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Abstract

We derive a holomorphic anomaly equation for the Vafa-Witten partition function for
twisted four-dimensional N = 4 super Yang-Mills theory on CP2 for the gauge group
SO(3) from the path integral of the effective theory on the Coulomb branch. The holo-
morphic kernel of this equation, which receives contributions only from the instantons, is
not modular but ‘mock modular’. The partition function has correct modular properties
expected from S-duality only after including the anomalous nonholomorphic boundary
contributions from anti-instantons. Using M-theory duality, we relate this phenomenon
to the holomorphic anomaly of the elliptic genus of a two-dimensional noncompact
sigma model and compute it independently in two dimensions. The anomaly both in
four and in two dimensions can be traced to a topological term in the effective action of
six-dimensional (2, 0) theory on the tensor branch. We consider generalizations to other
manifolds and other gauge groups to show that mock modularity is generic and essential
for exhibiting duality when the relevant field space is noncompact.
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1 Introduction

The hypothesis of S-duality asserts that N = 4 super Yang-Mills theory is invariant under the
action of a large duality group (SL(2,Z) or a close relative, depending on the four-dimensional
gauge group G) acting on τ≡ τ1+ iτ2 = θ/2π+4πi/g2; here g and θ are the gauge coupling
and theta angle; τ1 and τ2 denote the real and imaginary parts of τ throughout this paper. But
S-duality is hard to test, because computations for strong coupling are difficult. One way to
circumvent this difficulty is to consider a topologically twisted version of the theory in which
localization can be used to perform computations for strong coupling.

In this paper, we will consider one particular twisting, originally studied in the present
context in [1]. With this twisting, a formal argument shows that the partition function on a
compact four-manifold X is holomorphic in τ or equivalently in q = exp(2πiτ). Furthermore,
if a certain curvature condition (eqn. (2.58) in [1]) is satisfied, the evaluation of the path
integral can formally be argued to localize on the contribution of ordinary Yang-Mills instan-
tons. (Without this curvature condition, one localizes on the solutions of a more complicated
system of equations.) The contribution to the path integral from the component of field space
with instanton number1 n is then anqn, where an is the Euler characteristic of the instanton
number n moduli space Mn. Thus the partition function after summing over bundles of all

1Here n is an integer for a simply-connected gauge group such as G = SU(2), but may have a fractional part if
G is not simply-connected. The fractional part is determined by a two-dimensional cohomology class (for example,
by the second Stieffel-Whitney class w2 if G = SO(3)), and in the partition function

∑

n anqn, it is natural to sum
over all bundles keeping this class fixed. The values of n in the sum are then congruent to each other mod Z. A
restriction on w2 (and its analog for other groups) is assumed in eqn. (1) and other similar formulas in this paper.
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values of the instanton number is expected to be

Z =
∑

n

anqn. (1)

The relevant curvature condition is highly restrictive, but there are a number of four-
manifolds that satisfy this condition and for which computations of the an were available
in the mathematical literature [2, 3]. In particular, two important examples are a K3 surface
and CP2. For K3, the expectations were borne out; the function

∑

n anqn is a holomorphic
modular function2. What happens for CP2 is more complicated. There is a natural modular
function Z(τ, τ̄) whose holomorphic part is

∑

n anqn, but this function is not holomorphic. It
has a “holomorphic anomaly” which for SO(3) bundles with w2 = 0 reads3

∂ Z
∂ τ̄
=

3

16πiτ3/2
2 η(τ)3

∑

n∈Z
q̄n2

. (2)

(There is a second such formula, which we consider later, for bundles with nonzero w2.) A
microscopic explanation of the failure of holomorphy was not provided in [1]. However, it
was noted that the right hand side of eqn. (2) – and also its analog with w2 6= 0 – looks
like it could come from a sum over abelian anti-instantons on the Coulomb branch. On the
Coulomb branch, the gauge group is broken from SO(3) (or SU(2)) to U(1), and q̄n2

can be
interpreted as the exponential of the classical action for a U(1) anti-instanton of flux n. On this
interpretation, the origin of the factor 3

16πiτ
−3/2
2 is not immediately apparent. It is anyway not

clear why we should be summing over anti-instantons in a theory that formally can be argued
to localize on instantons.

Subsequent developments have made it clear that the holomorphic anomaly must indeed
come from the Coulomb branch and more specifically from a surface term at infinity on the
Coulomb branch. One development involves Donaldson theory of four-manifolds or more
precisely its interpretation in terms of N = 2 super Yang-Mills theory. A formal argument
shows that certain correlation functions in a twisted version of the N = 2 theory depend only
on the smooth structure of a four-manifold X and not on its Riemannian metric g. These
correlators are expected to coincide with the Donaldson invariants. From a mathematical
point of view [4], the Donaldson invariants are true invariants for b+2 > 1 but for b+2 = 1,
they instead have a chamber structure: they are generically invariant under a small change
in the metric g, but they jump when one crosses certain “walls” in the space of metrics. This
phenomenon is analogous to wall-crossing for BPS states in various supersymmetric models.
The wall-crossing phenomenon was studied in [5] from a gauge theory point of view and was
found to originate from a surface term at infinity on the Coulomb branch.4 In other words,
the formal proof that certain correlation functions are independent of g involves integration
by parts in field space. Upon “localization,” the proof requires integration by parts on the
Coulomb branch of the theory, and there is a possibility of a surface term at infinity. Such a
surface term arises for b+2 = 1 and accounts for wall crossing.

Going back to N = 4, the formal proof of holomorphy of the twisted theory again involves
integration by parts, so it is reasonable to ask if again there may be a surface term at infinity

2Here and below by a “modular function” we mean a function which is invariant under the action of a congru-
ence subgroup of SL(2,Z), up to a possible multiplier system. For the reasons explained later, in this paper the
partition function is assumed to be normalized so that it has modular weight zero.

3Up to a factor of 2, this formula also holds for gauge group SU(2).
4For b+2 > 1, there are enough fermion zero-modes on the Coulomb branch to prevent wall crossing behavior,

so the Donaldson invariants are true topological invariants. There has been very little study of the case b+2 = 0,
partly because nonzero Donaldson invariants for gauge group SU(2) or SO(3) (the groups most studied) can only
arise if b1+ b+2 is odd, so that if b+2 = 0, b1 must be nonzero. But most of the interest in four-manifold theory is on
simply-connected four-manifolds, which necessarily have b1 = 0. However, the case b+2 = 0 certainly merits more
study.
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on the Coulomb branch that accounts for the holomorphic anomaly. Indeed, it was pointed
out in [1] that CP2 has b+2 = 1 (while K3 has b+2 > 1) and it was suggested that a holomorphic
anomaly would arise on any four-manifold with b+2 = 1. The goal of the present paper is to
demonstrate this, by performing the appropriate analog of the computation in [5].

Before saying more about this, we pause to explain a dual version of the problem. A two-
dimensional supersymmetric field theory of a rather general type has a natural invariant, the
elliptic genus. It is defined by a path integral on a torus T2. Fields in the sigma-model are
taken to be periodic functions on the torus up to possible twists by symmetries; the twists
are chosen so that the supercurrent associated to one of the supersymmetries is invariant, but
otherwise one allows arbitrary twists. For a sigma-model with a compact target space (or for
any supersymmetric field theory with a discrete spectrum), the elliptic genus is a holomorphic
function of the modular parameter τ. However, for a sigma-model with a noncompact target
space, the elliptic genus can have a holomorphic anomaly [6–15]. The elliptic genus defined
by a path integral on the torus is then still modular invariant, but it is no longer holomorphic.
In this situation, the elliptic genus becomes, in modern language, a mock modular function
rather than an ordinary holomorphic modular function.

In a sigma-model with target W , supersymmetric localization reduces the computation of
the elliptic genus to an integral over the space of constant maps from T2 to W . This space of
constant maps plays the role of the Coulomb branch in the gauge theory. The space of such
constant maps is a copy of W . The proof of holomorphy involves an integration by parts on
W , and the anomaly in holomorphy comes from a surface term at infinity. For sigma-models,
this has been studied in a variety of ways in the literature. The derivation in [14], with a
direct calculation of the holomorphic anomaly in terms of the behavior at infinity in W , will
be particularly useful as background to our computation.

The two arenas for a holomorphic anomaly that we have mentioned – gauge theory in four
dimensions and supersymmetric field theory in two dimensions – can be dual, for the following
reason. S-duality in four dimensions is believed to be intimately connected with the existence
and properties of a certain superconformal field theory in six dimensions, the (2,0) model. In
particular, the (2, 0) theory on Euclidean six manifold M = T2 × X , in the limit that the area
of the T2 is very small, keeping fixed its complex structure, is expected to reduce to N = 4
super Yang-Mills theory on X , with the τ parameter of the gauge theory simply equal to the
τ parameter that determines the complex structure of T2. The twisting of the N = 4 theory
on X that is under discussion here can be “lifted” to a twisting of the (2, 0) model on T2 × X .
Formally, the partition function of this twisted version of the theory should not depend on the
metric of X and should depend holomorphically on τ. But we will be exploring a possible
anomaly in this holomorphy.

We will study the (2,0) theory on T2×X in either of two limits. If the T2 is very small com-
pared to X , then as already stated, we reduce to gauge theory on X . We will call this the gauge
theory region. In the opposite limit that X is very small compared to T2, we reduce to a su-
persymmetric (possibly superconformal) field theory on T2. We will call this the sigma-model
region, since the supersymmetric model in question can be described as a sigma-model in the
asymptotic region of field space that is important for the holomorphic anomaly (something
as simple as this is not expected in the interior). Because the area of the T2 does not matter
in the topologically twisted theory, we must get the same holomorphic anomaly whether we
compute in the sigma-model region or the gauge theory region.

In the gauge theory region, we will exhibit the holomorphic anomaly by a computation
somewhat analogous to that in [5], and in the sigma-model region, we will exhibit the same
anomaly by a calculation somewhat along lines of [14]. Actually, a computation using only
the lowest order terms in the effective action on the Coulomb branch of the gauge theory or
the target space of the sigma-model will not show the holomorphic anomaly. In that approx-
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imation, the holomorphic anomaly vanishes. It is necessary to include a certain correction in
the effective action. In understanding wall crossing in N = 2 super Yang-Mills theory, the
1-loop quantum correction to the classical metric on the Coulomb branch plays an important
role. For N = 4, there is no such quantum correction to the metric of the Coulomb branch,
but at the 1-loop level, a half-BPS correction to the effective action on the Coulomb branch
is generated [16]. By exploiting holomorphy or a relation to anomalies, it can be shown that
the coefficient of this interaction is 1-loop exact. It turns out that this interaction has the right
properties to generate the expected holomorphic anomaly in the gauge theory approach.

The six-dimensional (2, 0) model on its Coulomb branch likewise has a half-BPS coupling,
first described in [17,18], that reduces after T2 compactification to the half-BPS interaction of
the N = 4 super Yang-Mills theory that was already mentioned. This interaction as well has a
precisely known coefficient. We will show that this 6d coupling, after twisted compactification
on X , has just the right properties to generate the expected holomorphic anomaly in the sigma-
model approach.

The computations of the holomorphic anomaly both in the gauge theory region and the
sigma model region yield the same result on the right hand side of (2), but the various factors
have different origins in the two regions.

• The factor of 3 is related to the first Chern class of the canonical line bundle of CP2 in
the gauge theory region and to the quantum of H-flux in the sigma-model region.

• The factor of τ−3/2
2 comes from the integral over the constant mode of the auxiliary

field in the gauge theory region and from the integral over three non-compact bosonic
zero-modes in the sigma model region.

• The factor of η(τ)−3 = η(τ)−χ(CP
2) is the contribution of point-like instantons in the

gauge theory region and of the left-moving oscillators in the sigma model region.
• Finally, the anti-holomorphic theta-function

∑

n∈Z q̄n2
is a contribution of abelian anti-

instantons in the gauge theory region and of right-moving momenta of a compact chiral
boson in the sigma model region.

In one important respect, our sigma model calculation in two dimensions is more complete
than our corresponding gauge theory calculation. In the sigma model, we will have to do a
path integral on a two-torus. Such a path integral can be interpreted as a Hilbert space trace,
and this determines its absolute normalization. By contrast, in gauge theory we will be doing a
Coulomb branch calculation on a general four-manifold X . Such a path integral does not have
a natural normalization; it can be affected, for example, by topological terms proportional to
the Euler characteristic and the signature of X . To determine the absolute normalization of
the Coulomb branch path integral, we would have to start in the ultraviolet with conventions
that lead to a holomorphic expansion of the precise form (1), and then deduce the resulting
normalizations on the Coulomb branch. We will not attempt to do that.

Now we mention some previous and current work on related problems. Mock modularity
arising from Coulomb branch integrals in gauge theories with N = 2 supersymmetry has been
systematically explored in [19], extending previous calculations that had been done by more
special methods [5, 20–24]. Moreover, in forthcoming work, Manschot and Moore have ana-
lyzed the Coulomb branch integral and the associated mock modularity in the N = 2∗ theory,
which of course is closely related to N = 4 super Yang-Mills, which we study in the present
paper. Their calculation might lead to a way to resolve the normalization issue mentioned in
the last paragraph.

We now comment on the relation between the holomorphic anomaly and mock modularity.
The naive holomorphic partition function of the twisted SO(3) super Yang-Mills theory on
CP2 is the holomorphic kernel of the anomaly equation (2) which receives contributions only
from the instantons. It is holomorphic but not modular. The presence of the holomorphic
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anomaly implies that the physical partition function necessarily contains a nonholomorphic
piece given by an Eichler integral of the anomaly [25] which receives contributions from the
anti-instantons. In modern terminology [26–28], the holomorphic piece is a (vector valued)
‘mixed mock modular form’ whereas the anomaly is governed by its ‘shadow’. The physical
partition function satisfying the anomaly equation is the ‘modular completion’ and has good
modular properties, as expected from duality.

These considerations extend naturally to other Kähler 4-manifolds with b+2 = 1, b1 = 0
and to other groups. In general, when the configuration space of the twisted theory is non-
compact, the partition function is modular but not holomorphic, and satisfies a holomorphic
anomaly equation similar to (2). This incompatibility between holomorphy and modularity is
the essence of mock modularity. The physical requirement of duality invariance of the path
integral thus leads naturally to the mathematical formalism of mock modularity whenever the
relevant configuration space is noncompact.

The structure of the paper is as follows. In Section 2 we review relevant facts about topo-
logically twists of N = 4 SYM theory, their M-theory realizations and some generalities about
holomorphic anomaly. In Section 3 we derive the holomorphic anomaly equation for the SO(3)
super Yang-Mills theory on CP2 by a computation in the gauge theory region. In Section 4 we
rederive the anomaly in corresponding sigma model region. The nonholomorphic contribu-
tions in both regions can be seen to originate from a topological term on the six-dimensional
world volume theory of the Euclidean M5-brane described in Section 4.1. In Section 5 we
present generalizations to other manifolds and other gauge groups.

2 Twisting and Topological Field Theory

The contents of this section are as follows. In Section 2.1, we review the general notion of
a topologically twisted theory. In Section 2.2 we review all three possible twists of N = 4
4d super Yang-Mills theory. In Section 2.3 and Section 2.4 we comment on the geometric
interpretation of the twists, including their realization in M-theory. In Section 2.5 we give a
general discussion on the origin of the holomorphic anomaly in topologically twisted theories.

2.1 Generalities

Here we briefly recall how N = 4 super Yang-Mills theory can be “topologically twisted” to
make what formally is a topological field theory. We say “formally” because, as we will discuss,
the proof of topological invariance always relies on integration by parts in field space, which
can generate a surface term under some circumstances. For more details on some of the
following, see for example [1].

We first consider the theory on R4. The rotation group in four dimensions, extended to
encompass spin, is5 Spin(4) = SU(2)`×SU(2)r . The R-symmetry group of N = 4 super Yang-
Mills theory is SU(4)R. The global supersymmetries transform under SU(2)`×SU(2)r×SU(4)R
as (2,1,4)⊕ (1,2,4), where representations are labeled in a familiar way.

For “twisting” in the sense that we will consider, one picks a homomorphism
ρ : Spin(4) → SU(4)R. Then one defines a new group Spin(4)′, isomorphic to Spin(4), that
consists of elements of Spin(4)× SU(4)R of the form g ×ρ(g), g ∈ Spin(4).

One picks ρ so that the representation (2,1,4) ⊕ (1,2,4) of Spin(4) × SU(4)R contains
at least one Spin(4)′ singlet. Let us denote as Q a supercharge of N = 4 super Yang-Mills
theory that is such a singlet. It will always obey Q2 = 0. The reason is that, more generally,

5In our conventions, self-dual 2-forms such as F+ transform in the representation (3,1) of
Spin(4) = SU(2)` × SU(2)r . Instanton configurations satisfy F+ = 0 and hence are anti-self-dual.
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if Q is any linear combination of the global supercharges of N = 4 super Yang-Mills theory,
its square will be a linear combination of the translation generators,6 and these (as they com-
mute with SU(4)R) transform the same way under Spin(4)′ as under Spin(4). In particular,
no nonzero translation generator is Spin(4)′-invariant, so, if Q is Spin(4)′-invariant, Q2 must
vanish. If there are multiple Spin(4)′-invariant supercharges Q and Q′, this argument shows
that Q2 = (Q′)2 = {Q,Q′}= 0.

The basic idea of making a twisted topological field theory is now to view Q as a BRST-
like operator: we only consider operators and states that are Q-invariant, and we consider
an operator O to be trivial if it is a Q-commutator, O = {Q,O′} for some O′, and a state Ψ
to be trivial if it is Q-exact, Ψ = QΛ for some Λ. Because Q generates a symmetry of the
path integral and Q2 = 0, adding Q-exact terms to the operators or states will not affect the
expectation values of Q-exact operators in Q-exact states. Specializing to Q-closed operators
and states will lead to a topological field theory because in all cases (i.e. for every choice of
ρ), the stress tensor, which measures the response of the theory to an infinitesimal change in
a background metric, is Q-exact,

Tµν = {Q,Λµν} , (3)

where Λµν is a linear combination of components of the supercurrent of the theory. Equation
(3) is a special case of the usual commutation relation of the supercharges and supercurrents,
written in a way that is natural in the twisted theory.

So far we have considered the theory on R4. It turns out that it is possible to formulate
the twisted theory on a rather general four-manifold X , preserving the Q symmetry, as long
as one imposes on X a mild condition that depends on ρ and is detailed below. In fact, the
generalization to a curved four-manifold X can be made in a way that preserves all of the
Spin(4)′ invariant supercharges, and the fact that any linear combination of them squares to
zero.

With the goal of formulating the theory on a general manifold, we view Spin(4)′ as the
rotation symmetry group, so in general fields do not have the same spin they have under
the original rotation group Spin(4). We use the Spin(4)′ quantum numbers in coupling the
fields of the N = 4 theory to a background curved metric on any manifold X . This defines
the coupling to a curved background modulo some nonminimal terms (explicit coupling to
the Riemann tensor of X ) which in some cases are needed to preserve the Spin(4)′ invariant
supersymmetries.

The coupling to the background curved metric can be made in such as way that eqn. (3)
still holds, that is, the stress tensor remains Q-exact. Formally, this means we get a topological
field theory: as long as we consider only Q-invariant operators and their matrix elements
between Q-invariant states, the expectation value or matrix element of {Q,Λµν} will vanish
because of Q-invariance of the path integral, and hence the response of the theory to a change
in the background metric of X will vanish. However, as noted in the introduction, this step
needs to be treated with care. The claim that 〈{Q,V}〉 = 0 for any operator V is ultimately
based on integration by parts in field space. An anomaly might come from a surface term at
infinity. For example, in Donaldson theory of four-manifolds, viewed as twisted N = 2 super

6We do not need to consider central charges in the supersymmetry algebra for the following reason. For our
application, we will view Q and Q2 as automorphisms of the algebra of local operators. Central charges commute
with local operators, so we can ignore them. Central charges can always be defined by surface integrals at spatial
infinity, so they likewise would not appear if we quantize the theory on a compact spatial three-manifold and try
to define a space of physical states (it is natural to do this in topological field theory, but we will not actually do
so in the present paper). Central charges can appear if we quantize the theory on a noncompact three-manifold
with boundary conditions at infinity that correspond to spontaneous gauge symmetry breaking (this is natural
physically, but is usually less interesting in the context of topological field theory and is rather distant from our
interests in the present paper).
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Yang-Mills theory, the relevant integral reduces to an integral on the Coulomb branch, and
one does find an anomaly – a surface term at infinity on the Coulomb branch – that spoils
topological invariance in the case b+2 (X ) = 1 [5]. As explained in the introduction, in the
present paper we will find that a somewhat similar anomaly spoils holomorphy in twisted
N = 4 super Yang-Mills, again if b+2 (X ) = 1.

2.2 The Three Twisted Theories in Detail

Now let us describe in more detail the twisted theories of interest. In practice, there are three
possible choices of the homomorphism ρ : Spin(4)→ SU(4)R, given that we want to have at
least one Spin(4)′-invariant supercharge Q:

(A) The choice of ρ of primary interest in this paper is such that the 4 of SU(4)R trans-
forms under Spin(4)′ = SU(2)′

`
× SU(2)′r as (2,1) ⊕ (2,1). Thus Spin(4)′ commutes with a

residual subgroup SU(2)R ⊂ SU(4)R which permutes the two (2,1)’s, and the 4 of SU(4)R
transforms under SU(2)′

`
× SU(2)′r × SU(2)R as (2,1,2). The 16 global supersymmetries

of the N = 4 theory transform under Spin(4)′ × SU(2)R = SU(2)′
`
× SU(2)′r × SU(2)R as

(1,1,2)⊕ (3,1,2)⊕ (2,2,2). In particular, the (1,1,2) is a pair of Spin(4)′-invariant singlet
supercharges. Because they transform as 2 of a residual global R-symmetry SU(2)R, it does not
matter which linear combination Q we use in defining a topological field theory; all choices
are equivalent up to the action of SU(2)R.

(B) The choice of ρ useful in applications to the geometric Langlands program [29] is
such that the 4 of SU(4)R transforms under Spin(4)′ as (2,1) ⊕ (1,2). Thus Spin(4)′ com-
mutes with a residual U(1)R subgroup of SU(4)R, which we normalize so that the (2,1) and
(1,2) respectively have charges 1 and −1. The supercharges of the theory transform under
Spin(4)′ × U(1)R as 2(1,1)1 ⊕ (3,1)1 ⊕ (1,3)1 ⊕ 2(2,2)−1, where the subscript is the U(1)R
charge, and a 2 in front means that a representation appears twice. In particular, there are
two Spin(4)′ singlets. They transform the same way (both with charge 1) under the unbroken
global symmetry U(1)R. We can choose Q to be a linear combination αQ1 + βQ2 of the two
Spin(4)′ singlets Q1 and Q2. The resulting family of topological field theories depends in a
nontrivial fashion on the parameter t = α/β , which plays an important role in the application
to geometric Langlands.

(C) The last case is that the 4 of SU(4)R transforms under Spin(4)′ as (2,1)⊕2(1,1). Thus
Spin(4)′ commutes with a residual U(2)R subgroup of SU(4)R, under which the two copies of
(1,1) transform as a doublet. The global supersymmetries transform under
SU(2)′

`
×SU(2)′r×U(2)R as (1,1,1)−1⊕(3,1,1)−1⊕(2,2,1)1⊕(2,1,2)1⊕(1,2,2)−1, where the

subscript is the charge under the center of U(2)R. In particular, there is up to scaling a unique
Spin(4)′ singlet global supercharge Q that we can use to make a topological field theory.

In each of the three cases, it is straightforward to determine how the fields of N = 4 super
Yang-Mills theory transform under Spin(4)′. In particular, let us look at the adjoint-valued
scalar fields φ of the theory. Before twisting, they transform in the 6 of SU(4)R. By examining
how they transform in the twisted theory, we will find what condition must be placed on X so
that the twisted topological field theory can be defined on X . (No additional condition comes
from the gauge field A, as it is SU(4)R-singlet so it is not affected by twisting; and no additional
condition comes from the fermions, essentially because they are related to the bosons by the
action of Q and so transform the same way under Spin(4)′.)

(A′) With our first choice of ρ, the six scalars transform under SU(2)′
`
×SU(2)′r×SU(2)R as

(3,1,1)⊕(1,1,3). In particular, this representation is not invariant under exchange of SU(2)′
`

and SU(2)′r , so the theory with this twist does not have a parity or reflection symmetry, and
X must be oriented. However, the twisted scalars have integer spin, as do the fermions after
twisting, so there is no need for X to have a spin structure. That is why we can take X = CP2,
the case in which a holomorphic anomaly was found in [1].
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(B′) With the second choice of ρ, the six scalars transform under SU(2)′
`
×SU(2)′r ×U(1)R

as (2,2)0 ⊕ (1,1)2 ⊕ (1,1)−2. This is a reflection symmetric representation, so X need not be
oriented. (If X is unorientable, the parameter t discussed earlier is no longer arbitrary, since
orientation-reversal acts nontrivially on this parameter.) The twisted scalars have integer spin,
so X again does not require a spin structure and we can study this theory on CP2.

(C′) With the third choice of ρ, the six scalars transform under SU(2)′
`
× SU(2)′r × U(2)R

as (2,1,2)1⊕(1,1,1)2⊕(1,1,1)−2. This representation is not reflection symmetric, so X must
be oriented. In addition, some of the scalars have half-integer spin, so X must carry a spin
structure.

2.3 Geometrical Realization

In what follows, it will be useful to be familiar with a geometrical realization [30] of the three
twisted theories. First let us consider a realization by D3-branes in Type IIB superstring theory.
We can realize N = 4 super Yang-Mills, with gauge group U(N), by wrapping N D3-branes on
X . Of course, Type IIB superstring theory is naturally defined on a 10 dimensional spacetime
Y , so X will have a rank 6 normal bundle W in Y . The scalars in the super Yang-Mills multiplet
describe normal oscillations of the D-branes, so they are valued in W tensored with the adjoint
representation of the gauge group G. Since we have determined how the scalars transform
under the symmetries, we can read off what must be the normal bundle to X in Y :

(A′′) With our first choice of ρ, three scalars transform under Spin(4)′ as (3,1). This is the
appropriate representation for a selfdual second rank tensor or two-form. So one summand in
W is the bundle Ω+2 (X ) of selfdual two-forms on X . The other scalars are Spin(4)′ singlets in
the vector representation of SU(2)R. The upshot of this is that we can take Y to be Ω2

+(X )×R
3,

where here by Ω+2 (X ) we mean the total space of the rank three vector bundle Ω+2 (X ) → X ,
and R3 is a copy of three-dimensional Euclidean space, with SU(2)R as its group of rotations.
X is embedded in Ω2

+(X )×R
3 as the zero-section of Ω+2 (X ), times a point in R3, which we can

choose to be the origin.
For some favorable choices of X , such as CP2 or S4, Ω+2 (X ) admits a complete metric of

G2 holonomy, such that the zero-section is a “coassociative” (or supersymmetric) submanifold.
This puts the supersymmetry of the twisted model in a standard framework. For more generic
X , there presumably is no nice complete metric of G2 holonomy on Ω+2 (X ), but we can think
of Ω+2 (X ) as carrying a G2 structure near the zero-section. That is sufficient for purposes of
gauge theory.

(B′′) With the second choice of ρ, four scalars transform under Spin(4)′ as (2,2). This is
the representation that corresponds to the tangent or cotangent bundle of X . Once X is given
a Riemannian metric, the two are equivalent; it will be more natural in what follows to think
in terms of the cotangent bundle T ∗X . The other two scalars are Spin(4)′ singlets but charged
under U(1)R. The geometrical picture is that Y = T ∗X × R2, where X is embedded as the
zero-section of T ∗X times a point in R2, and U(1)R acts as the rotation group of R2.

In a few favorable cases, such as X = CP2, T ∗X carries a complete Calabi-Yau metric, such
that the zero-section is a Lagrangian submanifold. This puts the supersymmetry of the twisted
model in a standard framework. Even when that is not so, T ∗X is a symplectic manifold, and a
brane supported on its zero section is a Lagrangian brane in the A-model of T ∗X , still giving a
standard framework for the supersymmetry of the twisted model. (We expect that the analog
of this for cases A′′ and C′′ is that Ω+2 (X ) or S+(X ) will always carry a possibly unintegrable G2
structure or Spin(7) structure, and that this suffices for topological applications. This point of
view has not been studied systematically.)

(C′′) With the third choice of ρ, four scalars transform under Spin′(2)`×Spin′(2)r×U(2)R
as (2,1,2)0, where the subscript refers to the charge under the U(1)R center of SU(2)R. The
other two transform as (1,1,1)±2. The geometrical meaning is as follows. Let S+(X ) be the
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positive chirality spin bundle of X , viewed as a real vector bundle of rank 4. Then Y can be
identified as S+(X )×R2, where X is embedded as the zero-section of S+(X ) times a point in
R2. SU(2)R acts on the fiber of S+(X )→ X , commuting with its structure group Spin(4)′, and
U(1)R acts on R2 by rotations.

In a few favorable cases, S+(X ) carries a complete metric of Spin(7) holonomy, with the
zero section as a coassociative submanifold, providing a standard framework for the supersym-
metry of the twisted model. Even when such a complete metric does not exist, this provides a
sufficient description for our application to gauge theory.

2.4 M-Theory Variant

Instead of considering D3-branes in Type IIB superstring theory, we can consider M5-branes in
M-theory. Here we use the fact that M-theory on T2 × Z , for a two-torus T2 and any Z , goes
over, in the limit that the T2 is small, to Type IIB on S1 × Z . In this process, an M5-brane on
T2 × X (where X is any submanifold of Z) goes over to a D3-brane on X times a point in S1.
Since strings or branes wrapped on S1 will not be important in anything we say, we can here
decompactify S1 and replace it by a copy of R. The complex structure of the torus, τ, plays
the role of the complex coupling constant in 4d.

The upshot of this is that the geometrical descriptions that were described earlier have
M-theory variants:7

(A′′′) In the first example, we can consider M-theory on T2 ×Ω+2 (X )×R
2 with M5-branes

wrapped on T2 × X times a point in R2.
(B′′′) In the second example, we can consider M-theory on T2 × T ∗X ×R with M5-branes

wrapped on T2 × X times a point in R.
(C′′′) In the third example, we can consider M-theory on T2 × S+(X )×R with M5-branes

wrapped on T2 × X times a point in R.
In each of these cases, we have the option to make the T2 larger or smaller than X . In the

limit that T2 is very small, we return to the Type IIB description via D3-branes wrapped on X .
This in turn can be described in terms of the four-dimensional twisted versions of N = 4 super
Yang-Mills theory, as described above. In the opposite limit that X is very small compared to
T2, we get a description in terms of a conformal field theory on T2. We will explore both limits
in this paper.

Parallel M5-branes, which we have used in this explanation, give a particular realization of
the (2, 0) superconformal field theory in six dimensions. Instead of talking about M5-branes
wrapped on T2 × X , we could more generally talk about the (2,0) model on T2 × X . This
formulation is more general as it encompasses all groups of A−D−E type.

Consider in more detail the twist of type (A′′′). The (uncompactified) 6d theory has
Spin(5)R × Spin(6) global symmetry, where the first factor is the R-symmetry and the second
factor describes (local) rotations of the 6d spacetime. When the 6d theory put on a spacetime
of the form X×Σ2, where X is an oriented 4-manifold and Σ2 is a Riemann surface, the second
factor naturally breaks into Spin(2)× Spin(4) ⊂ Spin(6). The two factors correspond to local
rotations on Σ2 and X respectively. The topological twist is then realized by identifying the
SU(2)` subgroup of Spin(4)∼= SU(2)`×SU(2)r with SU(2)R ∼= Spin(3)R ⊂ Spin(5)R embedded
in the standard way.

In the M-theory setting, the 6d type A1 theory describes the dynamics of a stack of 2
M5 branes, with center of mass degrees removed. Then 6d spacetime rotations and the R-
symmetry can be both embedded into the group of 11d rotations: Spin(6)×Spin(5)R ⊂ Spin(11)
where Spin(5)R correspond to the rotations along the directions orthogonal to the worldvol-
ume of the 5-branes. The topological twist can be then realized by the following geometric

7In what follows, X is short for the zero-section of Ω+2 (X ), T ∗X , or S+(X ).
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background in M-theory:

M-theory: Ω+2 (X ) ×Σ
2 ×R2

5-branes: X ×Σ2 , (4)

whereΩ+2 (X ) is the total space of the rank 3 vector bundle of the self-dual 2-forms over X . This
construction follows from the fact that antisymmetric rank 2 tensors of SO(4) ≡ Spin(4)/Z2
transforms as a triplet of SU(2)r ⊂ Spin(4). After the topological twist SU(2)r is identified
with the Spin(3)R ⊂ Spin(5)R subgroup of the R-symmetry that corresponds to the rotations
of the fibers of the normal bundle to the worldvolume of the 5-branes. The total space Ω+2 (X )
is a local G2-manifold and X is a coassociative cycle.

When X is Kähler, as in the case of X = CP2, its holonomy is reduced to
U(2) ⊂ SO(4) ≡ Spin(4)/Z2. In particular, SU(2)` is reduced to its maximal torus
U(1)` ⊂ SU(2)`. After the topological twist, this maximal torus is identified with the sub-
group U(1)R ≡ Spin(2)R ⊂ Spin(5)R embedded in the standard way (i.e. as a subgroup cor-
responding to the rotations among 2 out of 5 normal directions). The three-dimensional real
representation of Spin(3)R decomposes into a complex 1-dimensional representation of U(1)R
of charge 2 plus a trivial 1-dimensional real representation. Geometrically this correponds
to the splitting of the rank 3 real vector bundle into a real rank 1 trivial bundle and a rank
1 complex vector bundle: Ω+2 (X ) = R× KX where KX := Λ2T ∗CX is the canonical bundle of
X , considered as a complex manifold. The total space KX of this canonical bundle is a local
Calabi-Yau 3-fold.

2.5 Some Background Concerning the Anomaly

In cases A and C, one finds that if S4d is the action of the theory, then the antiholomorphic
dependence of S4d on the gauge theory coupling parameter τ is Q-exact, meaning that

∂ S4d

∂ τ̄
= {Q,Λ}, (5)

for some functionalΛ. (The details of case B are more complicated and depend on the choice of
the parameter t.) Formally, it follows that as long as we only discuss Q-invariant operators and
states, all computations in cases A or C will give results holomorphic in τ. In fact, as already
mentioned, the proof of decoupling of Q-exact operators depends on integration by parts and
there is a possibility of an anomaly coming from a surface term at infinity. As explained in
the introduction, from explicitly known formulas it appears that there is such a holomorphic
anomaly in case A provided that b+2 (X ) = 1. In the present paper, we will aim to elucidate this
anomaly.

We will primarily aim to understand the case of gauge group SU(2) or SO(3), which can
be realized by a system of two D3-branes or two M5-branes after removing the center of mass
degree of freedom. A possible anomaly will come from the Coulomb branch, which in the
geometric description is the region in which two branes are widely separated in the untwisted
directions. For example, for D3-branes on Ω+2 (X )×R

3, T ∗X ×R2, or S+(X )×R2, the Coulomb
branch is the region in which the D3-branes are widely separated in R3, R2, or R2. The
overall center of mass motion of the D3-brane system is described by a free system. The
Coulomb branch that we are interested in parametrizes the relative motion between the two
D3-branes. So we can effectively describe the Coulomb branch asymptotically in terms of the
degrees of freedom of a single D3-brane wrapped on X but near infinity in the second factor
of Ω+2 (X )×R

3/Z2, T ∗X ×R2/Z2, or S+(X )×R2/Z2. (Here in describing the relative motion of
the two D3-branes, we divide by Z2 to account for the Weyl group that exchanges the two D3-
branes.) In the M-theory description, the story is similar. The Coulomb branch for the relative
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motion of a pair of M5-branes can be described in terms of a single M5-brane wrapped on
T2× X times a point near infinity in the last factor of T2×Ω+2 (X )×R

2/Z2, T2× T ∗X ×R/Z2,
or T2 × S+(X )×R/Z2.

We will find the anomaly by a careful study of the effective field theory on the Coulomb
branch. In doing this, as remarked in the introduction, it is necessary to include in the theory
on the Coulomb branch a certain half-BPS interaction that was originally described in [16] in
the context of supersymmetric Yang-Mills theory, or its M-theory analog, which was originally
described in [17,18].

Formally, in any of the three twisted theories under discussion, one can calculate by a
procedure of supersymmetric localization. Formally, one can show that modulo Q-exact terms,
the path integral of any of the three twisted theories can be localized on configurations that
satisfy {Q,χ} = 0, where χ can be any of the fermion fields of the theory. The equations
{Q,χ} = 0 become a system of elliptic differential equations modulo the gauge group for
bosonic fields in the theory. In theories A and B, these equations have been discussed in
detail in [1] and [29], respectively. In theory C, the localization equations are similar to the
“monopole” equations studied in [31]. Actually, the details of this localization procedure will
not be our focus in the present paper; what we will be interested in here is precisely how this
localization can fail. Since localization holds modulo Q-exact terms, the localization procedure
will give an incomplete result if there is an anomaly at infinity on the Coulomb branch. The
anomaly that we will explore violates the predictions of the formal localization procedure
which implies holomorphy.

3 Holomorphic Anomaly in Four Dimensions

We begin in Section 3.1 by recalling a few facts about the holomorphic anomaly encountered
[1] in the computation of the twisted partition function of supersymmetric Yang-Mills theory
with gauge group SO(3) on CP2. Our goal is to better understand how the anomaly relates
to mock modularity and eventually to noncompactness of the Coulomb branch. In Section 3.2
we review the relevant facts about the effective action of the four-dimensional N = 4 theory
on the Coulomb branch. In Section 3.3 we give the derivation of the holomorphic anomaly
from the path integral of the effective four-dimensional theory.

3.1 Mock Modularity of CP2 Partition Function

Since H2(CP2,Z2) ∼= Z2, an SO(3) bundle E → C2 has two possible values of v = w2(E):
v = 0 with v2 = 0 and v 6= 0 with v2 = −1 modulo 4. Accordingly, there are two partition
functions, which we denote by Z0(τ) and Z1(τ). It was shown in [1] using the work of Klyachko
and Yoshioka [2, 3] that the partition functions can be expressed in terms of the Hurwitz-
Kronecker class numbers denoted by H(N) for N ∈ Z. These class numbers are defined for
N > 0 as the number of PSL(2,Z)-equivalence classes of integral binary quadratic forms of
discriminant −N , weighted by the reciprocal of the number of their automorphisms (if −N is
the discriminant of an imaginary quadratic field K other than Q(i) or Q(

p
−3), this is just the

class number of K), and for other values of N by H(0) = −1/12 and H(N) = 0 for N < 0.
These numbers vanish unless N is 0 or −1 modulo 4.

With these definitions, the partition functions of the topologically twisted supersymmetric
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SO(3) Yang-Mills theory on CP2 [1] are given by

Z0(τ) =
3

η3(τ)
bh0(τ) , (6)

Z1(τ) =
3

η3(τ)
bh1(τ) , (7)

where η(τ) is the Dedekind eta function and

bh0(τ) =
∑

n≥0

H(4n)qn + 2τ2
−1/2

∑

n∈Z

β(4πn2τ2)q
−n2

,

bh1(τ) =
∑

n>0

H(4n− 1)qn− 1
4 + 2τ2

−1/2
∑

n∈Z

β(4π(n+
1
2
)2τ2)q

−(n+ 1
2 )

2
, (8)

with τ= τ1 + iτ2 and

β(t) =
1

16π

∫ ∞

1

u−3/2exp(−ut) du , (9)

which equals the complementary error function up to normalization.
Note that in [1,3] there is a factor of η(τ)6 in the denominator instead of η(τ)3 as in (6).

The generating functions considered there are for compactified moduli spaces of anti-self-dual
U(2) connection with fixed value of the first Chern class. This is because those formulas were
obtained in algebro-geometric setting, where the moduli spaces are realized as the moduli
spaces of stable rank two sheaves on CP2 with fixed first and second Chern classes. The extra
1/η(τ)3 = 1/η(τ)χ(CP

2) compared to the SU(2) case can be understood as the contribution
of the abelian point-like instantons from the diagonal U(1) subgroup of U(2). The formulas
(7) are consistent with the fact that, by lifting the theory to the 6d (2,0) theory on CP2 × T2,
one can argue that the physically normalized partition functions Zv(τ) should transform as a
vector valued modular form of weight zero, with a multiplier system determined by ’t Hooft
anomalies. The case of U(2) gauge group will be discussed further in Appendix B.

The functions {bh`(τ)} are not purely holomorphic because of the second term in (8) and
satisfy the holomorphic anomaly equation:

τ
3/2
2
∂

∂ τ̄
bh0 =

1
16πi

∑

n∈Z
q̄n2

, (10)

τ
3/2
2
∂

∂ τ̄
bh1 =

1
16πi

∑

n∈Z
q̄(n+

1
2 )

2
. (11)

A nontrivial fact [25] is that bh(τ) =

�

bh0(τ)
bh1(τ)

�

transforms as a vector valued modular form with

weight 3/2 under the modular group Γ0(4). In particular,
�

bh0(−1/τ)
bh1(−1/τ)

�

=
�τ

i

�3/2
·
−1
p

2

�

1 1
1 −1

��

bh0(τ)
bh1(τ)

�

. (12)

Since bh0 is invariant under T and bh1 under T4, bh0 has the expected modular transformation
law under the group Γ0(4) generated by T and ST4S, as expected from S-duality [1].

The holomorphic parts of {bh`(τ) } are

h0(τ) =
∞
∑

n=0

H(4n)qn , (13)

h1(τ) =
∞
∑

n=1

H(4n− 1)qn− 1
4 . (14)
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In modern terminology [26–28], h(τ) is a vector-valued pure mock modular form with holo-
morphic shadow g(τ) with components

g0(τ) = c
∑

n∈Z
qn2

, (15)

g1(τ) = c
∑

n∈Z
q(n+

1
2 )

2
, (16)

where c = 1
16πi is the overall normalization for which there is no standard convention. The

vector h(τ) is holomorphic but not modular. Addition of the correction terms in (8) constructed
from the shadow vector g(τ) yields its modular completion bh(τ). The completion is modular
but not holomorphic. This incompatibility between modularity and holomorphy is the essence
of mock modularity.

The connection to mock modularity can be seen more simply by combining the two com-
ponents of the vector-valued mock modular form into a single mock modular form defined by
H(τ) = h0(4τ)+h1(4τ). This gives the Zagier mock modular form [25]which is the generating
function for the Hurwitz-Kronecker class numbers:

H(τ) :=
∞
∑

N=0

H(N)qN = −
1
12
+

1
3

q3 +
1
2

q4+q7 + q8 + q11+ · · · (17)

It is a ‘pure mock modular form’ of weight 3/2 on Γ0(4) and shadow the classical theta func-
tion ϑ(τ) =

∑

qn2
. See [27, 28] for the definition and further discussion. We see from the

q-expansion of H(τ) that it has no poles at q = 0 and hence is strongly holomorphic. Con-
sequently, its Fourier coefficients grow very slowly. This is exceptional. In fact, up to minor
variations the Zagier mock modular form is essentially the only known non-trivial example of
a strongly holomorphic pure mock modular form.

The components {h`} are most naturally regarded as the vector of theta coefficients of a
mock Jacobi form H(τ, z) defined by

H(τ, z) := h0(τ)ϑ1,0(τ, z)+h1(τ)ϑ1,1(τ, z) =
∑

n, r∈Z
4n−r2≥0

H(4n− r2)qn y r , (18)

where y = e2πiz and

ϑm,`(τ, z) :=
∑

r ∈Z
r≡` (mod2m)

qr2/4m y r (` mod 2m) (19)

are the level m theta functions. Following the definition in [28], one can check that H(τ, z) is
a mock Jacobi form of weight 2 and index 1 with holomorphic anomaly (up to normalization)

ϑ1,0(τ, 0)ϑ1,0(τ, z) + ϑ1,1(τ, 0)ϑ1,1(τ, z) . (20)

Note that a similar relation between components {h`} form and a single Jacobi mock mod-
ular form appears in the decomposition of the Vafa-Witten U(2) partition functions into the
sum of products of SO(3) and U(1) partition functions. However, the latter decomposition is
different because the coefficients in that case are anti-holomorphic theta functions. We will
discuss it in more detail in Appendix B.

3.2 Wess-Zumino Term in Four Dimensions

As explained in the introduction, the holomorphic anomaly of interest is given by a contribution
from the boundary of the space of the bosonic zero-modes. Saturation of fermionic zero-modes

14

https://scipost.org
https://scipost.org/SciPostPhys.9.5.072


SciPost Phys. 9, 072 (2020)

in this region is governed by the two-fermion superpartner of a Wess-Zumino term which we
describe below and in Appendix A.

Consider a four-dimensional N = 4 super Yang-Mills theory with gauge group G sponta-
neously broken to H×U(1) by the vacuum expectation value of the scalar field Φ valued in R6.
The bosonic part of the effective action, after coupling to background gauge fields of SO(6)R,
contains the following Wess-Zumino term [18,32,33]:

S4d WZ = 2πi
nW

2

∫

Ξ5

η5 (21)

with

η5 :=
1

120π3
εI1 I2 I3 I4 I5 I6

[(Di1Φ̂)
I1(Di2Φ̂)

I2(Di3Φ̂)
I3(Di4Φ̂)

I4(Di5Φ̂)
I5

+
5
2

F I1 I2
i1 i2
(Di3Φ̂)

I3(Di4Φ̂)
I4(Di5Φ̂)

I5 +
15
4

F I1 I2
i1 i2

F I3 I4
i3 i4
(Di5Φ̂)

I5]Φ̂I6 d x i1 ∧ d x i2 ∧ d x i3 ∧ d x i4 ∧ d x i5 ,

(22)

where ΦI , I = 0, . . . , 5 are the six scalar fields of the unbroken
U(1), Φ̂I := ΦI/‖Φ‖, ‖Φ‖2 := ΦIΦI , (DiΦ)I := ∂iΦ

I − AI J
i Φ

J , A is the background SO(6)R
connection and F is its curvature. As usual, the integral is over a five-dimensional manifold
Ξ5 which has X as its boundary. The factor of i is due to the fact that we work in Euclidean
spacetime (here and in the rest of the paper we use the convention in which the integrand of
the path integral is e−S). This term compensates for the deficit in the ’t Hooft anomaly of the
SU(4)R R-symmetry.8 The number nW = dim G − dim H − 1 is the number of ‘W-bosons.’ In
the special case when G = SO(3) = SU(2)/Z2 and H = 1, one obtains nW = 2.

We can label fields such that in the description via M5-branes wrapped on R4 × T2, Φ0

is compact and ΦI , 1 ≤ I ≤ 5 are noncompact fields that correspond to oscillations of the
M5-branes in the transverse R5. Only the Spin(5)R symmetry acting on the transverse oscilla-
tions is manifest in this description; it is enhanced to Spin(6)R in the limit of small T2 as Φ0

decompactifies. The relation between the topological terms in six and four dimensions will be
discussed in more detail in Section 4.1.

Geometrically, η5 = Φ̂∗(e5) is the pull-back of the global Euler angular form e5 on the total
space of an S5 bundle E → Ξ5 to the base space Ξ5 by the section Φ̂ : Ξ5 → E . In general,
for an Sn sphere bundle π : E → Ξ, the fiber can be thought of as a sphere in the fiber Rn+1

of a real vector bundle V . One can define the global Euler angular form en ∈ Ωn(E) with the
following properties. Its restriction to the fiber gives the volume form ωn normalized such
that

∫

Snωn = 1. Moreover, den = −π∗(e(V )) where e(V ) is the standard representative of the
Euler class of the bundle V → Ξ. For odd n, the form en is not closed in general when the
bundle is non-trivial, as in the case above for n = 5. For even n, the Euler density form e(V )
is identically zero and en is closed; this fact will be used in Section 4 for n = 4. Its de Rham
cohomology class satisfies [en]2 = π∗(pn/2(V )), where pn/2(V ) is the n/2-th Pontryagin class
of V . See, for example, [34] for details and explicit general formulas for en.

As shown in [35], the Wess-Zumino term is part of the N = 4 completion of the Dine-
Seiberg term [16]. Restricted to the N = 2 vector multiplet, the Dine-Seiberg term is given
by a logarithmic prepotential. However, to compute the holomorphic anomaly, we will need
not only the vector multiplet couplings but also the couplings involving both the N = 2 vector
multiplet and the hypermultiplets including the auxiliary fields. These are related by super-
symmetry to the second term in (22) which is linear in the R-symmetry curvature F . The
supersymmetrization is therefore more elaborate than what is available in the literature and
will be discussed in Appendix A.

8The anomaly in question corresponds to the term proportional to the third Chern class TrF3/24π3 of the
corresponding R-symmetry bundle in the degree six anomaly polynomial.
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3.3 Holomorphic Anomaly

To compute the holomorpic anomaly from the gauge theory path integral, we first represent
the full four-dimensional effective action S4d as

∂ S4d

∂ τ̄
= {Q,Λ}. (23)

A formula like (23) holds both microscopically and (therefore) also in the Coulomb branch
effective field theory. We want this formula in the Coulomb branch effective field theory,
in which we will do the localization computation, and in a formalism in which the scalar
supercharges which are used in the localization are realized off-shell. An off-shell realization
of the scalar supercharges gives a precise framework for the localization computation. The
off-shell realization of the scalar supercharges in the topologically twisted N = 4 theory was
considered in [1,36,37].

The effective action on the Coulomb branch is the sum of a quadratic action, a half-BPS
coupling that is the supersymmetric completion of the Wess-Zumino coupling of eqn. (21),
and various couplings of higher order that are in large supermultiplets. These higher order
couplings have no BPS properties, and we do not expect them to be relevant. The Wess-Zumino
coupling does not depend on τ or τ̄, and, in a formalism in which the scalar supercharges are
realized off-shell, the same is true for its completion that is invariant under those supercharges.
So the half-BPS coupling on the Coulomb branch will not contribute to Λ. Thus, we can
evaluate Λ just using quadratic the quadratic part Sfree

4d on the Coulomb branch effective action
S4d:

∂ S4d

∂ τ̄
=
∂ Sfree

4d

∂ τ̄
= {Q,Λ} . (24)

To determine the anomaly, we will be interested in the integral over the zero-modes of the
path integral near the boundary. The zero-modes can be readily determined. In the twisted
theory on CP2, the six real scalars of the untwisted theory turn into four real scalars and a
complex section of the canonical bundle. Since there are no harmonic sections of the canonical
bundle overCP2, there are only four real bosonic zero-modes corresponding to the four scalars.
Since b1 = 0, the gauge field in the Coulomb branch effective action has no zero-modes.
Finally, the auxiliary fields in the twisted theory are a self-dual 2-form H(2+) and a 1-form
H̃(1). Since b1 = 0 and b+2 = 1, one obtains a single zero-mode of the auxiliary field, which
we discuss in more detail in Appendix A. The fermions in the twisted theory consist of two
scalars, two self-dual 2-forms and two vectors. Since b1 = 0 and b+2 = 1 one obtains four
fermionic zero-modes. In summary, there are four bosonic zero-modes of the four scalars, a
single zero-mode of the bosonic auxiliary field, and four fermionic zero-modes. It may seem
unusual in a supersymmetric theory that we have 1 extra bosonic degree of freedom, but we
have to divide by the volume of the gauge group and hence the (compact) zero-mode of the
gauge parameter counts as −1 bosonic degrees of freedom.

Since CP2 is Kähler, a Spin(4) = SU(2) × SU(2) subgroup of SU(4)R R-symmetry re-
mains unbroken after twisting. There are four scalar supercharges QA and QȦ, transforming as
(2,1)⊕ (1,2) respectively. The four fermion zero-modes transform likewise,9 and we denote
them by χA and χ̄ Ȧ. The four bosonic zero-modes transform as (2,2) and we denote them
by uAȦ with the reality conditions (uAȦ)∗ = εABεȦḂuBḂ. The zero mode of the auxiliary field
transforms as a scalar and we denote it as H.

Restricted to the zero-modes, the four off-shell supercharges described in Appendix A, in

9In our conventions, spinor indices are raised and lowered by χA = εABχ
B with ε12 = −1 and ε12 = +1 and

similarly for the dotted indices.
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particular in (126), take the form

QA|zm = H ∂
∂ χA + χ̄ Ȧ ∂

∂ uAȦ

Q̄Ȧ|zm = H ∂

∂ χ̄ Ȧ −χ
A ∂

∂ uAȦ ,
(25)

where zm stands for the zero-modes.
The effective action restricted to the zero-modes can have at most four fermions. The most

general action consistent with the unbroken Spin(4)R symmetry takes the form

S4d|zm = G(|u|2) + KAB(u)χ
AχB + KAḂ(u)χ

Aχ̄ Ḃ + KȦḂ(u)χ̄
Ȧχ̄ Ḃ

+ R(|u|2)εABεȦḂχ
AχBχ̄ Ȧχ̄ Ḃ , (26)

where |u|2 := uAȦuAȦ. The coefficients depend also on H and the flux of the gauge field
n =

∫

CP1 FA/2π (which for the gauge group SO(3) is valued in 1
2Z), but we do not show

this dependence explicitly. Demanding QAS|zm =QȦS|zm = 0, one obtains

KAB(u) = 0, KAḂ(u) = −
2uAḂG′(|u|2)

H
,

KȦḂ(u) = 0, R(|u|2) =
2G′(|u|2) + |u|2 G′′(|u|2)

2H2
. (27)

The action is thus completely determined in terms of a single function G(|u|2). Since we are
interested in the action at the boundary corresponding to |u|2 large, we consider the expansion

G(|u|2) = C0(H, n) +
C1(H, n)
|u|2

+
C2(H, n)
|u|4

+ . . . (28)

The function C0(H, n) is determined by the free part of the original action and hence is a
homogeneous polynomial of degree two in H and n. The higher Ck(H, n) for k > 0 are de-
termined by the interacting part of the action related by supersymmetry to the Wess-Zumino
term. The Wess-Zumino term is scale invariant if all scalar fields scale with weight one. Hence,
the Ck(H, n) are homogeneous polynomials of degree 2k in H and n. The contribution to the
integral over the zero-modes from the boundary at infinity is determined by only the first two
terms in (28) because the subsequent terms fall off rapidly for large |u|.

The function C0(H, n) is determined in Appendix A and is given by

Sfree
4d |zm = C0(H, n) = −

τ2

π
H(H− 4πn) + 2πiτn2. (29)

The function C1(H, n) is a homogeneous polynomial of degree two and hence there are only
three possible terms. The condition that KAḂ does not have H in the denominator implies that
C1(H, n) has no term constant in H. We note that according to (27), for G(|u|2) = 1/|u|2 we
obtain R(|u|2) = 0 which puts no constraint on the term linear in H. In summary, C1(H, n)
takes the general form

C1(H, n) = i aH(2πn+ bH) (30)

for some numerical constants a and b that need to determined.
The term linear in H can be related by supersymmetry to the Wess-Zumino term using

the off-shell formalism realizing four scalar supercharges in the twisted theory as described
in Appendix A. One obtains a = 3/π from the relevant bosonic terms. Note that we have
introduced the overall factor of i in (30) for convenience because the Wess-Zumino term is
imaginary in Euclidean action. The term quadratic in H2 cannot be related by supersymmetry
to the Wess-Zumino term using only the four off-shell scalar supercharges described in the
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Appendix. However, the constant b can be determined by imposing Spin(6)R R-symmetry and
using an off-shell realization of eight supercharges in the N = 2 supergravity formalism in the
untwisted theory. One obtains b = −1 from the relevant bosonic terms.

The nonholomorphic variation of the action (24) for Q = Q1 + Q̄1 is given by
Sfree

4d |zm = {Q|zm,Λzm} with

Λ|zm =
−1
4πi
(H− 4πn)(χ1 + χ̄1), (31)

as explained in more detail in Appendix A. The holomorphic anomaly then takes the form

∂ Zv

∂ τ̄
= 〈{Q,Λ}〉=

1
η(τ)3

∑

n∈Z+v/2

Czm(n) , (32)

where the terms on the right have the following origin.

• The factor η−3 = η−χ(CP
2) arises from U(1) point-like instantons (see details below).

• The sum is over integral U(1) fluxes with v = w2(E)∼= Z2 being the discrete flux.
• The contributions from nonzero modes cancels due to supersymmetry as usual, and the

coefficient Czm(n) is given by a finite-dimensional integral over the zero-modes:

Czm(n) = C

∫

d4u d4χ dHQ|zm (Λ|zm e−S4d|zm) , (33)

where as determined above

S4d|zm = −
τ2

π
H(H− 4πn)− 2πiτn2 + 2i a(2πn+ bH)uAḂχ

Aχ̄ Ḃ/|u|4 + . . . (34)

and C is a numerical constant that depends on the normalization of the path integral
measure. This expressions are of course valid only away from the origin u = 0, where
the description in terms of abelian gauge theory breaks down and extra massless degrees
of freedom appear. This does not affect the calculation because the integral over u is
eventually reduced to an integral over the boundary at infinity using Stokes’s theorem.
There is no contribution to the holomorphic anomaly from a vicinity of u = 0 as this
point is away from the boundary of the field space of the original non-abelian gauge
theory.

We recall that a single point-like instanton can be formally understood as a singular config-
urations of the gauge field with the instanton charge (i.e. the second Chern class c2) concen-
trated at a single point. For a non-abelian gauge field they can arise as limits of smooth field
confugurations. It is known that in order to have an agreement with other descriptions of the
gauge theory (including string theory), such point-like instantons should also be included in
the abelian case. They also arise naturally when one considers a non-commutative deforma-
tion of the space-time [38] and in the algebro-geometric setting, where U(1) instantons are
interpreted as semistable rank 1 sheaves. The moduli space of point-like instantons on X with
a total instanton charge k is the Hilbert scheme of k points of X (which is a resolution of a k-th
symmetric product Symk X ). Their total contribution to the Vafa-Witten partition function is
to multiply it by a factor η(τ)−χ(X ) [1,39,40].

As was explained in the introduction, in the 4d setup, to determine the absolute normal-
ization of the path integral and therefore the constant C in (33), one needs to compare the
normalization used at short distances to put the holomorphic expansion in the form (1) with
the normalization of the path integral measure in the low energy effective field theory on the
Coulomb branch. This normalization can be affected, among other things, by topological terms
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– linear combinations of the Euler characteristic and signature of X – which might appear in
the effective action on the Coulomb branch after integrating out massive modes. By contrast,
in the 2d setup of Section 4, the relevant path integral can be interpreted as a Hilbert space
trace; this provides a direct way to determine its normalization. Both 4d and 2d descriptions
originate from the underlying 6d theory on X ×T2, where the partition function also has inter-
pretation as a Hilbert space trace. However, once the T2 is forgotten, fixing the normalization
becomes more involved.

The integrals over two out of four fermionic zero-modes in (33) are saturated by Q|zm and
Λ|zm. The other two should be saturated by terms in the action (26) that are quadratic in
fermionic zero-modes. Bringing down the fermionic terms from the exponential, performing
the Grassmann integrals, and using Stokes’s theorem, one obtains

Czm(n) =
a C
4π

∫

dH (H− 4πn)(bH+ 2πn)e
τ2
π (H−2πn)2−2πiτ̄n2

·
∫

S3

(ζ3 + ζ̃3) , (35)

where

ζ3 :=
(u11du12 − u12du11)du22du21

|u|4
, (36)

ζ̃3 :=
(u21du11 − u11du21)du12du22

|u|4
, (37)

and we have divided the integral by two to take into account the quotient by the Z2 Weyl
group on S3. We show in the appendix that the integral over ζ3+ ζ̃3 gives 2π2. The Gaussian
integral over H can be readily performed to obtain

Czm(n) =
−iπ3aC

4

�

τ
−3/2
2 − 4i(1+ b)

∂

∂ τ̄
τ
−1/2
2

�

q̄n2
. (38)

Note that with our choice of normalization of the auxiliary field H the corresponding quadratic
term has a “wrong” sign in the exponential. To make it convergent, the integral over H is
performed along the imaginary axis. This is the origin of the factor of i in the result of the
integration. The overall sign is somewhat ambiguous and depends on the choice of orientation
in the space of zero modes. We do not address the question of fixing it in this paper. Combining
(32) and (38) and plugging in a = 3

π , b = −1, one obtains

∂ Zv

∂ τ̄
=

3πC

4iτ3/2
2 η(τ)3

∑

n∈Z
q̄(n+v/2)2 (39)

in agreement with the expected formulas (10) and (11) if C = (2π)−2 in (38).

4 Holomorphic Anomaly in Two Dimensions

The non-compactness of the target space of the two-dimensional sigma model obtained by
dimensionally reducing the six-dimensional type A1 theory on CP2 can lead to a holomorphic
anomaly. This anomaly can receive a contribution only from the boundary of field space, so
it suffices to determine the sigma model in this region. The noncompact bosonic zero-modes
of the A1 theory parametrize the separation between a pair of M5-branes. When these fields
have large expectation values, the six-dimensional theory can be approximated by a single
(2, 0) tensor multiplet valued in the Cartan subalgebra u(1) ⊂ su(2). This is the regime in
which we work.
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We start by reviewing relevant facts about the effective action of the six-dimensional (2,0)
theory on the tensor branch in Section 4.1. Then, in Section 4.2 we determine the effective two-
dimensional theory obtained by compactification of the six-dimensional theory on CP2. The
two-dimensional theory is similar to a heterotic sigma-model. The Wess-Zumino-like terms in
the 6d action lead to the Wess-Zumino terms in the 2d action. In Section 4.3 we review relevant
facts about 2d (0,1) supersymmetric nonlinear sigma models. As in four dimensions, the
holomorphic anomaly is determined by the supersymmetrization of the Wess-Zumino term. In
Section 4.4 we derive the holomorphic anomaly from the path integral of the two-dimensional
theory.

4.1 Six-dimensional Effective Action

The (2, 0) theory in six dimensions is characterized by a choice of a Lie algebra g, which is
assumed to be a direct sum of simply-laced Lie algebras and u(1) factors. For each u(1), the
theory contains a (2, 0) abelian tensor multiplet which consists of a 2-form gauge field B with
self-dual 3-form field strength (dB = ∗dB), five scalar fields Φa (a = 1, . . . , 5), transforming as
a vector of Spin(5)R, and fermionic fields in the (4,4) representation of Spin(6)× Spin(5)R
where Spin(6) is the six dimensional rotation symmetry and Spin(5)R is the R-symmetry.

It was argued in [18] that ‘higgsing’ g → h ⊕ u(1) of the (2,0) model in six dimensions
produces a Wess-Zumino-like term in the effective action on a six-dimensional space M , of the
form

S6d WZ =
c(g)− c(h)

6
2πi

∫

Ξ7

Ω3 ∧ dΩ3, (40)

where c(g) = dimg ·h∨g and ∂Ξ7 = M . This term compensates for the mismatch of the ’t Hooft
anomaly for the SO(5)R R-symmetry. The overall factor of i is present because we consider
Euclidean action. con The 3-form Ω3 is (locally) defined by descent:

dΩ3 := η4 (41)

with

η4 :=
1

64π2
εa1a2a3a4a5

[(Di1Φ̂)
a1(Di2Φ̂)

a2(Di3Φ̂)
a3(Di4Φ̂)

a4

− 2F a1a2
i1 i2
(Di3Φ̂)

a3(Di4Φ̂)
a4 + F a1a2

i1 i2
F a3a4

i3 i4
]Φ̂a5 d x i1 ∧ d x i2 ∧ d x i3 ∧ d x i4 , (42)

where Φa, a = 1, . . . , 5 are the five scalar fields of the u(1) tensor multiplet, Φ̂a := Φa/‖Φ‖,
‖Φ‖2 := ΦaΦa, (DiΦ)a := ∂iΦ

a − Aab
i Φ

b, A is a background SO(5)R connection and F is its
curvature. For the term (40) to be well defined, it is necessary that η4 is closed. This is
true in general. We check it explicitly in Section C.2 when only an Spin(2) subgroup of the
Spin(5)R connection is turned on relevant for topological twisting on a Kähler 4-manifold.
Geometrically, η4 = Φ̂∗(e4) is the pull-back of the global Euler angular form e4 on the total
space of S4 sphere bundle E → M to the base space M by the section Φ̂ : M → E . See discussion
in Section 3.2.

In [17, 18] it was argued that the effective action also contains a topological term that
governs the coupling of the Skyrmionic string to the B-field:

S6d Sk =
inW

2

∫

M
B ∧η4 =

inW

2

∫

Ξ7

dB ∧η4 , (43)

where nW = dimg − dimh − 1 is the number of W -bosons in the five-dimensional theory
obtained by dimensional reduction, the same as the nW that appeared in the Section 3.2. In
the formula above and later, the B-field is normalized such that large gauge transformations
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Φ1,2,...

Φ0

Figure 1: The 5-cycles S5 (in blue) and S4× S1 (in red) are homologous in R5× S1,
the space where the scalar fields ΦI , I = 0 . . . 5 are valued. This is equivalent to the
statement that the flux through the boundary at infinity is preserved when the radius
of S1 is taken to be infinitely large.

shift it by an element of 2πH2(M ,Z). By reducing the 6d theory to 5d, one can relate (43) to
a term linear in the gauge field found in [33] by a one-loop calculation, with the coefficient in
agreement with the formula above. By reducing the 6d theory further to 4d, the term (43) can
be related to the Wess-Zumino term (21), which was shown in Section 3.3 to be responsible
for the holomorphic anomaly.

To see the relation between these two terms in more detail, and verify the consistency
of the coefficients in front of the integrals, consider Ξ7 = T2 × Ξ5. Writing Φ0 =

∫

T2 B, one
obtains a compact boson valued in a circle. In the 4d limit its radius becomes infinitely large.
In a trivial R-symmetry background, the action S6d Sk reduces to

inW

2

∫

Ξ5

dΦ0 ∧ Φ̂∗(ω4) , (44)

which a priori appears quite different from the integral of Φ̂∗(ω5) in (21). However, both
terms can be interpreted as having nW/2 units of flux at the infinity of the space where the
scalar fields ΦI , I = 0, . . . , 5 are valued. In (44) this space is R5× S1 with boundary at infinity
S4 × S1. In the 4d limit the size of the 2-torus T2 is taken to zero, the radius of S1 becomes
infinite and the space where the scalar fields are valued becomes R6 with boundary at infinity
S5. This deformation is shown in Figure 1.

The two six-dimensional terms above can be combined into a compact expression

S6d Sk + S6d WZ =
inW

2

∫

Ξ7

H3 ∧ dΩ3 , (45)

where H3 = dB+ 2π
3nW
(c(g)−c(h))Ω3 is the u(1) 3-form flux. For the case of interest, g= su(2),

h= 0 and hence c(g)− c(h) = 6 and nW = 2.

4.2 Two-dimensional Effective Action

The effective two-dimensional theory on T2 is obtained by compactifying the six-dimensional
theory on a manifold of the form M = X ×T2 for small X . The field content in two dimensions
is obtained by standard twisted Kaluza-Klein reduction of a single (2,0) u(1) tensor multiplet
on X , by counting harmonic sections of certain bundles. Compactification on a general four-
manifold is described, for example, in [41] in Table 1. The choice of the topological twist
on the four-manifold X that we are using leads to supersymmetry in the right-moving, or,
equivalently, anti-holomorphic, sector of the effective 2d theory. This is correlated with the
convention that the contribution from instantons, which preserve supersymmetry in the 4d
theory, has holomorphic dependence on the modulus τ of the T2.
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The charge lattice in [41] is the standard charge lattice Z of a U(1) gauge theory corre-
sponding to the tensor multiplet on the worldvolume of a single M5-brane. In our application,
the tensor multiplet really describes the relative motion of a pair of M5-branes. As a result,
the normalization of the charge lattice is modified, as we discuss below and in Section 5.2.

We review how the various sigma model fields arise from the KK reduction. For simplicity,
consider a simply-connected four-manifold X . The 6d scalar fields that transform in the vector
representation of Spin(5)R in the untwisted theory give rise in the twisted theory to b+2 real
non-chiral non-compact 2d scalars σi plus a single complex non-chiral non-compact scalar φ0.
The 6d fermions transforming in the (4,4) representation of Spin(5)R×Spin(6) give rise to b+2
right-moving Weyl fermions ψi

+ and a single right-moving Weyl fermion χ+. The topological
twist preserves N = (0, 2) supersymmetry in two dimensions for a generic X ; this is enhanced
to N = (0,4) for a Kähler X .

The 2-form gauge field B with self-dual curvature 3-form gives rise to b2 = b+2 +b−2 compact
chiral real bosons X i

L,R valued in H2(X ,R)/H2(X , 2πZ). The quotient arises from the large
gauge transformations that change the holonomy of the 2-form gauge field along 2-cycles
Ci ⊂ X by an integer:

∫

Ci
B→

∫

Ci
B+2πni , ni ∈ Z. The bosons valued in the subspace of self-

dual harmonic forms, H2+(X ) ⊂ H2(X ,R), are right-moving and the bosons valued in H2−(X )
are left-moving. In other words, the 2-form field B gives rise to a Narain-like lattice CFT
with the lattice Γ = H2(X ,Z) being the second homology lattice equipped with the standard
geometric intersection form. For a closed four-manifold, H2(X ,Z) ∼= H2(X ,Z) by Poincaré
duality and the lattice is self-dual.

When the tensor multiplet describes the tensor branch of 6d type A1 theory, the lattice
should be rescaled by

p
2 compared to the case of a single 5-brane considered above because

ΓSU(2) =
p

2ΓU(1). One way to see this is that the root lattice of SU(2) is Λ =
p

2Z, instead
of just Z when embedded in R with the standard metric, while its weight lattice is the dual
Λ∗ = 1p

2
Z. For a general 6d theory on a tensor branch, with string charges living in the

lattice10 Λ∗, the 2-form fields give rise to 2d lattice CFT for the lattice Γ = Λ⊗H2(X ,Z). Note
that whenΛ is not self-dual, Γ is not self-dual even for a closed four-manifold. This implies that
the effective 2d theory is not absolute but relative, meaning that instead of a single partition
function it has a vector of partition functions labelled by the elements of the coset [42–45]

Γ/Γ ∗ = Λ/Λ∗ ⊗H2(X ,Z). (46)

This is in agreement with the fact that the 6d theory itself is also in general relative with its
relativeness measured by the defect group Λ/Λ∗.

Consider now in more detail the case of an A1 theory compactified on CP2. We have
b−2 = 0 and b+2 = 1. The second homology is generated by the class of CP1 ⊂ CP2, which has
self-intersection number +1. The self-dual lattice H2(CP2,Z) can then be identified with the
standard lattice Z and therefore Γ =

p
2Z. The 6d 2-form gauge field gives rise to a single

right-moving real compact boson XR valued in R/2π
p

2Z, that is, on a circle of radius
p

2.
The compact boson valued in a circle of radius

p
2 can be equivalently thought of as a

Ôu(1)2 chiral WZW theory, which in turn can be conformally embedded into ŝu(2)1. This is
another way to understand the rescaling of the lattice by

p
2. Both affine Lie algebras have

two integrable modules. Equivalently, both WZW models have two conformal blocks on a

10Because of the self-duality of the 2-form gauge field, the magnetic string charges are identified with the electric
charges and the intersection pairing is the generalization of the Dirac pairing.
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torus with characters given by the corresponding lattice theta-functions:

χ̄
ŝu(2)1
0 (τ) = χ̄

Ôu(1)2
0 (τ) =

1

η(τ)

∑

n∈Z
q̄n2

,

χ̄
ŝu(2)1
1 (τ) = χ̄

Ôu(1)2
1 (τ) =

1

η(τ)

∑

n∈Z
q̄(n+1/2)2 , (47)

where one can already recognize the contributions of abelian anti-instantons which appeared
in the holomorphic anomaly equation (11). As explained above, the choice of the module
corresponds to the choice of the discrete magnetic flux on CP1 ⊂ CP2. Note that the lattice
point mp

2
with m ∈ Z corresponds to a vertex operator of the form e

mp
2

iXR . From the six-
dimensional point of view, this is a local two-dimensional operator obtained by wrapping a
codimension four defect in the 6d theory on CP1 ⊂ CP2.

From the general analysis above, we also have three non-compact non-chiral real bosons
and two right-moving Weyl fermions. Note that if the compact boson were non-chiral the
2d fields would form the fields of the standard (0,4) sigma model with the target space
X = (S1 × R3)/Z2 = (C∗ × C)/Z2 where Z2 is the SU(2) Weyl symmetry that flips all four
directions. There are no left-moving fermions.

The additional data of the sigma-model is the Kalb-Ramond 2-form field11 b on the target
space (not to be confused with the self-dual 2-form field B in 6d). The b-field determines
the 2d Wess-Zumino term depending on the bosonic fields. This term can be obtained by the
reduction of the 6d Skyrmionic string coupling term (43) as follows.

The topological twist on a Kähler X is realized by turning on a non-trivial background for
the subgroup of R-symmetry U(1)R ≡ Spin(2)R ⊂ Spin(5)R. The background corresponds to
identification of U(1)R with the diagonal of U(2) holonomy group of X . One can assume that
the Spin(2)R rotates the directions 4-5 so that F a1a2 = 0 unless a1, a2 are permutation of 4,5
and [F45/(2π)] = −[F54/(2π)] = c1(KX ) = −c1(X ). The non-trivial contribution to the action
of the effective 2d theory is given only by the second term in (43). Namely, let M = Σ2×CP2,
where Σ2 is the 2d spacetime. The KK reduction of 6d bosonic fields to massless 2d fields is
explicitly realized as follows. For the B-field, we have

B = XRω/
p

2 , (48)

where ω is the Kähler 2-form (which is harmonic and self-dual) normalized such that
∫

CP1ω = 1, and XR is the right-moving compact boson of the effective 2d theory with the
identification XR ∼ XR + 2π

p
2. For the scalar fields, we have:

Φa = 0, a = 4, 5,
Φa = φa, a = 1, 2,3,

(49)

where the first equation follows from the fact that the canonical bundle ofCP2 has no harmonic
sections, and φa are the 2d non-chiral scalar fields valued in R3.

Performing the partial integration in (43) over the CP2 yields the bosonic WZ term in 2d:

S2d WZ = −i

�∫

CP2

F45

2π
∧ω

�∫

Σ2

XRp
2

1
8π
εabc∂iφ̂

a∂ jφ̂
bφ̂c d x i ∧ d x j

= 3i

∫

Σ2

XRp
2
φ̂∗(ω2) , (50)

where ω2 is the volume form on S2 normalized such that
∫

S2ω2 = 1 with φ̂a := φa/‖φ‖ un-
derstood as a map Σ2→ S2. In the second equality in (50) we used the fact that the canonical
bundle over CP2 is O(−3)→ CP2, so that [F45/(2π)] = c1(KCP2) = −c1(CP2) = −3[ω].

11To be precise, the 2-form description is only local; globally b should be understood as a gerbe connection.
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Let us denote the coordinate on S1 of the target space12 of the effective theory by Y 0 and
the coordinates on R3 as Y a (a = 1,2, 3), with norm ‖Y ‖. From (50) we deduce that the
Kalb-Ramond field b on target space is given by (the choice of normalization is

b = 4π ·
3
p

2
Y 0ω2 =

3

2
p

2
Y 0 εabc Ŷ

adŶ b ∧ dŶ c (51)

with corresponding 3-form flux

h= d b = 4π ·
3
p

2
dY 0 ∧ω2 =

3

2
p

2
dY 0 ∧ εabc Ŷ

adŶ b ∧ dŶ c , (52)

where Ŷ a := Y a/‖Y ‖. The choice of normalization is such that
∫

h ∈ 8π2Z and will be con-
sistent with the normalization of the action in Section 4.3. The compactification of the 6d
Wess-Zumino term (40) to 2d is not relevant for our computation of the holomorphic anomaly
because it produces the term

9 · 2π
∫

Ξ3

Ω1dΩ1, dΩ1 = φ̂
∗(ω2) , (53)

where ∂Ξ3 = Σ2. This term is the 2d analog of the 6d Hopf-Wess-Zumino term (40) introduced
in [18]. It is well defined since the integral of the form Ω1dΩ1 over a closed 3-manifold is an
integer, the Hopf invariant of the map from this 3-manifold to S2. The term (53) does not
contain the compact boson XR. The fermionic partner of this term therefore does not affect
the saturation of zero-modes.

To compute the holomorphic anomaly we need not the bosonic WZ term (50) itself, but
rather its fermionic partner. The effective two-dimensional theory is a fairly standard heterotic
sigma model with target X = (S1 ×R3)/Z2, except that the bosonic field valued in S1 is only
right-moving. This does not affect supersymmetrization of the action because the supersym-
metry generators act only on the right-movers. One can thus use known results about heterotic
sigma models reviewed below to deduce the relevant fermionic terms.

4.3 Review of (0,1) Nonlinear Sigma Model

The goal of this section is to review basic facts about (0,1) Nonlinear Sigma models and to fix
various normalizations that will be relevant for our calculation of the holomorphic anomaly.
We can restrict ourselves to the class of theories containing only scalar multiplets (φ i ,ψi)
composed of bosonic scalars φ i and right-moving Majorana-Weyl spinors ψi . The scalars play
the role of local coordinates in the target space while spinors ψi are valued in the tangent
bundle. In general the theory can also have left-moving Majorana-Weyl spinors valued in a
real vector bundle over the target space; however for our purposes this generalization is not
necessary.

Let gi j and b = 1
2 bi jd x i ∧ d x j be the metric and Kalb-Ramond 2-form on the target space.

The theory is anomaly-free and, in particular, invariant under symmetries of the target, pro-
vided that w1(TX ) = w2(TX ) = 0 and p1(TX )/2= 0; here wi denote Stiefel-Whitney classes
and p1 denotes the first integral Pontryagin class. Denote ∂ := ∂ /∂ z, ∂̄ := ∂ /∂ z̄. The action
of the theory in Euclidean spacetime with a local complex coordinate z then reads13 [47,48]:

S2d =
1

4π

∫

d2z
�

(gi j(φ) + bi j(φ))∂ φ i ∂̄ φ j + gi jψ
i∂ψ j − (Γi jk +

1
2hi jk)ψkψi∂ φ j

�

, (54)

12To avoid confusion, we use different symbols for the coordinates on the target space and the fields on Σ2 valued
in the target space.

13Our normalization corresponds to the choice α′ = 2 in the string theory literature [46].
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where d2z := idzdz̄, Γi jk are Christoffel symbols of the Levi-Cevita connection, and

h= d b =
1
3!

hi jkd x i ∧ d x j ∧ d xk, hi jk = ∂i b jk + ∂ j bki + ∂k bi j (55)

is the 3-form flux of b. The term containing the scalar fields and the Kalb-Ramond field in the
target is the Wess-Zumino term, which can be recast as

S2d WZ =
i

4π

∫

Σ2

φ∗(b) =
i

4π

∫

Ξ3

φ∗(h) , (56)

where ∂Ξ3 = Σ2. We normalize the supercharge so that it acts on the fields as follows:

[Q,φ i] = ψi ,
{Q,ψi} = −∂̄ φ i .

(57)

The right-moving energy momentum-tensor and the supercurrent are given by (cf. [49])

T̄ = −1
2 gi j ∂̄ φ

i ∂̄ φ j − 1
2 gi jψ

i ∂̄ ψ j + 1
2 ∂k gi jψ

kψ j ∂̄ φ i + 1
4 hi jkψ

iψ j ∂̄ φk,
Ḡ = i

�

gi jψ
i ∂̄ φ j − 1

3! hi jkψ
iψ jψk

�

.
(58)

The normalization of the energy-momentum tensor T̄ is fixed by the definition T̄ = 2πδS2d/δhz̄z̄ ,
where hz̄z̄ is the corresponding component of the metric on the 2d space-time. The normal-
ization of the supercurrent Ḡ is then fixed by the relation

{Q, Ḡ}= 2i T̄ (59)

with the supercharge defined above. These formulae compactly summarize the supersym-
metrization in two dimensions, which is much simpler than the supersymmetrization in four-
dimensions described in Appendix A. In particular, there is no need for auxiliary fields.

The normalization of the path integral for the theory on a torus can now be fixed by re-
quiring that it coincides with the corresponding trace over the Hilbert space on the circle:

Z(τ) = Tr(−1)F qL0 q̄ L̄0 , (60)

where we consider periodic-periodic boundary conditions on the fermions, that is, odd spin
structure. Consider in particular the theory of D free (0,1) scalar multiplets described by the
metric gi j = δi j and vanishing bi j . The theory then factorizes into the theory of D free bosons
and D free Majorana-Weyl fermions. With the choice of normalization of the action above, the
bosons and fermions satisfy the following operator product expansions:

φ i(z)φ j(0)∼ −δi j log |z|2, (61)

ψi(z)ψ j(0)∼
δi j

z̄
. (62)

The partition function of the bosons on the torus reads

Zbos(τ) =
VD

(8π2τ2)D/2
|η(τ)|−2D , (63)

where VD is the regularized volume of the target space. The prefactor originates from the trace
over the momentum space [46] and is given by

VD

∫

dDk
(2π)D

e−2πτ2k2
=

VD

(8π2τ2)D/2
. (64)
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The partition function of free fermions is zero due to the presence of zero-modes. To get a
nonzero answer one can consider instead a one-point function of the product of all spinor
fields:

〈:ψ1ψ2 . . .ψD :〉fer = Tr(−1)Fψ1
0ψ

2
0 . . .ψD

0 qL0 q̄ L̄0 , (65)

whereψi
0 are zeroth components of the fermionic fieldsψi(z) =

∑

nψ
i
n z−n−1/2 in the Ramond

sector. They satisfy the following anti-commutation relation:

{ψi
0,ψ j

0}= δ
i j . (66)

The ground states in the Hilbert space on the circle therefore form the standard spinor repre-
sentation of the Clifford algebra with identification ψi = 2−1/2γi , where γi are the standard
Eulidean gamma-matrices satisfying {γi ,γ j} = 2δi j . When D is even the fermion parity is
non-anomalous and on the ground states can be represented by

(−1)F = γ5 = (−i)D/2γ1γ2 . . .γD. (67)

Therefore the trace over the ground states reads

Trground(−1)Fψ1
0ψ

2
0 . . .ψD

0 = iD/22−D/2 Trgroundγ
2
5 = iD/2. (68)

The full Hilbert space is obtained by action of the creation operatorsψi
−n, n> 0 on the ground

states. Therefore, the one-point function on the torus reads

〈:ψ1ψ2 . . .ψD :〉fer = iD/2η(τ)
D

. (69)

Even though this expression is obatined for even D, it can be used to define the normalization of
the torus one-point function for arbitrary D. Note that for odd D the sign of iD/2 is ambiguous
which corresponds to the mod 2 fermion parity anomaly. When an even number of fermions
is separated into two groups each containing an odd number of fermions, it is necessary to
choose the signs consistently. To be concrete, we choose the convention iD/2 = eπiD/4.

Consider now a more general (0,1) sigma-model, but in a limit when the target space
X has large radius of curvature. There is a standard one-to-one correspondence between
local observables of the form O =: fi1...ik(φ)ψ

i1 . . .ψik : and k-forms on the target space
f = fi1...ik(φ)dφ

i1 . . . dφ ik ∈ Ωk(X ). Using this correpondence and the above results on the
free fields, we obtain the following formula for the one-point function in the large radius limit:

〈: fi1...ik(φ)ψ
i1 . . .ψik :〉=

iD/2

(8π2τ2)D/2η(τ)D

∫

X
f . (70)

This fixes the normalization of the measure for the zero-modes in the path-integral which will
be used in the next section. Finally, note that the supercharge Q in (57), when restricted to
the zero-modes, acts as the exterior derivative on Ω∗(X ) under this correspondence.

4.4 Holomorphic Anomaly from the Sigma Model

The elliptic genus of a compact target X is given by the partition function of a (0,1) super-
symmetric sigma model with periodic boundary conditions for fermions in both directions on
T2. When X is not compact, the partition function is in general not holomorphic and has a
holomorphic anomaly. If X has a “boundary”14 Y , then the holomorphic anomaly is governed

14We use the term “boundary” informally. For example, if X is asymptotic to RN at infinity for some N , then by
Y we mean a large sphere SN−1 near infinity in X .

26

https://scipost.org
https://scipost.org/SciPostPhys.9.5.072


SciPost Phys. 9, 072 (2020)

by the one-point function of the supercharge in a sigma model with target Y [14]. More pre-
cisely, let ZX be the partition function of a heterotic sigma model with target X on a torus
with complex structure τ. Then15

∂ ZX
∂ τ̄

= 〈−2πi T̄ (z0)〉X = 〈−π{Q, Ḡ(z0)}〉X =
−eπi/4

p

8τ2η(τ)
〈Ḡ(z0)〉Y , (71)

where 〈O(z0)〉 is a path integral with an insertion of operator O(z0) at an arbitrary point z0.
This formula can be understood as follows. The first equality follows from the trace (60)

or from the definition of T̄ and the fact that the change of a complex structure can be related
to the change of metric. The second equality in (71) uses the relation 2i T̄ = {Q, Ḡ} between
the energy momentum tensor T̄ and supercurrent Ḡ via the supersymmetry transformation Q.
The last equality in (71) is more subtle and can be argued as follows.

The partition function ZX is obtained by integrating over the space of all maps φ : T2→ X
along with fermion fields ψ ∈ Γ (S+(T2)⊗φ∗TX ). The path integral has zero-modes consist-
ing of a map φ : T2 → X together with a constant ψ field. We write (φ0,ψ0) for such a
constant pair. Supersymmetry localizes the path integral on the space of constant pairs. This
means that the path integral can be evaluated by integrating out other modes to construct a
measure f (φ0,ψ0), which must then be integrated over φ0,ψ0. In an ordinary sigma model,
to compute f , it suffices to integrate out the other modes in a 1-loop approximation because
ZX does not depend on the metric of X . Hence, one can scale up the metric of X so that the
1-loop computation over nonzero modes is exact. In the present situation, we have to modify
this procedure slightly because there is a right-moving chiral boson with no tunable parameter
such as a variable metric. However, the effects of this mode can be treated exactly, treating
other nonzero modes in the one-loop approximation.

Now we come to the main point of the argument. We have already explained in section
4.3 that an operator of the form O f =: fi1...ik(φ)ψ

i1 . . .ψik : corresponds to a differential form
f = fi1...ik(φ)dφ

i1 . . . dφ ik ∈ Ωk(X ), and that the path integral 〈O f 〉 is the integral
∫

X f of the
differential form f , times some additional factors explained in eqn. (70). Moreover, acting
on operators that are related to differential forms in this way, Q corresonds to the exterior
derivative d. To claim that a Q-exact term does not contribute to the path integral amounts
to claiming that

∫

X f is invariant under f → f + d g. But in general there is the possibility of
a surface term, because by Stokes’s theorem

∫

X d g(φ0,ψ0) =
∫

Y g(φ0,ψ0), where Y = ∂X .
The anomaly captures the failure of the naive argument of vanishing of Q-exact terms, and
hence reduces to an integral over Y .

Since we are interested in the expectation value of {Q, Ḡ}, we have f = d g where g is a
function of φ0,ψ0 that is computed by integrating out all modes of a chiral boson and nonzero
modes for all other fields in the path integral for 〈Ḡ〉. We are only interested in evaluating g
on Y . Most of the modes that appear in the evaluation of g(φ0,ψ0) are the modes that would
appear in evaluating 〈Ḡ〉 in a sigma-model with target Y , with one important exception. In the
sigma-model with target X , there is a bosonic field φ⊥ that describes the motion normal to Y ,
and a corresponding fermion partner ψ⊥. These modes are absent in the sigma-model with
target Y , so we have to include them separately. The partition function of the left-moving
modes of φ⊥ is the factor 1/η(τ) in eqn. (71). The right-moving modes of φ⊥ cancel the
nonzero modes of ψ⊥. The zero-modes of φ⊥ and ψ⊥ are eliminated when we use Stoke’s
theorem and replace

∫

X d g with
∫

Y g, except for a normalization factor

eπi/4

p

8π2τ2

(72)

15If the sigma model with target X has (0, k) supersymmetry with k > 1, then in the following formula, for Q,
one can use any supersymmetry for which the following derivation applies.
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explained in Section 4.3. Altogether, one obtains precisely the right hand side of (71).
In our case, X = (R3 × S1)/Z2 and Y = (S2

R × S1)/Z2, where S2
R is a sphere of very large

radius R.16 In the limit R →∞, the fermions and bosons appearing in a sigma model with
target Y can be treated as being free. We thus obtain

〈G+〉Y =

�

−i
1
3!

hi jkψ
iψ jψk + i gis∂+φ

iψs 1
4π

∫

d2z

��

Γi jk +
hi jk

2

�

ψkψ j∂−φ
j

��

Y

= −
i

3!
〈hi jkψ

iψ jψk〉Y , (73)

where we used the fact that
∫

d2 x〈∂+φ i(x)∂−φ
j(x ′)〉= 0 (74)

in free field theory. When we interpret the fermion zero-modes as 1-forms on Y , the coupling
hi jkψ

iψ jψk just becomes a 3-form h = 1
3!hi jkdφ idφ jdφk that has to be integrated over Y .

Therefore, the result will only depend on the cohomology class of the Wess-Zumino coupling.
Using the expression (52) for h, and taking into account the periodicity Y 0 ∼ Y 0 + 2π

p
2, we

obtain
∫

Y
h=

1
2
· 4π · 3

∫

S2

ω2

∫

S1

dY 0

p
2
= 12π2. (75)

Here we only need
∫

S2ω2 = 1 and not the explicit expression for the 2-form ω2.

The nonzero modes of the fermion contribute η(τ)3. It is also necessary to include the nor-
malization phase e3πi/4 for the fermionic zero-modes explained in Section 4.3. The nonzero
modes of the bosons valued in S2 contribute 1/(8π2τ2|η(τ)|4) with normalization also ex-
plained in Section 4.3. The nonzero modes of the chiral boson valued in S1 contribute

χ̄
Ôu(1)2
v (τ)/(2π

p
2), which differs from its partition function (47) by factoring out the inte-

gral over the zero-mode
∫

dY 0 = 2π
p

2. Here v ∈ Z2 corresponds to the discrete flux of the
SO(3) gauge field on CP1 ⊂ CP2. Combining all the contributions we obtain

〈Ḡ〉Y = −i

�∫

Y
h

�

· e3πi/4η(τ)3 ·
1

8π2τ2η(τ)2η(τ)2
·
χ̄
Ôu(1)2
v (τ)

2π
p

2

=
−3i · e3πi/4

4π
p

2τ2η(τ)2
·
∑

n∈Z
q̄(n+v/2)2 . (76)

The anti-holomorphic eta-functions cancel between bosons and fermions due to right-moving
supersymmetry. The anti-holomorphic theta function is the contribution of the “winding modes”
of the compact chiral boson. Note that, as in 4d calculation, the overall sign in (76) is some-
what ambiguous and depends on the choice of orientation in the space of zero-modes. We do
not address the question of fixing it in this paper. Nevertheless, combining (76) with (71) we
obtain

∂ Zv

∂ τ̄
=

3

16πiτ3/2
2 η(τ)3

∑

n∈Z
q̄(n+v/2)2 , (77)

which is in agreement with the expected result (10)-(11).

16Near the origin of X = (R3 × S1)/Z2, a good description is likely to involve additional degrees of freedom.
However, since this region is compact, it does not contribute to the anomaly
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5 Generalizations

We now turn to possible generalizations. In Section 5.1 we consider a general Kähler manifold
with b+2 = 1, b1 = 0 and compute the holomorphic anomaly of the Vafa-Witten partition
function. In Section 5.2 we consider SU(N) gauge theory realized on multiple M5-branes.
The holomorphic anomaly can again be traced to the Wess-Zumino term in the effective action
on the Coulomb branch where SU(N) is spontaneously broken to SU(N1) × SU(N2) × U(1)
with N = N1 + N2. Finally, in Section 5.3 we briefly discuss other twists.

5.1 Vafa-Witten Theory on Kähler Manifolds with b+2 = 1, b1 = 0

Consider SO(3) gauge theory on a general Kähler manifold X with b+2 = 1 and b1 = 0 obtained
by wrapping two M5-branes on X in M-theory on KX × T2 ×R3, where, as before, KX is the
total space of the canonical bundle over X . Unlike in the case X = CP2, we will in general
have a nonzero b−2 with interesting modifications.

Consider first the two-dimensional point of view. The field content of the effective (0,4)
sigma model can be obtained by Kaluza-Klein reduction of the 6d (2,0) tensor multiplet as
in Section 4.2 following [41]. The only additional fields are b−2 left-moving compact bosons
because the relation (48) is replaced by the following decomposition of the six-dimensional
2-form field:

B =
1
p

2

b−2
∑

i=1

X i
Lh−i +

1
p

2
XRω , (78)

where h−i are the generators of H2−(X ,R) and ω is the Kähler 2-form, normalized such that

∫

X
ω∧ω= 1,

∫

X
h−i ∧ h−j = −δi j ,

∫

X
h−i ∧ω= 0 . (79)

The fields X i
L and XR are components of left-moving and right-moving compact bosons; (X L , XR)

is valued in the torus H2−(X ,R)⊕H2+(X ,R)/H2(X ,Z).
Thus, the compact bosons of the 2d theory form Narain lattice CFT associated to the in-

definite lattice Λ ⊗ H2(X ,Z). As before, Λ ∼=
p

2Z denotes the root lattice of SU(2). What
is important is that the intersection form still has a single negative eignvalue. When b−2 > 0
the theory has non-trivial moduli depending on the conformal class of the metric of X . It has
special “walls” that appear when the intersection H2,+(X ,R) ∩ (H2(X ,Z) ⊗ R) has nonzero
elements, corresponding to abelian instantons.

The fermionic and non-compact bosonic fields will be the same as in the case X = CP2. Let
us also assume that, as in the X = CP2 case, the canonical class lies inside H2,+(X ,R). That is
c1(X ) · [h−i ] = 0, ∀i, where · denotes the intersection pairing H2(X ,R)⊗H2(X ,R)→ R. The
analysis of the holomorphic anomaly is then analogous to the CP2 case and the final result is
modified to

∂ Zv

∂ τ̄
=

(c1(X ) · [ω])

16πiτ3/2
2 η(τ)3+b−2

∑

n∈ 1
2 H2(X ,Z)

n= v
2 mod H2(X ,Z)

q̄ n+·n+q−n−·n− , (80)

where

n+ := (n · [ω]) [ω], n− :=
b−2
∑

i=1

(n · [h−i ]) [h
−
i ], (81)

and
v ∈ H2(X ,Z2) (82)
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is the Z2 magnetic flux of the SU(2)/Z2
∼= SO(3) gauge field. This is in agreement with the

prediction for the holomorphic anomaly [50,51] obtained from a different perspective.
There are two modifications in (80) compared to the CP2 case (71). The first is the overall

factor, (c1(X ) ·[ω]) which is the straightforward generalization of the factor that appears after
reduction of 6d Skyrmionic string term to 2d WZ term as in (50). The second is the contribution

q−n−·n−

η(τ)b
−
2

(83)

from left-moving compact bosons X i
L .

Consider for example the case X = CP1×CP1 with b+2 = b−2 = 1. The H2(X ,Z) lattice has
two generators e1 and e2, Poincaré dual to 2-cycles pt×CP1 and CP1 × pt. Their intersection
numbers are:

e1 · e1 = e2 · e2 = 0, e1 · e2 = 1. (84)

In terms of this basis, the first Cherm class of the tangent bundle reads

c1(X ) = 2e1 + 2e2. (85)

The orthonormal basis in H2,+(X ,R)⊕H2,−(X ,R) is given by

ω=
e1

R
+

R e2

2
, h− =

e1

R
−

R e2

2
, (86)

where R2/2 is the ratio of the areas of two CP1’s. In this case the effective two-dimensional
theory is closely related to a (0,1) sigma model with S1 ×R3 target, where R is the radius of
S1. The difference comes from rescaling of the lattice of winding numbers and momenta along
S1 by the overall

p
2 factor. The condition c1(X ) · [h−] = 0 is satisfied if R=

p
2. The formula

(80) then reads

∂ Zv

∂ τ̄
=

1

4
p

2πiτ3/2
2 η(τ)4

∑

n∈Z2

n= v mod 2

q̄(n1+n2)2/8q(n1−n2)2/8, (87)

where v ∈ Z2
2.

The analysis in the gauge theory region is similar. The overall factor of the 3-form inte-
grated over the boundary S3 in the space of bosonic zero-modes changes from 3 to (c1(X )·[ω]).
The contribution of the abelian and point-like instantons in (32) is replaced with

1
η(τ)χ(X )

∑

n∈ 1
2 H2(X ,Z)

n= 1
2 v mod H2(X ,Z)

q̄ n+·n+q−n−·n− , (88)

where χ(X ) = 3+ b−2 . This yields the same result (80) obtained in the sigma model region.
If c1(X ) · [h−i ] 6= 0 the analysis both in four and two dimensions will be slightly modified.

In the gauge theory region the supersymmetrization of the Wess-Zumino term (performed in
Appendix A for the case of CP2) will lead to an extra term in the action of the form

∫

X

FR ∧ F−A H

2π|Φ|2
, (89)

where FR is the background R-symmetry curvature, which satisfies [FR/(2π)] = −c1(X ), F−A
is the anti-selfdual part of the gauge field strength, and H is the scalar auxiliary field. This
in turn will lead to an extra term proportional to H (c1(X ) · n−) in (30). The result of the
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finite-dimensional Gaussian integration in (35) will then be modified by an extra term of the
form

τ
−1/2
2 (c1(X ) · n−)(n · [ω]) q̄ n+·n+q−n−·n− . (90)

Such an extra term in holomorphic anomaly was already observed in [52] from a different
approach17. Similarly, in the sigma-models region, when c1(X ) · [h−i ] 6= 0, the 3-form φ∗(h)
will have an extra term proportional to

∑

i(c1(X ) · [h−i ]) dX i
L φ̂
∗(ω2). The contribution (90)

will then arise from the second term in (73) which will be non-vanising, as 〈∂ XR∂̄ X i
L〉 6= 0 for

compact bosons XR and X i
L .

5.2 Holomorphic Anomaly for SU(N)/ZN Gauge Theory

Another generalization is to consider Vafa-Witten theory for the gauge group SU(N)/ZN . This
theory can be obtained by compactifying on T2 the six-dimensional (2,0) model of type AN−1,
which can be realized in M-theory by a stack of N M5-branes with the center of mass degrees
of freedom removed. For simplicity, consider X = CP2. By arguments similar to the above,
we expect that the contributions to the holomorphic anomaly come from the boundary of the
non-compact space of bosonic zero-modes. The latter can originate from topologically twisted
scalar bosonic fields serving as coordinates on the Coulomb branch, where the gauge group is
spontaneously broken to some subgroup.

Consider breaking SU(N) by a vacuum expectation value of adjoint scalar fields propor-
tional to the traceless matrix

T =
1

p

N1N2N

�

N21N1×N1
0N1×N2

0N2×N1
−N11N2×N2

�

, (91)

with the standard normalization Tr(T2) = 1; here N1 + N2 = N . An SU(N1)× SU(N2)× U(1)
subgroup that commutes with T is left unbroken. Breaking to smaller subgroups can be real-
ized recursively.

The analysis above for SU(2)/Z2 can be repeated with the scalar fields Φi in the vector
multiplet of the unbroken U(1) and their superpartners. The overall coefficients in front of
the 6d Skyrmionic string term (43) and 4d WZ term (21) are now given by

nW

2
=
(N1 + N2)2 − 1− (N2

1 − 1+ N2
2 − 1+ 1)

2
= N1N2. (92)

This modifies accordingly the overall coefficient on the right hand side of the holomorphic
anomaly equation. The integration over the boundary S3 in the space of the bosonic zero-
modes of the 4d theory on CP2 (or boundary S2×S1 in the effective 2d theory), together with
summation over all possible partitions N = N1 + N2 and discrete fluxes of
SU(N1)/ZN1

× SU(N2)/ZN2
× U(1) consistent with a given flux of SU(N)/ZN , gives

∂ ZSU(N)/ZN
v (CP2)

∂ τ̄
=

3

16πiτ3/2
2 η(τ)3

×

∑

N1+N2=N

N1N2

∑

v1 ∈ZN1
v2 ∈ZN2







∑

n∈NN1N2Z+NN1v2
+NN2v1+N1N2v

q̄
n2

2NN1N2






Z

SU(N1)/ZN1
v1

(CP2)Z
SU(N2)/ZN2
v2

(CP2). (93)

17We would like to thank J. Manschot and G. Moore for bringing it to our attention.
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The theta function appearing in this formula corresponds to sum over the weight lattice

Λ∗U(1) =
Z

p

N1N2N
(94)

of the unbroken U(1) inside the weight lattice Λ∗SU(N) of SU(N). The normalization is fixed by
the normalization of T in (92) above.

This is in agreement with the general prediction in [50,51,53–55] (where the gauge group
is U(N) instead of SU(N)). By applying this formula recursively one can conclude that the
holomorphic limit of ZSU(N)/ZN

v is a depth N − 1 mock modular form.

5.3 Other Twists

For completeness, we include the computation of the holomorphic anomaly in the partition
function for the B and the C twist. The analysis of the 2d sigma model is very similar for to the
one for the A twist and leads to a noncompact theory. The analysis on the Coulomb branch
is also similar. However, it turns out that the holomorphic anomaly for the partition function
actually vanishes for these twists. It is conceivable that some other observables of the twisted
theory have nonvanishing holomorphic anomaly and exhibit mock modularity.

The C Twist

This twist is only possible on spin manifolds, because the N = 4 theory, considered as a N = 2
theory, has matter in the adjoint representation. The corresponding sigma model has (0, 1)
supersymmetry in two dimensions, which for Kähler manifolds is enhanced to (0,2).

The simplest example is X = CP1×CP1. Since its signature is zero, for generic metric there
will be no harmonic spinors. The effective theory contains a single non-chiral non-compact
boson, and also a left-moving chiral boson X L and a right-moving chiral boson XR, as in the
example at the end of Section 5.1). The non-compact boson and XR have super-partners:
two right-moving Majorana-Weyl fermions ψ1,ψ2. Unlike in the case of the A twist, the Wess-
Zumino term does not play a role as the target space is two-dimensional. The boundary theory
Y contains a single fermionic mode that can be saturated by the supercurrent. However, its
expectation value turns out to vanish:

∂ Zv(CP1 ×CP1)
∂ τ̄

∝ 〈Ḡ〉Y ∝ 〈ψ2 ∂̄ XR〉

∝
∑

n∈H2(X ,Z)
n= v mod 2

(n1/R+ R n2/2) q̄
(n1/R+R n2/2)2/4q(n1/R−R n2/2)2/4 = 0, (95)

where, as before, v ∈ Z2
2 labels the discrete gauge flux. The vanishing can be attributed to

anti-symmetry under the automorphism of the H2(X ,Z) lattice acting as n 7→ −n on all the el-
ements. For X = CP1×CP1 this automorphism is induced by the map X → X given by complex
conjugation on the complex coordinates. Thus it corresponds to a certain global Z2 symmetry
of the theory. Note that for any other spin manifold X with b+2 = b−2 = 1, the intersection form
is the same as for CP1 ×CP1, due to the classical result about classification of even self-dual
lattices. Therefore the result of the calculation will be the exactly same (namely zero) because
the contribution from the boundary at infinity of the target space depends only on the intersec-
tion form and the action of the Hodge star on H2(X ,R). However, the involution of the lattice
n 7→ −n does not necessarily correspond to an orientation-preserving self-diffeomorphism of
X .

Consider now a smooth spin 4-manifold X with b+2 = 1 and b−2 > 1. Note that due to
Rokhlin’s theorem, b−2−1= 0 mod 16. If the metric on X is generic, the effective 2d theory will
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have (b−2 −1)/4≥ 4 extra right-moving Majorana-Weyl fermions in addition to the fields ψ1,2
introduced above. They originate from harmonic spinors on X . In this case it is not possible to
saturate the corresponding fermionic zero-modes by an insertion of the supercurrent and the
anomaly vanishes for a more trivial reason.

The B Twist

The sigma model now has (1, 1) supersymmetry, which for Kähler manifolds is enhanced to
(1,2). As before, the field content can be determined by counting harmonic forms on X . In
the case X = CP2 the effective theory contains a single non-chiral non-compact boson, a single
right-moving compact boson of radius

p
2, and their super-partners: one left-moving and two

right-moving Majorana-Weyl fermions. While it is possible to saturate the zero-modes for the
right-moving fermions as in the case of C twist considered above, the zero-mode for the left-
moving fermion will remain unpaired, rendering the result to be zero. The same holds for
other manifolds with b+2 = 1 and b1 = 0.
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A Supersymmetrization of the Four-Dimensional Action

Our goal is to determine the constants a and b introduced in (30). The constant b will be
determined in Appendix A.5 by comparison with the bosonic part of untwisted action with
auxiliary fields put on-shell. The constant a will be determined by identifying a bosonic term
linear in the field H (whose zero mode is H) in the supersymmetrization of the bosonic Wess-
Zumino term. It is convenient to work directly in the twisted theory because the superalgebra
of the scalar supercharges is particularly simple.

On a four-manifold of general holonomy, the N = 4 topological twisted theory has two
scalar supercharges with an off-shell realization [1, 36, 37, 56]. For a Kähler manifold X , the
holonomy is reduced from SU(2)` × SU(2)r to U(1)` × SU(2)r . Only a U(1)R subgroup of
Spin(6)R is used for twisting by replacing U(1)` with the diagonal U(1)′

`
of U(1)R × U(1)`.

The resulting twisted theory thus has unbroken Spin(4)R × U(1)R global symmetry in ad-
dition to the U(1)l ′ × SU(2)r holonomy group. Note that since U(1)R is abelian, it remains
unbroken even after turning on a non-trivial background. There are then four scalar su-
percharges which we denote as QA (A = 1,2) and QȦ (Ȧ = 1,2) and which transform as
(1,2,1)0+1 ⊕ (1,1,2)0−1 respectively under SU(2)r × Spin(4)R × U(1)′

`
× U(1)R where the su-

perscript denotes the U(1)′
`

charge and the subscript denotes the U(1)R charge.

A.1 Off-shell Fields

The N = 4 vector multiplet contains the gauge field and six scalar fields in the untwisted
theory. The gauge field is not affected by twisting, and splits into the following two irreducible
representations18:

A± (2,1,1)±1
0 (96)

18 In the Euclidean theory, they are to be regarded as independent fields not related by complex conjugation.
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corresponding to the Hodge decomposition of a 1-form on a Kähler manifold into (1,0) and
(0,1) forms. Similarly, the exterior derivative splits as d = d+ + d− :

d± (2,1,1)±0 , (97)

where d+ ≡ ∂ , d− ≡ ∂̄ are the Dolbeault differentials. The six scalars of the untwisted theory
split into three irreducible representations:

ΦAȦ (1,2,2)00 ,

B++ (1,1,1)22 , B−− (1,1,1)−2
−2 . (98)

We have denoted the fields suppressing the SU(2)r indices to avoid clutter. The A and Ȧ indices
on the fields transform in the spinor and the conjugate spinor representations of Spin(4)R, the
superscript denotes the U(1)′

`
charge and the subscript denotes the U(1)R charge.

There are sixteen fermions which split into six irreducible representations:

ψ̃A (1,2,1)0−1 , λ̃Ȧ (1,1,2)0+1 ,

ψ̃−−A (1,2,1)−2
−1 , λ̃++

Ȧ
(1,1,2)+2

+1 ,

ψ+A (2,2,1)+1
+1 , λ−

Ȧ
(2,1,2)−1

−1 . (99)

So far we have ten bosonic and sixteen fermionic fields. Taking into account gauge freedom
parametrized by a single scalar bosonic field we then need seven auxiliary fields to obtain an
off-shell realization of the four scalar supercharges. We introduce auxiliary fields for each fixed
representation of SU(2)r × U(1)′

`
as follows:

H̃+ (2,1,1)+1
+2 , H̃− (2,1,1)−1

−2 ,

H++ (1,1,1)+2
0 , H−− (1,1,1)−2

0 ,

H (1,1,1)00 . (100)

The fields H±± and H can be seen to arise from a self-dual 2-form,

H(2+) := Hω+H++ +H−− (101)

as the (1,1), (2,0) and (0,2) components in the Hodge decomposition on a Kähler manifold.
Here and elsewhere ω denotes the Kähler form normalized such that

∫

X ω∧ω= 1. Similarly,
the fields H̃± combine into 1-form as its (1,0) and (0,1) components:

H̃(1) := H̃+ + H̃−. (102)

A.2 Off-shell Superalgebra

The four supercharges are nilpotent up to gauge transformation δgauge(ΦAḂ) generated by ΦAḂ:

{QA,QB}= 0, {Q̄Ȧ, Q̄ Ḃ}= 0,

{QA, Q̄ Ḃ}= δgauge(ΦAḂ) . (103)

The off-shell realization of this algebra can be determined essentially by inspection and by
comparison with the untwisted theory as we describe below.

The entire vector supermultiplet of N = 4 theory together with the auxiliary fields splits
into three multiplets of the algebra (103) satisfied by the four scalar supercharges. The trans-
formations below are strongly constrained by the SU(2)r × Spin(4)R × U(1)′

`
× U(1)R global

symmetry and the algebra (103). Note that the fields can always be rescaled relative to the
gauge fields A± so that the coefficients in the supersymmetry transformations are as below.
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Sections of the canonical and anti-canonical bundles belong to two short multiplets:

[QA, B−−] = ψ̃−−A , [Q̄Ȧ, B−−] = 0,
{QA, ψ̃−−B } = εABH−−, {Q̄Ȧ, ψ̃−−B } = 0,
[QA, H−−] = 0, [Q̄Ȧ, H−−] = 0,

(104)

and
[QA, B++] = 0, [Q̄Ȧ, B++] = λ̃++

Ȧ
,

{QA, λ̃++
Ḃ
} = 0, {Q̄Ȧ, λ̃++

Ḃ
} = εȦḂH++,

[QA, H++] = 0, [Q̄Ȧ, H++] = 0,
(105)

The remaining fields including the gauge field form a long multiplet:

{QA,λ−
Ḃ
} = d−ΦAḂ, {Q̄Ȧ,ψ+B} = d+ΦBȦ,

[QA,ΦBḂ] = εABλ̃Ḃ, [Q̄Ȧ,ΦBḂ] = −εȦḂψ̃B,
{QA, λ̃Ḃ} = 0, {Q̄Ȧ, ψ̃B} = 0,

[QA, H̃−] = −d−ψ̃A, [Q̄Ȧ, H̃+] = d+λ̃Ȧ,
{QA, ψ̃B} = εABH, {Q̄Ȧ, λ̃Ḃ} = εȦḂH,
[QA, H] = 0, [Q̄Ȧ, H] = 0,

[QA, A+] = ψ+A , [Q̄Ȧ, A−] = λ−
Ȧ

,
{QA,ψ+B} = εABH̃+, {Q̄Ȧ,λ−

Ḃ
} = εȦḂH̃−,

[QA, H̃+] = 0, [Q̄Ȧ, H̃−] = 0,

[QA, A−] = 0, [Q̄Ȧ, A+] = 0,

(106)

where we have grouped the fields into shorter multiplets with respect to the QA or Q̄Ȧ super-
charges separately. The fields Φ, ψ̃, λ̃, H form a submultiplet of the superalgebra (103).

The normalization of the gauge field can be fixed by specifying the coefficient for the kinetic
term. The realization of the superalgebra above still leaves the freedom to rescale other fields
together with supercharges without changing the supersymmetry transformations:

A±→ A±, Q→ CQ, Q̄→ CQ̄, ψ+→ Cψ+, λ−→ Cψ−,
H̃±→ C2H̃±, Φ→ C2Φ, ψ̃→ C3ψ̃, λ̃→ C3λ̃, H → C4H,

B++→ C2B++, λ̃++→ C3λ̃++, H++→ C4H++,
B−−→ C2B−−, ψ̃−−→ C3ψ̃−−, H−−→ C4H−−.

(107)

A.3 Supersymmetrization of the Free Action

The bosonic part of the free action can be fixed by requiring that one obtains the standard
kinetic term for the gauge field for the unbroken U(1) subgroup of SO(3) on the Coulomb
branch after eliminating the auxiliary fields:

Sfree
4d = 2πiτ

∫

X

FA∧ FA

4π2
−
τ2

π

∫

X
H(2+) ∧ (H(2+) − 2FA) + . . . (108)

Using Hodge decomposition (101) of H(2+), the remaining terms are fixed by supersymmetry:

Sfree
4d = 2πiτ

∫

X

FA∧ FA

4π2
+

2τ2

π

∫

X

�

−
ω∧ω

2
H2 + d+ψ+A ψ̃

−−A + d−λ−
Ȧ
λ̃++Ȧ+

ω∧ [H(d+A− + d−A+) +
1
2

d+ΦAȦd−ΦAȦ+ d+λ̃Ȧλ−
Ȧ
+ψ+A d−ψ̃A+ H̃+H̃−]

−H++H−− + d+A+H−− + d−A−H++ + H̃+d+B−− + H̃−d−B++
�

. (109)
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One can show that the term in (109) proportional to τ2 is Q-exact. Using Spin(4)R R-
symmetry, one can choose Q to be a linear combination of the form

Q = αQ1 + βQ̄1 , (110)

where α and β are constants. Define

Λ1 :=
i
π

∫

X

�ω∧ω
2

Hψ̃2 +ω∧ [−(d+A− + d−A+)ψ̃2 + H̃−ψ+2 + d+Φ1Ḃλ−
Ḃ
]

−2d+A+ψ̃−−2 +H++ψ̃−−2 + 2d+B−−ψ+2
�

(111)

and

Λ̄1 :=
i
π

∫

X

�ω∧ω
2

Hλ̃2 +ω∧ [−(d+A− + d−A+)λ̃2 − H̃+λ−2 − d−ΦB1ψ+B ]

−2d−A−λ̃++2 +H−−λ̃++2 + 2d−B++λ−2
�

. (112)

They satisfy
{Q̄1,Λ1}= 0, {Q1, Λ̄1}= 0, (113)

and19

Sfree
4d = 2πiτ

∫

X

FA∧ FA

4π2
− iτ2 ({Q1,Λ1}+ {Q̄1, Λ̄1}). (114)

It follows that
∂ Sfree

4d

∂ τ̄
= {Q,Λ} , (115)

where

Λ=
1

2α
Λ1 +

1
2β
Λ̄1. (116)

For convenience one can choose α= β = 1 as in Section 3.3.

A.4 Supersymmetrization of the Wess-Zumino Term

To determine the coefficient a of the term linear in H in the zero mode action (30), it is neces-
sary to determine the terms in the full action that are linear in the field H. In this subsection we
show that such a term is indeed present and is necessary to cancel supersymmetric variation
of the bosonic Wess Zumino term (21).

We start by writing the Wess Zumino term (21) in the twisted field variables. The topolog-
ical twist on a Kähler X is realized by turning on background field strength for the subgroup of
R-symmetry Spin(2)R ⊂ Spin(6)R. One can assume that the Spin(2)R rotates in the 4-5 plane
in the R6 field space of scalars in the untwisted theory. With this choice, one can relate the
fields ΦI , I = 0 . . . 5 with the bosonic fields in (97) as follows:

Φ11 = Φ2 + iΦ3, Φ22 = Φ2 − iΦ3,

Φ12 = Φ0 + iΦ1, Φ21 = −Φ0 + iΦ1,

B++ = Φ4 + iΦ5, B−− = Φ4 − iΦ5. (117)

Only nonzero components of F I1 I2 in (21) are F45 = −F54, related to the curvature of the
canonical bundle when restricted to X = CP2. Let ω be the Kähler form on CP2 normalized
such that

∫

CP1ω = 1 for a standard embedding of CP1 into CP2. Since the canonical bundle

19Note that for the action restricted to the supermultiplet (106) it is possible to use just Q1 or Q̄1.

36

https://scipost.org
https://scipost.org/SciPostPhys.9.5.072


SciPost Phys. 9, 072 (2020)

is O(−3) bundle one has c1(KCP2) = −3[ω]. Moreover, F45|X = 3 ·2πω when the connection
on KCP2 is induced by Levi-Civita connection on TCP2 for the Fubini-Study metric.

Since ΦAȦ and Φ4± iΦ5 belong to different supermultiplets (104) and (106) after twisting,
one can restrict Φ4 and Φ5 to be zero. With the field redefinitions above the bosonic Wess-
Zumino term S4d WZ equals

i
π

∫

Ξ5

F45

2π
∧
Φ11dΦ22dΦ12dΦ21 −Φ22dΦ12dΦ21dΦ11 +Φ12dΦ21dΦ11dΦ22 −Φ21dΦ11dΦ22dΦ12

|Φ|4
(118)

where20 |Φ|2 := ΦAȦΦ
AȦ = 2(Φ11Φ22 −Φ12Φ21) = 2((Φ0)2 + (Φ1)2 + (Φ2)2 + (Φ3)2).

It turns out that (118) by itself cannot be supersymmetrized. One can consider instead

S′WZ = S4d WZ + Sgrav, (119)

with

Sgrav = −
3i
2π

∫

X
ω∧

d−ΦAȦd+ΦAȦ

|Φ|2
, (120)

which can be supersymmetrized to the desired order. This term can arise from a term in the
effective action in the untwisted theory of the form

Sgrav =

∫

d4 x
p

g (c1 R gµν + c2 Rµν)
1
‖Φ‖2

6
∑

I=1

∂µΦ
I∂νΦ

I (121)

for some constants c1 and c2, and can be thought of as a non-minimal coupling to gravity
required by supersymmetry on a curved manifold. It respects both scaling and Spin(6)R sym-
metry and reduces to (120) on CP2 when Φ4 = Φ5 = 0. Such a term is indeed known to be
present as a four derivative coupling in N = 2 supergravity [57].

Our goal is to determine whether a bosonic term linear in H is required by supersymmetry.
Since we are trying to relate a bosonic term to another bosonic term, we will have to consider
at least two consecutive supersymmetry transformations. A general variation S′WZ is given by

δS′WZ =

∫

X

3iω
π
∧
(2ΦAȦd−ΦBȦd+ΦAḂ − |Φ|2d+d−ΦBḂ)δΦ

BḂ

|Φ|4
. (122)

Even though the Wess-Zumino action is defined by a 5d integral, its variation must be a local
4d integral. The supersymmetry variation can be canceled by adding the term

S1 =

∫

X

3iω
π
∧





2ΦAȦd+ΦAḂλ
−
Ȧ
λ̃Ḃ

|Φ|4
+

d+λ−
Ȧ
λ̃Ȧ

|Φ|2
+

2ΦAȦd−ΦBȦψ
+
A ψ̃

B

|Φ|4
+

d−ψ+A ψ̃
A

|Φ|2



 . (123)

With some algebra, one can verify that the variation of S′WZ with respect to QC is completely
canceled by the variation of the first two terms with respect to QC ; and the variation with
respect to Q̄ Ċ is completely canceled by the variation of the last two terms with respect to Q̄ Ċ .

However the variation of the first two terms (123) with respect to Q̄ Ċ and the last two
terms with respect to QC is nonzero. Restricting to one fermion terms modulo terms linear in
H̃−, one can verify that this variation can be canceled by the variation of the term

S2 =

∫

X

3iω
π
∧





2ΦAȦψ+Aλ
−
Ȧ

H

|Φ|4
+

FA H
|Φ|2



 . (124)

20Note that |Φ|2 = 2‖Φ‖2|Φ4=Φ5=0.
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We have thus concluded that a term linear in FA and linear in H is necessarily present in the
supersymmetrization of the Wess-Zumino action. Therefore, the coefficient of this term and
in turn a is topological in origin and is determined by the anomaly matching which fixes the
coefficient of the Wess-Zumino term.

A.5 Restriction to Zero-Modes

Given the relevant terms in the four-dimensional action, one can determine the effective action
over zero-modes to the desired order by restricting the four-dimensional fields to the zero-
modes. When X = CP2, the canonical bundle has no harmonic sections and b1 = 0. The only
zero-modes arise from fields in representations of the form (1,∗,∗)0,∗ and hence are given by:

ΦAȦ|zm = uAȦ, ψ̃A|zm = χA,

λ̃Ȧ|zm = χ̄ Ȧ, H|zm =H. (125)

The supercharges in (106), restricted to the zero-modes, then can be realized as the following
linear differential operators:

QA|zm = H ∂
∂ χA + χ̄ Ȧ ∂

∂ uAȦ ,

Q̄Ȧ|zm = H ∂

∂ χ̄ Ȧ −χ
A ∂

∂ uAȦ .
(126)

The restriction of (109) to the zero-modes is then given by

Sfree
4d |zm = −

τ2

π
H(H− 4πn) + 2πiτn2, (127)

where we have used the fact that
∫

CP1

FA

2π
= n ∈

1
2
Z . (128)

The restriction of (116) is then given by

Λ|zm = −
i

4π
(χ1 + χ̄1)(H− 4πn). (129)

The reduction of the term (124) in the effective action to the zero-modes reads

S2|zm =
6i nH
|u|2

. (130)

It follows that the constant a defined in (30) is equals 3/π.
The coefficient b in (30) of the term quadratic in H cannot be fixed by the supersym-

metrization of the Wess-Zumino term by the four supercharges considered above. This can be
seen by considering a term in the action of the following form motivated by (26):

∫

X
ω∧ω

�

H2 f (|Φ|2, H) + 2ΦAȦH f ′(|Φ|2, H)ψ̃Aλ̃Ȧ

+(2 f ′(|Φ|2, H) + |Φ|2 f ′′(|Φ|2, H))εABεȦḂψ̃
Aψ̃Bλ̃Ȧλ̃Ḃ

�

, (131)

where f is any function and prime denotes the derivative with respect to the first argument.
This term is annihilated by all four superchages and hence is not fixed by the analysis in this
appendix. When restricted to zero-modes, such a term will shift the value of b.
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To determine b, one can appeal to the untwisted on-shell action. If b 6= −1, then after
integrating the auxiliary field H, there must be a term proportional to

∫

X

F+A F+A ω

|Φ|2
(132)

on X = CP2 with a nonzero coefficient.The indices in F+A F+A ω are contracted appropriately to
obtain a 4-form. Such a term can arise from only two possible terms.

• A term of the form
∫

F+A F+A FR

‖Φ‖2
(133)

in the theory in flat space, where FR is the background R-symmetry. However, such a
term can be invariant only under Spin(4)R×U(1)R but cannot be made invariant under
the full Spin(6)R R-symmetry of the untwisted theory.

• A term of the form
∫

F+A F+A R

‖Φ‖2
(134)

where R is the Riemann curvature tensor. The scalar fields Φ in the term above can be
restricted to be purely in the N = 2 vector multiplet. However, it is known that there is
no such 4-derivative coupling in N = 2 supergravity ( [57]).

Since neither term is consistent with superymmetry and R-symmetry, we conclude b = −1.

B SO(3) versus U(2)

In this section we comment on the relation between the partition functions for the SO(3) and
U(2) gauge groups. From the point of view of 6d (2,0) theory, the u(2) Lie algebra is in a certain
sense more natural because it describes the stack of two M5-branes without removing the
centre of mass degrees of freedom. Moreover, the six-dimensional u(2) (2,0) theory is absolute
because it has a self-dual lattice of string charges and thus has a single partition function.
By contrast, the su(2) (2,0) theory is relative and has a vector of partition functions labeled
by discrete fluxes. On X × T2 partition function should transform to itself under modular
transformations, up to a phase related to ’t Hooft anomalies.

Let us consider how the effective two-dimensional theory in the u(2) case is modified com-
pared to su(2) case. The analysis in Section 4.2 can be repeated for the 6d tensor multiples
valued in the Cartan sub algebra of u(2). In particular, the KK reduction of the self-dual 2-
form field B now leads to Ôu(2)1 right-moving WZW CFT, instead of ŝu(2)1 ∼= Ôu(1)2. This
two-dimensional theory is now also absolute21 and its character is

χ̄
Ôu(2)1
0,0 (τ; z) =

1

η(τ)
2

∑

n∈Z2

q̄
n2

1+n2
2

2 +(n1+n2)z̄ =

�

ϑ3(τ; z)

η(τ)

�2

, (135)

which again captures contribution of abelian instantons. We have included the fugacity ez for
the diagonal u(1). From the 4d perspective such refinement is realized by adding the topolog-
ical term z

∫

CP1 c1 to the action on CP2. The decoupling of the diagonal u(1), corresponding
to the center of mass degrees of freedom, is then done via the following decomposition of
characters:

χ̄
Ôu(2)1
0,0 (τ; z) = χ̄

Ôu(1)2
0 (τ; z)χ̄ ŝu(2)1

0 (τ) + χ̄
Ôu(1)2
1 (τ; z)χ̄ ŝu(2)1

1 (τ) , , (136)

21As a spin-theory, as we will comment on below.
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where

χ̄
Ôu(1)2
λ
(τ; z) :=

1

η(τ)

∑

n∈Z
q̄(n+λ/2)

2+(2n+λ)z̄ . (137)

The characters (47) transform as a dimension 2 complex representation of SL(2,Z), up to
an overall multiplier system related to the gravitational anomaly. The S and T elements are
represented by the following matrices:

S =

�

1 1
1 −1

�

, T = e
πi
12

�

1 0
0 i

�

. (138)

The left hand side of (136) is a modular function (again, with a multiplier system) under
the index 3 subgroup 〈S, T2〉 ⊂ SL(2,Z) generated by S and T2. This is expected because
U(2) is self-dual, and on a non-spin manifold the U(2) theory is only invariant under the
shift of the theta-angle by 4π. From the 2d point of view 〈S, T2〉 is the subgroup of SL(2,Z)
preserving the antiperiodic-antiperiodic spin structure on T2. This is the spin structure for
which the character (135) is the partition function of Ôu(2)1 chiral WZW, which should be
considered as a spin theory. Note that the matrices S and T2 transforming the characters of
ŝu(2)1, or equivalently Ôu(1)2, happen to be real (up to an overall phase), so the representation
is self-conjugate. In particular this means that formally one could also take instead a linear
combination

χ
Ôu(1)2
0 (τ; z)χ̄ ŝu(2)1

0 (τ) +χ
Ôu(1)2
1 (τ; z)χ̄ ŝu(2)1

1 (τ) (139)

to achieve the same effect, that is to produce an 〈S, T2〉 Jacobi modular function (with a
different multiplier system). Therefore there is no contradiction with the discussion in Section
3.1.

As an aside we note that if one considers periodic-periodic spin structure instead, the par-
tition function of the chiral Ôu(2)1 WZW reads

χ̄
Ôu(2)1
1,1 (τ; z) =

1

η(τ)
2

∑

n∈Z2

(−1)n1+n2+1q̄
(n1+1/2)2+(n2+1/2)2

2 +(n1+n2+1)z̄ =

�

ϑ1(z;τ)

η(τ)

�2

. (140)

It is modular function of the full SL(2,Z) group, since it preserves the unique odd spin struc-
ture. From the 4d point of view the diagonal of U(2) gauge group is replaced by a Spinc

structure, which results in half-integer shifts of the fluxes on the non-spin manifold CP2. This
corresponds to Freed-Witten anomaly in string/M-theory setting. The character decomposition
in this case reads

χ̄
Ôu(2)1
1,1 (τ; z) = χ̄

Ôu(1)2
0 (τ; z)χ̄ ŝu(2)1

1 (τ)− χ̄
Ôu(1)2
1 (τ; z)χ̄ ŝu(2)1

0 (τ). (141)

C Closed Forms

C.1 Closed 3-forms on R4 \ {0}

Let v i , i = 0, . . . , 3 be the standard coordinates on R4. It is easy to see that the 3-form

ω3 :=
v0dv1dv2dv3 − v1dv2dv3dv0 + v2dv3dv0dv1 − v3dv0dv1dv2

2π2 ‖v‖2
∈ Ω3(R4 \ {0}) (142)

is closed, SO(4) invariant and normalized such that
∫

Σ3

ω3 = 1 (143)
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for any 3-cycle Σ3 which represents the generator of H3(R4 \ {0},Z) ∼= Z, in particular for a
round 3-sphere centered at the origin. Thus, ω3, can be understood as the pullback of the
standard volume form (with unit volume) on S3 with respect to the homotopy equivalence

R4 \ {0} −→ S3,
v 7−→ v/‖v‖ .

(144)

Under the change of variables

u11 = v2 + iv3 u22 = v2 − iv3

u12 = v0 + iv1 u21 = −v0 + iv1 (145)

the 3-form above becomes

ω3 =
u11du22du12du21 − u22du12du21du11 + u12du21du11du22 − u21du11du22du12

2π2|u|2
, (146)

where |u|2 := εABεȦḂuAȦuBḂ = 2(u11u22 − u12u21). Let

ζ3 :=
(u12du11 − u11du12)du22du21

|u|4
∈ Ω3(R4 \ {0}), (147)

and

ζ̃3 :=
(u21du11 − u11du21)du12du22

|u|4
∈ Ω3(R4 \ {0}). (148)

It is easy to see that these 3-forms are also closed and, moreover,

ζ3 = π2ω3 + d(. . .),
ζ̃3 = π2ω3 + d(. . .),

(149)

that is
∫

Σ3 ζ3 =
∫

Σ3 ζ̃3 = π2 any 3-cycle Σ3 which generates H3(R4 \ {0},Z)∼= Z.

C.2 The Euler Angular Form η4

We now verify explicitly that the Euler angular form η4 is closed when the background R-
symmetry connection is turned on only for a subgroup Spin(2) ⊂ Spin(5) relevant for the
topological twisting on Kähler 4-manifolds. One can assume that Spin(2) corresponds to ro-
tations in the 4-5 plane and substitute A45 = −A54 and Aab = 0 otherwise in (42) to obtain

η4 =
4!

64π2

�

Z1dZ2dZ3DZ4DZ5 + Z2dZ3DZ4DZ5dZ1 + . . .+ Z5dZ1dZ2dZ3DZ4

−
1
3

dA(Z1dZ2dZ3 + Z2dZ3dZ1 + Z3dZ2dZ1)
ª

. (150)

Let

ω4 :=
1

64π2
εa1a2a3a4a5

Za1 dZa2 dZa3 dZa4 dZa5 (151)
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be the pullback of the standard volume form on S4 normalized such that
∫

S4ω4 = 1. Using

DZ4DZ5 = dZ4dZ5 − A(Z4dZ4 + Z5dZ5) and
∑5

i=1(Z
i)2 = 1 we have

η4 =ω4 +
4!

64π2

�

−A(Z4dZ4 + Z5dZ5)(Z1dZ2dZ3 + Z2dZ3dZ1 + Z3dZ1dZ2)

+ A((Z4)2 + (Z5)2)dZ1dZ2dZ3

−
1
3

dA(Z1dZ2dZ3Z2dZ3dZ1 + Z3dZ2dZ1)
ª

=ω4 +
4!

64π2

�

A(Z1dZ1 + Z2dZ2 + Z3dZ3)(Z1dZ2dZ3 + Z2dZ3dZ1 + Z3dZ1dZ2)

+ A(1− (Z1)2 − (Z2)2 − (Z3)2)dZ1dZ2dZ3

−
1
3

dA(Z1dZ2dZ3 + Z2dZ3dZ1 + Z3dZ2dZ1)
ª

=ω4 +
4!

64π2

§

AdZ1dZ2dZ3 −
1
3

dA(Z1dZ2dZ3 + Z2dZ3dZ1 + Z3dZ2dZ1)
ª

=ω4 −
1

8π2
d
�

A
�

Z1dZ2dZ3 + Z2dZ3dZ1 + Z3dZ2dZ1
�	

(152)

from which it follows that dη4 = 0.
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