (8) and (9).
Having identified the fixed points we move on to a determination of the CFT-data to order

ε3. As described in the previous section, we need to take as input the second order corrections
g(2)R to the anomalous dimensions γφ2

R
of bilinear scalars, given in [25].

We present only a subset of the data computed at order ε3. The dimension of φ,

∆φ+ = 1−
ε

2
+

m+ 1
8n

ε2 −
2m2 + 9m+ 17

8n2
ε2 −

m+ 1
32n

ε3 +
14m2 + 57m+ 101

32n2
ε3 +O

�

ε4, n−3
�

,

11In the notation of [25], ρ1,ρ2,ρ3,ρ4 correspond to φ2
X ,φ2

W ,φ2
Y ,φ2

Z , respectively. There is a typo in γρ1±
in [25, Eq. (5.93)]: the sign before the 1/n term there should be positive.
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∆φ− = 1−
ε

2
+
(m− 1)(m+ 2)

8mn

�

1−
2m2 + 7m− 22

mn

�

ε2

−
(m− 1)(m+ 2)

32mn

�

1−
14m2 + 43m− 158

mn

�

ε3 +O
�

ε4, n−3
�

, (66)

agrees with the literature values [19], whereas the results of the spinning operators are new,
as far as we are aware. These include the dimensions of the non-conserved spin-one operators

∆C ,1+ = 3− ε +
m+ 2

4n
ε2 −

m2 + 6m+ 8
2n2

ε2 −
m+ 2
16n

ε3 +
7m2 + 36m+ 44

8n2
ε3 +O

�

ε4, n−3
�

,

∆D,1+ = 3− ε +
m
4n
ε2 −

m(m+ 3)
2n2

ε2 −
m

16n
ε3 +

7m(m+ 3)
8n2

ε3 +O
�

ε4, n−3
�

,

∆C ,1− = 3− ε +
m+ 2

4n

�

1− 2(m2+4m−12)
mn

�

ε2 −
m+ 2
16n

�

1− 2(7m2+22m−80)
mn

�

ε3 +O
�

ε4, n−3
�

,

∆D,1− = 3− ε +
m
4n
ε2 −

m2 + 3m− 12
2n2

ε2 −
m

16n
ε3 +

7m2 + 21m− 80
8n2

ε3 +O
�

ε4, n−3
�

, (67)

and the central charges

CT+

CT,free
= 1−

5(m+ 1)
24n

ε2 +
5
�

2m2 + 9m+ 17
�

24n2
ε2

−
7(m+ 1)

72n
ε3 −

31m2 + 117m+ 196
72n2

ε3 +O
�

ε4, n−3
�

,

CT−

CT,free
= 1−

5(m+ 2)(m− 1)
24mn

�

1−
2m2 + 7m− 22

mn

�

ε2

−
7(m+ 2)(m− 1)

72mn

�

1+
31m2 + 86m− 356

7mn

�

ε3 +O
�

ε4, n−3
�

.

(68)

More results can be found in the ancillary data file, as described in Appendix A.

4.2 Results at large n

As mentioned in the introduction, we can give a description at large n by introducing Hubbard–
Stratonovich operators in the S and W representations. This is in agreement with the results
(64) and (65) in the ε expansion above. As a starting point for the analytic bootstrap at large
n we will therefore assume that these two representations contain scalar operators S and W ,
with dimensions and OPE coefficients given by

∆R = 2+O
�

1
n

�

, c2
φφR =

aR
n
+O

�

1
n2

�

, R= S,W . (69)

We will take these representations to consitute group III in our implementation of the recipe
of section 3.3. The next task is to determine what operators contribute at order 1/n to the
broken currents in all of the nine reprensentations in (62). This is done by expanding the
crossing matrix (63) at large n and studying the relative scaling of elements in the first column,
where 1 contributes, and the other columns. We identify that for representations in group
I = {X , Y, Z , B, C , D}, only the auxiliary fields generate order 1/n corrections, whereas for
group II = {S, W, A} also the currents in group I need to be taken into account.

Having identified the groups I, II and III, we follow the implementation of section 3.3 and
generate CFT-data at order 1/n in all representations. In particular, the scaling dimensions are
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given by

∆R,` = 2(µ− 1) + `+
2γ(1)
φ

n
+ γR,` +O

�

1
n2

�

, (70)

for γR,` given by (55) and (57) and µ= d/2. These expressions depend on three undetermined

constants, aS, aW and γ(1)
φ

. Fortunately, the stress-energy tensor and the two global symmetry

currents JµA and JµB provide three consistency equations for these unknowns, namely

∆S,2 = d , ∆A,1 = d − 1 , ∆B,1 = d − 1 . (71)

There are four solutions to these equations, which we can identify with the four fixed points
of the ε expansion,

Free: aS = 0 , aW = 0 , γ
(1)
φ
= 0 ,

O(mn): aS =
µ(µ− 1)
(2−µ)2

η
O(N)
1

m
, aW = 0 , γ

(1)
φ
=
η

O(N)
1

m
,

Chiral: aS =
µ(µ− 1)ηO(N)

1

m(2−µ)2
, aW =

µ(µ− 1)ηO(N)
1

2(2−µ)2
, γ

(1)
φ
=
(m+ 1)ηO(N)

1

2
,

Antichiral: aS = 0 , aW =
µ(µ− 1)ηO(N)

1

2(2−µ)2
, γ

(1)
φ
=
(m+ 2)(m− 1)ηO(N)

1

2m
,

(72)

where ηO(n)
1 is the anomalous dimension of φ in the O(N) model, given in (60). The values

for γ(1)
φ

are consistent with the literature results quoted in (8) and (9).
In Table 2 we summarize the twist families of the O(m)×O(n) symmetric theory at large

n in the chiral and antichiral fixed points. We give the leading twist family in each repre-
sentation, and we also display a couple of subleading families in the singlet representation.
The existence of each of these subleading families follows from the initial analytic bootstrap
considerations of [33, 34], since they are the double-twist operators in a suitable four-point
function. Importantly, these families contain more than one operator at each spin and there-
fore participate in mixing. In the cases where there is an operator at spin zero, we match it
with the scalar singlets presented in Table 1.

In Table 2 we also explain how the scaling dimension of each twist family relates to the
corresponding scalar. In similarity with the O(N) model, we assume that the expressions (70)
can be analytically continued to spin zero, giving the dimension or the shadow dimension of
the corresponding scalar. Including also ∆φ , this gives for the chiral fixed point

∆φ+ = µ− 1+
m+ 1

2

η
O(N)
1

n
+ . . .

3d
=

1
2
+

2(m+ 1)
3π2n

+ . . . ,

∆S+ = 2−
2(µ− 1)(2µ− 1)(m+ 1)

2−µ
η

O(N)
1

n
+ . . .

3d
= 2−

16(m+ 1)
3π2n

+ . . . ,

∆W+ = 2+
�

2(m+ 3)
µ− 2

+ 2µ(m+ 2) + 2
�

η
O(N)
1

n
+ . . .

3d
= 2−

4(m+ 4)
3π2n

+ . . . ,

∆X+ = 2∆φ+ +
µ(m+ 1)

2−µ
η

O(N)
1

n
+ . . .

3d
= 1+

16(m+ 1)
3π2n

+ . . . ,

∆Y+ = 2∆φ+ +
µ

2−µ
η

O(N)
1

n
+ . . .

3d
= 1+

4(m+ 4)
3π2n

+ . . . ,
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∆Z+ = 2∆φ+ −
µ

2−µ
η

O(N)
1

n
+ . . .

3d
= 1+

4(m− 2)
3π2n

+ . . . , (73)

and for the antichiral fixed point

∆φ− = µ− 1+
(m+ 2)(m− 1)

2m

η
O(N)
1

n
+ . . .

3d
=

1
2
+

2(m+ 2)(m− 1)
3π2mn

+ . . . ,

∆S− = 2∆φ− +
µ(4µ− 5)(m− 1)(m+ 2)

(2−µ)m
η

O(N)
1

n
+ . . .

3d
= 1+

16(m− 1)(m+ 2)
3π2mn

+ . . . ,

∆W− = 2+
�

(1+ 2µ)(m− 4) + m2+3m−10
µ−2 +m2µ

�2ηO(N)
1

mn
+ . . .

3d
= 2−

4
�

m2 + 4m− 8
�

3π2mn
+ . . . ,

∆X− = 2∆φ− +
µ(m− 1)(m+ 2)
(2−µ)m

η
O(N)
1

n
+ . . .

3d
= 1+

16(m− 1)(m+ 2)
3π2mn

+ . . . ,

∆Y− = 2∆φ− +
µ(m− 2)
(2−µ)m

η
O(N)
1

n
+ . . .

3d
= 1+

4
�

m2 + 4m− 8
�

3π2mn
+ . . . ,

∆Z− = 2∆φ− −
µ(m+ 2)
(2−µ)m

η
O(N)
1

n
+ . . .

3d
= 1+

4(m− 4)(m+ 2)
3π2mn

+ . . . .

(74)

The values forφ, S, W and Z agree with those quoted in section 2.2, whereas we are not aware
of any previous results for the remaining operators. We also give results for the non-conserved
spin one operators

∆C ,1+ = 2∆φ+ + 1+
η

O(N)
1

n
+ . . .

3d
= 2+

4(m+ 2)
3π2n

+ . . . ,

∆D,1+ = 2∆φ+ + 1−
η

O(N)
1

n
+ . . .

3d
= 2+

4m
3π2n

+ . . . ,

∆C ,1− = 2∆φ− + 1+
(m+ 2)ηO(N)

1

mn
+ . . .

3d
= 2+

4(m+ 2)
3π2n

+ . . . ,

∆D,1− = 2∆φ− + 1−
(m− 2)ηO(N)

1

mn
+ . . .

3d
= 2+

4m
3π2n

+ . . . . (75)

The computation of the OPE coefficients provides results for the central charges, by (17).
For the chiral fixed point we get

CT+

CT,free
= 1−

(m+ 1)c1

n
+ . . .

3d
= 1−

20(m+ 1)
9π2n

+ . . . ,

CJA+

CJA,free
= 1+

c2

n
−
(m+ 2)c3

2n
+ . . .

3d
= 1−

44+ 38m
9π2n

+ . . . ,

CJB+

CJB ,free
= 1−

(m+ 1)c2

n
+ . . .

3d
= 1−

32(m+ 1)
9π2n

+ . . . , (76)

and for the antichiral fixed point

CT−

CT,free
= 1−

(m+ 2)(m− 1)c1

mn
+ . . .

3d
= 1−

20(m+ 2)(m− 1)
9π2mn

+ . . . ,

CJA−

CJA,free
= 1+

(m+ 2)c2

mn
−
(m+ 2)c3

2n
+ . . .

3d
= 1−

2(m+ 2)(19m− 16)
9π2mn

+ . . . ,
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CJB−

CJB ,free
= 1−

(m+ 2)(m− 1)c2

mn
+ . . .

3d
= 1−

32(m+ 2)(m− 1)
9π2mn

+ . . . , (77)

where the precise form of the constants ci is given in (87) in Appendix B.

Table 2: Twist families in the large-n expansion. We give a couple of subleading twist
families in the singlet case, and the leading family in the other irreps. We denote
degenerate operators by 〈 · 〉.

Chiral Antichiral
R Gp O` τ∞ constraints Gp O` τ∞ constraints

S
III JS,` 2∆φ

§

∆0 = d −∆S

∆2 = d II JS,` 2∆φ

§

∆0 =∆S

∆2 = d
—




[φ,φ]S,1,`

�

2∆φ + 2 `¾ 2 —



∂ `φ4
S

�

4∆φ ∆0 =∆S′

—
¬

[S,S]S,0,`
[W ,W]S,0,`

¶

4 ∆0 = 〈∆S′ ,∆S′′〉 —



[φ,φ]S,1,`

�

2∆φ + 2 `¾ 2

W III JW,` 2∆φ ∆0 = d −∆W III JW,` 2∆φ ∆0 = d −∆W

X I JX ,` 2∆φ ∆0 =∆X I JZ ,` 2∆φ ∆0 =∆X

Y I JY,` 2∆φ ∆0 =∆Y I JY,` 2∆φ ∆0 =∆Y

Z I JZ ,` 2∆φ ∆0 =∆Z I JZ ,` 2∆φ ∆0 =∆Z

A II JA,` 2∆φ ∆1 = d − 1 II JA,` 2∆φ ∆1 = d − 1
B I JB,` 2∆φ ∆1 = d − 1 I JB,` 2∆φ ∆1 = d − 1
C I JC ,` 2∆φ I JC ,` 2∆φ
D I JD,` 2∆φ I JD,` 2∆φ

5 Numerical bootstrap of O(m)× O(n) CFTs

5.1 Single correlator

In the single-correlator bootstrap, for which the crossing equations are discussed in Appendix C,
we have obtained bounds on the dimensions of the leading scalar operators in the representa-
tions S, W, X , Y, Z as functions of the dimension ofφ. The most interesting results are obtained
in the W and X plots. More specifically, using large-n results we can see that the (mild) kinks
that appear in the X -bounds (see Fig. 2) are due to the chiral fixed points, while the kinks
that appear in the W bounds (see Fig. 3) are due to the antichiral fixed points. While this is
clear at large n only, we will assign the same meaning to the kinks at smaller n, but only down
to n = 6 where, as we will see below, the situation becomes more subtle. As seen in Fig. 3,
obtained with m = 2 for different values of n, there are very sharp kinks at large n that get
smoothed out as n decreases. In Fig. 2 the kinks are much milder. They certainly exist at large
n, but they are not so clear at low n—see Fig. 4—even when at the same n, e.g. n = 4, there
is a clear kink in Fig. 3.

At n = 6 we can see from Fig. 5 that kinks exist in both bounds, although the one in the
∆X bound is quite mild. While a hint of a kink in the ∆X bound of the O2,5 theory exists,
the ∆X bounds in the O2,4 and O2,3 theories are very smooth, although a change in slope can
still be seen. These considerations suggest that the chiral fixed point ceases to exist for some
n between 5 and 6. This is a very rough estimate based on qualitative features of the ∆X
bounds. A more accurate estimate cannot be made based on the presence or absence of kinks
as described here.

The persistence of the kinks in the ∆W bounds even at small n (n = 4,5 and n = 3 al-
though the kink is much milder for n= 3), combined with their absence in the ∆X bounds, is
rather puzzling. After all, intuition from the ε expansion dictates that the antichiral and chiral
fixed points, to which we have attributed the kinks in the ∆W and ∆X bounds, respectively,
annihilate and become complex fixed points at some n (in this case n+(2), whose estimated
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value in the ε expansion is 5.96(19) [27]). Since the bootstrap excludes nonunitary theories,
both kinks are expected to disappear at some n around 6, and indeed this is borne out to some
extent for the kinks in the ∆X bounds, as we discussed in the previous paragraph.

One explanation for the persistence of the∆W kinks at small n is that our numerical bounds
are insensitive to the putative nonunitarity of the antichiral fixed point for small n. This sce-
nario could be further examined by estimating the size of this nonunitarity in perturbation
theory, in a properly quantified sense that we do not discuss here, and comparing it with that
of the chiral fixed point. We do not pursue this direction here, but it is worth investigating in
the future. Another possibility is that the kinks in the ∆W bounds at small n are due to an-
other fixed point, which is not the naive continuation of the antichiral fixed point to small n.
Evidence for the existence of such a fixed point, belonging to the chiral universality class, ex-
ists in the literature; see [14, Sec. 11.5.3] and references therein. A further universality class,
typically called collinear, is supposed to exist for small n.12 These chiral and collinear fixed
points arise after resummations of the perturbative beta functions. However, this approach
has been criticized in [15], and the functional RG predicts that they do not exist [16, 17]. In
section 5.3 below we will see that, consistently with the conclusions of [43], the chiral and
collinear universality classes appear to exist for O(2)×O(3) CFTs, although we are not able to
conclusively exclude small unitarity violations.

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55
1

1.1

1.2

1.3

1.4

1.5

O2,3

O2,4

O2,5

O2,10

O2,20

∆φ

∆X

Figure 2: Upper bound on the dimension of the first scalar X operator in theφar×φbs
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories. The positions of the fixed points as predicted by the large-n
results (8), (9) for∆φ and (73), (74) for∆X for n= 5, 10,20 are also given as squares
and circles for the chiral and antichiral fixed points, respectively. (The lines between
squares and circles are added to illustrate fixed points with the same symmetry.)

12The O(2) × O(3) and O(2) × O(4) theories were also studied with the numerical bootstrap in [43], where a
discussion of the chiral and collinear fixed points of the O(2)×O(3) and O(2)×O(4) theories can also be found.
Our numerical bounds are consistent with those of [43].
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0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55
1

1.2

1.4
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1.8
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2.4

O2,3

O2,4

O2,5

O2,10

O2,20

∆φ

∆W

Figure 3: Upper bound on the dimension of the first scalar W operator in theφar×φbs
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories. The positions of the fixed points as predicted by the large-n
results (8) and (9) for n= 5, 10,20 are also given as squares and circles for the chiral
and antichiral fixed points, respectively. (The lines between squares and circles are
added to illustrate fixed points with the same symmetry.)

0.5 0.51 0.52 0.53 0.54 0.55
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1.05
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O2,20

∆φ

∆X

0.5 0.51 0.52 0.53 0.54 0.55
1

1.1

1.2

O2,10

∆φ

∆X

0.5 0.51 0.52 0.53 0.54 0.55
1

1.1

1.2

1.3

O2,5

∆φ

∆X

0.5 0.51 0.52 0.53 0.54 0.55
1

1.1

1.2

1.3

O2,4

∆φ

∆X

Figure 4: Upper bound on the dimension of the first scalar X operator in theφar×φbs
OPE as a function of the dimension of φ. Areas above the curves are excluded in the
corresponding theories.

5.2 Mixed correlators

In the mixed correlator system, to find an island around the chiral fixed point we use the
following assumptions (both for the O2,10 and the O2,20 theory):
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0.51 0.515 0.52 0.525 0.53 0.535 0.54
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∆φ

∆X

0.514 0.518 0.522 0.526
1.4

1.6

1.8

2 O2,6

∆φ

∆W

Figure 5: Upper bound on the dimension of the first scalar X and the first scalar W
operator in the φar ×φbs OPE as a function of the dimension of φ in the O2,6 theory.
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1

1.2

1.4

1.6
O2,3

∆φ

∆X

0.53 0.535 0.54 0.545 0.55

1.5

1.6

1.7

1.8 O2,3

∆φ

∆W

Figure 6: Upper bound on the dimension of the first scalar X and the first scalar W
operator in the φar ×φbs OPE as a function of the dimension of φ in the O2,3 theory.

(C-1) saturation of X bound of Fig. 2,

(C-2) existence of conserved current in the B sector, i.e. ∆JµB
= 2,

(C-3) dimension of next-to-leading vector operator in the B sector, Jµ ′B , above 3, i.e.
∆Jµ ′B
¾ 3,

(C-4) dimension of next-to-leading scalar singlet, S′, above 3, i.e. ∆S′ ¾ 3,

(C-5) dimension of next-to-leading bifundamental operator, φ′, allowed slightly above
∆φ , i.e. ∆φ′ ¾∆φ + 0.01.

For the antichiral fixed point of the O2,20 theory we make the following assumptions:

(A-O2,20-1) saturation of W bound of Fig. 3,

(A-O2,20-2) existence of conserved current in the B sector, i.e. ∆JµB
= 2,

(A-O2,20-3) dimension of next-to-leading vector operator in the B sector, Jµ ′B , above 3, i.e.
∆Jµ ′B
¾ 3,

(A-O2,20-4) dimension of next-to-leading scalar singlet, S′, above 1.5, i.e. ∆S′ ¾ 1.5.

(A-O2,20-5) dimension of next-to-leading bifundamental operator, φ′, allowed slightly
above ∆φ , i.e. ∆φ′ ¾∆φ + 0.01.

Finally, for the antichiral fixed point of the O2,10 theory we make the following assumptions:
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(A-O2,10-1) saturation of W bound of Fig. 3,

(A-O2,10-2) existence of conserved current in the B sector, i.e. ∆JµB
= 2,

(A-O2,10-3) dimension of next-to-leading vector operator in the B sector, Jµ ′B , above 3, i.e.
∆Jµ ′B
¾ 3,

(A-O2,10-4) dimension of next-to-leading scalar singlet, S′, above 1.6, i.e. ∆S′ ¾ 1.6.

(A-O2,10-5) dimension of next-to-leading bifundamental operator, φ′, above 1.6, i.e.
∆φ′ ¾ 1.6.

Let us note here that even with ∆S′ ¾ 3 we obtain islands around antichiral fixed points, so
long as we keep the gap on ∆φ′ small. This is inconsistent with the fact that the antichiral
fixed point is unstable, but with our numerical power (see Appendix C) we cannot see the
inconsistency. However, when we increase the gap on ∆φ′ sufficiently, we do see that the
antichiral island disappears with ∆S′ ¾ 3. This is presumably due to the crossing equations
that arise from the 〈φφSS〉 four-point function, which in the 12→ 34 channel are sensitive
to both φ′ and S, while in the 14→ 32 channel they are sensitive to φ′ but not S.

0.5055 0.506 0.5065 0.507 0.5075 0.508 0.5085 0.509 0.5095 0.51 0.5105
1

1.2

1.4

1.6

1.8

location of O2,20 antichiral fixed point
according to large-n results

location of O2,20 chiral fixed point
according to large-n results

∆φ

∆S

Figure 7: Allowed region (in green) for the O2,20 chiral and antichiral fixed points and
their location according to (8). The chiral island is obtained with the assumptions
(C-1)-(C-5), while the antichiral island is obtained with the assumptions (A-O2,20-1)-
(A-O2,20-5).
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0.506 0.508 0.51 0.512 0.514 0.516 0.518 0.52 0.522

1.2

1.4

1.6

1.8

location of O2,10 antichiral fixed point
according to large-n results

location of O2,10 chiral fixed point
according to large-n results

∆φ

∆S

Figure 8: Allowed region (in green) for the O2,10 chiral and antichiral fixed points and
their location according to (9). The chiral island is obtained with the assumptions
(C-1)-(C-5), while the antichiral island is obtained with the assumptions (A-O2,10-1)-
(A-O2,10-5).

As we have already mentioned, the ε expansion predicts that n+(2) = 5.96(19), meaning
that a unitary chiral fixed point may exist for n = 6. The state-of-the-art analysis of the O2,6
theory with the ε expansion was performed recently in [27]. It turns out that we can also find
an island with our nonperturbative numerical bootstrap methods, and so we can compare our
results with large-n and ε expansion results. This is done in Fig. 9.

0.51 0.514 0.518 0.522 0.526 0.53 0.534 0.538

1.4

1.5

1.6

1.7

location of O2,6 chiral fixed point
according to large-n results

location of O2,6 chiral fixed point
according to ε expansion results

∆φ

∆S

Figure 9: Allowed region (in green) for the O2,6 chiral fixed point and its location
according to (8) and the ε expansion results of [27, Table 9]. This island is obtained
with the assumptions (C-1)-(C-5) using saturation of the O2,6 X bound in Fig. 5.

5.3 Mixed correlators in the O(2)×O(3) case

The case m = 2, n = 3 is of particular interest since it is believed to appear as a symmetry in
the continuum limit of frustrated spin models at criticality. We remind that the fixed points
for m = 2, n = 3 arise after resummations of the perturbative beta functions, i.e. they are not
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found in the standard perturbative ε expansion. There are two fixed points, called chiral and
collinear, with the chiral being of relevance for the experimentally observed phase transitions
in stacked triangular antiferromagnets [14, Sec. 11.5], and the collinear potentially relevant
for the normal-to-planar superfluid transition in 3He [55]. Monte Carlo simulations support
the existence of these fixed points, but functional RG methods come to a different conclusion,
namely that these fixed points do not exist and that experiments in frustrated magnets are
actually seeing weakly first-order phase transitions [15–17].

In what follows we present results regarding putative theories that live on the W and Z
sector single correlator bounds. The W (resp. Z) sector bound has a mild kink that appears to
correspond to the chiral (resp. collinear) fixed point. This observation was first made in [43].
Here we take the next logical step and perform a mixed correlator bootstrap around these
kinks. We also compare to theoretical predictions and experimental data where applicable.
We note that the general trend of sensitivity to assumptions in the B sector persists here as
well.

Let us start by noticing that, however mild, there seems to be a kink on the W sector single
correlator plot of Fig. 6 around ∆φ = 0.539. The kink can be seen more clearly in Fig. 10. As
mentioned above, evidence for the existence of the O2,3 chiral fixed point has appeared before
in the literature, based on resummations of perturbative beta functions. Such computations
have been performed at six loops using the massive zero momentum (MZM) scheme [54] and
at five loops using the modified minimal subtraction (MS) scheme [52] (see also [51]). Monte
Carlo simulations have also shown signs of a critical theory, with the most recent analysis
performed in [56]. According to results of [53, Eq. (2.9)] and [51, Table III], the theory at the
chiral fixed point has ∆φ = 0.545(20) and ∆W = 1.79(9) in the MS scheme.13 In the MZM
scheme, [54, Table III] and [51, Table III] give ∆φ = 0.55(5) and ∆W = 1.91(5). The MS
scheme result is more consistent with the location of the kink in Fig. 10.

0.528 0.53 0.532 0.534 0.536 0.538 0.54 0.542 0.544 0.546 0.548 0.55

1.5

1.55

1.6

1.65

1.7

1.75

1.8
O2,3

∆φ

∆W

Figure 10: Upper bound on the dimension of the first scalar W operator in the
φar × φbs OPE as a function of the dimension of φ. The area above the curve is
excluded.

If we assume
13In [51, Table III], y4 = 3−∆W .
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(C-O2,3-1) saturation of W bound of Fig. 10,

(C-O2,3-2) existence of a conserved current in the B sector, i.e. ∆JµB
= 2,

(C-O2,3-3) dimension of the next-to-leading vector operator in the B sector, Jµ ′B , above
2.4, i.e. ∆Jµ ′B

¾ 2.4,

(C-O2,3-4) dimension of the next-to-leading scalar singlet, S′, above 2, i.e. ∆S′ ¾ 2.

(C-O2,3-5) dimension of next-to-leading bifundamental operator, φ′, above 1.5, i.e.
∆φ′ ¾ 1.5,

then we obtain Fig. 11. Let us note that the island in Fig. 11 remains even if we make the more
constraining assumption ∆S′ ¾ 3, which is compatible with the RG stability of the O2,3 chiral
fixed point. If instead of (C-O2,3-3) we assume that Jµ ′B can appear with dimension below 2.4,
then both the island and the peninsula are part of a bigger, continuous peninsula that includes
both.

0.537 0.539 0.541 0.543 0.545 0.547 0.549

1.35

1.4

1.45

∆φ

∆S

Figure 11: Allowed region (in green) for the O2,3 chiral fixed point, obtained with
the assumptions (C-O2,3-1)-(C-O2,3-5).

The state-of-the-art results in the literature for operator scaling dimensions of relevance
for Fig. 11 are as follows:

[54] : ∆φ = 0.55(5) , ∆S = 1.18(10) , (78)

[53] : ∆φ = 0.545(20) , ∆S = 1.41(13) , (79)

[56] : ∆φ = 0.50(4) , ∆S = 1.08(4) . (80)

Even with the large error bars in (80), we see that agreement is best with the results of [53],
mainly due to ∆S .14 In conjunction with the ∆W results mentioned earlier, it is clear that the
MS results of [53] and [51] agree best with our bootstrap results for the chiral fixed point.

Experimental results for transitions described by the O2,3 chiral fixed point can be found
in [14, Table 37]. The agreement of our results for the critical exponent ν= 1/(3−∆S) is very
good, although the same cannot be said for the critical exponent β =∆φ/(3−∆S).

14Note that the six-loop MS beta functions for O(m)×O(n) theories have recently been obtained in [27], so the
five-loop analysis of [53] can perhaps be extended to six loops.
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Refs. [53, 54, 56] indicate that their fixed points are of the focus type, which means that
they are nonunitary, while our study pertains to unitary theories. It is unclear to us how sizable
nonunitarities of the type discussed in [53, 54, 56] could have been missed by our bootstrap
results. We note that the numerical bootstrap has previously found islands for theories that
are believed to be nonunitary, namely the five-dimensional O(N) models [69] and the Ising
model in d = 4−ε [70]. In the former case, increasing the constraining power of the numerics
led to the disappearance of the allowed region. It is possible that also our island in Fig. 11 will
disappear with stronger numerics.

The O2,3 collinear fixed point corresponds to a kink in the bound of the first scalar operators
in the Z irrep; see Fig. 12. According to results of [55] and [51, Table III], the theory at the
collinear fixed point has ∆φ = 0.543(12) and ∆Z = 1.8(1) in the MS scheme.15 In the MZM
scheme, [55] and [51, Table III] give ∆φ = 0.5395(35) and ∆Z = 1.75(10). The consistency
of the MZM scheme result with the location of the kink in Fig. 12 appears to be slightly better
than that of the MS scheme result.
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1.5

1.6

1.7

1.8
O2,3

∆φ

∆Z

Figure 12: Upper bound on the dimension of the first scalar Z operator in the
φar × φbs OPE as a function of the dimension of φ. The area above the curve is
excluded.

With the assumptions

(Coll-1) saturation of Z bound of Fig. 12,

(Coll-2) existence of conserved current in the B sector, i.e. ∆JµB
= 2,

(Coll-3) dimension of next-to-leading vector operator in the B sector, Jµ ′B , above 2.5, i.e.
∆Jµ ′B
¾ 2.5,

(Coll-4) dimension of next-to-leading scalar singlet, S′, above 3, i.e. ∆S′ ¾ 3.

(Coll-5) dimension of next-to-leading bifundamental operator, φ′, slightly above ∆φ , i.e.
∆φ′ ¾∆φ + 0.01,

15In [51, Table III], y1 = 3−∆Z .
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we find a rather large island that appears to end slightly to the left of the position of the kink
in Fig. 12; see Fig. 13. If we weaken the assumption (Coll-3) to ∆Jµ ′B

¾ 2.4, then there is
no separate island and peninsula, but rather a continuous peninsula that gets narrow in the
region between the island and peninsula of Fig. 13. According to [55], in the MS scheme the
O2,3 collinear fixed point has ∆φ = 0.543(12) and ∆S = 1.41(20), while in the MZM scheme
it has ∆φ = 0.5395(35) and ∆S = 1.31(11). Here the MZM scheme result for ∆φ and the
MS scheme result for ∆S appear to agree better with our island in Fig. 13. Just like the O2,3
chiral fixed point analyzed above, it would be very interesting to study the effect of stronger
numerics in this case as well.
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Figure 13: Allowed region (in green) for the O2,3 collinear fixed point with the as-
sumptions (Coll-1)-(Coll-5).

5.4 Single correlator in the O(2)×O(2) case

In the O2,2 case, the collinear fixed point is equivalent to the O(2) fixed point [51], and so
we will only be examining the proposed chiral fixed point [51, 54]. As discussed in Ap-
pendix C, the single-correlator crossing equations of the O2,2 = O(2)2/Z2 theory are equiv-
alent to those of the MN2,2 = O(2)2 o S2 theory discussed in [39]. A strong kink was ob-
tained in the X sector of [39] (see Fig. 1 there), which corresponds to the Z sector in (93)
below. This bound is shown in Fig. 14. According to [54, Table III] and [51, Table III], in the
MZM scheme the O2,2 chiral fixed point has ∆φ = 0.54(5), ∆S = 1.25(9), ∆WX = 1.75(4),
∆Y = 0.97(7) and∆Z = 0.46(12), while, in the MS scheme, [53, Eq. (2.8)] and [51, Table III]
give∆φ = 0.545(20),∆S = 1.46(14),∆WX = 1.66(15),∆Y = 1.00(15) and∆Z = 0.63(15).16

Therefore, we conclude that the kink in Fig. 14 does not correspond to the O2,2 chiral fixed
point. In [39] it was suggested that this kink may correspond to the fully-interacting theory
of the ε expansion analyzed in [71–74].

16The notation S, WX , Y, Z is explained in Appendix C.
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Figure 14: Upper bound on the dimension of the first scalar Z operator in the
φar × φbs OPE as a function of the dimension of φ. The area above the curve is
excluded.
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Figure 15: Upper bound on the dimension of the first scalar WX operator in the
φar × φbs OPE as a function of the dimension of φ. The area above the curve is
excluded.

To continue our search for the O2,2 chiral fixed point, we obtain a bound on the dimension
of the first scalar operator in the WX representation. The bound is shown in Fig. 15. An
extremely mild change in the slope of the bound is observed at ∆φ = 0.547(2), at which
point∆WX = 1.507(10). These numbers are in relatively good agreement with the MS scheme
results mentioned in the previous paragraph. The mildness of the kink in Fig. 15, however,
indicates that we need stronger numerics in order to reach solid conclusions. We leave this for
future work.
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6 Summary and conclusion

Conformal field theories with O(m) × O(n) global symmetry in d = 3 spacetime dimensions
have generated intense interest and deep questions for many years. Standard methods like
the ε and large-n expansions have been employed for their study, and have revealed a rather
intricate structure of fixed points depending on the values of m and n (see Fig. 1). For example,
it is widely believed that for m= 2 the large n fixed points (chiral and antichiral) survive down
to n = 6 as unitary fixed points, while for some n between 5 and 6 they collide and become
nonunitary for n= 2,3, 4,5. Similar results hold for m> 2 and corresponding values of n.

In this work we applied analytic and numerical bootstrap techniques to the study of
O(m) × O(n) CFTs. Our analytic bootstrap results both corroborated and extended earlier
results in the ε and large-n expansions. Indeed, we found the large-n chiral and antichiral
fixed points purely from analytic bootstrap considerations, and verified some of their proper-
ties as established with older methods. Our new analytic results consisted of ε and large-n
expansion expressions for scaling dimensions of φ-bilinears in all representations of operators
that appear in the φ×φ OPE for spins zero and one, where φ transforms in the bifundamen-
tal representation of O(m) × O(n). These results allowed us to unequivocally identify kinks
in our numerical bootstrap bounds with the known fixed points at large n. We also obtained
analytic results for OPE coefficients related to the central charge CT and the coefficients CJ of
current-current two-point functions.

Our numerical bootstrap bounds were focused on the case m= 2. For n= 10,20 we were
able to find islands in the (∆φ ,∆S) parameter space, where ∆S is the dimension of the lead-
ing scalar singlet in the φ × φ OPE, corresponding to the chiral and antichiral fixed points
and located in the region predicted by large-n results (see Figs. 7 and 8). For the edge case
of m = 2, n = 6 we also obtained an island (see Fig. 9). In all these cases we used a mixed
correlator bootstrap. In the m = 2, n = 6 case we were able to compare our nonperturbative
bootstrap results with the state-of-the-art resummed ε expansion results of [27]. The agree-
ment is reasonably good, but our island is rather large. We need stronger numerics and more
refined bootstrap techniques in order to make our island smaller and obtain more accurate
determinations of critical exponents.

CFTs with O(2)×O(3) and O(2)×O(2) global symmetry have been argued to have vari-
ous applications to observed critical phenomena. However, when analyzed with different RG
methods, notably resummations of perturbative beta functions, Monte Carlo and functional
RG, the obtained results are not in mutual agreement. More specifically, beta function resum-
mations [51–53] and Monte Carlo computations [56] indicate the presence of fixed points
beyond the ones found with perturbative methods, while the functional RG concludes that
such fixed points do not exist [15–17]. Correspondingly, there are two conflicting suggestions,
namely that experiments are seeing critical (second-order) or weakly first-order behavior. It
is important to note here that the beta function resummation and Monte Carlo fixed points
are suggested to be nonunitary (focus type), with next-to-leading scalar singlets of complex
scaling dimensions. We attempted to address these issues in this work. Our results provided
support for the existence of these fixed points, but we saw no signs of nonunitarity.17 Overall,
we were unable to provide conclusive answers, but we believe that more dedicated bootstrap
work with stronger numerics will be able to reach definitive conclusions in the near future.

Another area of interest concerns the chiral phase transition of two-flavor massless quan-
tum chromodynamics [75] (with global symmetry SU(2) × SU(2)) which has not been con-

17Ideally, assuming there is nonunitarity, we would expect the islands to disappear at some higher, a priori
unknown, number of derivatives included in the bootstrap functional. Also, we emphasize that it is natural we
do not see the nonunitarity in the analytic bootstrap since it does not capture the new fixed points found in
resummations.
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clusively demonstrated to be first- or second-order. A conformal bootstrap study of this ques-
tion, as related to the three-dimensional O(2) × O(4) theory after assuming that the axial
U(1) symmetry is restored at the transition point so that the full global symmetry group is
U(1)×SU(2)×SU(2), has appeared in [43] (for a review see [76]). Based on the existence of
kinks in bootstrap bounds, e.g. the one in Fig. 3, it was suggested in [43] that the phase tran-
sition is second order. The O(2)×O(4) case is similar to the O(2)×O(3) and O(2)×O(2) CFTs
studied in this paper, in that the existence of the suggested fixed points has been questioned by
other methods. We believe that with stronger numerics and perhaps larger mixed-correlator
systems than those considered here it will be possible to settle this question with the conformal
bootstrap.

We conclude with the Tables 3–5, which summarize our results of critical exponents for
O(2)×O(3) and O(2)×O(2) theories, as well as corresponding results from the literature.18

Table 3: O(2)×O(3) “chiral” critical exponents.

Method α β ν γ δ η φW

This work (Figs. 10, 11) 0.082(22) 0.344(5) 0.639(7) 1.23(3) 4.573(14) 0.077(3) 0.818(16)
MS scheme [51,53] 0.11(15) 0.34(4) 0.63(5) 1.20(24) 4.5(2) 0.09(4) 0.76(12)
MZM scheme [51,54] 0.35(9) 0.30(4) 0.55(3) 1.04(18) 4.5(5) 0.1(1) 0.58(6)
Monte Carlo [56] 0.44(3) 0.26(3) 0.52(1) 1.04(9) 5.0(5) 0.00(8) –

Table 4: O(2)×O(3) “antichiral/collinear” critical exponents.

Method α β ν γ δ η φZ

This work (Figs. 12, 13) 0.05(7) 0.341(19) 0.650(23) 1.27(11) 4.72(13) 0.049(23) 0.89(4)
MS scheme [51,53] 0.11(24) 0.34(5) 0.63(8) 1.2(3) 4.52(12) 0.086(24) 0.75(16)
MZM scheme [51,54] 0.22(12) 0.319(23) 0.59(4) 1.14(16) 4.56(4) 0.079(7) 0.74(11)

Table 5: O(2)×O(2) critical exponents.

Method α β ν γ δ η

Bootstrap (Fig. 14 and [39]) 0.302(18) 0.293(3) 0.566(6) 1.112(24) 4.7952(21) 0.0353(4)
ε expansion [74] −0.14(3) 0.370(6) 0.715(10) 1.404(25) 4.801(11) 0.0343(20)

Hints for the controversial chiral O(2)×O(2) model where found in Fig. 15, but we consider
the strength of our numerics insufficient to provide estimates for critical exponents in this case.
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A Description of ancillary data file

In the ancillary data file of the arXiv submission, we give full results for a number of quantities,
presented on the form 〈quantity〉〈fx-pt〉〈expansion〉, where 〈fx-pt〉 ranges over the fixed points
ON, Chiral and Anti; and 〈expansion〉 over the expansions Eps and N. In Table 6 we list the
options for 〈quantity〉.

The expressions make use of the constants

sqRmn=
p

Rmn =
p

m2 − 10mn+ n2 − 4m− 4n+ 52 , (81)

eta1= ηO(N)
1 =

(µ− 2)Γ (2µ− 1)
Γ (µ)Γ (µ+ 1)π csc(πµ)

, (82)

implemented as sqRmnval and eta1val respectively (see (60)). The values that we present
for deltaScalars〈fx-pt〉Eps contain results from the literature at order ε2, extracted from
[25].

Data for ope〈 f x-pt〉Eps include long expressions that we do not include in the ancillary
data file but can be made available upon request.

B Explicit formulas used in the main text

Here we give a few explicit formulas used in the main text. In (42) we have

aGFF
0,` =

2Γ (`+ 1)2

Γ (2`+ 1)

�

1+ (S1(2`)− 2S1(`))
�

ε − 2γ(2)
φ
ε2
�

+
ε2

4

�

8S1(`)(S1(`)− S1(2`)) + 2S1(2`)
2 − 3S2(`) + 2S2(2`)

�

�

, (83)
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Table 6: Quantities given in the ancillary data file.

Expression Quantity Order Depends on
deltaPhi〈fx-pt〉Eps ∆φ ε3 m, n,ε,sqRmn
deltaScalars〈fx-pt〉Eps {∆φ2

R
}R=1,...,5 ε2 m, n,ε,sqRmn

deltaSpinning〈fx-pt〉Eps {∆R,`}R=1,...,9 ε3 `, m, n,ε,sqRmn
CT〈fx-pt〉Eps CT/CT,free ε3 m, n,ε,sqRmn
CJA〈fx-pt〉Eps CJA

/CJA,free ε3 m, n,ε,sqRmn
CJB〈fx-pt〉Eps CJB

/CJB ,free ε3 m, n,ε,sqRmn
deltaPhi〈fx-pt〉N ∆φ 1/n m, n,µ,eta1
deltaScalars〈fx-pt〉N {∆R}R=1,...,5 1/n m, n,µ,eta1
deltaSpinning〈fx-pt〉N {∆R,`}R=1,...,9 1/n `, m, n,µ,eta1
CT〈fx-pt〉N CT/CT,free 1/n m, n,µ
CJA〈fx-pt〉N CJA

/CJA,free 1/n m, n,µ
CJB〈fx-pt〉N CJB

/CJB ,free 1/n m, n,µ
ope〈fx-pt〉N {aR,`}R=1,...,9 1/n `, m, n,µ,eta1

which is an expansion of the general formula for the OPE coefficients of generalized free fields
[77],

aGFF
n,` |∆φ =

2(∆φ + 1−µ)2n(∆φ)
2
n+`

`! n! (`+µ)n(2∆φ + n+ 1− 2µ)n(2∆φ + `+ n−µ)n(2∆φ + 2n+ `− 1)`
, (84)

where (a)n =
Γ (a+n)
Γ (a) is the Pochhammer symbol.

In Inversion 4, E± is given by

E± = ακ
2 2h̄− 1

4

�2π csc(πµ)
�

(µ− 2)(S1[µ− 1](h̄) +π cot(πµ))− 1
�

± 2
�

3−µ
µ−2 − S1(µ− 2)

�

J2(µ− 2)2

±
µ(µ− 1)B(µ, h̄) + 2(S2(µ− 2)− ζ2) +

2(µ−3)
(µ−2)2

(J2 − (µ− 1)(µ− 2))(µ− 2)
−

2π csc(πµ)
J4(µ− 2)

�

, (85)

where

B(µ, h̄) =
4F3

�

1,1, 2,µ+ 1

3, 3− h̄, h̄+ 2

�

�

�

�

1

�

J2(J2 − 2)
−

2πΓ (h̄)Γ (µ+ h̄− 1)
J2Γ (µ+ 1) sin(πh̄)Γ (2h̄)3F2

�

h̄− 1, h̄, h̄+µ− 1

2h̄, h̄+ 1

�

�

�

�

1

�

,

(86)
and in expressions (76) and (77) we have

c1 =

�

4+ 2µ−µ2

2µ(2−µ)
+π cot(πµ) + S1(2µ− 2)

�

η
O(N)
1

µ+ 1
,

c2 =
2µ− 1
µ(µ− 1)

η
O(N)
1 ,

c3 =

�

µ3 − 6µ2 + 11µ− 4
µ(µ− 1)(2−µ)

+π cot(πµ) + S1(2µ− 3)

�

η
O(N)
1 . (87)

C Crossing equations in O(m)× O(n) theories

For the single-correlator numerical bootstrap, i.e. that of the four-point function 〈φarφbsφc tφdu〉,
we can easily work out the crossing equations by noticing that, when thinking ofφ as a matrix,
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O(m) acts on the row index and O(n) on the column index. Consequently, the projectors that
allow for the decomposition of the four-point function into invariant subspaces can be formed
as products of the well-known O(N) projectors,

P̂S
N ; i jkl =

1
N δi jδkl , P̂T

N ; i jkl =
1
2(δikδ jl +δilδ jk −

2
N δi jδkl) , P̂A

N ; i jkl =
1
2(δikδ jl −δilδ jk) ,

(88)
where the subscript N is introduced to capture the relation δi jδ

i j = N . The four-point function
〈φarφbsφc tφdu〉 can be decomposed as

〈φar(x1)φbs(x2)φc t(x3)φdu(x4)〉=
1

(x2
12 x2

34)
∆φ

∑

R

∑

OR

c2
OR

PR
ar bsctdu G∆R,`R

(u, v) , (89)

where the sum over R runs over the representations S, W, X , Y, Z , A, B, C , D, x i j = x i − x j , c2
OR

are squared OPE coefficients and G∆R,`R
(u, v) are conformal blocks19 that are functions of the

conformally-invariant cross-ratios defined in (12). The projectors in (89) are

PS
ar bsctdu = P̂S

m; abcd P̂S
n; rstu , PW

ar bsctdu = P̂T
m; abcd P̂S

n; rstu , PX
ar bsctdu = P̂S

m; abcd P̂T
n; rstu ,

PY
ar bsctdu = P̂T

m; abcd P̂T
n; rstu , PZ

ar bsctdu = P̂A
m; abcd P̂A

n; rstu , PA
ar bsctdu = P̂A

m; abcd P̂S
n; rstu ,

PB
ar bsctdu = P̂S

m; abcd P̂A
n; rstu , PC

ar bsctdu = P̂A
m; abcd P̂T

n; rstu , PD
ar bsctdu = P̂T

m; abcd P̂A
n; rstu . (90)

For the crossing equation we define

F±∆,`(u, v) = v∆φ g∆,`(u, v)± u∆φ g∆,`(v, u) , (91)

and we find20
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19In our numerical bootstrap considerations we define conformal blocks using the conventions of [70].
20In (92) we suppress the labeling of the F∆,`’s and c2

O ’s with the appropriate index I . The appropriate labeling,
however, is obvious from the overall sum in each term.
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. (92)

The signs that appear as superscripts in the various irrep symbols indicate the spins of the
operators we sum over in the corresponding term: even when positive and odd when negative.

When m= n there is a reduction in the number of crossing equations. In this case, instead
of separate projectors PW

ar bsctdu and PX
ar bsctdu, we only have the projector

PWX
ar bsctdu = PW

ar bsctdu + PX
ar bsctdu, and similarly PAB

ar bsctdu = PA
ar bsctdu + PB

ar bsctdu and
PCD

ar bsctdu = PC
ar bsctdu + PD

ar bsctdu, always with m = n. The crossing equation in the m = n
case is
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(93)

When n = 2, (93) is equivalent to the crossing equation derived for the global symmetry
group O(2)2 o S2 in [39, Eq. (2.15)]. The representations S, WX , Y, Z , AB, CD in (93) cor-
respond to the representations S, Z , Y, X , A, B, respectively, in [39, Eq. (2.15)]. Theories with
O(2)2/Z2 and O(2)2oS2 global symmetry are equivalent at the Lagrangian level in d = 4−ε di-
mensions [14,25]. The groups O(2)2/Z2 and O(2)2oS2 each have a fully-symmetric four-index
invariant tensor, as well as an additional four-index invariant tensor whose symmetry prop-
erties are such that it does not generate quartic invariants in the corresponding Lagrangians.
For the O(2)2/Z2 case the relevant invariant tensor was called w2 in [25, Eq. (5.81)], and for
O(2)2oS2 it was called w in [25, Eq. (5.96)]. The relevance of the O(2)2/Z2 theory for exper-
iments in stacked triangular antiferromagnets, helimagnets and structural phase transitions
has been discussed extensively in [39] and references therein.

In this paper we also consider a mixed correlator bootstrap involving the four-point func-
tions 〈φφφφ〉, 〈φφSS〉 and 〈SSSS〉, where S is the first scalar singlet in the φ × φ OPE.
The crossing equations for this system are straightforward to derive due to the fact that S
transforms in the singlet representation, and so in the OPE φ × S we find only operators that
transform in φ’s representation under the global symmetry.

38

https://scipost.org
https://scipost.org/SciPostPhys.9.3.035


SciPost Phys. 9, 035 (2020)

As usual, our numerical treatment involves two steps, namely generation of an xml file that
encodes the problem and subsequently its solution with a numerical algorithm. For the first
step we use PyCFTBoot [70], and for the second SDPB [78]. For the single correlator boot-
strap we use the numerical parameters m_max = 8,n_max = 11,k_max = 42 in PyCFTBoot,
and we include spins up to l_max = 36. For the mixed correlator bootstrap we use the nu-
merical parameters m_max = 7,n_max = 9,k_max = 40 in PyCFTBoot, and we include spins
up to l_max = 30. The binary precision for the xml files in both cases is 660 digits. SDPB
is run with the options –precision=860, –findPrimalFeasible, –findDualFeasible,
–primalErrorThreshold=1e-30 and finally –dualErrorThreshold=1e-15. Default val-
ues are used for other parameters of the solver.

D Mellin bootstrap for any global symmetry

In this appendix we will revisit some equations from the analytic boostrap in Mellin space and
apply them to the ε expansion for φ4 theories with arbitrary global symmetry. The framework
is described in detail in [79] and was generalized to global symmetry in [38], focusing on
O(N) and hypercubic symmetry. We will show how the Mellin space bootstrap reproduces the
system of equations (38), which we used to find the perturbative fixed points for a given global
symmetry. In addition, we will show that

c2
φφφ2

R
= aR,0(1− gRε) +O(ε2) , (94)

i.e. that αR = −gR in (45), a result needed for our computations in section 3.2 at order ε3.
The Mellin space bootstrap considers manifestly crossing symmetric expressions in the

Mellin space variables s, t, equivalent to sums over Witten diagrams for exchanges of operators
parametrized by ∆,`. Consistency with the OPE implies equations derived from the cancel-
lation of spurious poles. For poles generated by the Mellin variable s one gets the equation

∑

∆,`

�

c i jkl(s)
∆,` M (s)

∆,`(s, t) + c i jkl(t)
∆,` M (t)

∆,`(s, t) + c i jkl(u)
∆,` M (u)

∆,`(s, t)
�

�

�

�

s=∆φ
= 0 , (95)

valid for all t, where we have generalized the notation of [79] by adding global symmetry
indices. From (95), one derives the constraint equations, by projecting to a given spin ` in the
s-channel of the R representation, using the fact that the M∆,`(s, t) can be expressed in terms
of continuous Hahn polynomials. The first term becomes simply

∑

∆ cR
∆,`, but for the other

two terms, operators of any spin `′ contribute. We arrive at constraint equations of the form
∑

∆

cR
∆,`q

R(2,s)
∆,` + 2

∑

eR

MReR

∑

∆′,`′
ceR∆′,`′ q

eR(2,t)
∆′,`|`′ = 0 , (96)

∑

∆

cR
∆,`q

R(1,s)
∆,` + 2MRS q(1,t)

1 + 2
∑

eR

MReR

∑

∆′,`′
ceR∆′,`′ q

eR(1,t)
∆′,`|`′ = 0 , (97)

where, again, the exact form of the involved quantities can be found in [79]. We have col-
lected the t and u channel contributions under the label t, and the appearance of the ma-
trix MReR follows from using the projectors of (11). Equations (96) and (97) are generaliza-
tions of equations (2.39)–(2.44) of [38]. We will evaluate them for ` = 0, assuming that
∆φ2

R
= 2−ε+ gRε+O(ε2) and c2

φφφ2
R
= aR,0(1+αRε)+O(ε2), and expanding to order ε. Only

`′ = 0 contributes to the sum, and following [79] we substitute

cR
∆,0qR(2,s)

∆,0 = −aR,0 gR(gR − 1)
ε

2
+O(ε2) , (98)
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cR
∆,0qR(1,s)

∆,0 = aR,0 (1+ (αR + gR − 1− γE)ε) +O(ε2) , (99)

ceR∆′,0′q
eR(2,t)
∆′,0|0′ = −a

eR,0 g2
eR

ε

2
+O(ε2) , (100)

ceR∆′,0′q
eR(1,t)
∆′,0|0′ = 0+O(ε2) , (101)

q(1,t)
1 = −1+ (1+ γE)ε +O(ε2) , (102)

where γE is the Euler–Mascheroni constant.
With these substitutions we can solve the constraint equations. From (97) at order ε0 we

get aR,0 = 2MRS , in agreement with (31) above. Feeding this into (96) we get

−MRS gR(gR − 1)ε − 2
∑

eR

MReRM
eRS g2

eR
ε = 0+O(ε2) , (103)

which exactly agrees with (38). Finally, by looking at (97) at order ε we get αR + gR = 0,
proving (94).

In [38], the CFT-data was computed to order ε3 for O(N) and hypercubic symmetry, and
we believe that this will generalize to arbitrary global symmetry. From such implementation,
one can derive the order ε3 correction to the OPE coefficient c2

φφφ2
R

(taking γ(3)
φ2

R
as input), an

observable that is inaccessible from large spin perturbation theory in its present formulation.
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