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Abstract

Tensor networks provide descriptions of strongly correlated quantum systems based
on an underlying entanglement structure given by a graph of entangled states along
the edges that identify the indices of the local tensors to be contracted. Considering
a more general setting, where entangled states on edges are replaced by multipartite
entangled states on faces, allows us to employ the geometric properties of multipartite
entanglement in order to obtain representations in terms of superpositions of tensor
network states with smaller effective dimension, leading to computational savings.
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1 Introduction

Taming the exponential growth of complexity with increasing system size presents one of the
major problems in the theory of quantum many-body systems. Tailor-made Ansatz-classes such
as tensor network states have allowed for tremendous progress over the last two decades both
in terms of numerical [1–4] as well as analytical work [5,6]. This includes results on ground
state properties [7–9], the classification of quantum phases [10,11], disordered systems [12–
16], the behaviour of open quantum many-body systems [17,18], critical systems [19], as well
as related to the AdS/CFT-correspondence [20].

At the heart of such tensor network approaches is the idea to obtain a class of physical
states of interest from an underlying resource state by the application of local linear operations,
which can be seen as applying stochastic local operations and classical communication [21]. In
the case of matrix product states (MPS) and projected entangled pair states (PEPS) these states
are given by networks of maximally entangled states. For certain applications, other tensor
network structures have been introduced such as tree tensor networks [22,23] and the multi-
scale renormalization ansatz (MERA) [24,25], the latter capturing ground state properties of
critical systems.

Another route to generalizing MPS and PEPS, which has been recently explored, allows
for more general resource states beyond EPR-pairs [26–28]. These are based on multi-partite
quantum states shared among several lattice sites such as GHZ-states [27]. In this work, we
further generalize this approach by extending both the underlying resource state or entan-
glement structure as well as the class of allowed operations. More precisely, we allow for
one-parameter families of approximate representations, which reproduce the state of interest
to an arbitrary precision.

We show how these approximate representations can be turned into exact representations
in terms of a linear superposition of a moderate number of tensor network states. This ap-
proach provides more efficient tensor network representations for certain classes of states,
and gives rise to an efficient algorithm to reconstruct expectation values faithfully. In addition,
we obtain results that allow to simulate or re-express tensor network states based on multi-
partite resource states in terms of ordinary PEPS, thereby enabling a numerical treatment of
these states by the highly optimized methods that exist for PEPS. As a concrete example, we
show that that semi-injective PEPS on the two-dimensional square lattice based on GHZ states
as introduced in [27] with bond dimension D can be represented as a normal PEPS of bond
dimension 2D.

As an example of the application of our results, we consider the Resonating Valence Bond
(RVB) state, which has originally been proposed as the ground state of spin liquids [29] and
is also of importance in the theory of high-temperature superconductivity [30]. The RVB state
has also been studied extensively in the context of PEPS [31–33]. A first tensor network rep-
resentation of this state as a PEPS with bond dimension equal to 3 was introduced in [31].
We present two new representations of the state: a PEPS with non-uniform bond dimensions

2

https://scipost.org
https://scipost.org/SciPostPhys.9.3.042


SciPost Phys. 9, 042 (2020)

on the kagome lattice, with bonds of dimension (2, 2,3) depending on the orientation of the
bond, which we show is optimal; and a representation in terms of a superposition of a linear
(in the system size) number of PEPS with bond dimension equal to 2.

The paper is organized as follows. In Section 2, we revisit the definition of MPS and
connect it to notions in algebraic complexity theory. In particular, we introduce degenerations
as a way of obtaining approximate state representations with smaller bond dimension. This
leads to the concept of border bond dimension and we give a first example in terms of the W-
state where this approximate representation leads to a provably more efficient representation.
These ideas are then generalized in Section 3 to PEPS and other entanglement structures
of multi-partite states, seen as representations of graphs and hypergraphs. In Section 4, we
consider the question how to transform a given entanglement structure into another one based
on degenerations and provide an efficient algorithm to compute exact expectation values even
in this approximate setting. At the same time, this result lets us interpret states obtained
from degenerations as arising from superpositions of tensor network states with the number
of superimposed states growing linearly with the system size.

The main building block for this general result turns out to be an approximate conver-
sion between the plaquette states of the two entanglement structures involved. Therefore, we
present in Section 5 specific examples of such plaquette conversions between important ten-
sor network classes such as PEPS, generalized injective PEPS and the RVB state on the kagome
lattice, proving lower and upper bounds on the required bond dimensions. In Appendix A
we include an analysis of the computational cost of computing expectation values of tensor
network states on the square and kagome lattice using these more efficient approximate rep-
resentations, focusing in particular on the RVB state.

2 Matrix product states & Algebraic complexity theory

As a starting point for more general tensor networks, we discuss in this section the concept
of MPS representations from the point of view of algebraic complexity theory. In particular,
we introduce the concept of degenerations, which correspond to a weaker notion of MPS
representations that allows for a controlled approximation error. We then show that this notion
leads to a more efficient translation-invariant MPS representation of the W-state on a ring.

Let us first recall the definition of an MPS. To this end, we consider a state vector T ∈
�

Cd
�⊗L

of L spins of local dimension d. Expanding T with respect to a product basis {|i1, . . . , il〉} we
obtain

T =
d
∑

i1,...,iL=1

Ti1,...,iL
|i1, . . . , il〉 , (1)

with Ti1,...,iL
denoting the basis coefficients. An MPS representation of T can now be seen as a

particular way of decomposing the order L coefficient tensor Ti1,...,iL
according to

Ti1,...,iL
= tr

�

M [1]i1
· · ·M [L]iL

�

, (2)

with M [ j]i j
being a D × D-matrix of sufficiently large dimension D, the so-called bond di-

mension. For each spin j = 1, . . . , L, we can then define an order 3 tensor according to
M [ j] =

∑d
j=1

∑D
α,β=1(M

[ j]
i )α,β |α〉〈β | ⊗ |i〉 and by setting A j =

∑d
j=1

∑D
α,β=1(M

[ j]
i ) |i〉〈αβ |, we

can in turn express the state vector T as

T =

�

L
⊗

j=1

A j

��

L
⊗

k=1

ΩD
k,k+1

�

, ΩD =
D
∑

l=1

|l, l〉 , (3)
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Figure 1: Matrix product states as a network of maximally entangled states ΩD

shared between physical sites of the 1D lattice to which local operations A j are ap-
plied on combined virtual space on each site.

which is an MPS representation with periodic boundary conditions and bond dimension D of
the state T . Note that the two tensor products in (3) are shifted with respect to each other by
half a physical lattice site such that Ωk,k+1 corresponds to a maximally entangled state shared
between the lattice sites k and k+ 1, whereas A j acts on the combined virtual space CD ⊗CD

at lattice site j (see also Figure 1). The important observation about (3) is the fact that we
are applying these linear maps A j locally at each lattice site to an underlying resource state,
which in the case of an MPS is given by maximally entangled pair states ΩD shared between
neighbouring lattice sites if we think of the L spins positioned on a one-dimensional ring.

The question of whether a given vector ψ living in a tensor product space
⊗L

j=1C
d j can

be transformed into a state φ ∈
⊗L

j=1C
d ′j via local linear maps A j : Cd j 7→ Cd ′j is known in the

context of algebraic complexity theory as restriction.

Definition 1 (Restriction). Given ψ ∈
⊗m

j=1C
d j and φ ∈

⊗m
i= jC

d ′j we say that ψ restricts to

φ, denoted as ψ≥ φ if there exist linear maps {A j : Cd j 7→ Cd ′j} such that

�

m
⊗

j=1

A j

�

ψ= φ . (4)

Note that the domain of the local maps A j is implicitly specified via the chosen tensor
decomposition

⊗m
j=1C

d j of the underlying Hilbert space, i.e. each A j acts on the corresponding
tensor factor in this decomposition.

An important generalization of the concept of restriction is that of degeneration. Here,
instead of an exact conversion according to (4), we allow for approximate conversions between
a state ψ to a state φ by local operations.

Definition 2 (Degeneration). Let ψ ∈
⊗m

i=1C
di and φ ∈

⊗m
i=1C

d ′i be pure states. We say
that ψ degenerates to φ with error degree e, denoted as ψDe φ, if there exist linear maps
Ai(ε) : Cdi 7→ Cd ′i , depending polynomially on ε, such that

(A1(ε)⊗ · · · ⊗ Am(ε))ψ= ε
dφ +

e
∑

l=1

εd+l
eφl , (5)

for some tensors eφl and some integer d. We simply write ψD φ if ψDe φ for some error
degree e.

Remark 3. It is known (see e. g. [34]) that the definition of degeneration as given in (5) is
equivalent to the following statement: ψDφ if there exists a sequence

�

(A j(n))mj=1

�

n
of linear

maps Ai(n) : Cdi 7→ Cd ′i such that

lim
n→∞

(A1(n)⊗ · · · ⊗ Am(n))ψ= φ .
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Remark 4. The notion of degeneration is strictly weaker than that of restriction, in that given
two vectors ψ ∈

⊗m
i=1C

di , φ ∈
⊗m

i=1C
d ′i , ψ can degenerate to φ even if we cannot find a

restriction, i. e.ψDφ, butψ 6≥ φ. A well known example of this fact is the degeneration from
the GHZ-state on three qubits to the W-state [21,35,36] (see also the W-state example at the
end of this section)

Let us denote by GHZk(m) the k-level Greenberger–Horne–Zeilinger (GHZ) state on m
parties:

GHZk(m) =
k
∑

i=1

|i〉 ⊗ · · · ⊗ |i〉
︸ ︷︷ ︸

m times

. (6)

We note that GHZk agrees with the unit tensor in algebraic complexity theory, usually denoted
as 〈k〉. In the cases when m is small, as in the case m= 3 which we will study extensively, we
will use the following graphical notation to represent the GHZ state:

GHZk(3) =
k
∑

i=1

|i〉 |i〉 |i〉= k .

When the number of parties is clear from the context, we will simply write GHZk for simplicity.
Seen as the unit tensor, the GHZ state plays a special role in algebraic complexity theory,

which leads us to define the following quantities.

Definition 5 (Rank and border rank). For φ ∈
⊗m

i=1C
di we define the rank and border rank

of φ as

R(φ) =min{k ∈N; GHZk(m)≥ φ}, (7)

R(φ) =min{k ∈N; GHZk(m)Dφ}, (8)

respectively.

Remark 6. Both the rank and the border rank depend on the tensor product structure of the
space where φ lives: if we regroup the tensor product differently, the rank might change. It
is easy to see that if we group factors together, i. e. we see φ not as an m-partite state but as
an m′-partite state, with m′ < m, then both the rank and the border rank will not increase.
This is due to the fact that after regrouping the state GHZk(m) becomes the state GHZk

�

m′
�

,
so if a restriction/degeneration to φ was possible before grouping it will still be possible after
grouping.

Moreover, if m = 2, then both rank and border rank of φ coincide with the Schmidt rank
across the bipartition. Therefore, we can see that the maximal Schmidt rank across any possi-
ble bipartition,

Srmax(φ) = max
K⊂{1,...,m}

rank trK |φ〉〈φ| , (9)

is a lower bound to R(φ).

The question whether a given quantum stateφ can be represented as an MPS with periodic
boundary conditions of bond dimension D is equivalent to the question, whether
⊗L

k=1Ω
D
k,k+1 ≥ φ, where ΩD

k,k+1 again corresponds to a maximally entangled state with D lev-

els shared between the physical lattice sites k and k+1 (see also Fig. 1). The state
⊗L

k=1Ω
D
k,k+1

is known in the context of algebraic complexity theory as the iterated matrix multiplication
tensor, which is indeed the L-tensor given by maximally entangled states of dimensions D1,
D2, . . . , DL arranged in a cycle. We will denote this tensor as MaMuD1,...,DL

(for Matrix Multi-
plication):

MaMuD1,...,DL
=

D1,...,DL
∑

i1,...,iL=1

|iL i1〉 ⊗ |i1i2〉 ⊗ · · · ⊗ |iL−1iL〉 . (10)
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This tensor is often denoted as 〈D1, . . . , DL〉 in algebraic complexity. We write MaMuD(L) if
D = D1 = · · · = DL , a case typically denoted as IMML

D in the literature. As in the case of
the GHZ state, we will write MaMuD without the parameter L when this does not cause any
ambiguity.

In the cases where L is fixed and small, as for example when L = 3, we will use a similar
graphical notation as for the GHZ-state:

MaMuD1,D2,D3
=

D1,D2,D3
∑

i1,i2,i3=1

|i1, i2〉 |i2, i3〉 |i3, i1〉= D1

D2

D3

.

As mentioned before, MaMuD(L) restricting to an L-tensor φ is equivalent to φ admitting
an MPS representation of bond dimension D with periodic boundary conditions. More gener-
ally, since PEPS and other tensor network states are defined in terms of networks of maximally
entangled states, we will be interested in conversions between MaMuD(L) and other states.
This leads us to define, in analogy to the rank and border rank the following quantities.

Definition 7 (Bond and border bond dimension). Forφ ∈
⊗m

i=1C
di we define the (MPS) bond

dimension and border bond dimension of φ as

bond(φ) =min{k ∈N; MaMuk(m)≥ φ}, (11)

bond(φ) =min{k ∈N; MaMuk(m)Dφ}, (12)

respectively.

Remark 8. Note that if we split the vertices {1, . . . , m} into {1, . . . , r} and {r + 1, . . . , m} for
some r = 1, . . . , m, and we see MaMuk(m) as a bipartite quantum state across this cut, the
resulting state is equivalent to MaMuk(2) = GHZk2(2) (since the MaMu tensor corresponds to
periodic boundary conditions). Similarly to (9), we can consider the maximal Schmidt rank
across any cut instead of any bipartition (i. e. we only consider bipartitions where the two parts
are contiguous in the spin chain):

Srcut(φ) = max
k∈{1...m}

rank tr1,...,k |φ〉〈φ| . (13)

Then by the previous argument, we see that

Srcut(φ)
1
2 ≤ bond(φ)≤ bond(φ).

To conclude this section, we present an example where degenerations offer a more efficient
state representation, i. e. an example where we have a separation between bond and border
bond dimension if we require a translation invariant representation in both cases. To this end,
consider the W -state on L qubits defined as

W (L) =
1
∑

i1,...,iL=0
i1+···+iL=1

|i1, . . . , iL〉 . (14)

In the following, we give a translation-invariant representation of W (L) with border bond di-
mension 2 independent of the system size L. This representation follows immediately from
the well-known fact that the W-state (viewed as a homogenous polynomial x L−1 y) has border-
Waring rank equal to two. For completeness we will give the argument below. In contrast to
this border bond dimension 2 representation, the results from [37] on the quantum Wielandt
inequality imply that the bond dimension of a translation-invariant restriction has to grow as

6
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exp
�1

3ω(3L)
�

, with ω(x) the product logarithm or Lambert function and it has been conjec-
tured that the growth should be of the order L1/3 [6]. We note however that without the
restriction to the translation invariant setting one can also find a bond dimension 2 represen-
tation of the W-state.

In order to find a representation of the W-state W (L) on L parties with border bond di-
mension 2, note that

ψL(ε) =

�

1 0
0 ε

�⊗L

|0〉⊗L = (|0〉+ ε |1〉)⊗L = |0〉⊗L + εW (L) +O(ε2) (15)

as a product state has bond dimension 1. Accordingly, the state fW (ε, L) = ψL(ε)− |0〉
⊗L is a

degeneration from MaMuL(2). The corresponding MPS-matrices of this translation-invariant
border bond dimension 2 representation can be chosen as

M0 =

�

1 0
0 (−1)1/L

�

and M1 =

�

ε 0
0 0

�

, (16)

because tr
�

M L
0

�

= 0 and tr
�

M n
0 M m

1

�

= εm.

3 From PEPS to entanglement structures induced by hypergraphs

Going beyond one spatial dimension, the procedure described for MPS can be generalized
to higher dimensional lattices which leads to the notion of projected entangled pair states
(PEPS) [2]. Again maximally entangled states are shared with neighbouring lattice sites, and
the local operations preparing the state of interest from this underlying resource state are
allowed to operate on the combined virtual space that includes all these subsystems. This
motivates the following definition of tensor networks and entanglement structures for general
graphs.

Definition 9 (Entanglement Structure (Graph)). Let G= (V, E) be a graph with vertex set V ,
edge set E, and let w be an integer-valued weight function on the edge set w : E → N. For
each e ∈ E, let Ωe ∈ Cw(e) ⊗Cw(e) be the maximally entangled state of Schmidt rank w(e). An
entanglement structure or contraction scheme w.r.t. to G is then given by

Ψ(G) =
⊗

e∈E
Ωe ∈

⊗

v∈V
CDv , (17)

with the local virtual dimension at vertex v ∈ V given by Dv =
∏

e:v∈e w(e). We call the bond
dimension of Ψ the quantity maxv∈V { deg(v)

p

Dv}.
For a fixed integer D we will denote by ΨD(G) the entanglement structure obtained by

setting a constant weight w(e) = D on the graph (which will then have bond dimension D).
We will also say that a state φ ∈

⊗

v∈V C
dv is representable by G with bond dimension D iff

ΨD(G) ≥ φ, where the locality structure of the restriction maps A j is given by vertex-set V of
G according to the tensor decomposition

⊗

v∈V C
Dv .

Remark 10. We remark that the term bond dimension is used in two different contexts. In
Definition 9 it refers to the dimensionality of the maximally entangled states that form the
graph entanglement structure, whereas in Definition 7 it characterizes for a given state vector
the minimal bond dimension necessary to represent the state as an MPS. Note also that the
notion of bond dimension and border bond dimension given in Definition 7 can be naturally
extended to the case of entanglement structures defined on a general graph, i. e. as

bondG(φ) =min{D |ΨD(G)≥ψ},

7
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(a)

D1

D2

D3

D1

D3

D2 D4

(b)

k

k

(c) (d) (e) (f)

Figure 2: Examples of entanglement structures: (a) Plaquette tensors given by max-
imally entangled states shared cyclically between three and four sites, where the
indices Di denote the number of levels of the entangled states; (b) same as in (a) but
with a GHZ-state of k levels shared between the sites; (c-d) entanglement structures
on the square and kagome lattice, the plaquette shown in red indicates how to obtain
those from the plaquette states from (a), neighbouring entangled states on the same
edge can be reinterpreted as a single maximally entangled state with the number of
levels squared; (e-f) same lattices as in (c-d) but with a generalized PEPS based on
3- and 4-party GHZ-states.

and similarly for bondG. Since the tensor MaMuk(m) can also be written as Ψk(Cm), where Cm
is the cycle graph on m vertices, Definition 7 of bond dimension and border bond dimension
coincide with bondCm

and bondCm

Accordingly, MPS and PEPS fit naturally in this setting with the graph represented given
by the path graph LL in the case of open boundary MPS, by the cycle graph CL in the case of
periodic boundary MPS, and by a lattice graph in the case of PEPS, respectively (see Figure 2).
However, also more general tensor networks that allow for example for maximally entangled
states between next-to-nearest neighbours can be captured within this framework.

Definition 9 identifies the notion of representability again with the existence of a restriction
according to Definition 1, where the linear maps {Ai} correspond to the local tensors defining
the tensor network state. We remark that our notion of bond dimension is chosen in such a
way that it captures how the number of parameters necessary to specify such a tensor network
state scales with the system size. More precisely, given the bond dimension D, the number of
parameters scales as O(|V |Ddeg(G)dmax), where dmax is the maximal physical dimension given
by maxi∈V (di) and deg(G) is the maximal degree of the vertices of G. This definition is general
enough to capture savings in the bond dimension due to non-uniform edge dimensions with
respect to the different edges in the graph, but at the same time reduces to the usual scaling
of O(|V |D2dmax) or O(|V |D4dmax) in the case of MPS or PEPS with uniform bond dimension,
respectively.

We will now generalize the concept of contraction schemes to representations of hyper-
graphs, where the underlying entanglement structure is given by multipartite entangled states
shared among all vertices that are connected by a hyperedge.

Definition 11 (Entanglement Structure (Hypergraph)). Let G= (V, E) be a hypergraph, with
vertex-set V and hyperedge set E. For each e ∈ E, let Ωe ∈

⊗

v∈eC
Dv,e be a pure state. An

entanglement structure or contraction scheme w.r.t. to G is then given by

Ψ(G) =
⊗

e∈E
Ωe ∈

⊗

v∈V
CDv ,

with the local virtual dimension at vertex v ∈ V given by Dv =
∏

e:v∈e Dv,e and the bond
dimension of Ψ(G) defined as D =maxv∈V {

deg(v)pD}.

Note that, contrary to the graph case, the hypergraph entanglement structure is not simply
defined by weights on the hyperedges but also by the choice of multi-partite entangled states
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Ωe (since there exist non-equivalent multi-partite entangled states, we cannot simply specify
the edge dimension as in the case of graphs). As an example, note that the GHZk(m) can
be written as an entanglement structure on the hypergraph Hm with m vertices and a single
hyperedge containing all vertices:

V (Hm) = {0, . . . , m− 1}, E(Hm) = {V},

by choosing ΩV = GHZk(m).
In analogy to the graph case, we can still consider a hypergraph entanglement structure

Ψ(G) as a contraction scheme, with a state φ being representable by Ψ(G) iff we can find
local maps {Av : CDv 7→ dv} satisfying (4) (i. e. iff Ψ(G) ≥ φ). Note that as in the graph case,
the locality structure of the restriction maps A j is given by vertex-set V of G according to the
tensor decomposition

⊗

v∈V C
Dv .

Particular examples of entanglement structures on hypergraphs from the literature are
projected entangled simplex states [28] and semi-injective PEPS [27]. In the latter case, the
vertex set is given by the same vertices of the two-dimensional square lattice on L×L sites (i. e.
CL × CL), but instead of having an edge for each pair of neighbouring sites, there is instead a
hyperedge containing the 4 vertices in each of the plaquettes:

V = [0, L]× [0, L]∩Z2,

e ∈ E ⇐⇒ e = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)} for some (i, j) ∈ V.

Finally, for each hyperedge e, we choose a GHZ state on 4 parties as Ωe, so that the resulting
entanglement structure is given by

Φ=
⊗

e∈E
GHZk(4).

The bond dimension of Φ is then simply given by the number of GHZ levels k. For k = 2
this class of states also includes the ground state of the CZX-model, exhibiting an on-site Z2
symmetry [26].

In order to find representations of physical states with optimal bond dimension, we will
analyze how well a given contraction scheme can be expressed in terms of another. To this
end, we introduce the following definition, which specializes Definition 1 to the particular case
of entanglement structures.

Definition 12 (Conversion of entanglement structures). Let G and G′ be two graphs or hy-
pergraphs with the same vertex set V . Given two entanglement structures Ψ(G) and Ψ(G′)
we say that Ψ(G) restricts to Ψ(G′), and we write Ψ(G) ≥ Ψ(G′), if there exist linear maps
Av : CDv → CD′v for each v ∈ V such that

�

⊗

v∈V
Av

�

Ψ(G) = Ψ(G′), (18)

where Dv and D′v are the local dimension at vertex v of Ψ(G) and Ψ(G′), respectively. The
notion of degeneration specializes to the case of entanglement structures exactly in the same
way as restrictions (i. e. by allowing local maps to act according to the tensor product structure
defined by the vertex set V ).

Remark 13. Note that in the case of a path graph LL on L sites and a graph entanglement
structure Ψk(LL) (i. e. the entanglement structure of an open boundary condition MPS of bond
dimension k), the existence of a degeneration implies the existence of a restriction. More
concretely, if Ψk(LL) D T for some L-partite quantum state T , then also Ψk(LL) ≥ T . This

9

https://scipost.org
https://scipost.org/SciPostPhys.9.3.042


SciPost Phys. 9, 042 (2020)

Λ=
λ λ λ

Figure 3: The hypergraph entanglement structure Λ of the RVB state. The triangles
represent the λ tensor, and the entanglement structure Λ is obtained by tensoring

2
3 L copies of it and arranging the vertices according to the kagome lattice.

is due to the fact that, by sequential SVD decompositions (see [6, Theorem 1] and [4, pag.
18-20]), it is possible to construct T with a bond dimension equal to the maximal Schmidt
rank across any cut Srcut(T ) (see (13)): equivalently Ψk(LL) ≥ T for k = Srcut(T ). On the
other hand we can repeat the argument of Remark 8 for Ψk(LL), but taking into account that
we have open boundary conditions instead: we see that after grouping neighbouring sites we
can convert Ψk(LL) to Ψk(LL′) with L′ < L, so that if Ψk(LL)DT then necessarily k ≥ Srcut(T ).
On the other hand, as soon as there are cycles in the graph, this argument breaks down, and
we have already seen in the W-state example at the end of Section 2 that a degeneration can
exist when the corresponding restriction does not.

RVB state Another example of entanglement structure is found in the context of PEPS repre-
sentations of the Resonating Valence Bond state (RVB) [31–33]. Rephrasing the construction
used in [32] in terms of Definition 11, the RVB state on the kagome lattice can be represented
by an entanglement structure Λ, where we assign to each plaquette the 3-party entangled state
λ ∈ (C3)⊗3 (see Figure 3) given by

λ=
2
∑

i, j,k=0

εi, j,k |i, j, k〉+ |2, 2,2〉= , (19)

where εi, j,k denotes the antisymmetric tensor with ε0,1,2 = 1.
In [32] the entanglement structureΛ for the RVB state composed of plaquette tensorsλwas

shown to have a PEPS representation with bond dimension 3, by constructing the explicit linear
maps realizing the conversion. The RVB state on the kagome lattice thus has bond dimension
at most 3. We now give a representation of the same state with border bond dimension equal
to 2 (in other words we reduce the local virtual dimension at each vertex from 34 = 81 to
24 = 16), which, as we show in Section 5.3, is smaller than the optimal PEPS representation
that can be obtained with restrictions.

In order to do so, we need to show that 2
2

2
D . The MPS matrices of the degeneration

are given by

M [ j]0 (ε) =
1
2

�

0 ε

ε 0

�

, M [ j]1 (ε) =

�

0 −ε
ε 0

�

, M [ j]2 (ε) =

�

1 0
0 −1

�

+
δ j,3ε

2

2

�

1 0
0 1

�

, (20)

with j = 1,2, 3, resulting in the state ε2λ+ ε4 |2〉 ⊗ (1
4 |00〉 − |11〉).

In the following section, we will show how this improved representation can be used to
compute exact contractions and expectation values for the RVB state.
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a)

A(ε)

B(ε)
C(ε) =⇒ D

b)
∑eF

i=0
γi

A(εi)
B(εi)

C(εi)

=

Figure 4: Graphical representation of Theorem 14: a) A local degeneration
(A(ε),B(ε),C(ε)) depending polynomially on ε from one plaquette state (pairwise
entangled states between three parties) to another (λ state), gives rise to a global
degeneration between a collection of F plaquette states. b) Evaluating the degenera-
tion at eF+1 points εi , we can express the full entanglement structure built from the
second plaquette state (here λ states) as a superposition of eF + 1 states that arise
as restrictions from the first entanglement structure (here pairwise entangled states
between three parties). The parameter e is a scaling factor depending on the poly-
nomial degree of the local degeneration, the prefactor γi is obtained by evaluating
the ith Lagrange polynomial `i at 0.

4 Exact state representations from degenerations

Having introduced the concept of tensor network representations in terms of degenerations
and border bond dimension in the previous sections, we will now turn to the question how
to obtain physical information in this approximate setting. To this end, we present a general
method to turn an approximate conversion between two entanglement structures given by
degenerations into an exact one by allowing for superpositions. The main advantage of this
approach is on the one hand that this can be accomplished with only a linear overhead in
the number of plaquette states involved and on the other hand that it also allows for the
computation of exact expectation values. These properties are summarized in the following
theorem. The proof relies on results from algebraic complexity theory [38,39] and we include
the argument here for the sake of completeness.

Theorem 14. Let Ψ and Φ be the entanglement structures obtained by placing ψ and φ, respec-
tively, on F faces of a lattice with L sites. Assume T can be represented by Φ, i. e. Φ≥ T. IfψDφ,
then

T =
eF
∑

i=0

Wi , (21)

where each Wi can be represented by Ψ, i. e. Ψ ≥Wi . The number of terms in the representation is
linear in F, i. e. the constant e is only dependent on the degenerationψDφ. Moreover expectation
values of an observable O under T can be computed from expectation values of 2eF + 1 states
represented by Ψ:

〈T, OT 〉=
2eF
∑

i=0

γi 〈Vi , OVi〉 , (22)

where again each Vi can be represented by Ψ, i.e. Ψ ≥ Vi ∀i, and γi ∈ R are known constants
depending on Vi .
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Proof. According to Definition 2,ψDφ if there exist linear maps Ai(ε) : Cdi 7→ Cd ′i , depending
polynomially on the parameter ε, such that

(A1(ε)⊗ · · · ⊗ Am(ε))ψ= ε
dφ +

e
∑

l=1

εd+l
eφl ,

for some multi-partite states eφl , approximation degree d and error degree e. We observe that
the plaquette degeneration φ Dψ immediately implies that φ⊗F Dψ⊗F , as can be seen by
taking the tensor product of the local operators given by the degeneration φ Dψ. As was
already observed in [39, Prop. 4], the error degree will only grow linearly in the number of
copies of the degeneration maps, i. e. the number of faces F in the lattice and therefore we see
that the product of F copies of φ degenerates to F copies of ψ with error degree eF :

ψ⊗ψ⊗ · · · ⊗ψ
︸ ︷︷ ︸

F copies

DeFϕ ⊗ϕ ⊗ · · · ⊗ϕ. (23)

This degeneration is possible, when all m parties of each of the F copies are considered
independently, i. e. when the states in (23) are regarded are mF -partite states. In [39] this was
derived in order to show that tensor rank is strictly submultiplicative under the tensor product.
Note that the degeneration resulting from grouping all the F copies of ψ and φ into an m-
tensor was already considered in [38], and led to faster algorithms for matrix multiplication. In
order to prove the theorem, we will consider instead a different consequence of this argument:
grouping the mF tensor factors according to the underlying lattice, we obtain Ψ and Φ as L-
partite states respectively, which means that

ψDe φ =⇒ Ψ DeF Φ. (24)

Similar as in [38,39], we now apply Lagrange interpolation [40, p. 260] in order to trans-
form the degeneration into a restriction. From (24), we can write

�

F
⊗

i=1

�

m
⊗

l=1

Al(ε)

��

Ψ = εdΦ+
eF
∑

k=1

εd+k
eΦk (25)

for some integer d, where the linear maps Al(ε), depending polynomially on ε, are given by
copies of the degeneration maps of ψDφ corresponding to the plaquettes f = 1, . . . , F . Let
(Bl)l be the local operators given by the restriction Φ ≥ T at the lattice sites l = 1, . . . L, i. e.
�
⊗L

i=1 Bl

�

Φ= T . Composing (24) with the (Bl)l and dividing by εd , we define

T (ε) = ε−d

� L
⊗

i=1

Bl

�

�

F
⊗

i=1

�

m
⊗

l=1

Al(ε)

��

Ψ = T +
eF
∑

k=1

εk
eTk. (26)

Considering the right hand side, we immediately see that T (ε) depends polynomially on ε
with degree eF , and that T (0) = T . Moreover, for each ε 6= 0, T (ε) is a restriction from
Ψ. Evaluating T (ε) at eF + 1 points (εi)eF

i=0, we can obtain the value at ε = 0 via Lagrange
interpolation:

T = T (0) =
eF
∑

i=0

γi T (εi) ,

where γi = `i(0) is obtained by evaluating the ith Lagrange polynomial `i at 0. Defining
Wi = γi T (εi), we obtain (21). In order to prove (22), we observe that any expectation value
with respect to T (ε) is given by

〈T (ε), OT (ε)〉= 〈T, OT 〉+
eF
∑

k=1

�


T, OT̃k

�

εk +



T̃k, OT
�

(ε)k
�

+
eF
∑

k,k′=1




T̃k′ , OT̃k

�

(ε)kεk′ . (27)
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In case ε ∈R this is again a polynomial in ε now of degree 2eF . Similarly as before, computing
〈T (ε), OT (ε)〉 for a fixed ε ∈ R amounts to computing an expectation value for a state T (ε)
which has a representation in terms of Ψ. Computing 2eF+1 of such expectation values is then
again sufficient for computing 〈T (ε), OT (ε)〉 at ε= 0 via interpolation, this proves (22).

Let us note that we are not limited to use ε ∈R, but can also choose ε ∈ C if that is more
convenient. To this end, let us consider the expression

〈T (ε), OT (ε)〉= 〈T, OT 〉+
eF
∑

k=1

�


T, OT̃k

�

+



T̃k, OT
��

εk +
eF
∑

k,k′=1




T̃k′ , OT̃k

�

εk′+k.

This is by design again a 2F degree polynomial in ε with the expectation value 〈T, OT 〉 in
leading order. Hence, computing the scalar product 〈T (εi), OT (εi)〉 for 2F+1 different values
of εi will again allow us to compute the value of this polynomial at ε = 0 and therefore
〈T, OT 〉. Alternatively, we could also just insert ε directly into (27) and treat Re(ε) and Im(ε)
as independent variables.

We also note that due to the reduced bond dimension for each of the Vi also the error caused
by approximate contraction will be smaller and that by oversampling the number of evaluation
points in the degeneration, there is an additional potential for improving the accuracy of the
contraction.

Theorem 14 provides degenerations that transform the two entanglement structures into
each other plaquette by plaquette. Constructions based on larger units (e.g. several plaque-
ttes) might lead to further reductions in the bond dimension, since the maps on the vertices
that are grouped together no longer have a tensor product constraint.

Before looking more generally on plaquette conversions between important classes of ten-
sor networks in the next section, as a first application of the theorem we come back to the RVB
state on the kagome lattice in terms of the Λ entanglement structure introduced at the end

of section 3. We have presented a degeneration from 2
2

2
to the plaquette tensors of Λ,

which has approximation degree d and error degree e both equal to 2. Rolling this out on the
kagome lattice with F triangles, we obtain a border PEPS representation of the RVB state of
border bond dimension 2 and Theorem 14 then ensures that we can reconstruct the RVB state
as a superposition of 2F + 1 PEPS of bond dimension 2 or compute expectation values with
4F + 1 contractions.

5 Plaquette conversions

In this section, we present general strategies and examples for optimized conversion between
plaquette states in terms of degenerations. To this end, we consider m-tensors, i. e. elements
of
⊗m

i=1C
di , for some non-zero integers (di)i , which can be equivalently seen as unnormal-

ized pure m-partite quantum states. We will usually consider m to be a small integer (often
m will be equal to 3 or 4), as these m-tensors are the building blocks of the entanglement
structures we considered in Section 3. After some definitions and examples that set the scene,
we will study the conversion between maximally entangled states shared around circles and
GHZ states, which are the basis for conversion between PEPS and more general tensor net-
work states. To do this, we utilize the correspondence between entangled pairs on the circle
and the matrix multiplication tensor (see e.g. [41]). This will be first done for 3-party tensors
and subsequently for tensors of m parties. In addition, we prove in Section 5.3 that the MPS
representation with bond dimension (2,2, 3) for the state λ, which is the basis for the PEPS
representation of the RVB state, is optimal.
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5.1 From MaMuk(m) to GHZk(m): the case m= 3

The aim of this section is to investigate restrictions and degenerations from MaMuk1,k2,k3
to

GHZk(3) and viceversa: this will allow us to express GHZ based hypergraph entanglement
structures on triangular lattices as bond and border bond PEPS representations. In particular,
we will prove the following proposition.

Proposition 15.

1
2

�

1+
p

4k− 3
�

< bond(GHZk(3))≤O
�

k
1
2+

cp
log k

�

, (28)

for some fixed positive c. In other words,

MaMun(3) 6≥ GHZn2−n+1(3) and MaMun(3)≥ GHZ f (n)(3) , (29)

where f (n) =O
�

(n2)
1− c′p

log n

�

for some positive constant c′.

However, as it was shown by Strassen in [42, Thm. 6.6], there exist degenerations which
allow for an MPS representation of GHZd 3

4 n2e(3) with border bond dimension n. Setting n= 2,
this shows in particular, that

2
2

2
6≥ 3 but 2

2

2
D 3 .

Hence, bond(GHZ3(3))> 2, whereas bond(GHZ3(3)) = 2.
Before giving the proof, we discuss a non-symmetric extension of this result, i.e. degener-

ations from MaMuk1,k2,k3
with different values of k1, k2, k3. Following [43], we consider the

local diagonal operator
A(ε) |i, j〉= ε(i−g)2+2i j |i, j〉 (30)

depending on an integer g which we will fix later. This leads to the transformation

(A(ε)⊗ A(ε)⊗ A(ε))MaMuk1,k2,k3
= ε2g2

k1,k2,k3
∑

i1,i2,i3=1

ε(i1+i2+i3−g)2 |i1, i2,〉 |i2, i3〉 |i3, i1〉

= ε2g2
k1,k2,k3
∑

i1,i2,i3=1
i1+i2+i3=g

|i1, i2〉 |i2, i3〉 |i3, i1〉+O
�

ε2g2+1
�

.

The leading order term in ε corresponds to a GHZ state, because fixing any pair of i1, i2, i3
determines the third one uniquely. Hence, we only have to determine the number of solutions
to the equation i1 + i2 + i3 = g for given ni and inhomogeneity g. Choosing k1 = 2, k3 = 3
and k2 = 2 or k2 = 3 and g = 5 then directly leads to

2
2

3
D 4 and 2

3

3
D 5 .

These degenerations are optimal, both in the sense that the corresponding restrictions
are not possible, and in the sense that we cannot obtain GHZ states with more levels from a
degeneration of these MaMu tensors. It is also not possible to obtain the same GHZ states from
MaMu tensors, where one of the bond dimension is smaller than the ones we have considered.

We will now turn to the proof of Proposition 15. We will first introduce two definitions
and prove a lemma.
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Definition 16. Let G= (V, E) be a graph. An orthogonal representation of G is a mapping

π : V →H \ {0},

from the graph into some inner product vector space H such that

(u, v) ∈ E =⇒ 〈π(u)|π(v)〉H = 0.

We will denote by dimH the dimension of the orthogonal representation.

Definition 17. Let Kn,n be the complete bipartite graph on 2n vertices, i. e.

V (Kn,n) = {b0, . . . , bn−1, c0, . . . , cn−1},
E(Kn,n) = {(b j , ck) | j, k = 0, . . . , n− 1}.

Let K0
n,n be the graph obtained by removing the edge (b0, c0) from Kn,n:

E(K0
n,n) = E(Kn,n) \ {(b0, c0)}= {(b j , ck) | j, k = 0, . . . , n− 1, j 6= k or j = k 6= 0}.

Lemma 18. With the notation defined above, let π : K0
n,n→H be an orthogonal representation

such that dimH ≤ 2(n− 1). Then at least one of the following holds

1. dim span{π(bi) | i = 1, . . . , n− 1}< n− 1,

2. dim span{π(ci) | i = 1, . . . , n− 1}< n− 1,

3. π(b0) is orthogonal to π(c0).

Proof. Let B = span{π(bi) | i = 1, . . . , n−1} and C = span{π(ci) | i = 1, . . . , n−1}. Since π(bi)
is orthogonal to π(c j) for every i, j = 1, . . . , n− 1, we have that B ⊥ C. If B ⊕ C is not equal
to H, which has dimension ≤ 2(n − 1), then at least one of the two has to have dimension
strictly smaller than n−1, so that either 1. or 2. holds. If not, then H = B⊕C. Since π(b0) is
orthogonal to every π(ci) for i = 1, . . . , n− 1, it is orthogonal to C, and therefore π(b0) ∈ B.
Similarly, π(c0) is orthogonal to B and therefore lies in C. But then π(b0) and π(c0) live in
orthogonal subspaces and they are themselves orthogonal.

We are now ready to prove Proposition 15.

Proof (Proposition 15). We will start by proving the lower bound of (28) as well as first part
of (29), since they are equivalent as can be seen by setting k = n2 − n+ 1. Let us assume that
GHZn2−n+1 has an MPS representation with bond dimension D ≤ n, and let us show how to
derive a contradiction from this fact. To fix notation, let

GHZn2−n+1 =
n2−n
∑

i, j,k=0

tr
�

AiB jCk

�

|i, j, k〉 ,

for some non-zero matrices {Ai}i , {B j} j and {Ck}k of dimension D× D, such that

tr AiB jCk =

¨

1 if i = j = k,

0 otherwise.

We start by showing that if D ≤ n we can without loss of generality assume that A0 is non-
singular. To derive this, we will use the following fact: any linear subspace of MD containing
only singular matrices has dimension at most D2 − D [44]. Consider
S = span{Ai | i = 0, . . . , n2 − n} ⊂ MD. S is the span of n2 − n + 1 matrices: if it contains
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only singular matrices, then its dimension can be at most D2−D. So if D ≤ n, either in S there
is one matrix which has full rank or dim S ≤ D2 − D ≤ n2 − n, which implies that the matrices
(Ai)i are not linearly independent.

Let W = (wi j) ∈ U(n2− n+1) a unitary matrix such that
∑n2−n

i=0 w0iAi is either zero or full
rank. Then by denoting φi = W |i〉 the rotated basis, we see that
(W ⊗W ⊗W )GHZn2−n+1 =

∑

iφi ⊗φi ⊗φi has an MPS representation with matrices

Ãi =
∑

j

wi, jA j , B̃i =
∑

j

wi, jB j , C̃i =
∑

j

wi, jC j ,

and Ã0 is either zero or full-rank. The first case we can exclude, because tr Ã0B̃0C̃0 = 1. This
shows that up to a local unitary on the physical level, we can assume without loss of generality
that A0 is not singular.

Let A0 = UΣV ∗ be the singular-value decomposition of A0. Then Σ > 0 defines a scalar
product on MD ' CD2

by 〈X |Y 〉Σ = trΣX ∗Y . Defining

π(b j) = B∗j V, π(ck) = CkU , j, k = 0 . . . n2 − n,

we obtain an orthogonal representation of the graph K0
n2−n+1,n2−n+1 (defined in Lemma 18)

on MD with inner product 〈·|·〉Σ, since




π(b j)
�

�π(ck)
�

Σ
= trΣV ∗B jCkU = tr A0B jCk =

¨

1 if j = k = 0,

0 otherwise.

If D ≤ n, then dimMD = D2 ≤ n2 < n2 + (n − 1)2 + 1 = 2(n2 − n + 1), which implies that
we can apply Lemma 18 and at least one of the conditions stated in it must hold true. If 1.
or 2. hold, then either span{Bi} or span{Ci} has dimension strictly smaller than n2 − n + 1,
but we have already seen that this leads to a contradiction. Therefore 3. must hold, but this
also leads to a contradiction: on the one hand we have proven that tr A0B0C0 = 0 but we also
know that know that tr A0B0C0 = 〈π(b0)|π(c0)〉= 1.

We will now prove the upper bound of (28). Our starting point is the following result [42,
Thm. 6.6]

MaMun D
γn2

GHZd3n2/4e, (31)

for some constant γ > 0. Let α an integer to be determined later, and consider the tensor
product of α copies of (31). To simplify notation, we set k = (d34 n2e)α, so that we get

MaMunαD
αγn2

GHZk .

As we have discussed previously, it is a well known result in algebraic complexity theory that a
degeneration can be turned into a restriction by interpolation paying a price in terms of a direct
sum (see e.g. [34]). In the present context, this means that we can turn the degeneration into
a restriction by supplementing a GHZ state with a number of levels equal to the error degree
plus one (see e.g. [39]). Therefore we obtain

GHZαγn2+1⊗MaMunα ≥ GHZk,

from which follows that

bond(GHZk)≤ nα bond(GHZαγn2+1).

We can trivially bound bond(GHZαγn2+1) by 2αγn2,

bond(GHZk)≤ 2αγnα+2. (32)
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From the definition of k, we have n ≤
�4

3

�
1
2 k

1
2α , and by inserting this into the right-hand side

of (32), we obtain:

bond(GHZk)≤ 2γα
�

4
3

�1+ α2
k

1
2+

1
α . (33)

We now want to choose α in order to minimize the right hand side. We will instead simply

minimize
�4

3

�
α
2 k

1
α , as this will already give the right asymptotic scaling. Since the function

diverges to infinity when α tends to zero or to infinity, we find the minimum by setting the
derivative of α2 log

�4
3

�

+ 1
α log k to zero:

1
2

log
�

4
3

�

−
1
α2

log k = 0 ⇐⇒ α= α∗ =
p

2

log1/2(4/3)
log1/2(k) .

Taking α= bα∗c, we obtain

bond(GHZk)≤
8
3

p
2

log1/2(4/3)
γk

1
2+
p

2 log1/2(4/3)
log1/2 k

+ log log k
2 log k . (34)

Since log1/2(k) ≥ log log k, we can find c positive as claimed in (28). We can improve this
bound by minimizing the right hand side of (33) instead, obtaining

bond(GHZk)≤
8γ

3 log(4/3)
k

1
2+

r

1+2 log( 4
3) log(k)

log(k) +
log
�

−1+
r

1+2 log( 4
3) log(k)

�

log(k)

=
8γ

3 log(4/3)
k

1
2 e
p

1+2 log(4/3) log(k)(−1+
Æ

1+ 2 log(4/3) log(k)) .

Note that the asymptotic scaling of this bound is the same as the one we had obtained by

minimizing
�4

3

�
α
2 k

1
α , as we claimed.

To get the second part of (29), let instead

m= αnα+2 ≤ α
�

4
3

�1+ α2
k
α+2
2α ,

so that k ≥
�4

3

�−α�m
α

�
2α
α+2 . Then (32) implies for any α≥ 1 that

MaMu2γm ≥ GHZ
( 4

3)
−α(m

α )
2α
α+2

.

Ideally, we would like to take the maximum over α to obtain the best lower bound. Instead,
we decide here to maximize the easier function

−α log(4/3) +
2α
α+ 2

log m,

neglecting the additional summand depending on − logα, since this will already be sufficient
to get the desired scaling. The maximum is attained at α satisfying

− log(4/3) + 4
log m
(α+ 2)2

= 0 ⇐⇒ α= α∗∗ = 2
log1/2 m

log1/2(4/3)
− 2,

again since the function is smaller or equal to zero for α equal to zero or tending to infinity.
Since both (4/3)−α and (m/α)

2α
α+2 are decreasing in α, substituting α= bα∗∗c, we obtain that

�

4
3

�−α
≤
�

4
3

�2

(m2)
− log1/2(4/3)

log1/2(m) ,
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and
�m
α

�
2α
α+2
≤ (m2)

�

1− log1/2(4/3)
log1/2(m)

�

�

1+ 1
log m(log(2)− 1

2 log log(4/3)+ 1
2 log log m)

�

,

which implies

MaMu2γm ≥ GHZq with q = c (m2)
1−2 log1/2(4/3)

log1/2 m , (35)

for some positive constant c which gives the scaling claimed in (29).

5.2 From MaMuk(m) to GHZk(m): the general case

In this section, we will outline a method to obtain explicit degenerations from MaMuk(m) to
GHZk(m), generalizing some of the results for the 3-party case from the previous section to
m parties. We will then work out in detail the case for m = 4 as an example. We leave the
reverse bound as an open problem.

As before, MaMuk(m) will denote a network of m parties arranged on a circle each sharing
a maximally entangled state with k levels with each of its two nearest neighbours. The goal is
to find a local linear transformation Al(ε) at each vertex l depending polynomially on ε such
that the leading contribution in ε of the resulting state is an m-party GHZ state with k′ levels

�

m
⊗

l=1

Al(ε)

� k
∑

i1,...,im=1

|i1i2〉 |i2i3〉 . . . |imi1〉= εd GHZk′(m) +O
�

εd+1
�

,

where k′ should be as large as possible and the kets indicate the grouping of parties. Following
[43], we choose the operators Al(ε) diagonal in the local product basis,
i.e. Al(ε) |i, j〉 = εpl (i, j) |i, j〉. In addition, we require that the leading order contribution in
ε is given by those vectors |i1, i2〉 · · · |im, i1〉, that satisfy a certain system of linear equations,
i. e.

∑

l cl il = g with coefficients vector cl and inhomogeneity g belonging to Zν for some in-
teger ν [43]. This last condition is equivalent to the requirement that the vector

∑

l cl il − g is
the zero vector, which can be reexpressed by the norm condition

0=

®

∑

l

cl il − g

�

�

�

�

�

∑

l

cl il − g

¸

=
m
∑

l=0

�

〈cl |cl〉 i2
l − (〈g|cl〉+ 〈cl |g〉)il

�

+ 〈g|g〉+
∑

l 6=l ′
〈cl |cl ′〉 il il ′ .

(36)

However, we have to connect this expression back to the local operations Al(ε). Indeed, we
have to ensure that (36) can be generated by a product of local degenerations of the form

Al(ε) |i j〉= εpl (i, j) |i j〉 ,

namely
∑

l pl(il , il+1) = d +




∑

l cl il − g




2
2, which can always be achieved for all the terms

in (36) that depend at most on a single index l. However, for the cross-terms this requires
〈cl |cl ′〉 = 0 if

�

�l − l ′
�

� > 1, forcing the vectors cl into an orthogonal representation of the cycle
graph (giving a lower bound on ν), in which case we obtain
�

m
⊗

l=1

Al(ε)

� k
∑

i1,...,im=1

|i1i2〉 |i2i3〉 . . . |imi1〉=
k
∑

i1,...,im=1

ε〈
∑

l cl il−g|
∑

l cl il−g〉 |i1i2〉 |i2i3〉 . . . |imi1〉 .

(37)

Furthermore, we have to ensure that the leading contribution, given by
m
∑

i1,...im=1
∑

l cl il=g

|i1, i2〉 · · · |im, i1〉 (38)
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is indeed locally unitarily equivalent to a GHZ state, i. e. consists of an equal weight super-
position of product states ψr = ψr,1 ⊗ · · · ⊗ψr,m, such that




ψr,l

�

�ψr ′,l

�

= δr,r ′ . Since (38) is
a superposition of vectors of the form |i1, i2〉 · · · |im, i1〉 this means that fixing a pair of indices
il ′ , il ′+1 at any vertex l the linear equation

∑

l cl il = g must have at most one unique solution in
the remaining il . One way of ensuring this is to choose the vectors cl , cl ′ linearly independent,
whenever

�

�l − l ′
�

� > 1. In other words, we have to choose the vectors (cl)l in such a way that
if we remove any subset of vectors that share a vertex, the remaining ones have to be linearly
independent. The maximal dimension of the GHZ state we can extract is then given by the
number of integer solutions to the equation

m
∑

l=0

cl il = g , (39)

where we optimize over the inhomogeneity g. One can get a bound on the number of these
solutions by a probabilistic argument with respect to the inhomogeneity g. However, in order
to talk about the finite m case, we are going write down an explicit expression for (39) that
satisfies all the necessary properties, i. e. 〈cl |cl ′〉= 0 for l ′ /∈ {l−1, l, l+1} and {cl}ml=0\{c j , c j+1}
linearly independent for all j. We define the equations inductively starting from the four-party
case

�

1
1

�

i1 +

�

−1
0

�

i2 +

�

1
−1

�

i3 +

�

0
1

�

i4 = g . (40)

Now adding a new vertex and edge into the cycle between i4 and i1 means that now c4 has to
be orthogonal to c1 and the new c5 should be orthogonal to all vectors except c1 and c4. This
can be achieved by the choice





1
1
1



 i1 +





−1
0
0



 i2 +





1
−1
0



 i3 +





0
1
−1



 i4 +





0
0
1



 i5 = g . (41)

This procedure can be repeated leading to the following linear system for the k-cycle




















1 −1 1 0 0 · · · 0 0
1 0 −1 1 0 0 0
1 0 0 −1 1 0
1 0 0 0 −1
...

...
...

...
...

...
...

1 0 0 0 0 1 0
1 0 0 0 0 −1 1





















· ~i = g . (42)

In order to find the integer solutions to this problem, we employ the Smith normal form of the
matrix on the left-hand side, which gives the general solution vector

~i =





















z1 + z2 + A1
(m− 2)(z1 − z2) + z2 + A2
(m− 3)(z1 − z2) + z2

...
2(z1 − z2) + z2 + Am−2

z1
z2





















, (43)
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where z1, z2 are arbitrary integers and the constants (Al) depend on the choice of g by a simple
linear integer transformation given by the Smith normal form. In order to obtain the relevant
solutions for our specific problem, we have to impose the upper and lower bounds 0 and k−1
if the original maximally entangled states are of dimension k for each entry of the solution
vector ~i.

The case m= 4 In the case m= 4, (43) leads to the inequalities

0≤







z1 + z2 + g2
2z1 − z2 + g2 − g1

z1
z2






≤ n− 1 .

Choosing g2 = g1 ∈ {
k
2 , k−1

2 } depending on whether k is even or odd leads to the lower bound

on the number of solutions of the form k2+1
2 for odd dimensions and k2

2 for even k.
This shows MaMuk(4)DGHZd k2

2 e
(4), i. e. that we can locally degenerate from a cycle of four

maximally entangled states with k levels to a four party GHZ state of d k2

2 e levels. Hence on the
level of plaquette states, we can degenerate from pairwise maximally entangled states on four
parties with d

p
2De levels to a GHZ state on four parties of D levels. Taking into account that

in a two-dimensional square lattice the bond dimension of neighbouring plaquette states have
to be combined (see Figure 2 (c) and (e)), this means that semi-injective PEPS on the two-
dimensional square lattice based on GHZ states as introduced in [27] with bond dimension
D can be represented as a normal PEPS of bond dimension 2D. By our theorem, expectation
values for these generalized PEPS can hence be computed from expectation values of normal
PEPS, for which highly optimized numerical codes exist.

5.3 Bond dimension of λ is strictly larger than 2

As discussed in Section 3, in [32] the PEPS representation of the RVB-state is obtained via the
multipartite entangled state

λ=
2
∑

i, j,k=0

εi, j,k |i, j, k〉+ |2,2, 2〉= , (44)

with ε denoting the completely antisymmetric tensor such that ε0,1,2 = 1. In [32], the state

λ was obtained as a restriction from 3
3

3
, obtaining the same PEPS representation of the RVB

state with bond dimension 3 from [31]. It turns out that is sub-optimal: the tensor λ can be

obtained also as a restriction from 3
2

2
, using the following MPS representation:

M [1]0 =
1
2

�

0 1 0
1 0 0

�

M [1]1 =

�

0 −1 0
1 0 0

�

M [1]2 =

�

1 0 1
0 −1 0

�

(45)

M [2]0 =
1
2





0 1
1 0
0 0



 M [2]1 =





0 −1
1 0
0 0



 M [2]2 =





1 0
0 −1
1 0



 (46)

M [3]0 =
1
2

�

0 1
1 0

�

M [3]1 =

�

0 −1
1 0

�

M [3]2 =

�

1 0
0 −1

�

. (47)

This leads to a PEPS representation of the RVB state where the bond dimension is reduced
from 3 to 2 on two of the edges of each triangle of the kagome lattice.
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We now prove that this representation is optimal, i. e. that λ cannot be represented as an
MPS of bond dimension 2. This shows in particular a separation of bond and border bond
PEPS representations on the kagome lattice, as the PEPS representation for λ obtained in (20)
has border bond dimension equal to (2,2,2).

Proposition 19. 2
2

2
6≥

Proof. Given the general form of an MPS, we have to show that there exist no triples of 2×2-
matrices (Ai), (B j), (Ck) satisfying

tr
�

AiB jCk

�

= εi, j,k +δ2,i, j,k . (48)

We first note, that the trace on the left hand side gives rise to the usual MPS gauge freedom,
were we can substitute Ai 7→ XAiY , B j 7→ Y−1B j Z and Ck 7→ Z−1CkX−1 for X , Y, Z ∈ GL(3).
Next, we observe that the antisymmetric part ofλ is invariant under M⊗M⊗M with M ∈ SL(3),
the special linear group. Hence, restricting to matrices of the form M = R ⊕ |2〉〈2|, with
R ∈ SL(2), which in addition leave |2, 2,2〉 invariant, we also have (M ⊗ M ⊗ M)λ = λ.
Thus taking this physical symmetry plus the Y, Z gauge transformation together and restrict-
ing for the moment to the 2×2×2 tensor eB = (B0, B1), we see that we can apply any operator
K1 ⊗ K2 ⊗ K3 with Ki ∈ GL(2) to eB without changing (48) if we transform (Ai)i and (Ck)k
accordingly. However GL(2)3 orbits of 2×2×2-tensors are known explicitly [21], and we can
use this freedom in order to reduce B0 and B1 to seven different normal forms, for which we
have to obtain a contradiction. In addition to the null tensor and the product state, these seven
classes encompass the bipartite entanglement between only two parties, the W state and the
GHZ state. We will now go through all the cases.

null tensor In this case, both B0 and B1 are equal to the zero matrix, which leads for example
to tr(AiB1Ck) = 0, which clearly contradicts (48).

product state In this case, B̃ can be chosen as |0〉 |0〉 |0〉, which implies B0 = |0〉〈0| and B1
equal to the zero matrix. Hence, tr(AiB1Ck) = 0 for all i, k leads to the same contradic-
tion as for the null tensor.

bipartite entanglement (3 cases) Depending on the two tensor factors that share the maxi-
mally entangled state, eB can be chosen as |000〉+ |011〉, |000〉+ |101〉 or |000〉+ |110〉.
In the first case B0 = 1 and B1 = 0, which brings us back to the previous situation. In
the remaining two cases B0 = |0〉〈0| and B1 = |0〉〈1| or B1 = |1〉〈0|, respectively.

GHZ state In this case, eB = |000〉+ |111〉 leading to B0 = |0〉〈0| and B1 = |1〉〈1|.

W state Finally, in this case eB can be chosen as |000〉+ |101〉+ |110〉, giving B0 = |0〉〈0| and
B1 = |0〉〈1|+ |0〉〈1|.

In all the cases which we have not immediately discarded, we see that B0 can be chosen as
|0〉〈0| while B1 can either be |1〉〈1|, |1〉〈0|, |0〉〈1| or |0〉〈1|+ |1〉〈0|. We now want to show that
neither of these cases are possible. We start by decomposing the matrices Ai and Ck as

Ai = |ai〉〈0|+ |ãi〉〈1| , Ck = |0〉〈ck|+ |1〉〈c̃k|

for vectors |ai〉 , |ãi〉 , |ck〉 , |c̃k〉 ∈ C2. Since we have reduced the problem to the case B0 = |0〉〈0|,
we have that

tr(AiB0Ck) = 〈ck|ai〉= εi,0,k.

21

https://scipost.org
https://scipost.org/SciPostPhys.9.3.042


SciPost Phys. 9, 042 (2020)

In particular, we have that 〈c1|a2〉 = 1, 〈c2|a1〉 = −1, implying that none of these vectors can
be the zero vector. Together with 〈c2|a2〉 = 0 this means that span{|a1〉 , |a2〉} = C2, and thus
necessarily |c0〉 has to be 0, since the trace condition forces it to be orthogonal to both a1 and
a2. Similarly, we have that span{|c1〉 |c2〉}= C2 and that |a0〉= 0.

Let us denote the matrix entries of B2 as bi, j = tr(B2 | j〉〈i|) for i, j = 0,1, and let us consider
the vectors

�

�a′i
�

= b0,1 |ai〉+ b1,1 |ãi〉 ,
�

�c′k
�

= b1,0 |ck〉+ b1,1 |c̃k〉 .

Then it holds that



c′k
�

�a′i
�

= b1,1 tr(AiB2Ck) + (b1,0 b0,1 − b0,0 b1,1) 〈ck|ai〉= b1,1(εi,2,k +δ2,i,k)− det(B2)εi,0,k.

In particular



c′k
�

�a′i
�

= 0 for (i, k) = {(0,0), (0,2), (2,0)}. Therefore, they define an orthogonal
representation of K0

2,2: by Lemma 18, either



c′2
�

�a′2
�

= 0, or either
�

�a′0
�

or
�

�c′0
�

is zero. We can
exclude the latter case, since this would imply that either A0 or C0 is zero, which we already
know leads to a contradiction. Therefore




c′2
�

�a′2
�

= b1,1 = 0. In the same way, defining

�

�a′′i
�

= b0,1 |ai〉+ b0,0 |ãi〉 ,
�

�c′′k
�

= b1,0 |ck〉+ b0,0 |c̃k〉 ,

it holds that



c′′k
�

�a′′i
�

= b0,0(εi,2,k +δ2,i,k)− det(B2)εi,0,k,

so we can conclude that also b0,0 = 0.
We will now consider the four possibilities we have for B1, driving each one of them to a

contradiction, and therefore showing that no MPS representation of λ with bond dimension 2
is possible.

1. B1 = |1〉〈0|: We get a contradiction since tr(A2B1C0) should be −1, but B1C0 = 0.

2. B1 = |0〉〈1|: We get a contradiction since tr(A0B1C2) should be 1, but A0B1 = 0.

3. B1 = |0〉〈1|+ |1〉〈0|: In this case, tr(AiB1Ck) = 〈c̃k|ai〉+ 〈ck|ãi〉 = εi,1,k, and in particular
tr(A1B1C0) = 〈c̃0|a1〉 since |c0〉= 0. From this equation it follows that

tr(A1B2C0) = b0,1 〈c̃0|a1〉+ b1,1 〈c0|ã1〉= b0,1 tr(A1B1C0) = 0 6= 1,

so we obtain a contradiction.

4. B1 = |1〉〈1|: We see that tr(AiB1Ck) = 〈c̃k|ãi〉 = εi,1,k, so reasoning in the same way as
before we see that |ã1〉= |c̃1〉= 0 and that |ã0〉, |ã2〉, |c̃0〉 and |c̃2〉 are non-zero, therefore
reducing to the case where

A0 = |ã0〉〈1| , C0 = |1〉〈c̃0| ,
A1 = |a1〉〈0| , C1 = |0〉〈c1| ,
A2 = |a2〉〈0|+ |ã2〉〈1| , C2 = |0〉〈c2|+ |1〉〈c̃2| .

Considering

tr(A1B2C0) = 〈c̃0|a1〉 b0,1 = 1, tr(A0B2C1) = 〈c1|ã0〉 b1,0 = −1,

we obtain that b0,1, b1,0 and 〈c̃0|a1〉, 〈c1|ã0〉 are non-zero. On the other hand since
b1,1 = 0 we have that

0= tr(A2B2C0) = 〈c̃0|a2〉 b0,1, 0= tr(A0B2C2) = −〈c2|ã0〉 b1,0,
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and since b0,1 6= 0 and b1,0 6= 0 we see that necessarily 〈c̃0|a2〉= 〈c2|ã0〉 = 0. Therefore
|a2〉 is proportional to |ã0〉 and similarly |c2〉 is proportional to |c̃0〉, and so it follows that

〈c̃2|a2〉
〈c2|ã2〉

=
〈c̃2|a2〉
〈c2|ã2〉

·
〈c1|ã0〉
〈c1|ã0〉

·
〈c̃0|a1〉
〈c̃0|a1〉

=
〈c̃2|ã0〉
〈c2|a1〉

·
〈c1|a2〉
〈c1|ã0〉

·
〈c̃0|a1〉
〈c̃0|ã2〉

=
1
−1
·

1
〈c1|ã0〉

·
〈c̃0|a1〉
−1

= −
b1,0

b0,1
.

This leads to a contradiction since

tr(A2B2C2) = b0,1 〈c̃2|a2〉+ b1,0 〈c2|ã2〉= 0 6= 1.

6 Conclusions

We have shown that analyzing the geometry of entangled states and transformations between
entanglement structures provides a framework for the construction of more efficient tensor
network representations. Starting from local improvements on the level of plaquette states,
we obtain optimized tensor network representations on the entire lattice. We provide two
methods to construct such local improvements: restrictions and degenerations.

Using geometrical tools, our main result allows us to lift the local approximate conversion
originating from degenerations on the level of plaquette states to an exact representation of the
tensor network state on the entire lattice, given as a superposition of tensor network states with
smaller bond dimension, the number of which scales linearly in the system size. In addition,
our general result gives a prescription of how to leverage this bond dimension reduction in
order to reduce the computational cost of computing expectation values. More precisely, we
describe a parallel contraction algorithm to compute physical expectation values 〈T, OT 〉 of
the original state as

∑2eF
i γi 〈Vi , OVi〉, where each Vi is given as PEPS of lower bond dimension

than T .
As an example of application of these techniques, we studied explicitly the RVB state on

the kagome lattice. We present two improvements on the representation from [32]. The
first is obtained by considering bonds of different dimensions, allowing us to arrive at the
optimal representation, where two out of three bonds on each triangle can be reduced to bond
dimension 2 instead of 3. This leads to saving in the cost of computing contractions (which
for the sake of completeness we detailed in Appendix A). The second improved representation
is obtained by considering the more general case of degenerations from the plaquette state

: we can then find a border bond dimension 2 representation of the RVB state, which again
is optimal in terms of this effective bond dimension.

More generally, given an entanglement structure Φ built from locally distributed multi-
partite entangled states, our result allows to characterize the variational class given by the set
of states obtained by applying local maps {Ai(ε)}Li=0 which are polynomial of degree e in ε, and
then taking the limit ε to zero. Each state obtained in this fashion is specified by a polynomial
number of parameters. Our main theorem then shows that this gives us access to states which
arise as a superposition of a linear number of states represented by Φ, going beyond the states
representable by a single tensor network state of this bond dimension. Nevertheless, their
expectation values can be efficiently computed by interpolation.

An interesting question that we leave open for future research is how to optimize efficiently
within the set of tensor network states that arise as degenerations, e. g. in order to minimize
the energy of a local Hamiltonian. Since degenerations are still given by a local tensor albeit
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depending polynomially on a free parameter, we expect that a local optimization step along the
lines of the known tensor network techniques will be possible. However, one has to carefully
take into account the additional constraint for obtaining an honest degeneration and we leave
the details of such an optimization procedure for future work.
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A Computational complexity of tensor-contractions

In this appendix, we derive estimates on the computational cost of exactly and approximately
contracting PEPS networks for the two-dimensional square lattice and the kagome lattice.
We will subsequently discuss a specialized contraction strategy for the RVB state from the
literature.

A.1 Exact contraction of the RVB state on the kagome lattice

Before discussing contractions of tensor networks with varying bond dimension in the subse-
quent subsection, let us briefly comment on the computational complexity of exactly contract-
ing the RVB state on the kagome lattice in regards to bond and border bond PEPS representa-
tions. One strategy employed to contract a PEPS on a lattice is to treat one boundary of the
two PEPS layers as an MPS and to view the contraction of the remaining rows of PEPS tensors
as the application of matrix product operators to this boundary MPS (see Figure 5 and 6). For
a PEPS with bond dimension D on the kagome lattice the computational cost of the contraction
of a single local tensor into the boundary MPS is given by O(χ3D4) +O(χ2D6d) [45], with d
the physical dimension and χ denoting the bond dimension of the boundary MPS. However,
since we do not reduce the bond dimension of the boundary MPS χ, we can omit the final
SVD, and the relevant scaling is simply O(χ2D6d).

Contracting one full row of local PEPS tensors into the boundary MPS increases its bond
dimension by a factor of D2 due to the double layer structure of the network, i.e. χi+1 = D2χi .
In the case of an exact contraction, this bond dimension is not compressed after each step, and
hence χ grows exponentially with D2. Accordingly, if we consider the computational cost of
computing an expectation value of a PEPS with bond dimension D on a 2(L + 1)× 2(L + 1)
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Figure 5: Approximate contraction of a PEPS network on the two-dimensional square
lattice with the boundary-MPS method. The first row shows the initial step at the
boundary (I) and the bulk-step (II), which is repeated until the right boundary of the
network is reached. For simplicity, only a single layer of the two-layer PEPS-network
is shown here, but each red circle in the upper row represents the two local PEPS
tensors that have to be contracted along the invisible physical dimension. In the
second row the detailed contractions of both PEPS-layers that are carried out in each
step are depicted with their corresponding computational cost. Lines that terminate
in a tensor at a given sub-step ( a)-d)) in a tensor represent the contractions carried
out at this point, whereas lines not connected to a tensor at that level correspond to
free indices. In total, the scaling is given by (CMM+CSVD)χ3D2

1 D2
2 +2CMMχ

2D3
1 D3

2 d.

lattice and taking into account that we can use a boundary MPS from both sides of the lattice,
the overall computational cost is given by

2(L + 1)
L
∑

l=1

O(χ2
l D6d) =

L
∑

l=1

O(χ2
0 (D

2l)2D6d) = 2(L + 1)O(D
4L − 1

D4 − 1
D10d) , (49)

with χ0 the bond dimension of the first boundary MPS. In case of a border PEPS representation
with border bond dimension D and error degree eL, i.e. linear in the system size as happens
for the case of local degenerations of the plaquette tensor, Theorem 14 implies that we have
to contract 2eL + 1 PEPS in order to compute an exact expectation value, leading to a scaling
of

2(L + 1)(2eL + 1)O(D
4L − 1

D4 − 1
D10d) . (50)

Accordingly, considering the bond dimension 3 PEPS representation of the RVB state in com-
parison to the border bond dimension 2 representation, we obtain a leading scaling of O(L 34L)
versus a scaling of O(L224L), which gives an exponential improvement.

A.2 PEPS with varying bond dimension

We now turn to the contraction of PEPS networks on the kagome and square lattice. In contrast
to the results commonly stated in the literature, we will explicitly deal with the case of non-
equal bond dimensions with respect to different virtual degrees of freedom and in the case of
the kagome lattice also take into account different distributions of the legs in the two layers
of the network. In all cases, we consider a boundary-MPS approach, where the PEPS tensors
at the boundary of the network are considered as an MPS of fixed bond dimension χ to which
the internal PEPS tensor regarded as MPOs are applied subsequently. All bounds are based on
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the estimates CM M D1D2D3 for the computation of the product of two rectangular matrices of
dimensions D1×D2 and D2×D3 and CSVDχD1D2 for the truncated singular value decomposition
(SVD) of a D1×D2 matrix to its largest χ singular values [46] with CMM and CSVD constants.
Two-dimensional square lattice Starting from one boundary of the lattice, the next row of
the double of the contraction are depicted in Figure 5. Starting from the left-boundary, the
first MPO-tensor (red circle) of the next row is contracted into the boundary-MPS and its
bond dimension subsequently reduced to χ via an SVD (step (I)). The cost of each step in
this contraction is indicated in the second row of Figure 5. In each of the steps a), b) and
c), the contractions performed in that step are indicated by lines that terminate in a tensor at
that level, all other lines count as free indices. In step I.a) for example the only contraction
performed is with respect to the gray line connecting the yellow square and the red circle,
whereas the remaining lines (two gray, one black, one orange) are free indices. Hence, this
contraction can be seen as a multiplication between a χD1×D1 matrix (yellow square) and a
D1×D1D2d matrix (red circle) leading to an overall cost of CMM ·χD3

1 D2d. The two red circles
correspond to the two layers of the PEPS network. Hence, the overall cost for contracting the
MPO into the boundary-MPS at the boundary is given by

CSVDχ
2D2

1 D2
2 + CMMχD3

1 (D
2
2 + D2)d.

In step (II), the sub-steps b) to d) are basically the same one as the steps a) to c) in step (I),
however we first have to take care of the violet tensor resulting from the SVD performed in
sub-step I.c. The overall computational cost is then given by

(CMM + CSVD)χ
3D2

1 D2
2 + 2CMMχ

2D3
1 D3

2 d .

Because this cost upper bounds the contraction cost at the boundary, cost of contracting each
MPO tensor into the boundary-MPS tensor can be upper bounded by

(CMM + CSVD)χ
3D2

1 D2
2 + 2CMMχ

2D3
1 D3

2 d , (51)

which agrees with the estimate for uniform bond dimension O(χ2D6d) +O(χ3D4) found in
the literature [2,3,47].
Kagome lattice The situation for the kagome lattice is very similar when compared to the
square two-dimensional lattice except more care has to be taken about how to associate the
local tensors to the boundary-MPS tensors. The procedure we adopt here is depicted in Fig-
ure 6. In order to make the procedure more transparent, we first split the boundary vertices at
the tip of each triangle into two lattice sites, before we start the contraction procedure. Fixing
the three bond dimensions in each triangle for the full lattice, we can nevertheless distinguish
their distribution for upwards (K1, K2, K3) and downwards (D1, D2, D3) pointing triangles.
In comparison to the square two-dimensional lattice, we have to distinguish three different
contraction steps, depending on whether we are contracting a tensor on the top right (I), the
top left (II) or in the middle (III) of a hexagon. These three steps are then repeated until the
right boundary of the kagome lattice is reached.

Figure 7 (I) to (III) depicts the details of these three steps, breaking down every step
into the explicit tensor-contractions performed and how expensive they are in terms of the
dimension of the indices of the involved local tensors. In order to realize improved savings,
we allow different distributions of the three bond dimensions in the two triangles for the
upper and lower PEPS-layer, indicated by D↑i /D

↓
i or K↑i /K

↓
i , respectively. Taking the maximum

over the different computational costs in the three different contractions steps for χ2 and χ3
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(III)7−−−→ K1 K3

K2
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Figure 6: Approximate contraction of a PEPS network on the kagome lattice with
the boundary-MPS method. Depending on the position of the local tensor to be con-
tracted into the boundary-MPS in the kagome lattice, three different contractions
have to be performed. We allow for different bond dimensions for up- (Ki) and
downwards (Di) pointing triangles.

separately, we can upper bound the computational cost of each of all local contractions by

CSVDχ
3 max(D↑1 D↓1 D↑2 D↓2 , D↑3 D↓3K↑2 K↓2 , K↑1 K↓1 K↑3 K↓3)

+CMMχ
3 max(K↑2 K↓2 K↑3 K↓3 , D↑1 D↓1K↑1 K↓1 , D↑2 D↓2 D↑3 D↓3)

+CMMχ
2d max(K↑2 K↓2 K↑3 K↓3 D↑1 D↑2 + K↓2 K↓3 D↑1 D↓1 D↑2 D↓2 ,

D↑1 D↓1K↑1 K↓1 D↑3K↑2 + D↓1K↓1 D↑3 D↓3K↑2 K↓2 , D↑2 D↓2 D↑3 D↓3K↑1 K↑3 + D↓2 D↓3K↑1 K↓1 K↑3 K↓3).

In the case, where D1 = D3 ≤ D2, choosing the same distribution of the bond dimensions in
both layers and both types of triangles, i.e. D↑i = D↓i and Ki = Di we obtain an upper bound of

(CSVD + CMM)χ
3D2

1 D2
2 + 2CMMχ

2D3
1 D3

2 d, (52)

which has a similar scaling as the square two-dimensional lattice. In the case where all bond
dimensions are equal, we arrive at a scaling O(χ3D4) +O(χ2D6d) in correspondence with
previous results in the literature [45].

A.3 Approximate contraction of the RVB state

In this section, we apply the estimates on the computational costs of approximately contracting
a PEPS on the kagome lattice derived so far in the context of the restrictions and degenerations
for the RVB state. As discussed in Section 5.3 considering general restrictions and allowing for
unequal bond dimension, we can obtain a PEPS representation of the RVB state, where two
out of three bonds on each triangle of the kagome lattice are reduced to bond dimension 2
instead of 3 (see (45)).

According to (52), the computational cost of contracting a PEPS with bond dimensions
satisfying D1 = D3 ≤ D2 around a triangular plaquette scales as C1χ

3D2
1 D2

2 + C2χ
2D3

1 D3
2 d,

where Ci are constants and χ denotes the bond dimension of the boundary-MPS. Hence, the
optimized tensor network representation of the entanglement structure generated by un-
derlying the RVB state reduces the prefactor of χ3 from 81C1 to 36C1 and for χ2d from 729C2
to 216C2 for restrictions. Note that this improvement applies to the contraction of all tensor
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Figure 7: Illustration of the three contraction steps involved in the approximate con-
traction of a PEPS on the kagome lattice. (I) Details on step (I): The first row de-
picts the overall contraction step. (a)-(d) show the contractions performed in each
sub-step and their corresponding computational cost. The superscript l indicates,
whether a given index corresponds to the upper or lower level of the PEPS network.
As in the case of the square two-dimensional lattice, lines terminating in a tensor
for a given step are contracted, whereas non-terminated lines correspond to free
indices of the tensors. (II) Details on step (II): The first row depicts the overall con-
traction step. (a)-(d) show the contractions performed in each sub-step and their
corresponding computational cost. The superscript l indicates, whether a given in-
dex corresponds to the upper or lower level of the PEPS network. As in the case of the
square two-dimensional lattice, lines terminating in a tensor for a given step are con-
tracted, whereas non-terminated lines correspond to free indices of the tensors. (III)
Details on step (III): The first row depicts the overall contraction step. (a)-(d) show
the contractions performed in each sub-step and their corresponding computational
cost. The superscript l indicates, whether a given index corresponds to the upper or
lower level of the PEPS network. As in the case of the square two-dimensional lattice,
lines terminating in a tensor for a given step are contracted, whereas non-terminated
lines correspond to free indices of the tensors.

networks based on the entanglement structure on the kagome lattice. The same entan-
glement structure representing the RVB state is used in [32] to construct a family of quantum
states which interpolates between the RVB state and a dimer state, which are believed to lie in
different quantum phases. Since we have improved the PEPS representation of the entangle-
ment structure behind all these states, the saving we have obtained for the RVB state applies
to all of them. Note further that, obviously, there are ways to optimize the contraction cost
for specific tensor networks. In [32], for instance, the kagome lattice is first transformed to a
square lattice for which an RVB-specific improved double layer bond dimension is derived. For
this particular example, our contraction scheme does not provide an advantage, however we
would like to stress that our approach will allow a representation of border bond dimension 2
for any state obtained as a restriction from the Λ entanglement structure.

If we consider the more general case of approximating the plaquette state in terms
of degenerations, we can use the border bond dimension 2 representation of the RVB state
((20)). Employing the parallel contraction algorithm presented in Section 4, allows us to take
advantage of this reduction also in the case of the RVB state or any other tensor network state
based on the entanglement structure on the kagome lattice. The reduction to border bond
dimension 2 reduces the prefactors for the computational effort for the contraction of each of
the 4F expectation values 〈Vi , OVi〉 to 16C1 for χ3 and 64C2 for χ2d as compared to 36C1 and
216C2 for the unbalanced optimal restriction with bond dimension (2,2, 3).
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