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Abstract

The effect of PT -symmetry breaking in coupled systems with balanced gain and loss
has recently attracted considerable attention and has been demonstrated in various pho-
tonic, electrical and mechanical systems in the classical regime. However, it is still an un-
solved problem how to generalize the concept of PT symmetry to the quantum domain,
where the conventional definition in terms of non-Hermitian Hamiltonians is not appli-
cable. Here we introduce a symmetry relation for Liouville operators that describe the
dissipative evolution of arbitrary open quantum systems. Specifically, we show that the
invariance of the Liouvillian under this symmetry transformation implies the existence
of stationary states with preserved and broken parity symmetry. As the dimension of the
Hilbert space grows, the transition between these two limiting phases becomes increas-
ingly sharp and the classically expected PT -symmetry breaking transition is recovered.
This quantum-to-classical correspondence allows us to establish a common theoretical
framework to identify and accurately describe PT -symmetry breaking effects in a large
variety of physical systems, operated both in the classical and quantum regimes.
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1 Introduction

The breaking of parity and time-reversal (PT ) symmetry has been widely studied in dissipative
systems with an exact balance between gain and loss [1–5]. Owing to this symmetry, the dy-
namical matrix describing such systems may exhibit a purely real eigenvalue spectrum, despite
a constant exchange of energy with the environment. As the dissipation rates are increased
above a critical value, at least one pair of eigenvalues develops imaginary parts with opposite
signs and the corresponding gain and loss eigenmodes no longer exhibit the symmetry of the
underlying equations of motion. Over the past years, this effect has attracted considerable
attention and has been demonstrated in various optical [6–8], electrical [9] and mechani-
cal [10] settings. Apart from purely fundamental interest, this mechanism also has many im-
portant practical consequences, for example, for the operation of multi-mode lasers [11, 12],
enhanced measurements [13–18], the bandstructure of dissipative lattice systems [19–22] or
energy transport at macroscopic [23] and microscopic [24,25] scales.

In connection with PT -symmetric systems it is common to use the terminology of non-
Hermitian ‘Hamilton operators’. However, the effect described above is a priori only defined
for classical systems that can be modeled in terms of a complex-valued dynamical matrix1.
Indeed, in a full master equation (ME) formulation of open quantum system [27], there is no
such transition between purely real and complex conjugated eigenvalues of the corresponding
Liouville operator. Also, at a microscopic level, the time-reversal equivalence between loss and
gain is broken by quantum fluctuations [28–31]. Therefore, it is still an unresolved question
how to formally define PT -symmetry for dissipative quantum systems [32] and if the breaking
of this symmetry can exist at all at a microscopic level [31]. In several previous studies this
question has been addressed by looking at coupled quantum oscillators [17,28–31,34–39] or
bosonic atoms [40]with gain and loss, or at equivalent coherent, but unstable systems [41]. In
such settings, the symmetry-breaking effect can still be observed in the dynamics of the mean
amplitudes, which simply reproduce the classical equations of motion, while quantum effects
lead to increased fluctuations. However, these findings cannot be generalized to non-bosonic
systems with a finite dimensional Hilbert space, where mean-field approximations are neither
justified nor uniquely defined. The study of purely linear models also provides no insights into
the stationary states of PT -symmetric systems, which do not exist unless nonlinear saturation
effects are taken into account [24,30].

In this work we introduce a symmetry transformation for Liouville operators, which ex-
tends the conventional definition of PT symmetry to arbitrary open quantum systems. We
show that under very generic conditions, the existence of this symmetry implies that the
steady state of the system can be tuned between a fully symmetric and a symmetry-broken
phase. While the change from one to the other limiting state is always continuous, it be-

1This excludes possible non-Hermitian quantum theories beyond the standard formulation of quantum mechan-
ics [26].
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comes more and more pronounced as the dimension of the Hilbert space is increased, and a
sharp PT -symmetry breaking transition emerges in the semiclassical limit. This quantum-to-
classical correspondence allows us to establish a unified theoretical framework for analyzing
PT -symmetry breaking effects in a wide range of physical systems and to identify character-
istic properties and experimentally observable features that are common to all of them.

2 PT -symmetric quantum systems

We consider a generic bipartite quantum system with a total Hamiltonian H. The two subsys-
tems, A and B, have the same Hilbert space dimension, d, and they are subject to dissipation
described by the local jump operators cA and cB, respectively. The ME for the system density
operator ρ can then be written as (ħh= 1) [27]

ρ̇ =− i[H,ρ] +D[cA]ρ +D[cB]ρ

=− i
�

Heffρ −ρH†
eff

�

+ 2cAρc†
A+ 2cBρc†

B ≡ Lρ.
(1)

Here D[c]ρ = 2cρc†−c†cρ−ρc†c and L≡ L[H; cA, cB] is the Liouvillian superoperator, which
is specified, according to the first line in Eq. (1), in terms of the Hermitian Hamiltonian H and
the two local jump operators cA and cB. In the second line of Eq. (1), the ME equation has
been rewritten such that the first part describes the evolution of a quantum state under the
action of the effective non-Hermitian Hamiltonian

Heff = H − ic†
AcA− ic†

BcB. (2)

This term does not conserve the norm of the state and thus the recycling terms ∼ 2cρc† must
be added to obtain a trace-preserving dynamics.

Given the decomposition of a ME in Eq. (1), it is tempting to define PT -symmetric quan-
tum systems in analogy to the classical case [4, 5], namely as open quantum systems where
(PT )Heff(PT )−1 = Heff. Here P is the parity operator with P(A ⊗ B)P−1 = B ⊗ A and
T iT −1 = −i. However, Heff has only negative imaginary parts because the norm of a state
evolving under Heff always decreases and this symmetry relation can only be satisfied in closed
systems. The same is then also true for the eigenvalues of the full Liouville operator L whose
real part must always be negative or zero. Therefore, while according to Eq. (2) there is a nat-
ural way to introduce non-Hermitian Hamiltonians in open quantum systems and even probe
them via conditional measurements [42–46], there are no PT -symmetric (super-)operators in
the conventional sense. To overcome this problem, one could be less strict and only demand
that the PT symmetry criterion applies to the resulting equations of motion for the expectation
values of system operators. However, this identification is restricted to linear bosonic systems,
where the quantum and classical dynamics of mean values is the same. For fermions, spins or
other finite-dimensional quantum system the same method is not applicable, as illustrated by
a simple example in Appendix A. We conclude that none of approaches used in the literature
so far offers meaningful way to define PT symmetry for generic quantum systems.

To provide such a definition, it is important to keep in mind that the relevant physical
effect of the T -operator is to exchange loss and gain and not to implement a time-reversal
transformation. While for classical systems both operations are equivalent and usually no
distinction is made, this is no longer true for quantum systems. In the simplest example of
a quantum harmonic oscillator the effect of loss with rate Γ is modeled by a jump operator
c =
p
Γ a, where a is the annihilation operator. In turn, the effect of gain with the same rate

can be described by modifying the jump operator to be c =
p
Γ a†. Therefore, in this case we

find that the transformation between loss and gain is implemented in the ME formalism by
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replacing the jump operator by its adjoint, c→ c†, and not by replacing i with −i in any part
of the ME.

Guided by this explicit example, we introduce the following anti-unitary transformation
for operators O,

PT(O) = PO†P−1, (3)

and define an open quantum system to be PT -symmetric, if the corresponding Liouvillian
satisfies

L[PT(H);PT(cA),PT(cB)] = L[H; cA, cB]. (4)

This condition implies that the Hamiltonian H is parity-symmetric and that the local jump
operators are of the form

cA =
p
ΓO⊗1, cB =

p
Γ1⊗O†, (5)

where O can be an arbitrary dimensionless operator.
Before we proceed with a discussion of the physical implications of Eq. (4), let us briefly

comment on some related symmetries and classifications of open quantum systems. First of
all, we remark that the definition given in Eq. (4) differs from the PT -symmetric Liouville
operators introduced originally in Ref. [32] and analyzed for different spin models in Refs. [33,
47, 48]. In those systems, the eigenvalues of the Liouvillian exhibit a particular symmetry in
terms of a cross-shaped pattern in the complex plane, which is broken at larger values of Γ .
However, this property is rather specific and while the systems studied in Refs. [32, 33, 47,
48] satisfy Eq. (4) with a redefinition of P , none of the examples discussed below exhibits
the symmetry considered in these references when d > 2. Therefore, based on currently
known examples, it seems difficult to link this symmetry in the eigenvalue structure to the
conventional effect of PT -symmetry breaking in the appropriate semi-classical limit.

Moreover, there has been considerable interest in the classifications of the symmetries of
non-Hermitian Hamiltonians [19–22] and Liouvillian [49, 50] lattice models for dissipative
fermions. Connected to the classifications of non-Hermitian Hamiltonians, we emphasize that
according to Eq. (3) the PT map is applied to the Hermitian Hamiltonian H and the jump
operators separately, i.e., the transformed Liouvillian is constructed as

L[PT(H);PT(cA),PT(cB)] = −i[PT(H),ρ] +D[PT(cA)]ρ +D[PT(cB)]ρ. (6)

This ensures that the whole transformation remains physically meaningful, which would not
be the case when applying the same map to the non-Hermitian Hamiltonian Heff, as defined
in Eq. (2). Second, the Hermitian adjoint operation O → O† in Eq. (3) is not related to a
state transformation [49–51]. Also, it is applied to the full operators H, cA and cB, rather
than to individual fermionic operators. Therefore, although reminiscent of the well-known
particle-hole or chiral transformations for fermions [51], the symmetry introduced here is, in
general, a different one. For example, consider a jump operator c = a†a, where a is a fermionic
annihilation operator. Then, leaving parity aside, PT(a†a) = a†a 6= aa†. While basic PT-
symmetric systems with linear jump operators, i.e., cA = a† and cB = a, may exhibit a particle-
hole symmetry as well (see, e.g., the example in Appendix A) this symmetry is not, per se,
relevant for the physics discussed below. Indeed, it is always true that H† = H and, apart from
parity, no additional symmetries of the Hamiltonian are required to satisfy Eq. (4). Therefore,
the Liouvillian symmetry introduced in Eq. (3) goes beyond the scope of previous classifications
of dissipative fermionic systems and is also more generally applicable. In particular, it doesn’t
rely on a specific operator algebra or a local Hilbert space dimension, which allows us to discuss
the physical consequences of this symmetry and the quantum-to-classical correspondence of
PT -symmetry breaking in a much broader context.
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Figure 1: Two basic examples ofPT -symmetric quantum systems with a finite Hilbert
space dimension d: (a) two coupled spin S = (d−1)/2 systems and (b) two coupled
harmonic oscillators with a finite number of energy levels. In (c) and (d) we plot
the corresponding dependence of the symmetry parameter ∆ defined in Eq. (8) on
the ratio Γ/g. In (c) the line for S = ∞ is obtained from a Holstein-Primakoff
approximation [see discussion of Eq. (14)].

3 Phenomenology

As a first step, let us illustrate the physical implications of Eq. (4) in terms of two simple
examples: (i) Two coupled spin S = (d − 1)/2 systems with O = S+, where S+ = S x + iS y is
the spin raising operator, and (ii) two coupled harmonic oscillators with O = a†. In the second
example we introduce a finite cutoff occupation number, i.e., a†|n = d − 1〉 = 0. This cutoff
mimics the effect of saturation in realistic systems [24] and allows us to vary the Hilbert space
dimension. In both examples we consider a Hamiltonian of the form

H = g(OAO†
B +O†

AOB), (7)

where OA = O⊗1 and OB = 1⊗O. This Hamiltonian describes the coherent exchange of energy
between the two subsystems with a strength g. The resulting Liouvillian, L[H;

p
ΓOA,

p
ΓO†

B],
then satisfies Eq. (4).

We calculate the steady state, ρ0, satisfying Lρ0 = 0, for different ratios Γ/g and show in
Fig. 1 the symmetry parameter [30]

∆=
|〈O†

AOA−O†
BOB〉|

〈O†
AOA+O†

BOB〉
≤ 1. (8)

This is an experimentally observable quantity, only requiring measurements of local operators,
which provides a measure for the symmetry of the system, i.e., ∆ = 0 for a parity-symmetric
density operator, PρP−1 = ρ. For the current examples,∆ represents the normalized popula-
tion imbalance between the two subsystems. For small dimensions d, this parameter changes
gradually from 0 to 1 with increasing Γ . This smooth variation is expected since observables
of finite dimensional quantum systems cannot exhibit any non-analytic behavior. However, as
the system size increases, ∆ vanishes for Γ/g < 1 in the limit d →∞, while it retains a finite
value for Γ/g > 1. In both examples, the critical ratio is Γ/g = 1, which corresponds to the

5

https://scipost.org
https://scipost.org/SciPostPhys.9.4.052


SciPost Phys. 9, 052 (2020)

0

0.5

(a) (c)

0 1 2

S=4
S=16
S=

0
0 1 2

0

d=5
d=15
d=30

1

10-1

10-2

10-3

d=5
d=15
d=30

d S=4
S=16
S=

0 1 2

(b) (d)
0.2

0.1

0.5

1 10 100

0

40                   

(e)

(f)

d=5
d=10
d=15
d=25

d=5
d=10
d=15
d=25

0.2

0.1

0 1 2 2

40                   2

1

10-1

10-2

10-3

Figure 2: (a) Plot of the purity P of the steady state of a PT -symmetric spin dimer
[see Fig. 1(a)] as a function of the dissipation rate and for different values of S. The
inset shows that the purity satisfies P ' 1/d2 for Γ � g. (b) Plot of the entangle-
ment negativity N [52, 53] for the same model. In (c) and (d) the same quantities
are plotted for PT -symmetric systems with random jump operators, as described in
Appendix C, and in (e) and (f) for the generalized spin model defined in Sec. 6.

dynamical PT -symmetry breaking point of an equivalent linear oscillator system with gain
and loss [4, 5]. We thus conclude that PT -symmetry breaking, i.e., a non-analytic transition
between two steady states with different symmetries, exists even for non-harmonic and finite
dimensional quantum systems, but only as an emergent phenomenon in the semiclassical limit.

To obtain better insights into the nature of the two phases, we plot in Fig. 2(a) the pu-
rity, P = Tr{ρ2

0}, for the steady state of the spin system. This quantity again exhibits a sharp
transition around Γ = g and shows that the symmetric and symmetry-broken phases are char-
acterized by a highly mixed and an almost pure steady state, respectively. More precisely, the
scaling P(Γ → 0) ' d−2 implies that in the symmetric phase the steady state is close to the
maximally mixed state, ρ0(Γ � g)' 1/d2. This indicates that for Γ < g the gain and loss pro-
cesses cancel out on average while quantum fluctuations still occur with rate Γ and completely
randomize the system’s long-time dynamics [24, 30]. In contrast, for Γ > g, the incoherent
processes dominate and pump the spins into the polarised pure state, ρ0(Γ � g) ' |ψ0〉〈ψ0|,
which satisfies OA|ψ0〉 = O†

B|ψ0〉 = 0. Closer to the transition point, the coherent coupling
creates excitations ∼ O†

AOB|ψ0〉 on top of this state, which are strongly correlated. As shown
in Fig. 2(b), this results in a characteristic peak in the entanglement negativity N around
the transition point, which is a measure of non-classical correlations between the two subsys-
tems [52, 53]. These correlations vanish again in the symmetric phase due to fluctuations.
Consistent with similar features observed in saturable oscillator systems [24], this peak in
the entanglement shows that even for d � 1 the PT -symmetry breaking transition retains
genuine quantum mechanical properties.
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4 Existence of a fully symmetric steady state

We will now show that the properties discussed above for specific examples are indeed a gen-
eral consequence of the symmetry relation in Eq. (4). Firstly, we demonstrate that, for any
Liouvillian that satisfies this condition and where the spectrum of H is non-degenerate, the
fully mixed state,

ρ0(Γ → 0+) =
1

d2
, (9)

is a stationary state of L in the limit of a vanishingly small, but finite Γ . To do so we decompose
L = LH + LΓ , where LHρ = −i[H,ρ] describes the coherent evolution and
LΓρ =

∑

η=A,B(2cηρc†
η− c†

ηcηρ−ρc†
ηcη). Further, we write the density operator in the eigen-

basis of H as
ρ =

∑

n,m

ρn,m|En〉〈Em|, (10)

where H|En〉 = En|En〉. For Γ = 0 any diagonal state with ρn,m = 0 for n 6= m is a stationary
solution of the ME, but the populations pn = ρn,n are not uniquely determined. To show that
for small but finite Γ only the fully mixed state is dynamically stable, we write pn = 1/d2+δpn.
Up to first order in Γ we then obtain

δṗn =
2
d2
〈En|

�

[cA, c†
A] + [cB, c†

B]
�

|En〉. (11)

We now make use of the relation PcBP−1 = c†
A, which follows from Eq. (5), and the fact that

the eigenstates of H are also eigenstates of the parity operator, i.e., P |En〉= ±|En〉. This allows
us to rewrite

〈En|[cB, c†
B]|En〉= 〈En|P[cB, c†

B]P
−1|En〉= −〈En|[cA, c†

A]|En〉, (12)

and δṗn = 0. This result shows that for PT -symmetric quantum systems the fully mixed
state is stationary in the presence of a small amount of dissipation, even when each individ-
ual jump operator cA,B would drive the system into a polarized state. Note that the analysis
presented here assumed a non-degenerate spectrum, i.e., the absence of any additional sym-
metries, S, other than parity. In the general case the same arguments still hold as long as all
eigenstates with different parity are separated by a finite energy gap, or, more formally, as long
as [S,P] = 0. For a detailed proof and explanation see Appendix B.

5 Symmetry-breaking transition

While the existence of a fully symmetric steady state follows directly from Eq. (4), there are
many trivial cases where this is also the only stationary state, for example, when O is Hermitian.
Therefore, we are interested in systems where there is a competing asymmetric phase in the
limit Γ →∞. To ensure that such a phase exists we now restrict ourselves to a Hamiltonian
as given in Eq. (7) and a non-Hermitian jump operator of rank d − 1 with Tr{O} = 0. This
implies that there are dark states |D〉 and |D∗〉, which satisfy O|D〉= 0 and O†|D∗〉= 0. Under
these assumptions we obtain the symmetry-broken phase

ρ0(Γ →∞) = |D〉〈D| ⊗ |D∗〉〈D∗|, (13)

which is fully asymmetric, ∆ = 1, and has maximal purity, P = 1. Note, however, that for
observing symmetry-breaking effects it is not essential that ρ0(Γ →∞) is a pure state and,
later in this manuscript, we discuss examples where the symmetry-broken state is mixed.
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Given the two distinct limiting phases, the remaining question is, if there is a sharp phase
transition between them at a critical intermediate value Γc . For the spin system discussed above
this question can be rigorously answered in the limit S� 1 by examining the stability of linear
fluctuations on top of the fully polarized state. This can be done using a Holstein-Primakoff
approximation [54], where the spin operators are replaced by a pair of bosonic operators,
S−A '

p
2S a†, S+A '

p
2S a, S−B '

p
2S b and S+B '

p
2S b†, where [a, a†] = [b, b†] = 1. This

approximate transformation brings the ME into a quadratic form,

ρ̇ = −i[Hlin,ρ] + ΓD[a]ρ + ΓD[b]ρ, (14)

with Hamiltonian Hlin = g(ab+ a† b†). From the analytic solution of this linearized model we
find that the fluctuations 〈a†a〉 and 〈b† b〉 diverge at the point Γc = g. Explicitly, in terms of
the original spin expectation values we obtain

〈Sz
A/B〉0 = ±S ∓

g2

2(Γ 2 − g2)
. (15)

Similarly, we can use well-known results for Gaussian states [55] and derive analytic expres-
sions for the purity and the entanglement negativity,

P = 1−
g2

Γ 2
, N =

g
2Γ

. (16)

These predictions are shown as the curves labeled by S →∞ in Fig. 2(a)–(b). Within this
Holstein-Primakoff approximation, the substantial amount of entanglement with a maximum
of N (Γ = Γc) = 1/2 at the transition point can be directly understood from the form of Hlin,
which represents a two-mode squeezing interaction.

In general, such an analytic treatment is not possible and, in many situations, PT -symmetry
breaking can occur as a smooth crossover, rather than a sharp phase transition. Nevertheless,
it turns out that the appearance of a sharp transition in the limit of large d does not require
any specific fine tuning of the dissipation mechanism. This point is illustrated in Fig. 2(c)–(d),
where we consider a set of PT -symmetric quantum systems with randomly generated jump
operators O. For each individual line in this plot a jump operator O has been constructed by a
Cholesky decomposition of an operator R= OO†, which is drawn randomly from the Gaussian
orthogonal ensemble (GOE) (see Appendix C for more details). This operator O is then used
to obtain both the dissipative and coherent terms as in Eqs. (5) and (7). For each individual
instance, we observe the characteristic transition between the fully mixed and pure states and
the asymmetric entanglement peak. These features sharpen as the Hilbert space dimension is
increased. Therefore, this study demonstrates that sharp PT -symmetry breaking transitions
are not restricted to simple systems with a direct classical counterpart and are expected to
occur in a large range of systems that obey Eq. (4).

6 Generalizations

The symmetry defined in Eq. (4) and the proof of the fully mixed symmetric phase presented in
Sec. 4 can be generalized in a straightforward manner to systems with multiple jump operators.
For example, we see the same symmetry-breaking effect in a spin system, with Hamiltonian as
above, but considering two competing jump operators for each site,

c1,2
A =

√

√1± p
2

S±A , c1,2
B =

√

√1∓ p
2

S±B . (17)
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This model, L[H; {
p
Γ c1,2

A }, {
p
Γ c1,2

B }], represents two coupled spins, where one is coupled to a
positive temperature reservoir while the other is coupled to a negative temperature reservoir.
Crucially, this model still obeys the symmetry relation defined in Eq. (4). In Fig. 2(e)–(f) we
plot the purity and entanglement negativity for this model with p = 0.8. Although in this
case the symmetry-broken phase in the limit Γ → ∞ is mixed and the transition is shifted
to Γ/g = 1/p, all the signatures of PT -symmetry breaking described above are still clearly
visible.

Even more relevant is the fact that all the arguments presented above still apply to sys-
tems where parity is complemented by another unitary symmetry, P → PU . For example, by
choosing U = eiπ(Sx

A+Sx
B ) and a Hamiltonian H = g(S+A S+B + S−A S−B ), we obtain a PT -symmetric

quantum system L[H;
p
ΓS−A ,

p
ΓS−B ]. While this model contains only loss processes and the

occupation numbers 〈S+A S−A 〉 = 〈S
+
B S−B 〉 remain symmetric for all ratios of Γ/g, the Liouvillian

respects the symmetry of Eq. (4) with a generalized anti-unitary map

PT(O) = PUO†(UP)−1. (18)

As a consequence one observes the same transition from a fully mixed to a low-entropy state,
as in the spin model discussed above. The symmetry relation in Eq. (4) is thus a powerful tool
to identify PT -symmetry breaking effects, even in systems where our naive intuition fails.

7 Discussion and Conclusions

In summary, we have introduced the symmetry relation, Eq. (4), for Liouville operators, which
extends the notion of PT symmetry to bipartite open quantum systems. This definition is
consistent with previous examples of linear PT -symmetric quantum systems for which the
conventional definition of PT symmetry is recovered in the limit of large oscillation ampli-
tudes. At the same time the map, PT, in Eq. (3) is completely general and can be used to
define PT symmetry in highly nonlinear systems or for dissipation processes that have no
direct classical counterpart.

In this paper we have mainly focused on the steady state ρ0, which is determined for
all parameters by the zero eigenvector of L. In classical systems, PT -symmetry breaking is
usually discussed in terms of a transition from purely oscillatory to exponentially damped
or amplified dynamics, which is associated with the appearance of exceptional points in the
eigenspectrum of the dynamical matrix. This has motivated similar studies of the appearance
of exceptional points in the spectra of Liouville operators [56, 57]. While symmetries as in-
troduced in Ref. [32] lead to remarkable patterns in the complex eigenvalues, which can be
broken above a certain dissipation strength, such transitions are not necessarily associated
with a qualitative change in the dynamics of physical observables. With the symmetry rela-
tions we introduce here, such dynamical changes can be well observed, such as in Fig. 3, where
we consider the example of two spin S = 4 systems, as shown in Fig. 1(a),(c). The two plots
show the full Liouville spectrum below and above the transition point in Fig. 3(a)–(b) and
the associated dynamics in panels (c)–(d). For the two cases we don’t observe any significant
differences in the overall eigenvalue structure. Still the evolution of the observables 〈Sz

A,B〉
undergoes the classically expected change from an oscillatory to an overdamped behavior.

This final example confirms our previous conclusion, namely that PT -symmetry breaking
is an emergent phenomenon in the dynamics and stationary expectation values of macroscopic
observables, which, in general, depend little on individual eigenvalues of Heff or L. Based on
the symmetry in Eq. (4), this effect can now be studied more systematically and used to make
physically consistent predictions for real experiments. This will be important, for example, for
trapped atoms [58], optomechanics [59] or circuit QED systems [60], where gain and loss but
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Figure 3: Plot of all complex eigenvaluesλi of the LiouvillianL for thePT -symmetric
spin system introduced in Fig. 1(a) with S = 4. In (a) the spectrum is shown below
(Γ/g = 0.5) and in (b) above (Γ/g = 1.5) the transition point. For the same parame-
ters, (c) and (d) show the corresponding time evolution of the observables 〈Sz

A,B〉(t),
starting from the initial state ρ(t = 0) = | − S〉〈−S| ⊗ |S〉〈S|.

also much more complex dissipation processes can be engineered [61,62]. Our discussion also
shows that there are still many interesting conceptual questions to address. This concerns, in
particular, the existence and the nature of the PT -symmetry breaking transition in extended
lattices [24, 63] and interacting quantum many-body system, for which exact numerical sim-
ulations are no longer available.
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A Mean field equations of motion

In this appendix we discuss a basic example of a bipartite quantum system, which illustrates
how the same structure of the Liouville operator results in very different equations of mo-
tion for the mean values of bosonic, fermionic and spin operators. To do so we consider the
following ME

ρ̇ = −i g[O†
AOB +OAO†

B,ρ] + ΓgD[O
†
A]ρ + ΓlD[OB]ρ = Lρ, (19)

which has the same structure as the one assumed in most other examples in this paper. In
particular, for Γl = Γg the Liouvillian L satisfies the symmetry relation in Eq. (4) for arbitrary
operators OA and OB.
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In a first step we assume that the two subsystems are represented by two bosonic modes
with annihilation operators a and b. We identify OA = a and OB = b and define the vector of
expectation values ~ψb = (〈a〉, 〈b〉)T . This vector obeys the equation of motion

∂t
~ψb = −iHb

~ψb, where Hb =

�

iΓg g
g −iΓl

�

. (20)

We see that for Γl = Γg the Liouvillian PT symmetry is directly reflected in the non-Hermitian
two-by-two matrix Hb, which satisfies (PT )Hb(PT )−1 = Hb. We now perform the same
calculations with a and b representing fermionic annihilation operators. The mean values of
these operators, ~ψf = (〈a〉, 〈b〉)T , obey a very similar equation of motion

∂t
~ψf = −iHf

~ψf, where Hf =

�

−iΓg g
g −iΓl

�

, (21)

but in this case (PT )Hf(PT )−1 6=Hf.
Non-interacting bosons and fermions are rather special, since in both cases the equations

of motion for 〈a〉 and 〈b〉 are closed. In general, this is not the case and, for example, when
considering two S = 1/2 particles with OA = σ−A and OB = σ−B we already obtain 16 coupled
equations for the expectation values of all possible combinations of spin operators. While here
we do not write out the resulting matrix Hs explicitly, it is straight forward to show that also
in this case (PT )Hs(PT )−1 6=Hs. Basically, this result can already understood by looking at
a single spin with loss and gain, i.e.,

ρ̇ = ΓgD[σ+]ρ + ΓlD[σ−]ρ = Lρ. (22)

For this system we define the vector ~ψs = (〈σ−〉, 〈σ+〉, 〈σ+σ−〉, 〈σ−σ+〉)T , which obeys

∂t
~ψs = −iHs

~ψs, where Hs =







−i(Γl + Γg) 0 0 0
0 −i(Γl + Γg) 0 0
0 0 −2iΓl +2iΓg
0 0 +2iΓl −2iΓg






. (23)

This simple example shows that for spin systems, exchanging gain and loss is not the same as
replacing i→−i in the dynamical matrix for the evolution of mean values.

We conclude that whether or not the symmetry of the Liouville operator defined in Eq. (4)
maps onto a conventional PT symmetry condition for the equations of motion depends on the
type of quantum system under consideration. For this simple example we also find that both
the Liouville operator as well as the corresponding non-Hermitian effective Hamiltonian are
invariant under a particle-hole transformation,

a→ b†, b→±a†, (24)

where the plus (minus) sign applies to bosons (fermions). However, this invariance is lost
when additional energy terms are added, e.g., H → H ′ = H+ω0(a†a+ b† b), while it does not
affect the PT symmetry.

B Fully symmetric steady state

In this section we detail and extend the proof for the linear stability of the fully mixed symmet-
ric phase in the limit Γ → 0 discussed above. As a starting point we write the density operator
as

ρ =
∑

n,m

ρn,m|En〉〈Em|, (25)
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where |En〉 are the energy eigenstates of H, i.e. H|En〉 = En|En〉. From the PT -criterion in
Eq. (4), we know that [H,P] = 0, and hence we may simultaneously diagonalise the parity
operator P |En〉= ζn|En〉, where |ζn|2 = 1 without loss of generality.

For Γ = 0 the fully mixed state, ρ = 1/d2, is a stationary solution of the ME
ρ̇ = LHρ = −i[H,ρ], but this is also true for any other diagonal state. Therefore, we make
the ansatz ρn,m = δn,m/d

2 + δρn,m and evaluate the evolution of δρn,m up to first order in Γ
[noting that cA,B ∼ O(

p
Γ )],

δρ̇n,m = −
i
ħh
(En − Em)ρn,m +

2
d2
〈En|[cA, c†

A] + [cB, c†
B]|Em〉. (26)

We first assume that En 6= Em. In this case the elements ρn,m represent coherences between
non-degenerate eigenstates and we obtain

δρn,m(t)' −i
2ħh

d2(En − Em)
〈En|[cA, c†

A] + [cB, c†
B]|Em〉 ×

�

1− e−i(En−Em)t/ħh
�

. (27)

Therefore, to lowest order in Γ all these off-diagonal elements of the density matrix remain
bounded and |δρn,m| → 0 for Γ → 0.

For all other matrix elements with En = Em the coherent evolution vanishes and

δρ̇n,m =
2
d2
〈En|[cA, c†

A] + [cB, c†
B]|Em〉. (28)

This results in a linear growth in time, unless the matrix element on the right-hand side is
zero. We now make use of the relation

PcBP−1 = c†
A, (29)

which follows from the PT -symmetry relation for the Liouville operator. Based on this trans-
formation we obtain

〈En|[cB, c†
B]|Em〉= 〈En|P−1P[cB, c†

B]P
−1P |Em〉

= 〈En|P−1[c†
A, cA]P |Em〉

=− ζ∗nζm〈En|[cA, c†
A]|Em〉,

(30)

and the evolution equation from above can be written as

δρ̇n,m =
2
d2
〈En|[cA, c†

A]|Em〉
�

1− ζ∗nζm

�

. (31)

In the case of a Hamiltonian H with a non-degenerate spectrum, Eq. (31) only applies to the
populations pn = ρn,n, in which case |ζn|2 = 1 and the right hand side vanishes. This is the
result given in the main text.

A bit more care must be taken for Hamiltonians with degeneracies imposed by extra sym-
metries beyond that generated by P . Even though the populations in a given basis still remain
fixed, the build-up of coherences between degenerate levels leads to a deviation from the fully
mixed state. If the Hamiltonian has a symmetry, S, such that [H,S] = 0, then the states
generated by applying S to |En〉 are degenerate. From Eq. (31) we see that this leads to a
non-identity steady state when two states |En〉 and |Em〉 with the same energy have a differ-
ent parity, ζn 6= ζm. However, if [P ,S] = 0 then it is straightforward to see that ζn = ζm.
Therefore, for the existence of a fully mixed symmetric phase it is in general not enough that
[H,P] = 0. In addition, we require that all other non-trivial symmetries of the Hamiltonian
also commute with the parity operator, at least within each degenerate subspace.

12

https://scipost.org
https://scipost.org/SciPostPhys.9.4.052


SciPost Phys. 9, 052 (2020)

A simple example where such non-trivial symmetries play a role is the spin model described
by the Hamiltonian

H = g(S+A S+B + S−A S−B ) (32)

and the PT -symmetric ME

ρ̇ = −i[H,ρ] + ΓD[S−A ]ρ + ΓD[S
+
B ]ρ. (33)

This model has a symmetry generated by S = Sz
A − Sz

B which does not commute with P and
indeed one can show that the steady state for this model has spin-A pointing down and spin-B
pointing up independent of the value of Γ/g.

C Random jump operators

In Fig. 2(c)–(d) we calculate the steady state of random PT -symmetric finite dimensional
quantum systems. Here we describe how these random models are constructed. For simplicity
we keep the relationship between jump operators and the Hamiltonian as described in the
main text. We also wish to ensure that the jump operators have a single dark state, such that
in the limit Γ →∞ the purity P → 1.

The procedure we use is then as follows: We first create a random matrix R from the
Gaussian orthogonal ensemble (GOE), i.e., a symmetric matrix with real entries which follow
a Gaussian distribution [64]. This matrix is then shifted by its lowest eigenvalue such that
R′ = R− λ0I is positive semidefinite with a guaranteed zero eigenvalue. To obtain the jump
operator O we then perform a Cholesky decomposition on the resulting matrix,

R′ = OO†, (34)

such that O is a lower triangular matrix. Since the Cholesky decomposition for positive semi-
definite matrices is not unique, we implement this step by first diagonalizing the random matrix
R′,

R′ = U DU†, (35)

with U a unitary matrix and D = diag(0,λ1, . . . ,λd−1), a diagonal matrix where λn are non-
zero eigenvalues. The diagonal matrix D can be decomposed as D = LL†, where only the first
super diagonal of L† is non-zero with (

p

λ1,
p

λ2, . . . ,
p

λd−1). As a result the jump operator
is

O = U LU†. (36)

This procedure of constructing a random jump operator ensures that most of the resulting
decay rates are O(1), due to the fact that the spacing between the eigenvalues of R will follow
a Wigner surmise distribution P(∆E) ∼ ∆E exp(−A∆E2) [64], meaning that there are very
few almost degenerate states. By enforcing L† to only have non-vanishing elements in the first
upper diagonal ensures that it is possible to observe the PT -symmetry breaking transition.
This is not guaranteed in general. For example, by decomposing the diagonal matrix D in
Eq. (35) in terms of two diagonal matrices D =

p
D
p

D, the resulting jump operator would be
Hermitian and there would be no phase transition since the trivial identity state is always a
steady state of such a model.
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