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Self-dual S3-invariant quantum chains
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Abstract

We investigate the self-dual three-state quantum chain with nearest-neighbor interac-
tions and S3, time-reversal, and parity symmetries. We find a rich phase diagram includ-
ing gapped phases with order-disorder coexistence, integrable critical points with U(1)
symmetry, and ferromagnetic and antiferromagnetic critical regions described by three-
state Potts and free-boson conformal field theories respectively. We also find an unusual
critical phase which appears to be described by combining two conformal field theories
with distinct “Fermi velocities”. The order-disorder coexistence phase has an emergent
fractional supersymmetry, and we find lattice analogs of its generators.
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1 The model and the phase diagram

Since even before the Time of Landau, a common strategy in statistical mechanics has been
to stipulate the symmetries of the system and construct the simplest model obeying them.
With a Z2 symmetry, this approach yields the much-studied Ising model. The resulting critical
point separating ordered and disordered phases in the two-dimensional classical case and the
one-dimensional quantum chain is self-dual [1]. “Parafermionic” quantum chains with n states
per site and Zn symmetry [2] are natural generalizations that have been intensively studied
recently, for reasons including the appearance of topological order and potential experimental
realizations [3].

However, very little systematic exploration of the simplest and most symmetric parafermionic
chains has been done, a shame given their importance. We here aim to rectify the situation
by analyzing a one-parameter family of three-state quantum chains with S3 symmetry and
Kramers-Wannier self-duality. These are the most general such chains with nearest-neighbor
interactions invariant under time-reversal and spatial parity. Duality here is neither unitary
nor invertible, as for example it maps the ordered ground states of the Potts chain to the unique
ground state of the disordered phase. For the self-dual couplings we study, this non-triviality
allows for novel phase transitions to occur [4]. Here we study the entire self-dual line and find
a rich variety of previously unknown critical and gapped phases.

The Hamiltonian of our L-site chain written in terms of operatorsσ j and τ j for j = 1, . . . , L,
all acting on the 3L dimensional Hilbert space. Each operator acts non-trivially only on a single
site j, e.g. σ2 = 1⊗σ⊗1 · · ·1, so that operators based on different sites commute. They obey

σ2
j = σ

†
j , τ2

j = τ
†
j , σ3

j = τ
3
j = 1, σ jτ j =ωτ jσ j , (1)

with ω= exp
�

2πi/3
�

. In a σ j-diagonal basis,

σ =





1 0 0
0 ω 0
0 0 ω2



 , τ=





0 0 1
1 0 0
0 1 0



 . (2)

A convenient pair of single-site operators are the standard su(2) generators for a spin-1 system:

S+j =
1
3

�

2−ωτ j −ω2τ†
j

�

σ†
j , S−j = S+j

† , Sz
j =

i
p

3

�

τ†
j −τ j

�

. (3)

Key relations these obey are

(S+j )
3 = (S−j )

3 = 0 ,
�

Sz
j , S±j

�

= ±S±j . (4)

The Hamiltonian we study is self-dual under Kramers–Wannier duality, with duality-broken
cases analyzed in [4]. The action of duality on the Hilbert space is given in a convenient
and general form by using topological defects [5]. In the case of interest here, we simplify
matters by studying only its action on translation-invariant Hamiltonians, where the operators
transform as

τ j → σ
†
jσ j+1, σ†

jσ j+1→ τ j+1 . (5)

The self-dual quantum 3-state Potts Hamiltonian with periodic boundary conditions is the
simplest one invariant under (5), namely

HP = −
L
∑

j=1

�

σ†
jσ j+1 +τ j + h.c

�

, (6)
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where σL+1 ≡ σ1. This Hamiltonian is the quantum spin-chain limit of the integrable self-dual
3-state Potts model [6,7]. Another nearest-neighbor self-dual Hamiltonian is [4]

H1 =
L
∑

j=1

�

3S+j S−j+1 − 3S+
2

j S−
2

j+1 +τ j + h.c.
�

. (7)

In this form the self-duality is not obvious, but it is easily verified by rewriting the S±j in terms
of the τ j and σ j using (3). In addition to being self-dual, both Hamiltonians are invariant
under parity and time-reversal symmetries, namely P : σ j → σL+1− j , τ j → τL+1− j , and T :

σ j → σ
†
j , τ j → τ j . Under the latter, complex numbers are conjugated as well.

The Hamiltonian we study is an arbitrary linear combination of these two:

H(θ ) = λP HP +λ1H1 , (8)

where a convenient coupling θ is defined by setting λP ≡ cosθ and λ1 ≡ sinθ . Writing H(θ )
in terms of Temperley–Lieb generators (see e.g. [4]) gives the same expression as in Ref. [8]
but in a different representation with different physics. Other similar Hamiltonians [9, 10]
are distinct as well. In addition to P and T , H(θ ) is invariant under an S3 permutation
symmetry generated by charge conjugation and a Z3 cyclic shift symmetry. Charge conju-
gation acts on the operators by sending σ j ↔ σ†

j , τ j ↔ τ†
j , while the shift is generated by

σ j →ωσ j , τ j → τ j . Acting on the Hilbert space, shifts are generated by ωQ with

Q =
L
∑

j=1

Sz
j , ωQ =

L
∏

j=1

τ j . (9)

Manifestly, ωQ commutes with the Hamiltonian, anticommutes with charge conjugation and
obeys (ωQ)3 = 1. The expression (8) gives the most general self-dual nearest-neighbor Hamil-
tonian invariant under all these symmetries.

The Hamiltonian H1 by itself is a particular case of the integrable spin-1 XXZ chain [11].
Even beyond that, it has some very special properties. As is obvious from the form (7), it
commutes with Q from (9) itself, promoting the Z3 to a full U(1) symmetry. Acting with
duality (5) on Q gives another U(1) charge bQ, which also must commute with the self-dual
H. However, it is easy to check that [Q, bQ] 6= 0 and that the two generate the non-Abelian
Onsager algebra, resulting in large degeneracies [12]. Moreover, H1 also has a “dynamical”
lattice supersymmetry as it obeys H1 = Q2, with a fermionic Q that changes the number of
sites [13].

We do our analysis using detailed conformal field theory (CFT) and numerical techniques.
Our results for the phase diagram of H(θ ) are summarized in the phase diagram in Figure 1.
All four individual Hamiltonians ±HP and ±H1 are critical and integrable [11, 14], but their
linear combination (8) is not integrable and not always critical. Four critical phases dominate
the diagram, but very interesting gapped regions occur as well.

Three of the four large critical phases are described by well-known CFTs, as explained in
section 2. Both the ferromagnet HP and and antiferromagnet −HP extend to critical phases.
The former is described by the well-known c = 4

5 three-state Potts CFT [15], a phase we dub
“Potts 1”. The latter is described by a c=1 CFT, and below we explain why it describes a full
region, not immediately obvious as the corresponding critical point in the classical square-
lattice antiferromagnet is unstable [16]. Another region, the “Potts 2” phase, is also described
by the c = 4

5 CFT, and describes a transition between (duality-broken) phases with representa-
tion symmetry-protected topological (RSPT) order [4]. The integrable point with Hamiltonian
−H1 separates the Potts 1 and 2 phases along the self-dual line. This point is described by the
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Figure 1: The phase diagram of Hamiltonian (8), including four large critical regions,
one or two gapped phases with order-disorder (O-D) coexistence, and possible gap-
less incommensurate (IC) phases.

same c=1 CFT as in the antiferromagnetic phase, but here perturbing it causes a flow to the
Potts CFT [17,18].

The fourth gapless phase, the “c”=4
5 +

7
10 phase described in section 3, is novel. The

critical integrable point H1 is described by a c = 3
2 CFT [19, 20] as it is a special case of

the integrable spin-1 chain [11]. This particular CFT can be decomposed into a product of
two CFTs in a rather unusual way [21]. We show that while there are no relevant self-dual
perturbations relevant under the symmetries, there exists a marginal one. While the spectrum
remains gapless throughout a large region, the physics is not described simply by a CFT. We
explain how it instead is best thought of as a combination of two interacting CFTs with different
“Fermi velocities".

Another striking consequence of the self-duality is the existence of two gapped phases de-
scribed in section 4. Both feature order-disorder coexistence, and occur after the Potts phases
terminate in c = 6

7 tricritical points. The phase beyond Potts 1 is governs a transition be-
tween conventional Z3 order and disorder, generalizing in a natural way the corresponding
first-order phase transition in the Z2-invariant Majorana-Hubbard chain [22, 23]. The other
gapped phase is even more uncommon, describing the coexistence between not-A and RSPT
order. Another property we explain is the presence of an unusual fractional supersymmetry.

2 The Potts phases

A key tool in our analysis is the knowledge of all scaling dimensions in the CFTs describing
the continuum limit of the integrable points. In the region of such a critical point, the long-
distance behavior is governed by an effective field theory found by perturbing the CFT by
any relevant or marginal operators invariant under self-duality and all the lattice symmetries.
When there are no such operators, the same CFT must describe an entire phase. The extent
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of these regions can be determined in some cases by exploiting knowledge of flows between
CFTs, while in others we must resort to numerical analysis. In this section we start by showing
how three of the four critical phases can be obtained by such arguments.

2.1 The first Potts phase

The Hamiltonian H(0) = HP describes the self-dual ferromagnetic three-state Potts chain. It is
integrable [14], and its continuum limit is described by a minimal CFT with c = 4

5 [24]. No
relevant self-dual operator obeying the symmetries of H(θ ) exists in the Potts CFT, with the
least irrelevant such operator having dimension 14

5 [25]. Thus in the region of HP, perturbing
by H1 must be irrelevant, and the Potts CFT continues to describe H(θ ) for |θ | small. In figure
1, we dub this phase the “Potts 1” phase.

Effective field theories provide a nice way to understand the transitions out of this Potts
phase. Namely, consider breaking the self-duality of HP by making the coefficients of the two
types of terms in (6) unequal. When the coefficient of the first term is larger, 〈σ j〉 6= 0 and the
S3 symmetry is spontaneously broken. The self-dual HP then describes a transition between
order and disorder. Including the irrelevant perturbation H1 does not change the situation, so
this critical order-disorder phase transition persists along the self-dual Potts line. For positive
θ , perturbing by this irrelevant self-dual parity-invariant operator gives the same universality
class as including vacancies in the Q-state Potts model, as discussed in depth for the Q = 2
Ising case in [22,23]. For any Q ≤ 4, one expects [26] that this phase terminates at tricritical
point. The three-state tricritical Potts (TCP) model arising here is described by a CFT with
c = 6

7 [27]. In this CFT, there does exist a single relevant self-dual operator of dimension 10
7

invariant under all symmetries of H(θ ). The c = 6
7 CFT thus can only describes a particular

point in our phase diagram, and perturbing by this operator with the appropriate sign does
indeed describe a flow from TCP to Potts [28,29]. The Potts 1 phase therefore should terminate
for θ positive at a TCP point.

We have confirmed this picture via DMRG [30,31] using ITensor [32], locating the tricritical
Potts point at λ1 ≈ 0.297λP , i.e. θ =θTCP ≈ 0.092π. Our method is to measure the energies
of low-lying levels, and exploit the fact that the energy levels in a CFT are directly related to
the dimensions of the scaling operators creating them [33,34]. Namely, the energy difference
Ea − Eb∝ (∆a −∆b)/L, where ∆a and ∆b are the dimensions of operator creating the states
labelled by a and b respectively. The ratio of any two energy differences

Ea − Eb

Ec − Ed
=
∆a −∆b

∆c −∆d
, (10)

is universal, and so we can compare the CFT results to our lattice simulations. We found that
for θ ≈ θTCP, they approach the TCP values as L →∞, while for θ smaller they approach
the critical Potts values. In figure 2, we display one such ratio for Eb = Ed = E0

0 , Ec = E1
0

and Ea = E1
1 , where E j

r its the energy of the jth excited state in the sector with Z3 charge
ωr . The corresponding CFT scaling dimensions are respectively 0, 4

5 , 17
15 for Potts and 0, 20

21 , 2
7

for TCP, giving the ratios 17
12 and 10

3 respectively. Our DMRG computations of the scaling of
the entanglement entropy [35] are also consistent with terminating the phase in a CFT with
central charge 6

7 .
For the θ negative, a similar flow occurs. Here, however, we know the exact termination

point, as both theoretical and numerical work shows that there are no phase transitions be-
tween the integrable points H(−π2 ) = −H1 and H(0) = HP. The U(1)-invariant critical point
−H1 [11] terminating the phase is described by a free-boson CFT with c=1 [36, 37]. Here a
dimension 3/2 operator obeys all the symmetries of H(θ ), but not the U(1) [4]. It is natural to
identify this operator with HP, and so the U(1)-invariant critical point is unstable. Perturbing
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Figure 2: The ratio R1
1 of energy differences (10) for λP = 1, with Eb = Ed = E0

0 ,
Ec = E1

0 and Ea = E1
1 . The values ofλ1 are chosen near the TCP transition terminating

the Potts 1 phase, with λ1 = 0.25 (blue stars), 0.295 (red circles), 0.296 (yellow
triangles), 0.297 (purple squares), 0.298 (green diamonds) and 0.3 (teal crosses).
The dashed line is the critical Potts prediction of 17/12 while the solid line is the TCP
prediction of 10/3.

by this operator in the field theory results in a flow to the c = 4
5 fixed point [17, 18], with

no intervening phases. Our numerical work confirms this picture in our lattice model, finding
that for −π2 < θ < θTCP, all ratios from (10) approach the Potts CFT predictions as L →∞.
The Potts 1 phase therefore extends to the entire lower-right portion of the phase diagram in
figure 1.

2.2 The second Potts phase

An elegant bosonic field theory describes H(θ ) in the region near U(1)-invariant critical point
with Hamiltonian −H1 [18, 38]. As detailed in [4], this effective field theory is the same for
either sign of λP, implying that the same flow occurs on both sides of θ = −π2 . Thus somewhat
surprisingly, a second critical phase is described by same c = 4

5 CFT for the ferromagnetic
Potts critical point, even though λP < 0 means that the Potts Hamiltonian’s contribution to
H(θ < −π2 ) is antiferromagnetic. Breaking the self-duality shows that this Potts critical line
describes an unusual transition, between “not-A” order, where two of the three directions of
spin are favoured, and a representation symmetry-protected topological (RSPT) phase [4].

Even more remarkably, we find numerically that the second Potts phase terminates at the
far end in the same way as the first phase. Increasing the magnitude of λP while keeping it
negative, we encounter another TCP point at λP ≈ 0.672λ1 < 0 (θ = θTCP′ ≈ −0.69π). One
ratio (10) illustrating this behavior is shown in the figure 3. This phase and this termination
occur just to the left of the c = 1 U(1) point at the bottom of the phase diagram in figure 1.

2.3 Antiferromagnetic Potts phase

The third of the major critical regions surrounds the integrable antiferromagnetic three-state
Potts (AFP) model H(π) = −HP . At this integrable point, the long-distance description is a
c=1 free-boson CFT [16, 39] as at θ =−π2 , although here the U(1) symmetry is emergent.
The self-duality and S3 symmetry require that both have the same bosonic compactification
radius [4].

An important distinction between the two integrable c = 1 points, however, is that the
AFP Hamiltonian is stable under symmetry-preserving self-dual perturbations. The stability
arises because the lattice analog of the relevant dimension-3/2 CFT operator has momentum

6
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Figure 3: As in Figure 2, except for λ1 = −1 to illustrate the termination of the
second Potts phase. Points are at λP = −0.6 (blue stars), −0.65 (red circles), −0.67
(yellow triangles), −0.672 (purple squares), −0.674 (green diamonds) and −0.676
(teal crosses).

π relative to the antiferromagnetic ground state, according to our numerics displayed in fig-
ure 4. As apparent, the ground state has momentum k = π so that translation invariance is
spontaneously broken, while the four states of dimension 3/2 have lattice momentum k = 0.
Since H(θ ) is invariant under translation invariance, an operator with momentum π relative
to the ground state cannot appear in the effective field theory around θ =π. All other relevant
operators are disallowed as before, resulting in an AFP phase. This stability does not occur in
the corresponding square-lattice classical model [16,39], presumably because its interactions
are antiferromagnetic in both space and Euclidean time directions, while in our Hamiltonian
setup, interactions in the “time” direction are effectively ferromagnetic. Our numerics indicate
that the most likely scenario is that on both sides this antiferromagnetic phase terminates by
an excited state crossing the ground state, resulting in gapless incommensurate phases. These
crossings occur at around θ ≈ 0.9π and at θ ≈ −0.73π, and the resulting small incommensu-
rate regions are shown in figure 1 as “IC?”.

3 The “c”= 4
5 +

7
10 phase

The fourth large critical phase is quite unusual and interesting. We start by analyzing the
integrable U(1)-invariant point with Hamiltonian H(π2 ) = H1. Even on the lattice, this point
has remarkable properties: an exact lattice supersymmetry [13], and an Onsager-algebra sym-
metry (our Hamiltonian H1 here is −H0 of [12]). The continuum limit is a supersymmetric
CFT [19,20] that can be written in terms of a product of a free-boson and free-fermion theories,
so that c = 3

2 = 1+ 1
2 . The toroidal partition function is Zs-a(

p
3) in the notation of [21], where

the
p

3 is the radius of the boson [13]. An orbifold couples the two CFTs by imposing certain
selection rules for the states, but otherwise the boson and fermion theories are independent.

This particular CFT has the remarkable property that it can be split up into a product of
two CFTs in two ways [21]: it also is a product of the three-state Potts and the tricritical Ising
(TCI) CFTs (c = 3

2 =
4
5 +

7
10). As with the boson-fermion decomposition, the Potts and TCI

theories are independent except for selection rules. Each scaling dimension of each operator
in this c = 3

2 CFT therefore can be split up in two ways:

∆a =∆a,B +∆a,F =∆a,P +∆a,TCI , (11)

7
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Figure 4: The ratio (10) with Eb = Ed = E0
0 and Ec = E1

0 for the integrable an-
tiferromagnetic Potts Hamiltonian H(π) = −HP for many levels found using exact
diagonalization at L=14. Red crosses have ωQ = 1, and blue circles have ωQ = ω.
The levels are plotted as a function of momentum k, with the ground state having
k = π. The self-dual dimension-3

2 operator is one of the lowest-lying crosses at k = 0.

where e.g. ∆a,B is a scaling dimension in the free-boson theory. The remarkable properties
of this CFT go even deeper than (11). The energy-momentum tensor of any of the com-
ponent CFTs can be expressed as linear combinations of three dimension-2 operators in the
other theory [40,41]. The three are both the energy-momentum tensors and a third operator,
with dimensions (∆B,∆F) = (

3
2 , 1

2), or (∆P ,∆TCI) = (
3
5 , 7

5). These linear expressions make it
straightforward to relate certain primary fields in the Potts and TCI CFTs to free fermions and
bosons.

The question now is what happens when θ is taken away from π
2 , and so HP is added to

the Hamiltonian. We give in Appendix A a list of all relevant and marginal operators with
their symmetry properties. This list follows from using the partition functions presented in
Ref. [21] along with a careful analysis of the discrete symmetries. We find that none of the
relevant operators in the c = 3

2 CFT are both self-dual and preserve all the symmetries of H(θ ).
For example, the self-dual dimension-7/8 operators have non-zero momentum and so violate
translation symmetry. As indicated above and apparent in the table, however, there are three
marginal operators of scaling dimension 2. These operators cannot be marginally relevant,
as they all have conformal spin ±2, which cannot renormalize. Thus at most they are exactly
marginal.

To proceed further, we must do numerics. We find that indeed H(θ ) remains critical for
a large region as θ is varied from π

2 . Namely, exact diagonalization indicates that energy
differences of low-lying states remain proportional to 1/L, as in a CFT. Moreover, our DMRG
calculation of entanglement-entropy scaling [35] in this region remains consistent with that
in a c = 3

2 CFT. The criticality therefore extends to a full phase, labeled as “c”= 4
5 +

7
10 in the

top part of Figure 1.
We gave this phase an unusual name for the following reasons. Even though the univer-

sal term in the entanglement entropy remains constant throughout the phase, the spectrum
changes. We find the scaling dimensions no longer obey (11) for θ 6= π

2 , but to reasonably
good numerical accuracy instead obey

∆a(θ ) = vP(θ )∆a,P + vTCI(θ )∆a,TCI , (12)

where, crucially, the ratio of “Fermi velocities” vTCI/vP does not depend on the level a. The data
cannot be fit well by using different fermi and boson velocities, but only by those for tricritical

8
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Ising and Potts sectors. We give a plot of the TCI Fermi velocity v j
r,k for the jth excited state

in the sector with Z3 charge ωr and momentum k in Figure 5, setting vP = 1. We extract
its value from (12) by first determining the energies E j

r,k using exact diagonalization for even

L from 6 through 16, and then fitting to a form E j
r,k/L + B/L2. We then extract the scaling

dimensions using (10) to eliminate non-universal quantities. An important caveat is that to
obtain (12), we considered only levels not degenerate at θ = π

2 , as degenerate ones have a
more complicated mixing.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
/

0

0.5

1

1.5

2

v
T

C
I

v
0,0
2

v
0,2 /L
0

v
1,0
0

v
1,
0

v
0,
(0-3 av)

Figure 5: The ratio of “Fermi velocities” vTCI/vP vs. θ for levels with ∆a = . . . at
θ = π

2 , determined from (12) as explained in the text. The v(0-3 av)
0,π is the average of

the four lowest levels in this sector, which are degenerate at the integrable point.

If there were only a single exactly marginal operator, (12) would be exact, and the decom-
position into two CFTs

H(θ )→ vP(θ )HP + vTCI(θ )HTCI (13)

presumably would hold throughout this critical region. The presence of three self-dual and
symmetry preserving operators at θ = π

2 , however, gives two marginal perturbations. Chang-
ing the relative fermi velocities is one of these exactly marginal perturbations, so the open
question here is the role of the other marginal perturbation. Since one of these operators
has dimension (∆TCI, ∆P) = (

3
5 , 7

5), it couples the tricritical Ising and Potts theories. If it re-
mains exactly marginal after perturbation, (12) will only be approximate, as the data at the
extremes of Figure 5 suggest. For this reason, we included the quotes in the “c”= 4

5 +
7
10 de-

noting this critical region in Figure 1. However, it is entirely possible that the variations in
the data are merely finite-size effects increasing as the phase transitions are approached, so
that the coupling operator is marginally irrelevant and (5) is exact. Indeed, such a marginally
irrelevant perturbation occurs both in a c = 3/2 field theory [42] and a lattice model [43],
also resulting in a Lorentz-symmetry-breaking perturbation. There, however, the effect is to
restore Lorentz symmetry at large distances, whereas here the effect would be to leave the two
effective theories decoupled.

The transitions out of this fourth large critical region both seem to be to gapless incom-
mensurate phases, as ground-state level-crossings occur in exact diagonalization. Increasing
θ toward the antiferromagnetic Potts phase, the Fermi velocity vTCI in Figure 5 quite clearly
is vanishing, indicating another interesting phase transition. Because of the preponderance of
low-lying energy levels, this transition unfortunately is rather difficult to analyze numerically.
A gapless incommensurate phase seems to describe the region from θ ≈ 0.87π to θ ≈ 0.93π.
As θ is decreased, a small gapless incommensurate region also seems to intervene before the
gapped order-disorder coexistence phase is reached.

9
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4 Gapped order-disorder coexistence

Both Potts phases terminate at one end in a tricritical Potts point. Changing θ away from
θTCP or θTCP′ gives a relevant perturbation by an operator of dimension 10

7 . As opposed to
the behavior at the c=1 point, the effective field theories are not the same for both signs
of perturbation. In one direction, the RG flow goes back to the ferromagnetic c = 4

5 critical
point [26]. As we described above, this ensuing Potts 1 and Potts 2 critical phases, the former
separates the duality-broken Potts ordered and disordered phases, and the latter separating
the not-A and RSPT phases [4].

Here we consider the phases found by going away from the tricritical Potts points in the
other direction. When the perturbation has the other sign, the self-dual line remains the tran-
sition line, but the model is gapped and the transition first-order [26]. The ensuing effective
field theory describing this region is integrable and massive [29]. The TCP points thus sepa-
rate the first and second-order lines, providing a natural generalization of the familiar physics
of the tricritical Ising model. The disordered and three ordered ground states coexist along
these first-order lines, resulting in a fractional supersymmetry we describe below.

We first establish the order-disorder coexistence on the lattice rigorously at a special
frustration-free point where the multiple ground states can be found exactly, just as in the
Z2 case [23]. Here this point is at λ1 = λP/3 > 0, where θ = θff ≈ 0.102π. The four ground
states are

|00 0 · · ·0〉 , |1 11 · · ·1〉 , |2 22 · · ·2〉 , |0̂ 0̂ 0̂ · · · 0̂〉 , (14)

where σ|A〉 = ωA |A〉 for A= 0,1, 2, while |0̂〉 ≡ (|0〉+ |1〉+ |2〉)/
p

3, which obeys τ|0̂〉 = |0̂〉.
In the σ-diagonal basis, the first three ground states are completely ordered while the last is
the equal-amplitude sum over all states. The latter ground state is dual to the other three, as
hinted at by the fact that is a product state in the τ j-diagonal basis.

To prove that the states (14) are the ground states at the frustration-free point, we write
the corresponding Hamiltonian H(θff) as a sum over projectors. There are two projectors for
each pair of nearest-neighbor sites, so that

H(θff) = −4L + 6
L
∑

j=1

�

P(1)j + P(2)j

�

, (15)

where (P(r)j )
2 = P(r)j for r = 1,2. Explicit expressions for these projectors are easiest to write

out in the τ j-diagonal basis, where τ|Â〉 = ωA|Â〉 for A = 0, 1,2. Acting on the sites j, j + 1
they are

2P(1)j =
�

|1̂0̂〉 − |2̂2̂〉
� �

〈1̂0̂| − 〈2̂2̂|
�

+
�

|2̂0̂〉 − |1̂1̂〉
� �

〈2̂0̂| − 〈1̂1̂|
�

+
�

|1̂2̂〉 − |2̂1̂〉
� �

〈1̂2̂| − 〈2̂1̂|
�

;

2P(2)j =
�

|0̂1̂〉 − |2̂2̂〉
� �

〈0̂1̂| − 〈2̂2̂|
�

+
�

|0̂2̂〉 − |1̂1̂〉
� �

〈0̂2̂| − 〈1̂1̂|
�

+
�

|1̂2̂〉 − |2̂1̂〉
� �

〈1̂2̂| − 〈2̂1̂|
�

.

Expressions of these operators in terms of the σ j and τ j can be found in appendix B. These

expressions show immediately that |0̂0̂...0̂〉 is annihilated by all the two-site projectors P(r)j ,
and so must be a ground state of the Hamiltonian with energy −4L. A few more minutes
of additional work shows that |AAA...A〉 is annihilated by all of them as well, and so also are
ground states. Indeed, using the operator given in [5] shows that duality maps any of the
latter three to |0̂0̂...0̂〉 (recall duality is not invertible). These four states are the only ground
states for L ≥ 3, as it is straightforward to verify that these are the only states annihilated by
all projectors. Analogous frustration-free points for the Q-state Potts model with a nearest-
neighbor SQ preserving perturbation can be found by using the Temperley–Lieb formulation
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[8, 44]. These have Q + 1 degenerate ground states, Q of which are completely ordered and
one completely disordered.

Our numerics confirm that order-disorder coexistence persists throughout a gapped phase
for θ on both sides of θff. The self-duality makes this coexistence natural, as any ordered
ground state will map to a disordered one under the duality. The self-duality also gives the
exact location of these lines in the bigger parameter space, if not the location of the tricritical
point itself. The physics thus generalizes that of the Z2 case [22, 23]. Moreover, past the
frustration-free point it contains an incommensurate length scale, as in the analogous phase
surrounding the Majumdar–Ghosh point in a frustrated su(2)-invariant antiferromagnet [45,
46]. Namely, for θ > θff, level crossings occur amongst excited states, and the correlators
exhibit oscillations on top of the exponential decay. These oscillations are readily apparent in
〈σ†

iσ j〉 plotted in figure 6. θ is increased further, the oscillations persist. As the oscillations
are rather small in magnitude (note the y-axis values on the log plot) we were unable to
determine the period precisely. As best as we can tell, a gapless incommensurate phase then
occurs as a result of a level crossing the ground state at θ ∼ 0.16π.

0 10 20 30 40 50 60 70 80
|j-i|

-100

-80

-60

-40

-20

0

lo
g(

<
i 

+ j
>)

0.3
0.34
0.38
0.42
0.46

Figure 6: The log of the spin-spin correlator in the ground state in the gapped phase
at λP = 1 and various λ1 values given in the legend. The correlator was obtained
using DMRG with L = 300 and a maximum bond dimension of 400. The incommen-
surability is readily apparent in the oscillations present for λ1 > 1/3.

Since the second Potts phase terminates in the TCP point at the bottom left of Figure 1,
universality arguments imply also coexistence between the three ground states of the not-A
phase coexist and the unique one of the SPT phase. A direct lattice derivation of this phase
is difficult, as no frustration-free point occurs here. Our DMRG numerics indicate a large
correlation length with substantial oscillations, but the ground states we find have a fairly
small bond dimension. We take the latter as a strong sign of the existence of a gap in at least
a small region. It appears that the gapped region terminates at θ ≈ −0.70π with a small
incommensurate phase in the region before the critical antiferromagnetic phase starting at
θ ≈ −0.73π.

The order-disorder coexistence phase also has a very intriguing emergent “fractional su-
persymmetry”, generalizing the emergent supersymmetry in the analogous Z2 phase. Super-
symmetric Hamiltonians generically can be written as (sums over) squares of fermionic super-
symmetry generators [47], and in the exact-scattering-matrix approach, appropriate fermionic
operators QL and QR indeed can be defined so that H2 = Q2

L +Q2
R [29]. Remarkably, this

approach can be extended to the region around the TCP point, a consequence of conformal
spin ±4/3 operators [27] remaining symmetry generators. The effective Hamiltonian of the
S3-invariant order-disorder coexistence phase thus can be written as the sum of two cubes of

parafermionic operators, i.e. H3 =Q3
L +Q

3
R [29,48].

In our earlier work [23]we showed that in the critical Ising chain with a particular self-dual
perturbation, the lattice Hamiltonian can be written as H2 =Q+2+Q−2. The fermionic Q± are

11

https://scipost.org
https://scipost.org/SciPostPhys.9.6.088


SciPost Phys. 9, 088 (2020)

sums over products of odd numbers of Majorana fermions on neighboring sites. Although they
do not commute with the Hamiltonian on the lattice, numerics indicated they renormalize
onto the supersymmetry generators in the scaling limit. The natural generalization of this
construction to our 3-state model uses parafermions ψa instead of Majorana fermions. They
are defined by

ψ2 j−1 = σ j

∏

k< j

τx
k , ψ2 j =ωσ jτ j

∏

k< j

τk, (16)

so that e.g. τ j =ω2ψ2 j−1ψ2 j and σ†
jσ j+1 =ω2ψ2 jψ2 j+1. They obey the algebra

ψ†
a =ψ

2
a , ψ3

a = 1 , ωQψa =ωψaω
Q , ψaψb =ωψbψa for a < b .

One nice feature of the parafermion operators is their nice behavior under the duality (5),
transforming as ψa→ψa+1. Another fact worth noting is that when H(θ ) is written in terms
of the ψa, the farthest-apart terms are ψ†

aψa+2 and ψaψa+1ψa+2 and their Hermitian con-
juguates.

The simplest lattice parafermion operator Q giving something non-trivial when cubed is

Q=
∑

a

�

αψa + βψ
†
aψ

†
a+1

�

. (17)

Such a Q is not Hermitian. Requiring charge conjugation, parity and time-reversal fixes β3 ∈R
and α= 2ω2β . Then some straightforward but tedious algebra yields

Q3 +Q†3
= H(θff)−

L
∑

j=1

h

τ jτ
†
j+1 +τ

†
jτ j+1 +σ jσ j+1σ j+2 +σ

†
jσ

†
j+1σ

†
j+2

i

, (18)

where 3β3 = 1. The terms inside the square brackets are longer-range, in the sense that they
involve products likeψaψ

†
a+1ψ

†
a+2ψa+3. This expression strongly suggests that the parafemionic

operators (17) provide lattice analogs of the fractional supersymmetry generators.
We can remove the extra terms in (18) and extend the results to all θ by considering a sum

over generators as in the Z2 case. We then define

Qn =
∑

j

�

αn,aψa + βn,aψ
†
aψ

†
a+1

�

. (19)

We show in appendix B that coefficients αn,a and βn,a can be found so that

H(θ ) =Q3
1 +Q†

1
3
+Q3

2 +Q†
2

3
+Q3

3 +Q†
3

3
(20)

for any θ . The precise meaning and consequences of (20) are not immediately apparent to us,
but it does seem rather natural in light of the emergent symmetries described in [29,48].

5 Conclusion

We have found the phase diagram of the one-dimensional self-dual 3-state Potts model per-
turbed by the only self-dual nearest-neighbor interaction obeying all of its symmetries. Two
critical Potts phases appear, separated by a U(1)-invariant critical point. One Potts line sep-
arates novel RSPT and not-A phases [4], the other the usual ordered and disordered phases.
The antiferromagnetic Potts critical point extends to a full phase here, as opposed to the corre-
sponding square-lattice antiferromagnet. Even more striking is finding an unusual “c”=4

5 +
7
10
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phase, where another U(1)-invariant critical point splits into CFTs with different fermi veloc-
ities. At least one and probably two gapped phases with S3 order-disorder coexistence occur
as well, separated from Potts phases by a tricritical point.

Several of our results are rather striking, and would be well worth additional study. The
splitting via distinct fermi velocities occurring in the “c”=4

5 +
7
10 phase is rather unusual, es-

pecially given that the component theories are strongly interacting. In particular, it would be
nice to know whether these two CFTs are decoupled or are interacting. If the latter, how does
one write down such interactions in field theory? To understand how the decoupling works
(or doesn’t), developing a RG analysis in the fashion of [42, 43] likely would be illuminat-
ing, as also would be writing lattice analogs of various operators. At a more formal level, the
decoupling even at the c = 3

2 point is very interesting, as it leads to being able to derive mar-
velous explicit expressions for CFT correlators, for example that given in [49]. Concerning the
gapped phases, we also know of no other lattice models where Hamiltonians can be written
as a sum over the cubes of parafermionic operators. Connecting it to field theory in a more
transparent way would be very desirable.
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A The c = 3
2 = 1+ 1

2 =
4
5 +

7
10 CFT

In Table 1 we present a list of all marginal and relevant operators in the CFT describing the
continuum limit of H(π2 ) = H1. The dimension∆ of each is given in both forms (11), with the
additional splitting of each into left and right components (∆L ,∆R), so that e.g. the dimension-
5
24 operator in the second row is of dimension 3

40 =
3
80 +

3
80 in the tricritical Ising CFT and

2
15 =

1
15 +

1
15 in the three-state Potts CFT. A primed dimension denotes the Virasoro raising

operator L−1 or L̄−1 acting on the primary field of that dimension, while a double-primed
number indicates the action of L−2 or L̄−2. Thus, for example, 0′′ is the energy-momentum
tensor.

We then list their symmetry charges of the fields. The conformal spin is s = ∆L −∆R,
the Z3 charge is ωr , and the lattice momentum is k. The “electric” and “magnetic” charges
[m, n] are those under the two U(1) symmetries Q and bQ respectively, so that ωr = ωm. For
all the states with r = 0, we give the eigenvalues under duality D and the product of it with
parity: D′ = DP . The reason for the restriction is that when r 6= 0, duality maps periodic
boundary conditions to twisted sectors and so does not have a well-defined eigenvalue. In
order to simplify the table, we have not written the TCI+P states as parity eigenstates, but
they can be found simply by taking appropriate combinations of the states with left and right
exchanged. The duality eigenvalues therefore apply only to the B+F expressions.

A few comments on these symmetry properties are in order. The Z3 symmetry lives solely
in the three-state Potts sector in the TCI + P picture, and in the boson in the B+F picture,
as it is generated by ωQ. The two (1/15, 1/15) operators in Potts have r = ±1, as do the
two (2/3,2/3) fields, while all others have r = 0. The lattice momentum sectors k = 0 and
k = π are determined solely by the corresponding Z2 sectors in the TCI CFT (see [50] for how
that works), while they are given by π times (m + 2n)mod 2 in the B + F picture. We find
that in TCI + P, duality is just given by the Potts duality. The mapping of operators between
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Table 1: The relevant and marginal operators for H(π2 ) = H1. The precise definitions
of the scaling dimensions and the charges are given in the text. A primed dimension
denotes the Virasoro raising operator L−1 or L̄−1 acting on the primary field of that
dimension, while a double-primed number indicates the action of L−2 or L̄−2. The
linear combinations of the bosonic and fermion operators are chosen to behave nicely
under duality and parity. For operators with charge r = 1 , the corresponding oper-
ator with r = −1 is not given. For fields with k 6= 0,π, the corresponding operator
with momentum −k not given.

∆ s r k TCI + P B + F [m, n] D D′

0 0 0 0 (0+ 0,0+ 0) (0+ 0,0+ 0) [0,0] +1 +1
5
24 0 1 π

�

3
80 +

1
15 , 3

80 +
1
15

� �

1
24 +

1
16 , 1

24 +
1
16

�

[1,0] - -
1
3 0 1 0

�

1
10 +

1
15 , 1

10 +
1
15

� �

1
6 + 0, 1

6 + 0
�

[−2,0] - -
�

7
16 + 0, 7

16 + 0
� �

3
8 +

1
16 , 3

8 +
1
16

�

[3, 0] + [0, 1
2 ] + [−3, 0] + [0,− 1

2 ] +1 +1

7
8 0 0 π

�

7
16 + 0, 3

80 +
2
5

� �

3
8 +

1
16 , 3

8 +
1
16

�

[3, 0]− [0, 1
2 ]− [−3, 0] + [0,− 1

2 ] +1 −1
�

3
80 +

2
5 , 7

16 + 0
� �

3
8 +

1
16 , 3

8 +
1
16

�

[3, 0] + [0, 1
2 ]− [−3, 0]− [0,− 1

2 ] −1 +1
�

3
80 +

2
5 , 3

80 +
2
5

� �

3
8 +

1
16 , 3

8 +
1
16

�

[3, 0]− [0, 1
2 ] + [−3, 0]− [0,− 1

2 ] −1 −1

1 0 0 0
�

1
10 +

2
5 , 1

10 +
2
5

� �

0+ 1
2 , 0+ 1

2

�

[0,0] −1 −1

1 1 0 2π
L

�

3
5 +

2
5 , 0+ 0

�

(1+ 0,0+ 0) [0,0] −1 +1
�

7
16 +

2
3 , 3

80 +
1
15

� �

1
24
′
+ 1

16 , 1
24 +

1
16

�

[1,0] - -
29
24 1 1 π+ 2π

L

�

3
80
′
+ 1

15 , 3
80 +

1
15

� �

1
24 +

1
16
′
, 1

24 +
1

16

�

[1,0] - -
�

3
80 +

1
15
′
, 3

80 +
1
15

� �

25
24 +

1
16 , 1

24 +
1
16

�

[−2,− 1
2 ] - -

�

0+ 2
3 , 0+ 2

3

� �

1
6 +

1
2 , 1

6 +
1
2

�

[−2,0] - -
4
3 0 1 0

�

3
5 +

1
15 , 0+ 2

3

� �

1
6 +

1
2 , 2

3 + 0
�

[1,− 1
2 ] - -

�

0+ 2
3 , 3

5 +
1
15

� �

2
3 + 0, 1

6 +
1
2

�

[1, 1
2 ] - -

�

3
5 +

1
15 , 3

5 +
1
15

� �

2
3 + 0, 2

3 + 0
�

[4,0] - -
�

7
16
′
+ 0, 7

16 + 0
� �

3
8
′
+ 1

16 , 3
8 +

1
16

�

[3, 0] + [0, 1
2 ] + [−3, 0] + [0,− 1

2 ] +1 +1
�

3
80 +

7
5 , 7

16 + 0
� �

3
8 +

1
16
′
, 3

8 +
1
16

�

[3, 0] + [0, 1
2 ] + [−3, 0] + [0,− 1

2 ] +1 +1
�

7
16
′
+ 0, 3

80 +
2
5

� �

3
8
′
+ 1

16 , 3
8 +

1
16

�

[3, 0]− [0, 1
2 ]− [−3, 0] + [0,− 1

2 ] +1 −1
15
8 1 0 π+ 2π

L

�

3
80 +

7
5 , 3

80 +
2
5

� �

3
8 +

1
16
′
, 3

8 +
1
16

�

[3, 0]− [0, 1
2 ]− [−3, 0] + [0,− 1

2 ] +1 −1
�

3
80 +

2
5
′
, 7

16 + 0
� �

3
8
′
+ 1

16 , 3
8 +

1
16

�

[3, 0] + [0, 1
2 ]− [−3, 0]− [0,− 1

2 ] −1 +1
�

3
80
′
+ 2

5 , 7
16 + 0

� �

3
8 +

1
16
′
, 3

8 +
1
16

�

[3, 0] + [0, 1
2 ]− [−3, 0]− [0,− 1

2 ] −1 +1
�

3
80 +

2
5
′
, 3

80 +
2
5

� �

3
8
′
+ 1

16 , 3
8 +

1
16

�

[3, 0]− [0, 1
2 ] + [−3, 0]− [0,− 1

2 ] −1 −1
�

3
80
′
+ 2

5 , 3
80 +

2
5

� �

3
8 +

1
16
′
, 3

8 +
1
16

�

[3, 0]− [0, 1
2 ] + [−3, 0]− [0,− 1

2 ] −1 −1

2 0 0 0
�

3
5 +

2
5 , 3

5 +
2
5

� �

1+ 0,1+ 0
�

[0,0] −1 −1
�

3
2 + 0, 1

10 +
2
5

� �

3
2 + 0,0+ 1

2

�

[3, 1
2 ] + [−3,− 1

2 ] +1 −1

2 1 0 2π
L

�

1
10 +

7
5 , 1

10 +
2
5

� �

1+ 1
2 , 0+ 1

2

�

[0,0] +1 −1
�

1
10 +

2
5
′
, 1

10 +
2
5

� �

3
2 + 0,0+ 1

2

�

[3, 1
2 ]− [−3,− 1

2 ] −1 −1
�

1
10
′
+ 2

5 , 1
10 +

2
5

� �

0+ 1
2
′
, 0+ 1

2

�

[0,0] −1 −1

(0′′ + 0,0+ 0) (0′′ + 0, 0+ 0) [0,0] +1 +1
(0+ 0′′, 0+ 0) (0+ 0′′, 0+ 0) [0,0] +1 +1

2 2 0 4π
L

�

3
5 +

7
5 , 0+ 0

� �

3
2 +

1
2 , 0+ 0

�

[3, 1
2 ]− [−3,− 1

2 ] +1 +1
�

3
5
′
+ 2

5 , 0+ 0
� �

3
2 +

1
2 , 0+ 0

�

[3, 1
2 ] + [−3,− 1

2 ] −1 +1
�

3
5 +

2
5
′
, 0+ 0

�

(1′ + 0, 0+ 0) [0,0] −1 +1
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TCI+P and B+F descriptions then requires that duality act on both the boson and fermion
theories. We define D to send m↔−n and (0, 1/2)→ (0, 1/2), while D′ gives m↔ n and
(0, 1/2)→−(0,1/2).

Going through the table, one sees that all relevant operators have non-vanishing charge
under at least one of the symmetries, or are not self-dual. Only three marginal operators are
self-dual and invariant under all symmetries including parity. Each of these is the sum of an
operator of scaling dimension (2, 0) and its parity conjugate of dimension (0,2). In the B+F
language, these are found from the boson stress-energy tensor (0′′+0, 0+0), the fermion stress-
energy tensor (0+0′′, 0+0), along with the third field (3/2+1/2, 0+0) (plus their conjugates).
The latter operator is the reason why the model may not split exactly to a combination of the
Potts and TCI models with different Fermi velocities, as explained in section 3.

B The Hamiltonian as a sum of cubes

Here we show how to write the Hamiltonian (8) as the sum of cubes of parafermionic operators
given in (20). A useful expression in the analysis and in the derviation of the form (18) for
the frustration-free point is

2− 6P(1)j = σ†
jσ j+1 +σ jσ

†
j+1 +τ j +τ

†
j +ω

2τ jσ jσ
†
j+1

+ωτ jσ
†
jσ j+1 +ωτ

†
jσ jσ

†
j+1 +ω

2τ†
jσ

†
jσ j+1,

2− 6P(2)j = σ†
jσ j+1 +σ jσ

†
j+1 +τ j+1 +τ

†
j+1

+ωσ†
jσ j+1τ j+1 +ω

2σ†
jσ j+1τ

†
j+1 +ω

2σ jσ
†
j+1τ j+1 +ωσ jσ

†
j+1τ

†
j+1.

Plugging (19) into (20) turns out to give eight equations for eight unknowns. Parametrizing
the unknowns via

αn,a = αeiθn e
2πnai

3 , βn,a = βeiφn e
2πnai

3 , µn = θn + 2φn

gives

2 cosµ1 + cosµ2 −
p

3 sinµ2 = 0,

cosµ0 +
p

3 sinµ0 + 2 cosµ1 =
λp −λ1

3αβ2
,

sinµ0 −
p

3 cosµ0 − 2 sinµ1 + sinµ2 +
p

3cosµ2 = 0,

cosµ0 +
p

3 sinµ0 − 2 cosµ1 + cosµ2 −
p

3 sinµ2 =
2λ1

3αβ2
,

cos 3θ0 + cos 3θ1 + cos 3θ2 = 0,

sin 3θ0 + sin3θ1 + sin3θ2 = 0,

cos(3θ1)− cos(3θ2) = 0,

cos(3θ1)− cos(3θ0) =
λ1

6β3
.

The last four equations are simple to solve and for λP 6= 0 give several solutions, all of which
lead to equivalent Q i , just with a few phase factors moved around. Choosing one of the solu-
tions, we find λ1 = −9β3, θ0 = 2π/3, θ1 = −2π/9, θ2 = 2π/9.

The first equations have different solutions depending on the value of ν= 2λ1/(λp −λ1).
Again, these solutions have some phase factors which can be shifted around. We pick one

15

https://scipost.org
https://scipost.org/SciPostPhys.9.6.088


SciPost Phys. 9, 088 (2020)

particular set of solutions such that the solutions are continuous at finite ν. If ν < 1/2,

α= β
�

2
ν
− 1

�

,

µ0 = −
2π
3

,

µ1 = atan

�

1+ ν
ν− 2

,

p
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,
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�

1+ ν− 3
p

1− 2ν
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,
p

3
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p
1− 2ν
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�
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where atan[x , y] gives the x and y coordinates to allow the angle to be reconstructed without
ambiguity. For ν > 1/2

α= −β
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ν(4+ ν)
,

p
2ν− 1

p

ν(4+ ν)

�

.

Taking β → 0,α→∞ but αβ2→ const as ν→ 0, we can keep the Hamiltonian well-defined
here. The expressions for the two regions agree as ν→ 1/2.

There are three special values ν = 0, 1/2,∞. Taking ν = 0 yields ±HP with the sign
coming from that of α. This behavior is analogous to the Z2 case, where the Ising point was
recovered by taking one of the terms in Q to zero. Taking ν →∞ corresponds to λP = λ1,
the point where the τ j + σ

†
jσ j+1 + h.c. term vanishes. More mysterious is ν = 1/2, which

corresponds to λp = 5λ1 in the Potts phase.
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