
SciPost Phys. 9, 058 (2020)

Relaxation of bosons in one dimension
and the onset of dimensional crossover

Chen Li1,2, Tianwei Zhou1,3, Igor Mazets2,4, Hans-Peter Stimming4,
Frederik S. Møller2, Zijie Zhu5, Yueyang Zhai6, Wei Xiong1,

Xiaoji Zhou1, Xuzong Chen1? and Jörg Schmiedmayer2†

1 School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

2 Vienna Center for Quantum Science and Technology (VCQ),
Atominstitut, TU-Wien, Vienna, Austria

3 INO-CNR Istituto Nazionale di Ottica del CNR,
Sezione di Sesto Fiorentino, I-50019 Sesto Fiorentino, Italy

4 Research Platform MMM “Mathematics–Magnetism–Materials”,
c/o Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria

5 Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
6 Science and Technology on Inertial Laboratory, Beihang University, Beijing 100191, China

? xuzongchen@pku.edu.cn, † schmiedmayer@atomchip.org

Abstract

We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and
probe the breaking of integrability and the resulting relaxation at the onset of the
crossover from one to three dimensions. In a quantum Newton’s cradle type experi-
ment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe
the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By
investigating the dynamics of the longitudinal momentum distribution function and the
transverse excitation, we observe and quantify a two-stage relaxation process. In the ini-
tial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas
out of the quantum degenerate regime. The momentum distribution function asymptot-
ically approaches the distribution of quasimomenta (rapidities), which are conserved in
an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes to-
wards thermal equilibrium through the collisions with transversely excited atoms. More-
over, we tune the dynamics in the dimensional crossover by initializing the evolution with
different imprinted longitudinal momenta (energies). The dynamical evolution towards
the relaxed state is quantitatively described by a semiclassical molecular dynamics sim-
ulation.
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1 Introduction

The study of relaxation, thermalization and equilibration in an isolated many-body quantum
system [1–4] has a long history starting with von Neumann [5]. An integrable system will
not fully thermalize [6,7], but dephase towards a generalized Gibbs ensemble (GGE) [8–10],
reflecting its many conserved quantities. Bosons in one dimension (1D) [11, 12] are a model
system to study these fundamental questions at the interface between microscopic quantum
evolution and statistical physics. If the interactions are short range, the physics is described
by the integrable Lieb-Liniger model [13–15].
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However, in physical realization in the laboratory, “integrability” is never perfectly main-
tained. If the system is only approximately integrable, the dephased state is pre-thermal and is
expected to reach thermal equilibrium at a much later time [16,17]. The integrability of iden-
tical bosons in 1D with short-range interactions can be broken by numerous effects [18–27].
Moreover, in a real experimental implementation, the strict 1D condition is maintained only
within a limited time frame. For example, inevitable imperfections and noise lead to heating,
which drives the system into the dimensional crossover regime, breaking integrability to some
extent [28,29].

The pioneering work of Kinoshita et al. [6] introduced the Newton’s cradle into the micro-
scopic world as a typical near-integrable model. Since then it has attracted broad interests in
the quantum gas community [24–27]. In this “quantum Newton’s cradle”, opposite longitudi-
nal momenta are imprinted on the atomic ensembles, which then oscillate in the 1D-trap and
collide. If the imprinted momenta are much smaller than required to excite transverse excita-
tions, the oscillations persist for many atomic collisions. In Kinoshita et al. [6] the 1D condition
is guaranteed by applying a very shallow longitudinal trap, so that high energy particles can
leave the 1D traps at both ends. In return, the system exhibits significant loss [30–32].

In our work, we revisit the quantum Newton’s cradle setting and study the dynamics of the
longitudinal momentum distribution function (MDF) and the transverse excitation at the onset
of 1D-3D crossover [18,33,34]. Opposite to Ref. [6], we retain nearly all the atoms during the
dynamical evolution, thus significantly extend the observation time up to 400 oscillation peri-
ods. The non-equilibrium dynamics occur in two stages, dominated by different mechanisms.
At a short time scale, the single-body dephasing reduces the 1D density, thus rapidly drives the
1D system out of the degenerate regime and asymptotically approaches the non-degenerate
limit. During this time, the oscillation period averaged distribution of quasimomenta (also
referred to as rapidities) is nearly conserved, while the MDF deforms significantly and finally
in the non-degenerate limit tends to coincide with the quasimomentum distribution. At longer
times, the system smoothly evolves into a dimensional crossover from 1D to 3D with a small
fraction of the atoms transversely excited. The system finally relaxes to an equilibrium with a
Gaussian momentum distribution suggesting a thermal final state.

Within the non-degenerate regime, accurate predictions for the system can be obtained
very efficiently using a simple molecular dynamics (MD) calculation [35–38]. MD is a well-
established numerical tool of simulation of many-body dynamics in various fields such as
physics of fluids or chemical physics. In MD, the center-of-mass dynamics of particles
(molecules) are classical, subject to the Newtonian mechanics. The internal degrees of free-
dom can be discretized (quantized). The main prerequisite to use the MD is therefore the non-
degeneracy of the system, which is necessary to allow for the classical description of center-
of-mass trajectories of individual molecules in a simulation. Alternatively, one could describe
the system using the recently developed theory of generalized hydrodynamics (GHD), which
has been proposed to describe dynamics of 1D quantum gases at or close to the integrable
point [27,39–43]. Unlike other methods, GHD takes into account interactions between parti-
cles and remains across all phases of the Lieb-Liniger model. Recently, we have extended the
applicability of GHD to the dimensional crossover regime by including transversely excited
states [44]. Although that approach displayed very promising results on describing realistic
systems in short to intermediate time scales, employing the full machinery of GHD to describe
a primarily non-degenerate gas seems disproportionate. Therefore, within the present paper’s
scope, we opt for the much simpler MD simulations, whose efficiency allows us to account for
the whole spectrum of transverse excitations in an easy and efficient way and makes it more
suitable for describing the intermediate to long-term dynamics. The simulation results show
an excellent quantitative agreement with the experimental observations.

The paper is organized as follows. In Sec. 2, we introduce the experimental setup, methods,
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Figure 1: Experimental setup. The 1D Bose gas is prepared by adiabatically loading
a BEC into a 2D optical lattice (green arrows). A sequence of Bragg pulses (blue
arrows) is applied to excite the atoms to oscillate and collide in the 1D traps. After
some duration, the atoms are released from the 1D traps and detected after TOF
(yellow arrows), providing us the longitudinal MDF (horizontal imaging) and the
fractional population of atoms in transverse states (vertical imaging).

and conditions. In Sec. 3, we present the experimental observations of MDF. In Sec. 4, we
evaluate the dephasing process and observe that it is independent of the 1D density. In Sec. 5,
we study the relaxation of MDF under the near-integrable condition, as the 1D systems evolve
from the degenerate to non-degenerate regimes. In Sec. 6-7, we introduce the MD simulation
and study the dynamical process towards thermalization at the onset of 1D-3D crossover. We
compare the predictions of our simulation to experimental measurements in both longitudinal
and transverse degrees of freedom. In Sec. 8, we further explore the dynamics initialized with
a significant number of atoms having larger collision energies than the threshold of transverse
excitation. In Sec. 9, we discuss the effect of virtual excitations as an alternative mechanism
of breaking integrability in 1D. In Sec. 10, we draw the conclusions.

2 Experimental setup

2.1 Preparation and characterization of 1D gases

We start our experiment by preparing a 87Rb BEC in an all-optical trap. The BEC is then
adiabatically loaded into a square array of 1D traps formed by a 2D optical lattice created with
two retro-reflected perpendicular laser beams (see Fig. 1). The atoms are strongly confined in
transverse directions (y and z) in 1D traps with a trap frequency ofω⊥/2π= 31.0(3)kHz and
weakly confined in the longitudinal direction (x) withω‖/2π= 83.3(8)Hz (see Appendix A.1
for more details). The prepared 1D gases are characterized by the following key parameters:

Atom number. In the experiment, the atom number per tube varies across the 1D trap array.
To balance the contributions from each tube, we calculate the weighted-average atom number.
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The effect of the lattice loading procedure on the atom-number is considered by following the
method proposed in Ref. [45]. The number of atoms per tube strongly depends on the total
atom number, Ntot , of the BEC. By tuning Ntot between 1 × 104 and 1 × 105, the atoms are
distributed in 400 to 1200 tubes with a weighted-average atom number per tube, N , ranging
from 40 to 130.

Interaction strength. The interaction strength is characterized by the dimensionless Lieb-
Liniger parameter γ = c/n1D (we use the standard notation for the Lieb-Liniger model:
c = mg1D/ħh2 and n1D is the mean 1D density) [12–14, 46]. To account for the inhomoge-
neous distribution of atoms over the tubes, we calculate the weighted average for γ. At the
beginning of the evolution, γ0 = 1.5 and 0.7 for the systems with N = 40 and 130, respec-
tively. As the dephasing proceeds, the atoms spread along the tubes and the 1D density n1D
drops, thus increasing γ. When the system is fully dephased, γ ∼ 6 for N = 40, and γ ∼ 2.5
for N = 130.

Temperature and degeneracy. The temperature of the 1D gases is evaluated with the half-
width at half-maximum (HWHM) of the Lorentzian-like longitudinal MDF before the Bragg
pulses are employed. The inhomogeneous density profile is considered via the local-density
approximation [47–50], and the significantly strong interaction is taken into account in a
quantum Monte Carlo calculation [51]. We obtain the temperatures T = 34 nK (eT = 1.6)
and T = 94 nK (eT = 4.4) for N = 40 and N = 130, respectively. The reduced temperature
eT = 2ħh2kB T/(mg2

1D), together with γ, characterize the degeneracy of 1D gases. For eT � 1,
the crossover from degenerate to non-degenerate regime occurs at γ ' eT−1/2 [52]. As such,
our Newton’s cradle experiments start in the intermediate regime of degeneracy and approach
the non-degenerate limit as the dephasing occurs.

Heating rate. Heating is evaluated by holding a BEC in the identical trapping potential with-
out a Bragg-pulse excitation. Within the time scale of our experiment (4.8 s), we observe ex-
citation of about 3% of the atoms to the first transversely excited state and hardly any to the
second state (see Appendix A.2).

Tunneling between 1D tubes. Under our experimental conditions, the residual single-atom
tunnel coupling (J < 0.01 s−1) is too small to influence the longitudinal dynamics. The Joseph-
son frequency in our system is ωJ =

p

2J(2J + 2µ/ħh)� ħhk2
L/m, which holds even for higher

transversely excited states nr = 1 or 2 which show an increased J . Here µ is the chemical
potential. As such, we can safely neglect the effect of tunneling.

2.2 Excitation of longitudinal motion

To start the non-equilibrium dynamics in the longitudinal direction, a sequence of two Bragg
pulses using retro-reflected λ = 852nm light is employed on the 1D gases (Fig. 1). Neu-
tral atoms initially at rest are diffracted to a series of momentum states e2niħhkBrag g x |ψ0〉 when
exposed to the standing wave light pulses, where kBrag g = 2π/852 nm is the recoil momen-
tum and |ψ0〉 is the atom’s (low-momentum) state before scattering [53–58]. Following the
method described in Ref. [59] we can accurately control the resulting momentum distribution
function (MDF) by tuning the pulse intensity V0 and the time sequence of pulse lengths t1,
t3, and separation t2 (illustrated in Fig. 2). In this way we prepare a large variety of initial
MDFs from where our study starts. The ones used in this paper are presented in Fig. 3 and
provide us with varying fractions of atoms with momenta |k| > kth. Here kth =

p

2mω⊥/ħh
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Figure 2: Experimental sequence (not to scale). Green: lattice depth as a function
of time. The lattice is turned off in 0.5 ms for measuring the longitudinal MDF and
in 2 ms for measuring the transverse excitation. Blue: Bragg pulses characterized
by the pulse intensity V0 and the time sequence [t1, t2, t3]. Yellow: imaging pulse
applied after a TOF of 10 ms (for N = 40) or 30 ms (for N = 130).
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Figure 3: Initial MDFs (experimental measurements) and their corresponding Bragg
pulse sequences. The pulse intensity V0 is expressed in units of ER = (ħhkBrag g)2/2m.
The red vertical lines indicate the momenta ±kth.

is the threshold momentum, and two head-on colliding atoms with momenta ±kth have the
required collision energy (Eth = 2ħhω⊥) for populating the transversely excited states [18].

The momenta ±2kBrag g correspond to∼ 40% of the excitation energy Eth, while ±4kBrag g
and ±6kBrag g are beyond the excitation threshold. In Sec. 3-7, we will first investigate the
dynamics initialized with the distributions shown in Fig. 3 (a) and (b), where hardly any atom
has the energy to be transversely excited at the beginning of dynamical evolution1. In Sec. 8,
we will further show the results starting with higher-energy distributions shown in Fig. 3 (c)-
(h).

1The quantities that characterize the dynamics during a collision process are actually the quasimomenta rather
than the bosonic momenta of two particles. Owing to the interaction, the quasimomentum distribution is in general
broader than the MDF. Thus, we expect< 0.1% and∼ 2% of atoms obtain the quasimomenta beyond the excitation
threshold for N = 40 and N = 130, respectively. These values are estimated according to the method described in
Sec. 6.
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Figure 4: Oscillations in the first period (time resolution of measurements
∆t = 0.2 ms). The distributions are shown in log scale with the maximum normal-
ized to unity. The oscillation periods for±2kBrag g , ±4kBrag g , ±6kBrag g are measured
to be 12 ms, 13.2ms, 15.2 ms, respectively.

2.3 Post-pulse evolution and detection

After the Bragg pulses, we keep the lattice on for some duration t, during which the atoms
oscillate in the tubes with a period of T = 12ms and collide with each other. At the end of evo-
lution, the atoms are released from the optical lattice and expand in 3D for a long time-of-flight
(TOF). The image taken in the horizontal plane provides us a density profile given by the MDF
in the longitudinal direction of 1D gases. Alternatively, we apply the imaging beam vertically
and detect the population of atoms in transverse states (see Fig. 1). See Appendix A.3-A.4 for
more technical details on the methods of detection and data analysis.

3 Basic observations: two-stage relaxation process

To study the non-equilibrium dynamics after the Bragg pulses, we explore the MDF f (t, k)
for an evolution time up to 4.8 s (400 oscillation periods). The early stage of evolution is
dominated by the oscillation of the kicked momentum components in the longitudinal trap,
as shown in Fig. 4 for strong excitation pulses (Fig. 3 (g)). The momentum peaks ±2kBrag g ,
±4kBrag g , and±6kBrag g exhibit different oscillation periods, which stem from the anharmonic-
ity of the longitudinal confinement in the tubes, caused by the Gaussian profile of the lattice
beams. The measurements are consistent with the expectations based on our trap parameters
within reasonable experimental imperfections, for example, the nonideal lattice beam quality,
the imperfect overlap between lattice beams, etc.

Fig. 5 shows the dynamics of MDF for the case of excitation with only±2kBrag g momentum
components (Fig. 3 (a) and (b)). From these measurements, one clearly observe two distinct
stages:

Stage I, single-body dephasing: With increasing time, the clear oscillations in the early
stage become more and more blurry and finally completely dephase after about 60 oscillations
(720 ms). Even though the MDFs behave markedly different, the dephasing seems to be hap-
pening over a similar time scale in both cases (atom numbers per tube: N = 40 and N = 130).
We will quantitatively compare the dephasing processes in these two cases and discuss them
in more detail in Sec. 4 (Stage Ia). Accompanied by the dephasing process, the Bragg peaks in
the MDF broaden and become rounded over time at a near-integrable point. This deformation
is also observed on the oscillation period averaged profile, and it is expected to be induced by
the 1D density decrease caused by the dephasing effect. We will investigate this observation
in Sec. 5 (Stage Ib).
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Figure 5: Basic observations: MDF for dynamics starting with ±2kBrag g (excitation
Fig. 3 (a) and (b)). (a.1, b.1) Four segments of the dynamics of MDF starting from the
1st period (upper), the 15th, 30th to the 60th period (bottom) for N = 40 (a) and
N = 130 (b). Each segment includes two oscillation periods. The time resolution
of the measurements in the first period is finer than the following measurements
by a factor of 5. One clearly observes a blurring of the oscillations which can be
attributed to dephasing. (a.2, b.2) Time evolution of the oscillation period averaged
MDF F(t, k): for N = 40 (a) and N = 130 (b). For long times the MDF relaxes
towards a Gaussian profile.

Stage II, relaxation towards thermal equilibrium: At long times (t > 720ms, 60 periods),
the MDF is completely dephased and does not show short time variations within one oscillation
period. The MDF further evolves towards a Gaussian distribution. We conjecture that the
observed long time relaxation is dominated by the scattering processes mainly between atoms
in the transverse ground state and a small population in the transversely excited state. The two-
body collisions involving transversely excited atoms allow redistribution of the longitudinal
momenta, thus breaking the integrability and constituting the onset of the crossover between
1D and 3D. As we will show in Sec. 6, this conjecture is supported by the excellent agreement
between the experimental observations and the results of MD simulations implemented on a
semiclassical model using experimentally determined parameters as input.

4 Stage Ia: single-body dephasing

The simplest and most direct explanation of the observed blurring of the oscillations in Fig. 5
is the single-body dephasing. It does not require interactions and is caused by a diffusion
of the relative oscillation phase of each particle. In our experimental setup, the single-body
dephasing has two distinct contributions: (i) The anharmonicity of the longitudinal Gaussian
confinement within each tube makes the atom with larger kinetic energy oscillate at a slightly
larger period as can be observed in Fig. 4. This effect leads to the dephasing of atoms with
different energies within each tube. (ii) The inhomogeneity among tubes, which is also a
result of the Gaussian profile of the lattice beams, leads to different oscillation frequencies in
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different tubes and to dephasing of the oscillations among the tubes.
Compared to the inhomogeneity of the traps, we are concerned more about the anhar-

monicity of longitudinal confinement, which broadens the longitudinal spatial distribution of
atoms in each tube. The resulting decrease of atomic density drives the 1D gases out of the
degenerate regime. We will demonstrate this effect in Sec. 5.

The dephasing takes effect until the MDF stops varying during one oscillation period. The
process can be characterized by the deviation of the MDFs from their oscillation period aver-
aged profile,

D(t) = CD

∫

dk

∫

T
dt ′

�

f (t + t ′, k)− F(t, k)
�2

, (1)

where F(t, k) is the average profile of MDF over one oscillation period. For the convenience
of comparison, the prefactor CD = 2× 107/N2 rescales the calculation according to the atom
number and lifts the results close to 1.

In Fig. 6 we plot D(t) as a function of time for N = 40 and N = 130. D(t) decreases as the
variation of MDF in one period decays over time. The dephasing we observe is independent
of the atomic density. In both cases, the MDFs are fully dephased at around 720 ms (marked
with the vertical dashed line), even though the dephased distributions are distinct due to the
different relaxation rates (see Sec. 6). Beyond 720ms D(t) reaches a plateau, which is dom-
inated by the imaging noise floor. The density-independent dephasing rate can be explained
by a collisionless classical calculation with our experimental conditions [25].
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Figure 6: Single-body dephasing for N = 40 and N = 130. The dephasing rate
is nearly independent of the atomic density. The insets show the oscillation period
averaged MDFs at the indicated evolution times, and the boxes’ colors indicate the
corresponding data-sets. After about 720ms (marked with the green dashed line),
the MDF does not significantly vary over time anymore. The shaded area indicates
the noise floor.
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5 Stage Ib: dynamics of the momentum distribution function at a
near-integrable point

To study the long time evolution, we average out the effect of single-body dephasing by cal-
culating the oscillation period averaged MDF F(t, k). As the relaxation occurs, F(t, k) evolves
from a double-peak profile to a peak-rounded profile and finally approaches a Gaussian dis-
tribution. The evolution is characterized by the deviation of F(t, k) from its closest thermal
distribution. More specifically, we calculate the summed square of residuals between F(t, k)
and its best fit to a Gaussian distribution F̂(t, k)

R(t) = CR

∫

dk [F(t, k)− F̂(t, k)]2 , (2)

where CR = 104/N2. This approach has emerged as the most robust way to characterize the
distance from a relaxed Gaussian (thermal) equilibrium state under our experimental condi-
tions with inevitable noise and fluctuations2.
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Figure 7: Relaxation characterized by the deviation of the oscillation period averaged
MDF from its best-fit Gaussian distribution. The experimental measurements are
shown with open circles in two colors for N = 40 and N = 130, respectively. These
measurements are compared with the molecular dynamics simulation results, includ-
ing both the calculated quasimomentum distributions (QMD) and the corresponding
MDFs. In Stage I of evolution, the dynamics are well described by the evolution of
the estimated MDF (dotted curves). As the system approaches the non-degenerate
limit, the estimated MDF tends to coincide with the QMD (solid curves). In Stage II
of evolution, the 1D gases relax towards a Gaussian MDF, which can be interpreted
as a thermal equilibrium state. The molecular dynamics simulations agree nicely
with the experimental data in Stage II. The vertical dashed line indicates the end of
single-body dephasing and demarcates the two stages of relaxation. The shaded area
indicates the noise floor.

In Fig. 7, R(t) is plotted with open circles for the two cases associated with different atom

2This method is a significant advantage over the conventional methods of Gaussian test, like the Kolmogorov-
Smirnov test, Lilliefors test, and Kurtosis, which are all sensitive to high-momentum tails and noise.
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numbers (N = 40 and N = 130). Two distinct stages characterized by different decay rates of
R(t) emerge within the entire time scale, and the boundary between two stages presents at the
time when the single-body dephasing ends (marked with the vertical dashed line). A similar
phenomenon has been reported by Tang et al. in the dipolar Newton’s cradle experiments [25].
We clarify that the rapid decay of R(t) in Stage I of evolution stems from the evolution of MDF
within the integrable model. In the degenerate limit, the MDF of a 1D Bose gas is described by
a Lorentzian-like profile and dominated by the phase fluctuations (see Appendix C or Ref. [49,
60]). The MDF is in general much narrower than the distribution of quasimomenta [27, 61–
67], which are the conserved quantities characterizing the integrable many-body system. As
a result of the single-body dephasing derived from the anharmonicity of confinement, the 1D
densities decrease and asymptotically approach one-fourth to one-third of the initial values.
Thus, at the end of Stage I, γeT1/2 is greater than 7.6 (N = 40) and 5.2 (N = 130) 3, suggesting
that the dephased gases are in the non-degenerate regimes. The change of the interparticle
interaction during this process deforms the MDF and brings it close to the quasimomentum
distribution. As we observe in our experiments, the narrow momentum peaks present at the
beginning of evolution are washed out and become rounded, resulting in the rapid decay of
R(t) in the first 720 ms. When the single-body dephasing comes to its end, the decrease of
density stops, and the evolution towards the non-degenerate limit is greatly slowed down. The
process of the MDF approaching the quasimomentum distribution is illustrated in Fig. 8. Since
the description of this figure involves the MD simulation that will be introduced in Sec. 6, we
will explain the details later in the relevant paragraphs.

Note that the integrability is (nearly) preserved during Stage I, especially for the N = 40
case. The heating process affects the dynamics very little at short to intermediate time scales.
Due to the parity conservation, an inelastic collision occurs when at least two atoms appear in
the first transversely excited state (or at least one atom in the second excited state) in the same
tube. When the atom number per tube is relatively low as the case in our experiments, the
effect of heating on the longitudinal motion is postponed. We will demonstrate this statement
in more depth in Sec. 6.

6 Stage II: relaxation towards a Gaussian (thermal) momentum
distribution and molecular dynamics simulation

At longer times, the gases relax towards thermal equilibrium through inelastic collisions that
involve the transversely excited modes. This process is triggered by the minimal heating effect
and the tiny population of atoms with momenta |k| > kth, marking the onset of dimensional
crossover. As shown in Fig. 7, R(t) in Stage II decreases until it reaches a plateau, which is
dominated by the imaging noise floor, indicating that the MDF of the 1D gas is indistinguishable
from a Gaussian (thermal) distribution.

To further study the relaxation in the dimensional crossover, we implement a molecular dy-
namics (MD) simulation in a semiclassical framework. The dynamical evolution is described
by quasiparticles characterized by their spatial coordinates, quasimomenta, and transverse
modes’ occupations. In the longitudinal direction, the quasiparticles are initialized according
to the thermodynamic Bethe ansatz [68] but move as classical point-like objects. The trans-
verse degrees of freedom are treated as discrete quantum levels, which is the new key (quan-
tum) ingredient of our model. This model is valid in our Newton’s cradle experiments because
the quantum correlations are strongly suppressed in the first ten oscillation periods (5% of
the evolution time), as the chemical potentials of the 1D gases turn from positive to negative

3Here we assume a constant temperature during Stage I. But in the real case, any increase in temperature
resulting from relaxation and heating will make γeT 1/2 even larger.
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resulting from the decreases of 1D densities. Note that this time is too short to appreciably
change the oscillation period averaged quasimomentum distribution due to the interplay be-
tween the effects of atomic scattering and the longitudinal trapping, which is known to break
down the integrability and to induce relaxation [27] (see also [23]). As the dephasing in each
tube happens, the 1D gases enter the non-degenerate regime, where γ� eT−1/2 is fulfilled (see
Sec. 2.1 and 5). In the non-degenerate regime, the filling of states is much smaller than unity,
whereby the effects of quantum statistics become negligible. When close to the non-degenerate
limit, quasiparticles become individual atoms, and quasimomenta can be interpreted as usual
momenta.

Scattering and transitions between these transverse states are calculated. The collisions
between quasiparticles follow the parity selection rules, and the lowest excitation energy is
Eth. The transition matrix elements determining the transition probabilities are obtained from
quantum-mechanical calculations similar to those of Ref. [46]. The transverse state of a quasi-
particle is specified by a number n of transverse excitation quanta, with n = 0 corresponding
to the ground state of the transverse motion. We do not resolve the degenerate sublevels but
invoke the statistical weight (i.e., degeneracy) wn = n + 1 of the corresponding state of an
isotropic 2D harmonic oscillator.

A harmonic longitudinal potential is assumed in order to make calculations simple and
fast. We performed two tests to accept this assumption. (i) We tested an anharmonic potential
U0 tanh2(x/∆x) that admits analytic integration of the equations of motion. The parameter
U0 was taken equal to the lattice depth and the typical length scale ∆x was chosen to pro-
vide the harmonic potential 1

2 mω2
‖ x

2 for |x | �∆x . Using these parameters, the effect of the
anharmonicity of the potential was found to be small. (ii) We initialized the simulation of
dynamics in a harmonic trap with a fully dephased distribution, where the two Bragg compo-
nents are indistinguishable and overlap during the whole oscillation period. Compared to the
normal case starting with two distinct Bragg peaks, we observed a very small effect on the cal-
culated quasimomentum distributions within our model. In other words, the anharmonicity is
important during the initial relaxation stage only and we restricted ourselves to the harmonic
model.

Each numerical realization corresponds to a single tube. The number of quasiparticles per
tube N as an input parameter is set to the weighted-average value measured in experiments.
The initial distribution of quasiparticles is sampled according to a thermal distribution calcu-
lated by solving the Bethe-ansatz equations at the measured temperature in an experimentally
defined harmonic trap. Afterwards, each quasiparticle obtains a boost of quasimomentum
−2kBrag g or +2kBrag g with equal probability (1 − η)/2. As such, we kick the quasiparticles
with Bragg momenta, leaving a fraction of η of quasiparticles at the trap center. To match
with the experimentally measured initial MDFs, η is set to be 9% and 20% for N = 40 and
N = 130, respectively. Subsequently, we propagate the quasiparticles over time according to
the functions described in Appendix B.

The change of transverse states of quasiparticles due to heating in the optical lattice is
included in the model. Its probability per unit time per quasiparticle is denoted by Γ . We
assume NΓ τ̄� 1, where τ̄ = 2π/(ω‖N2) is the typical time between two subsequent atomic
collisions. Within our simulation, we set Γ = 0.0375s−1 for both N = 40 and N = 130, which
is determined by the heating rates measured in experiments (as shown in Appendix A.2) .
Whenever a collision occurs (i.e., when coordinates of two neighboring atoms coincide), we
check both the possibility of the change of transverse states for the colliding pair of quasiparti-
cles and the possibility of the change of transverse states for all the quasiparticles. We generate
a pseudorandom number ζ′ uniformly distributed between 0 and 1. If ζ′ < exp(−NΓτ), where
τ is the time elapsed since the previous collision, then no state change occurs. Otherwise, we
pseudorandomly select one of the N quasiparticles and change its transverse excitation num-
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Figure 8: Estimation of oscillation period averaged MDF for (a) N = 40 and (b)
N = 130. For comparison purposes, we estimate the MDFs (green dotted curves)
from the quasimomentum distributions (QMD) calculated in MD simulations (red
solid curves) and observe good agreement with the experimentally measured profiles
(black dashed curves). As the 1D gases approach the non-degenerate limit, the MDF
and QMD tend to coincide.

ber n j to |n j + 1| or |n j − 1|, each channel having the probability of 50%. Since quasiparticles
are predominantly in the ground state, the most probable process n j = 0 → n′j = 1 leads to
the energy supply to the system (heating).

The quasimomentum distribution derived from the MD simulation is distinct from the MDF
(of the real physical bosons) when the system is far from the non-degenerate limit. For com-
parison with the experimentally measured profiles, we need to estimate the corresponding
bosonic MDFs for the MD results. The relation between both distributions is not straightfor-
ward. There is no general analytic approach to calculate the MDF in the Lieb-Liniger model,
and only numerical methods were for example applied in [27, 61–67]. Within the scope of
this paper, we use an estimation of the MDF as outlined in Appendix C instead of an exact
numerical calculation. Fig. 8 presents a comparison between the calculated quasimomentum
distributions from the MD calculation (red), the estimated MDF (green) and the experimen-
tally measured MDF (black dashed curves), which are all shown in oscillation period averaged
profiles. The estimated MDFs are in good agreement with the experimental measurements
throughout the entire dynamical evolution. Meanwhile, we observe the increasing similarity
between the MDF and the quasimomentum distribution during Stage I of evolution.

The relaxation processes of the MD results are characterized by following Eq. (2), in the
same way as in processing the experimentally measured profiles (see Fig. 7). R(t) calcu-
lated from both MDFs (RMDF, dotted curves) and quasimomentum distributions (RQMD, solid
curves) are compared to the experimental results (REXP, open circles). In Stage I of evolu-
tion, RMDF displays similar features with REXP. The relaxation of MDF due to the transition
from the degenerate to non-degenerate regimes is captured by the estimation of MDF. After the
dephasing ends, RMDF asymptotically approaches RQMD, and at longer times the two results
tend to coincide.

Furthermore, it is demonstrated by the plot of RQMD that the system relaxes towards a
Gaussian (thermal) distribution at an accelerating rate. As has been mentioned at the end
of Sec. 5, the 1D condition of the cradle system is preserved until the transversely excited
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states are populated with a threshold of atom number. For a 1D system with N = 40, it at
least needs 5% of atoms in the first transversely excited state to break the integrability with
inelastic collisions. These atoms may come from the minimal residual heating. From the
plot of RQMD for N = 40, we observe that it takes about 1 s to start the relaxation towards
a Gaussian (thermal) momentum distribution. The onset of relaxation leads to an energy
transfer from the longitudinal to transverse degrees of freedom (an increase of the population
in the transversely excited states), which in return intensifies the relaxation itself.

In contrast to N = 40, the relaxation towards a Gaussian (thermal) momentum distribution
occurs earlier and faster for N = 130. It is because that the higher atom number offers a larger
chance for the atoms to be excited transversely, so that it equivalently lower the threshold. Ad-
ditionally, owing to the higher collision rate, the excited atoms spend less time in the upper
state before returning back to the ground state through collisions. During this process, the
excitation energy is deposited to the ground state. While, in the lower atom number case, the
excited atoms stay longer in the upper state, having a small but non-zero probability of being
de-excited through external disturbances. Moreover, in the initial distribution of quasiparti-
cles for the MD simulation, we expect about 2% of quasiparticles obtaining quasimomenta
larger than kth for N = 130. This fraction of atoms is not observed in Fig. 3(b) because of
the narrower profile of MDF compared to the quasimomentum distribution. In contrast, this
fraction is expected to be almost zero for N = 40. The very rare high-energy quasiparticles
speed up the relaxation to some extent. For the above reasons, we observe faster relaxation
for N = 130.

7 Dynamics of transverse excitation
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Figure 9: Fractional populations of atoms in the first (open squares) and second
(open circles) transversely excited states versus evolution time (N = 130). The error
bars denote the standard deviation of five measurements. The solid curves with
corresponding colors show the results of the molecular dynamics (MD) simulations.
The insert shows the measurements in the first 6ms after the Bragg pulses, where
the darker blue data point (measured at t = 3 ms) reflects the most credible in-trap
excitation.
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To further illuminate the relaxation process driven by the inelastic collisions, we study the
dynamics of atoms in the transverse states by band mapping in the deep-lattice limit [69]. The
fractional populations of atoms in the first and second transversely excited states (notated by
η1 and η2, respectively) are extracted throughout the evolution from the experimental band
mapping images (see Appendix A.4). We observe that approximately 11% and 1% of the atoms
are excited to the first and the second transversely excited states in 4.8 s for N = 130. These
fractions are larger than the ones introduced by heating, meaning that energy is transferred
from longitudinal to transverse directions in the cradle experiment.

In Fig. 9, we compare the experimental data with the MD simulations and observe very
good agreement also in the transverse degrees of freedom. The minimal discrepancy from
simulations is expected to be caused mainly by the additional excitation during the lattice
unloading procedure for band-mapping. This conjecture is demonstrated by measuring η1
in the first half oscillation period after the Bragg pulses (shown in the inset of Fig. 9). The
additional excitation is clearly observed when the atoms are at the oscillation phase with large
momenta at the end of the unloading procedure. For this reason, we accept the local minimum
of η1 in a half oscillation period as the most credible measurement of the in-trap transverse
excitation; for example, the result at t = 3ms represents the situation in the first half period.
This effect becomes inevitable as the oscillations of the particle are diffused and becomes weak
at longer times as most of the atoms are scattered to the low-energy regime.

8 Starting with stronger excitations of the longitudinal motion
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Figure 10: Evolution of R(t) for the dynamics initialized by the distributions shown
in Fig. 3. The results are labeled consistently with Fig. 3. The dynamics of quasimo-
mentum distribution (QMD) calculated in MD simulations (solid curves) are in good
agreement with the experimental measurements (open circles) in Stage II of each
evolution. The faded-out parts of MD results deviate from the experimental mea-
surements due to the discrepancy between MDF and quasimomentum distribution in
the regime far from the non-degenerate limit. The shaded areas indicate the noise
floor.

In this section, we go deeper into the crossover regime by initializing the atoms in the
1D tubes with considerably higher longitudinal momenta (energies) (Fig. 3(c)-(h)). Atoms
that are kicked to large momenta ±4kBrag g and ±6kBrag g obtain enough energy to be trans-
versely excited through subsequent collisions. Compared to the dynamics discussed in Sec. 3-7,
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these high energy collisions rapidly drive the system out of 1D integrability and towards ther-
malization. In Fig. 10, we present the evolution of R(t) for the dynamics initialized by the
distributions shown in Fig. 3. For comparison, the branches (a) and (b) are replicas of the
results shown in Fig. 7. The dynamics starting with higher imprinted energies exhibit faster
relaxation.

The data is again compared to the MD simulations implemented for describing the dy-
namics. The initial quasimomentum distribution for the simulation is obtained by assuming
the same respective particle number in each momentum peak with the experimentally mea-
sured initial MDF. The discrepancy between the MDF and the quasimomentum distribution
reduces faster in the case with higher energies. Apart from the density reduction due to the
single-body dephasing, the increase of temperature also drives the system out of the degen-
erate regime, especially in the high-energy cases. The MD simulations show good agreement
with experimental observations in Stage II (after the quasimomentum distribution coincides
with the MDF). The time scale for reaching an MDF that is indistinguishable from a Gaussian
(the time when R(t) drops below the noise floor) is accurately predicted by the simulation.
The validity of the semi-classical model is confirmed throughout the regimes from 1D to the
dimensional crossover.

9 Integrability breaking through virtual excitations

Up to now, we considered only collisions with enough energy to excite the transverse degrees
of freedom. However, even when the two-body collision energy is below the threshold of popu-
lating the transverse states, the latter can be virtually excited. A collision with a third atom can
return the system on the energy shell and simultaneously redistribute momenta of the three-
atoms involved in such an effective three-body collision [18, 21]. However, this integrability-
breaking mechanism does not contribute much to the relaxation of MDF in our experiment.
Indeed, the rate of the velocity-changing collisions per atom due to this mechanism is given
by [22]

Γ∞ =
2[18 ln(4/3)]2

3
p

3

ħhn2
1D g2(0)

m

�

as

l⊥

�4

. (3)

Here, l⊥ =
p

ħh/mω⊥, as is the 3D s-wave scattering length, and g2(0) is the density-density
correlation function at zero distance. g2(0) is equal to 2 in a non-degenerate gas, to 1 in a
weakly interacting quasicondensate and rapidly tends to zero if γ →∞ [70]. Since the 1D
density substantially decreases after the rapid dephasing stage, the typical time 1/Γ∞ of the
MDF relaxation due to virtual transverse excitation extends well beyond the time scale of our
experiment.

10 Conclusion

We have investigated the relaxation processes of bosons at the onset of the dimensional crossover
from 1D to 3D. We demonstrate that the system relaxes in two stages under different mech-
anisms. At short times, the single-body dephasing rapidly drives the 1D gases into the non-
degenerate regime, during which the momentum distribution function deforms and asymptot-
ically approaches the quasimomentum distribution of Lieb-Liniger model. At longer times, a
tiny fraction of atoms in the transversely excited states triggers the transition from 1D to 1D-3D
crossover. Subsequently, the system relaxes towards an equilibrium with a Gaussian momen-
tum distribution through inelastic two-body collisions at an accelerating rate. A molecular
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dynamics simulation was implemented for efficiently modeling the non-equilibrium dynam-
ics. Meanwhile, we proposed a simple method of estimating the momentum distribution func-
tions in the whole regimes of quantum degeneracy. The numerical results quantitatively fit the
experimental observations from short to long time scales in all three dimensions.

Moreover, the long-term dynamics of a Newton’s cradle with minimal heating and loss as
can be obtained in a red-detuned lattice offers a model system to test theoretical methods for
describing the complex dynamics in many-body systems at the point of breaking integrability.
Future prospects include detailed studies of integral dynamics and its breakdown in the frame-
work of the recently developed generalized hydrodynamics (GHD) [39,40]. In a first step, we
have recently extended the applicability of GHD to the dimensional crossover regime [44] and
tested it with the data at short to intermediate time scales. But still, many open questions re-
main, such as for example the many-body dephasing induced by non-trivial interactions [27],
or the effect of atom losses [71]. We hope our investigations presented here will pave the way
towards a more comprehensive understanding of the non-equilibrium quantum physics in the
dimensional crossover regime and the influence of the effectively compactified dimensions.
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A Experimental details and data analysis

A.1 Preparation of 1D gases

The 87Rb BEC is produced in the Zeeman sublevel F = 1, mF = −1 by evaporative cooling in
a crossed optical dipole trap. In the final stage of the evaporative cooling, the atomic cloud is
levitated by switching on a magnetic field gradient in the vertical direction and decompressed
by reducing the trap laser power. The total atom number, Ntot , is tuned between 1× 104 and
1× 105 by holding the BEC for different times in a shallow trap, where the BEC is overcooled
due to the low trap depth. Afterwards, the BEC cloud is adiabatically transferred from the
optical dipole trap to a 2D square optical lattice located in the horizontal plane. To avoid in-
terference, the two lattice beams derived from a fiber laser are detuned 220MHz from each
other and have orthogonal polarization. The beam waist (wol = 145µm) of the optical trap-
ping beam is much larger than the BEC.

During the lattice loading procedure, the lattice depth is exponentially ramped to the max-
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Figure 11: Time evolution of MDF for 1D gases held in lattice without Bragg pulses.
(a) N = 40; (b) N = 130. The broadening of the MDF stems from the heating effect,
which is stronger in the case with higher 1D density. The vertical red lines indicate
the momenta ±kth.

imum value 70 Eol
R in 250 ms (recoil energy Eol

R = (ħhkol
R )

2/2m with the wave vector of optical
lattice kol

R = 2π/1064nm). The optical dipole trap is turned off simultaneously. The atoms are
confined by the red-detuned lattice laser both in the vertical (longitudinal) direction with a
trap frequency of 83.3(8)Hz, and in the horizontal (transverse) direction with a trap frequency
of 31.0(3)kHz. The atoms in different tubes can be regarded as independent 1D gases.

A.2 Heating process and atomic loss

The heating in an optical lattice is mainly caused by two reasons (i) the spontaneous scattering
of lattice laser photons; (ii) the trap fluctuations (including the laser intensity fluctuations and
the pointing stabilities of lattice laser beams) at specific frequencies. The former mechanism
heats an atomic system by transferring the photon recoil momenta to atoms. The latter excites
atoms to higher transverse states, and the energy may be deposited into the longitudinal kinetic
energy through the subsequent inelastic collisions. The heating effect is in general stronger
for 1D gases with higher atomic densities because of the larger collision rates.

In our experiments, the heating process is studied by observing the evolution of 1D gases
held in the identical lattice setup without the Bragg-pulse excitation. The MDFs for both
N = 40 and N = 130 exhibit the expansion of the momentum peaks (see Fig. 11). By summing
up the contribution on each pixel of the MDF measurement, we obtain the increase of kinetic
energy of 0.06ħhω⊥/s and 0.09ħhω⊥/s for N = 40 and N = 130, respectively. On the other
hand, we also estimate the heating rate by evaluating the energy growth in the transverse di-
mensions and observe a rate 0.006ħhω⊥/s for N = 130 (see Fig. 12). Most of the transversely
excited atoms appear in the first state, while the signal in the second excited state is so weak
that it is submerged in the imaging noise.

Although the heating rate in the ground state is usually higher in a red-detuned lattice [28–
31], we suppress the heating in our system to a minimal value by the large detuning of the
lattice laser and the carefully controlled environment. The heating rates achieved in our ex-
periments are at least twice as low as observed in Ref. [6] in a blue-detuned lattice.

The atom loss observed in our experiments is between ∼ 4%/s (N = 40) and ∼ 7%/s
(N = 130), which are about one order of magnitude lower than observed in Ref. [6]. Such
low loss rates enable us to study the long-term dynamics of bosons out of equilibrium. The
loss rates are nearly constant throughout the evolution. We do not observe any significant
three-body loss as seen in Ref. [6,32].
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Figure 12: Time evolution of the fraction of the first transversely excited state for
1D gases held in lattice without Bragg pulses (N = 130). The error bars denote the
standard deviation of five measurements.
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Figure 13: An example of the horizontal imaging. A region of interest (ROI) is ar-
ranged to contain all atoms, and two background regions BG1 and BG2 are selected
next to ROI. The pixel size is 6.45µm×6.45µm in the object plane. To obtain the lon-
gitudinal MDF and estimate the noise floor, we integrate the images in these regions
over the transverse direction, respectively. The MDF (blue) and noise level (green
and purple) are shown on the right.

A.3 Detection of longitudinal momentum distribution function

The 1D gases are detected by standard absorption imaging after being released from the lattice
trap and expanding in 3D. To keep the signal-to-noise ratio of images at a comparable level,
the expansion time for N = 40 and 130 are set to 10ms and 30 ms, respectively. In the hori-
zontal plane, the image is taken along the bisector of two lattice beams. The lattice is turned
off in 500µs, during which the interparticle interaction vanishes. It is fast compared to the
longitudinal dynamics but slow enough to prevent the atomic cloud from spreading too much
in transverse directions. By integrating the image over the transverse direction in the region
of interest (ROI), we obtain the longitudinal distribution profile. This profile approaches MDF
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Figure 14: Evaluating the fractions of atoms in transverse states. The method is illus-
trated with two examples of the band-mapping images taken at (a) the beginning and
(b) the end of dynamical evolution (N = 130). By integrating the band-mapped dis-
tribution in the unshaded region, we obtain the 1D distributions (black solid curves)
and fit them to a summation of a set of Gaussian curves in the full range (FR) (red
dashed curves). The fitted distribution of the first excited state is shown in blue,
separated from the ground state and the second excited states.

f (k) after a long TOF. To assess the impact of the imaging noise, which mainly stems from the
photon and atom shot noise on the CCD camera, we choose two background regions (BG1 and
BG2) beside the ROI with the same size (see Fig. 13) and consider them as the noise floor in
the data analysis.

A.4 Detection of populations in transverse states

In the vertical direction, band mapping is applied to obtain information of the population in
the respective energy-band. The lattice depth is exponentially turned off in 2ms. During the
turnoff, the crystal momentum is mapped to the free particle momentum, and afterwards, the
Brillouin zones are imaged.

Two examples are shown in Fig. 14 to explain the method of evaluating the fractional
population of atoms in each state. White boxes separate the 2D band-mapped distributions
into Brillouin zones corresponding to the ground state, the first and second excited states. The
biggest issue to overcome for achieving an accurate fraction in each state is the overlap between
adjacent Brillouin zones due to the broadening of the quasi-free-particle momentum distribu-
tion. Firstly, we integrate the band-mapped distribution in the central region (the unshaded
area) in z direction over the width of the first Brillouin zone. Secondly, we fit the integrated
distribution K(y) to a summation of 180 Gaussian curves arranged with equal spacing and
identical r.m.s. width between y = −3ħhkol

R and y = +3ħhkol
R

K(y) =
+3ħhkol

R
∑

yc=−3ħhkol
R

A(yc)exp

�

−
(y − yc)2

2σ2

�

, (4)

where A(yc) is the amplitude of the Gaussian curve centered on yc
4. By integrating A(yc) in

the corresponding regions, we get the fractional population of atoms in each state. The same
calculation is repeated in the z direction, and η1, η2 are calculated according to the results
from both y and z dimensions. Since the atoms in the second excited state located in the four

4In comparison with the method of deconvolution, our processing approach is free of the ill-posed problem.
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corners are not included in the calculations in both dimensions, η2 is multiplied by 1.5 under
the assumption of a uniform distribution.

B Model of the atomic collision in molecular dynamics calculation

In this section, we describe how atomic collisions are modeled. Since the system is 1D and
quasiparticles are indistinguishable, we can always consider an ordered array of quasiparti-
cles, x1 < x2 < . . . < xN−1 < xN . In what follows, it is convenient to introduce the scaled
coordinates x̄ j = x j/l‖ and quasimomenta q̄ j = q j l‖, where l‖ =

Æ

ħh/(mω‖).
For a given configuration of N quasiparticles in the phase space we calculate the time of

the first collision, i.e. the first (smallest) time when the coordinate of any two neighboring
quasiparticles coincide. The oscillatory motion of the jth atom is described by

x̄ j(t +τ) = x̄ j(t) cosω‖τ+ q̄ j(t) sinω‖τ,

q̄ j(t +τ) = − x̄ j(t) sinω‖τ+ q̄ j(t) cosω‖τ. (5)

Then we calculate the collision time τ j for the jth and ( j + 1)th quasiparticles:

tanτ j = −ω−1
‖

x̄ j(t)− x̄ j+1(t)

q̄ j(t)− q̄ j+1(t)
, τ j > 0,

and find the smallest one,
τ= min

1≤ j≤N−1
τ j .

We propagate the quasiparticles until the time t +τ according to Eq. (5) and then decide,
according to the probabilities (see below) and using a pseudorandom number generator, what
happens to the transverse states of the involved quasiparticles. The probabilities of the change
of the transverse state are based on the standard quantum mechanical expressions, which can
be easily derived for a pair of colliding quasiparticles with the initial state of their relative
motion in the (y, z)-plane as the transverse ground state [46]. However, for the sake of sim-
plicity, we neglect any dependence of the transverse transition probabilities on the transverse
quantum states of colliding quasiparticles. As such, the scheme of transverse transitions is
simplified.

The collisions are assumed to be instantaneous, in other words, the Wigner delay time is
neglected. This is justified by the observation that, even though the interplay between Wigner
delay time and the longitudinal trapping potential will lead to appreciable thermalization, in
our non-degenerate system this time scale is very long [23] and exceeds the duration of the
experiment.

To be definite, consider a collision of the quasiparticles 1 and 2. Their coordinates at the
collision time are x1 = x2 and the respective quasimomenta are ħhq1 and ħhq2. The quasimo-
mentum of the relative motion is canonically conjugate to the interatomic distance x2− x1 and
defined as

ħhq =
1
2
ħh(q2 − q1).

The total quasimomentum of the pair is denoted by

ħhQ = ħh(q1 + q2).

Concerning the transverse quantum numbers, we begin with the option

n1 = n2.
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Because of the parity conservation, the transverse energy of a pair of quasiparticles in the
course of a collision can change by a multiple of 2ħhω⊥. If the kinetic energy of the relative
motion is less than 2ħhω⊥, then the increase of the transverse energy is impossible. In the
opposite case,

ħh2q̃2

m
=
ħh2q2

m
− 2ħhω⊥ > 0,

the increase of the transverse energy by 2ħhω⊥ is possible. The probability of such an event is

P↑ =
2qq̃α2

1D

q2q̃2 +α2
1D(q+ q̃)2

, (6)

where α1D = c/2. A pseudorandom number ζ uniformly distributed between 0 and 1 is gen-
erated. If ζ < P↑ then we raise the transverse excitation energy by 2 quanta. To preserve
the ordering of quasiparticles in the course of the subsequent evolution, we assign the new
(primed) quasimomenta to them as follows:

ħhq′1 = ħh
�

1
2

Q− q̃
�

, ħhq′2 = ħh
�

1
2

Q+ q̃
�

.

With the help of a new pseudorandom number we assign the new transverse quantum numbers
with the following probabilities:

n′1 = n1, n′2 = n1 + 2 (25%),

n′1 = n1 + 2, n′2 = n1 (25%),

n′1 = n1 + 1, n′2 = n1 + 1 (50%).

The detailed balance condition should be satisfied: the number of transitions up and down
per unit time must be the same on average. Therefore, if

n1 = n2 > 0

then we allow for the transition to the state characterized by

n′1 = n1 − 1, n′2 = n1 − 1,

and

ħhq′1 = ħh
�

1
2

Q− Q̃
�

,ħhq′2 = ħh
�

1
2

Q+ Q̃
�

, (7)

where
ħh2Q̃2

m
=
ħh2q2

m
+ 2ħhω⊥.

The probability of this process is

Pn1,n1→n1−1,n1−1 =
�

n1

n1 + 1

�2

P↓, (8)

where

P↓ =
2qQ̃α2

1D

q2Q̃2 +α2
1D(q+ Q̃)2

. (9)

The prefactor in front of P↓ in Eq. (8) ensures the detailed balance. The condition of the
downward transverse transition corresponds to the pseudorandom number ζ falling between
P↑ and P↑ +Pn1,n1→n1−1,n1−1.
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If, finally, ζ > P↑+Pn1,n1→n1−1,n1−1 then no change of the transverse states takes place. To
maintain the ordering of atoms in this case, we set

ħhq′1 = ħhq2, ħhq′2 = ħhq1.

This is always the case when two quasiparticles in the ground transverse states collide with
the energy insufficient for excitation by two transverse quanta.

Consider now another possibility
n1 6= n2.

Here an important simplification of the model comes into play. If the transverse states of
colliding quasiparticles are different, we neglect, except of a special case described below, the
change of the set of the transverse excitation numbers, allowing for the exchange process only,
when the transverse excitation numbers associated with the two quasimomenta ħhq1 and ħhq2
are interchanged:

ħhq′1 = ħhq2, ħhq′2 = ħhq1,

n′1 = n1 n′2 = n2.

The probability of the exchange process is given by

Pex =
1
2

α2
1D

q2 +α2
1D

. (10)

A special case is given by

n2 = n1 + 2 or n1 = n2 + 2.

In this case, in addition to the exchange process, the decrease of the larger of the transverse
excitation numbers by 2 can happen, as it is required by the detailed balance:

n′1 = n′2 =min(n1, n2)

and the quasimomenta after collision are given by Eq. (7). The respective probability is given
by

P|n1−n2|=2→n1=n2
=

1
2

min(n1, n2) + 1
min(n1, n2) + 3

P↓, (11)

where P↓ is again given by Eq. (9).

C Estimation of bosonic momentum distribution function

For a degenerate 1D Bose gas, the MDF, defined as the Fourier transform of the correlation
function, is distinct from the quasimomentum distribution within the Lieb-Liniger model. In
the regime where the temperature is low (below the chemical potential) and the Lieb-Liniger
parameter γ is not excessively large, the correlation function for bosonic Luttinger liquid at
x � ħh/mcs is written as

g1(x) =
1

n1D
〈Ψ̂†(x)Ψ̂(0)〉= C0

�

1
sinh(πkT |x |)

�
1

2K

, (12)

where C0 ∼ 1, cs is the speed of sound, kT = kB T/(ħhcs) and K = πħhn1D/(mcs) is the Luttinger
liquid parameter. The MDF W (k) =

∫ +∞
−∞

d x
2π g1(x)eikx , and it is expressed via Euler’s beta-

function [60]

W (k) =
C02

1
2K

2π2kT
Re
�

B
�

ik
2πkT

+
1

4K
, 1−

1
2K

��

, (13)
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where B(x , y) = Γ (x)Γ (y)/Γ (x+ y). W (k) consists of a Lorentzian profile on top of a pedestal.
The central Lorentzian is restricted to k < kT , and kT is the momentum where the Bose-
Einstein distribution starts to deviate from the Rayleigh-Jeans classical limit and to decrease ex-
ponentially. For larger momenta k� kT , W (k) decreases∝ const/k, slower than Lorentzian.

For much larger momenta k � kC , W (k) is determined by Tan’s contact and decreases
∝ Ck−4, where C is the Tan’s contact and the momentum kC is approximately equal to the
maximum quasimomentum at zero temperature. There are known approaches to precisely
calculate the value of Tan’s contact, see, for example, Ref. [51]. Considering the experimental
uncertainties, we use an asymptotic approximation for large momenta k � ξ−1

h , where ξh is
the healing length, for a weakly interacting quasicondensate. For stronger interactions, the
qualitative picture is similar. The modified MDF is

fW (k) =
W (k)

q

1+ 1
4(kξh)2

�

1+ 1
2(kξh)2 + kξh

q

1+ 1
4(kξh)2

� . (14)

For k� ξ−1
h , fW (k)∝ k−4. In general, the fW (k) expressed by Eq. (13) and (14) is expected

to be much narrower than the corresponding quasimomentum distribution.
In the non-degenerate limit, the MDF coincides with the quasimomentum distribution.

Furthermore, when the temperature T is relatively high, the MDF approaches the Maxwell-
Boltzman distribution,

M(k) =
1

Æ

2πmkB T/ħh2
exp

�

−
ħh2k2

2mkB T

�

. (15)

Let us consider that we try to derive the MDF corresponding to a distribution of quasiparti-
cles ρtarget(x , q), namely the target distribution. The basic idea to estimate the MDF is done by
fitting the target distribution with a sum of multiple thermal distributionsρ(x , q) =

∑

i ρi(x , q),
which are calculated by solving the Bethe-ansatz equations in a harmonic trap defined with
experimentally measured parameters. In a general case of quantum Newton’s cradle exper-
iments, the ρ(x , q) consists of three components of quasiparticles, described by thermal dis-
tributions ρ1, ρ2 and ρ3, respectively. The central component ρ1 centers at the origin of the
phase space with zero mean quasimomentum (〈q1〉 = 0). The symmetric Bragg components
ρ2 and ρ3 are derived from the Bragg pulses, and they are shifted by the mean quasimomen-
tum boosts 〈q2〉 and 〈q3〉 (〈q2〉 = −〈q3〉 = 2kBrag g). All of ρi are normalized to the respective
quasiparticle number Ni , subject to the restriction

∑

i Ni = N .
To imitate the effect of single-body dephasing, we drop the densities of ρ2 and ρ3 by a

scale factor αn, which is calculated by assuming a linear expansion of the Bragg components
in the direction of motion. αn decreases from 1 at t = 0 and stops decreasing when two Bragg
components merge until fully dephased. The expanding rate is determined by evaluating D(t)
for the calculated distributions and comparing the results with experimental observations as
shown in Fig 6.

To make the fitting procedure simple and fast, we integrate the distributions ρtarget(x , q)
and ρ(x , q) over the direction of motion and seek for the minimum discrepancy between the
distributions in the radial coordinate. We accept this simplification in a quasi-harmonic po-
tential when the interaction is not excessively large. The distribution in the radial coordinate
hardly changes within one period of oscillation. The best-fit distribution returns us the chem-
ical potential µi and temperature Ti for each component. Following Eq. (13-15), the MDFs in
the degenerate and non-degenerate limits are derived.

As we discussed in the main text, the cradle system evolves from the degenerate regime
to the non-degenerate regime during the dynamical evolution. To interpolate the crossover
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between two limits, we propose an empirical formula: convolving the MDF for the degenerate
limit fWi(k) with its counterpart for the non-degenerate limit eMi(k)

fi(k) =

∫

dk′fWi(k− k′) eMi(k
′). (16)

Here we modify Eq. (15) via eMi(k) = Mi(k/β) so that we rescale the width of the profile. β is
tuned from 0 to 1 in the crossover regime and it follows β ∝ (µi/Ti)2 when µ2 < 0. For the
central component ρ1, µ1�−T1 is obtained throughout the entire evolution of time, resulting
in an MDF very close to its corresponding quasimomentum distribution. While for the Bragg
component ρ2 and ρ3, µ2 and µ3 evolve from positive to negative and in longer times becomes
much smaller than −T2 and −T3. Thus, we obtain peaked MDFs in the early stage of evolution
and gradually rounded MDFs that asymptotically approach the quasimomentum distributions
as the system evolves towards the non-degenerate limit.

Since the mean quasimomentum equals to the mean momentum, fi(k) is shifted to be
centered at 〈qi〉. The MDF for the entire cloud f (k) =

∑

i fi(k).

References

[1] A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Colloquium: Nonequilib-
rium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011),
doi:10.1103/RevModPhys.83.863.

[2] T. Langen, R. Geiger and J. Schmiedmayer, Ultracold atoms out of equilibrium, Annu.
Rev. Condens. Matter Phys. 6, 201 (2015), doi:10.1146/annurev-conmatphys-031214-
014548.

[3] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of sta-
tistical mechanics in closed quantum systems, Rep. Prog. Phys. 79, 056001 (2016),
doi:10.1088/0034-4885/79/5/056001.

[4] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate
thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016),
doi:10.1080/00018732.2016.1198134.

[5] J. v. Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik, Z.
Physik 57, 30 (1929), doi:10.1007/BF01339852.

[6] T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900
(2006), doi:10.1038/nature04693.

[7] F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated in-
tegrable quantum spin chains, J. Stat. Mech. 064002 (2016), doi:10.1088/1742-
5468/2016/06/064002.

[8] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely inte-
grable many-body quantum system: An Ab Initio study of the dynamics of the highly
excited states of 1D lattice hard-core bosons, Phys. Rev. Lett. 98, 050405 (2007),
doi:10.1103/PhysRevLett.98.050405.

[9] M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated
quantum systems, Nature 452, 854 (2008), doi:10.1038/nature06838.

25

https://scipost.org
https://scipost.org/SciPostPhys.9.4.058
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548
http://dx.doi.org/10.1088/0034-4885/79/5/056001
http://dx.doi.org/10.1080/00018732.2016.1198134
http://dx.doi.org/10.1007/BF01339852
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1088/1742-5468/2016/06/064002
http://dx.doi.org/10.1088/1742-5468/2016/06/064002
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1038/nature06838


SciPost Phys. 9, 058 (2020)

[10] T. Langen et al., Experimental observation of a generalized Gibbs ensemble, Science 348,
207 (2015), doi:10.1126/science.1257026.

[11] T. Giamarchi, Quantum physics in one dimension, Clarendon Press, Oxford (2004).

[12] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac and M. Rigol, One dimensional bosons:
From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011),
doi:10.1103/RevModPhys.83.1405.

[13] E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution
and the ground state, Phys. Rev. 130, 1605 (1963), doi:10.1103/PhysRev.130.1605.

[14] E. H. Lieb, Exact analysis of an interacting Bose gas. II. The excitation spectrum, Phys. Rev.
130, 1616 (1963), doi:10.1103/PhysRev.130.1616.

[15] C. N. Yang and C. P. Yang, Thermodynamics of a one-dimensional system of
bosons with repulsive delta-function interaction, J. Math. Phys. 10, 1115 (1969),
doi:10.1063/1.1664947.

[16] J. Berges, Sz. Borsányi and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93, 142002
(2004), doi:10.1103/PhysRevLett.93.142002.

[17] M. Gring et al., Relaxation and prethermalization in an isolated quantum system, Science
337, 1318 (2012), doi:10.1126/science.1224953.

[18] I. E. Mazets, T. Schumm and J. Schmiedmayer, Breakdown of integrability
in a quasi-1D ultracold bosonic gas, Phys. Rev. Lett. 100, 210403 (2008),
doi:10.1103/PhysRevLett.100.210403.

[19] M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett.
103, 100403 (2009), doi:10.1103/PhysRevLett.103.100403.

[20] I. E. Mazets and J. Schmiedmayer, Restoring integrability in one-dimensional
quantum gases by two-particle correlations, Phys. Rev. A 79, 061603 (2009),
doi:10.1103/PhysRevA.79.061603.

[21] I. E. Mazets and J. Schmiedmayer, Thermalization in a quasi-one-dimensional ultracold
bosonic gas, New J. Phys. 12, 055023 (2010), doi:10.1088/1367-2630/12/5/055023.

[22] S. Tan, M. Pustilnik and L. I. Glazman, Relaxation of a high-energy quasi-
particle in a one-dimensional bose gas, Phys. Rev. Lett. 105, 090404 (2010),
doi:10.1103/PhysRevLett.105.090404.

[23] I. E. Mazets, Integrability breakdown in longitudinaly trapped, one-dimensional bosonic
gases, Eur. Phys. J. D 65, 43 (2011), doi:10.1140/epjd/e2010-10637-5.

[24] R. van den Berg, B. Wouters, S. Eliëns, J. De Nardis, R. M. Konik and J.-S. Caux, Sepa-
ration of time scales in a quantum Newton’s cradle, Phys. Rev. Lett. 116, 225302 (2016),
doi:10.1103/PhysRevLett.116.225302.

[25] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan and B. L. Lev,
Thermalization near integrability in a dipolar quantum Newton’s cradle, Phys. Rev. X 8,
021030 (2018), doi:10.1103/PhysRevX.8.021030.

[26] K. F. Thomas, M. J. Davis and K. V. Kheruntsyan, Thermalization of a quantum Newton’s
cradle in a one-dimensional quasicondensate (2018), arXiv:1811.01585.

26

https://scipost.org
https://scipost.org/SciPostPhys.9.4.058
http://dx.doi.org/10.1126/science.1257026
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1616
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1103/PhysRevLett.100.210403
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.79.061603
http://dx.doi.org/10.1088/1367-2630/12/5/055023
http://dx.doi.org/10.1103/PhysRevLett.105.090404
http://dx.doi.org/10.1140/epjd/e2010-10637-5
http://dx.doi.org/10.1103/PhysRevLett.116.225302
http://dx.doi.org/10.1103/PhysRevX.8.021030
https://arxiv.org/abs/1811.01585


SciPost Phys. 9, 058 (2020)

[27] J.-S. Caux, B. Doyon, J. Dubail, R. Konik and T. Yoshimura, Hydrodynamics of the in-
teracting Bose gas in the Quantum Newton Cradle setup, SciPost Phys. 6, 070 (2019),
doi:10.21468/SciPostPhys.6.6.070.

[28] F. Gerbier and Y. Castin, Heating rates for an atom in a far-detuned optical lattice, Phys.
Rev. A 82, 013615 (2010), doi:10.1103/PhysRevA.82.013615.

[29] H. Pichler, A. J. Daley and P. Zoller, Nonequilibrium dynamics of bosonic atoms in optical
lattices: Decoherence of many-body states due to spontaneous emission, Phys. Rev. A 82,
063605 (2010), doi:10.1103/PhysRevA.82.063605.

[30] J.-F. Riou, A. Reinhard, L. A. Zundel and D. S. Weiss, Spontaneous-emission-induced tran-
sition rates between atomic states in optical lattices, Phys. Rev. A 86, 033412 (2012),
doi:10.1103/PhysRevA.86.033412.

[31] J.-F. Riou, L. A. Zundel, A. Reinhard and D. S. Weiss, Effect of optical-lattice heating on the
momentum distribution of a one-dimensional Bose gas, Phys. Rev. A 90, 033401 (2014),
doi:10.1103/PhysRevA.90.033401.

[32] L. A. Zundel, J. M. Wilson, N. Malvania, L. Xia, J.-F. Riou and D. S. Weiss, Energy-
dependent three-body loss in 1D Bose gases, Phys. Rev. Lett. 122, 013402 (2019),
doi:10.1103/PhysRevLett.122.013402.

[33] F. Gerbier, Quasi-1D Bose-Einstein condensates in the dimensional crossover regime, Euro-
phys. Lett. 66, 771 (2004), doi:10.1209/epl/i2004-10035-7.

[34] J. Armijo, T. Jacqmin, K. Kheruntsyan and I. Bouchoule, Mapping out the quasicondensate
transition through the dimensional crossover from one to three dimensions, Phys. Rev. A 83,
021605 (2011), doi:10.1103/PhysRevA.83.021605.

[35] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, Oxford
(1987).

[36] W. Krauth, Statistical mechanics: Algorithms and computation, Oxford University Press,
Oxford (2006).

[37] B. Doyon, T. Yoshimura and J.-S. Caux, Soliton gases and generalized hydrodynamics, Phys.
Rev. Lett. 120, 045301 (2018), doi:10.1103/PhysRevLett.120.045301.

[38] M. Mestyán and V. Alba, Molecular dynamics simulation of entanglement spreading in gen-
eralized hydrodynamics, SciPost Phys. 8, 055 (2020), doi:10.21468/SciPostPhys.8.4.055.

[39] O. A. Castro-Alvaredo, B. Doyon and T. Yoshimura, Emergent hydrodynamics in
integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016),
doi:10.1103/PhysRevX.6.041065.

[40] B. Bertini, M. Collura, J. De Nardis and M. Fagotti, Transport in out-of-equilibrium XXZ
chains: Exact profiles of charges and currents, Phys. Rev. Lett. 117, 207201 (2016),
doi:10.1103/PhysRevLett.117.207201.

[41] A. Bastianello, V. Alba and J.-S. Caux, Generalized hydrodynamics with
space-time inhomogeneous interactions, Phys. Rev. Lett. 123, 130602 (2019),
doi:10.1103/PhysRevLett.123.130602.

[42] M. Schemmer, I. Bouchoule, B. Doyon and J. Dubail, Generalized hydrodynamics on an
atom chip, Phys. Rev. Lett. 122, 090601 (2019), doi:10.1103/PhysRevLett.122.090601.

27

https://scipost.org
https://scipost.org/SciPostPhys.9.4.058
http://dx.doi.org/10.21468/SciPostPhys.6.6.070
http://dx.doi.org/10.1103/PhysRevA.82.013615
http://dx.doi.org/10.1103/PhysRevA.82.063605
http://dx.doi.org/10.1103/PhysRevA.86.033412
http://dx.doi.org/10.1103/PhysRevA.90.033401
http://dx.doi.org/10.1103/PhysRevLett.122.013402
http://dx.doi.org/10.1209/epl/i2004-10035-7
http://dx.doi.org/10.1103/PhysRevA.83.021605
http://dx.doi.org/10.1103/PhysRevLett.120.045301
http://dx.doi.org/10.21468/SciPostPhys.8.4.055
http://dx.doi.org/10.1103/PhysRevX.6.041065
http://dx.doi.org/10.1103/PhysRevLett.117.207201
http://dx.doi.org/10.1103/PhysRevLett.123.130602
http://dx.doi.org/10.1103/PhysRevLett.122.090601


SciPost Phys. 9, 058 (2020)

[43] F. S. Møller and J. Schmiedmayer, Introducing iFluid: a numerical framework for
solving hydrodynamical equations in integrable models, SciPost Phys. 8, 041 (2020),
doi:10.21468/SciPostPhys.8.3.041.

[44] F. Møller, C. Li, I. Mazets, H.-P. Stimming, T. Zhou, Z. Zhu, X. Chen and J. Schmied-
mayer, Extension of the generalized hydrodynamics to dimensional crossover regime (2020),
arXiv:2006.08577.

[45] N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort and J.-
S. Caux, Dynamical structure factor of one-dimensional Bose gases: Experimen-
tal signatures of beyond-Luttinger-liquid physics, Phys. Rev. A 91, 043617 (2015),
doi:10.1103/PhysRevA.91.043617.

[46] M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of
impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998), doi:10.1103/PhysRevLett.81.938.

[47] D. S. Petrov, G. V. Shlyapnikov and J. T. M. Walraven, Phase-fluctuating 3D
Bose-Einstein condensates in elongated traps, Phys. Rev. Lett. 87, 050404 (2001),
doi:10.1103/PhysRevLett.87.050404.

[48] S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer and A. Aspect, Momentum
spectroscopy of 1D phase fluctuations in Bose-Einstein condensates, Phys. Rev. Lett. 91,
010405 (2003), doi:10.1103/PhysRevLett.91.010405.

[49] F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer and A. Aspect, Momentum
distribution and correlation function of quasicondensates in elongated traps, Phys. Rev. A
67, 051602 (2003), doi:10.1103/PhysRevA.67.051602.

[50] N. Fabbri, D. Clément, L. Fallani, C. Fort and M. Inguscio, Momentum-resolved study of an
array of one-dimensional strongly phase-fluctuating Bose gases, Phys. Rev. A 83, 031604
(2011), doi:10.1103/PhysRevA.83.031604.

[51] H. Yao, D. Clément, A. Minguzzi, P. Vignolo and L. Sanchez-Palencia, Tan’s contact for
trapped Lieb-Liniger bosons at finite temperature, Phys. Rev. Lett. 121, 220402 (2018),
doi:10.1103/PhysRevLett.121.220402.

[52] T. Jacqmin, B. Fang, T. Berrada, T. Roscilde and I. Bouchoule, Momentum distribution of
one-dimensional Bose gases at the quasicondensation crossover: Theoretical and experimen-
tal investigation, Phys. Rev. A 86, 043626 (2012), doi:10.1103/PhysRevA.86.043626.

[53] P. Martin, B. Oldaker, A. Miklich and D. Pritchard, Bragg scattering of atoms from a stand-
ing light wave, Phys. Rev. Lett. 60, 515 (1988), doi:10.1103/PhysRevLett.60.515.

[54] D. M. Giltner, R. W. McGowan and S. A. Lee, Theoretical and experimental study of the
Bragg scattering of atoms from a standing light wave, Phys. Rev. A 52, 3966 (1995),
doi:10.1103/PhysRevA.52.3966.

[55] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L. Rolston and
W. D. Phillips, Coherent splitting of Bose-Einstein condensed atoms with optically induced
Bragg diffraction, Phys. Rev. Lett. 82, 871 (1999), doi:10.1103/PhysRevLett.82.871.

[56] J. Hecker Denschlag, J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K.
Helmerson, S. L. Rolston and W. D. Phillips, A Bose-Einstein condensate in an optical lattice,
J. Phys. B: At. Mol. Opt. Phys. 35, 3095 (2002), doi:10.1088/0953-4075/35/14/307.

28

https://scipost.org
https://scipost.org/SciPostPhys.9.4.058
http://dx.doi.org/10.21468/SciPostPhys.8.3.041
https://arxiv.org/abs/2006.08577
http://dx.doi.org/10.1103/PhysRevA.91.043617
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.87.050404
http://dx.doi.org/10.1103/PhysRevLett.91.010405
http://dx.doi.org/10.1103/PhysRevA.67.051602
http://dx.doi.org/10.1103/PhysRevA.83.031604
http://dx.doi.org/10.1103/PhysRevLett.121.220402
http://dx.doi.org/10.1103/PhysRevA.86.043626
http://dx.doi.org/10.1103/PhysRevLett.60.515
http://dx.doi.org/10.1103/PhysRevA.52.3966
http://dx.doi.org/10.1103/PhysRevLett.82.871
http://dx.doi.org/10.1088/0953-4075/35/14/307


SciPost Phys. 9, 058 (2020)

[57] S. Wu, Y.-J. Wang, Q. Diot and M. Prentiss, Splitting matter waves using an
optimized standing-wave light-pulse sequence, Phys. Rev. A 71, 043602 (2005),
doi:10.1103/PhysRevA.71.043602.

[58] A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Optics and interferometry with atoms
and molecules, Rev. Mod. Phys. 81, 1051 (2009), doi:10.1103/RevModPhys.81.1051.

[59] C. Li, T. Zhou, Y. Zhai, X. Yue, J. Xiang, S. Yang, W. Xiong and X. Chen, Optical Talbot
carpet with atomic density gratings obtained by standing-wave manipulation, Phys. Rev. A
95, 033821 (2017), doi:10.1103/PhysRevA.95.033821.

[60] M. A. Cazalilla, Bosonizing one-dimensional cold atomic gases, J. Phys. B: At. Mol. Opt.
Phys. 37, S1 (2004), doi:10.1088/0953-4075/37/7/051.

[61] M. Rigol and A. Muramatsu, Fermionization in an expanding 1D gas of hard-core bosons,
Phys. Rev. Lett. 94, 240403 (2005), doi:10.1103/PhysRevLett.94.240403.

[62] A. Minguzzi and D. M. Gangardt, Exact coherent states of a harmonically confined Tonks-
Girardeau gas, Phys. Rev. Lett. 94, 240404 (2005), doi:10.1103/PhysRevLett.94.240404.

[63] G. E. Astrakharchik and S. Giorgini, Correlation functions of a Lieb–Liniger Bose gas, J.
Phys. B: At. Mol. Opt. Phys. 39, S1 (2006), doi:10.1088/0953-4075/39/10/s01.
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