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Abstract

We show how to treat systematic uncertainties using Bayesian deep networks for regres-
sion. First, we analyze how these networks separately trace statistical and systematic
uncertainties on the momenta of boosted top quarks forming fat jets. Next, we propose
a novel calibration procedure by training on labels and their error bars. Again, the net-
work cleanly separates the different uncertainties. As a technical side effect, we show
how Bayesian networks can be extended to describe non-Gaussian features.
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1 Introduction

Modern methods of machine learning are becoming a crucial tool in experimental and the-
oretical particle physics. An especially active field in this direction is subjet physics and jet
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tagging [1], where multi-variate analyses of high-level observables are being replaced with
deep neural networks working on low-level inputs. Early applications of deep learning tech-
niques in LHC physics rely on image recognition of jet images [2, 3]. Their main challenge
is to combine calorimeter and tracking information, motivating graph convolutional networks
and point clouds [4]. Established benchmarks processes for these methods include quark-
gluon discrimination [5–10], flavor tagging [11], W -tagging [12–15], Higgs-tagging [16,17],
or top-tagging [14, 15, 18–25]. By now we can consider top jet classification at the level of
tagging performance as essentially solved [26, 27]. This gives us room to consider question
beyond the performance, for instance what the networks are learning, how they can be visu-
alized, how robust they are, how we can control the uncertainties, and how machine learning
methods affect typical LHC analyses structurally.

One open question is driven by particle physics’ obsession with error bars: how do we
quantify the different uncertainties in analyses using neural networks [28–31]? This ques-
tion is related to visualization [32], understanding the relevant physics features [33–37], and
weakly supervised learning approaches [38–45] — all combined under the general theme of
explainable AI. In LHC physics we have the advantage of excellent Monte Carlo simulations and
full control of the experimental setup. This allows us to define and control different sources
uncertainties very precisely. If we accept that a neural network is just a function relating
training data to an output there exist (at least) two main kinds of uncertainties:

1. first, labelled training data comes with statistical and systematic uncertainties, where we
define the former as uncertainties which vanish with more training data. The systematic
uncertainties can be Gaussian or include shifts, depending on their sources. Unstable
network training also belongs to this category of training-induced uncertainties [28];

2. second, on the test data or analysis side we also encounter statistical and systematic
uncertainties. When we include an inference or any kind of analysis we also encounter
model or theory uncertainties [29]. For these uncertainties it is crucial that we ensure
our analysis outcome is conservative.

In a previous paper [28] we have shown how Bayesian classification networks can track un-
certainties and provide jet-by-jet error bars for the tagging output. Such a Bayesian network
can supplement a probabilistic classification output of ‘60% signal’ with an error estimate of
the kind ‘(60± 10)% signal’ for a given jet. This kind of jet-by-jet information exceeds what
is available from standard LHC classification tools. In principle, this approach covers both,
statistical errors from the size of the training sample and systematic uncertainties for instance
from the calibration of the training sample. However, our quantitative analysis of Bayesian
top taggers encountered practical limitations, for instance that the jet energy scale simultane-
ously affects the central value and the error bar of the probabilistic output. A similar study of
uncertainties just appeared for a matrix element regression task [46].

In this follow-up study we look at this problem from a slightly different angle, now defining
the regression task of extracting the energy of a tagged top quark inside a fat jet. Again, we
translate statistical and systematic uncertainties from the training sample to the test output.
The Bayesian network, introduces in Sec. 2, allows us to construct a per-jet probability distri-
bution function over possible top momenta, or p(pt |fat jet). The main advantage of using the
regression task as example is that it does not enforce a closed interval for the network output
and hence removes the correlation between central value and error estimate in the network
output. We use this advantage to cleanly separate effects from the finite size of the training
sample and from the stochastic nature of the training sample in Sec. 4.

In Sec. 5 the stochastic uncertainty leads us to a discussion of systematics in the sense of
training-related uncertainties which do not shrink with more training data. Our regression task
naturally leads us to developing a framework to calibrate deep network taggers and account
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for uncertainties in the training sample. We find that a straightforward treatment should be
based on smearing the momentum labels in the training sample. It directly accounts for the
uncertainties in the underlying measurements of the calibration sample and treats them as
an additional systematic effect on the top momentum measurement. As before, the Bayesian
network allows us to cleanly separate all different sources of uncertainty.

Our simple application serves as an example how we can use Bayesian networks to define
statistical and systematic uncertainties coming from the training sample and affecting the net-
work output. These error bars are defined jet by jet, or event by event, giving us more control
than standard methods do. Training on smeared labels allows us to implement energy cali-
bration in a straightforward and automized manner. While our modelling of uncertainties on
the reference measurements for calibration is simplified, our approach can be extended in a
straightforward manner. For instance, the effect of different jet algorithms or different Monte
Carlo simulations can be implemented as a non-Gaussian contribution to the label smearing.
The key observation is that Bayesian networks allow us to quote uncertainties from all kinds
of statistical and systematic limitations of the labelled training data.

2 Bayesian regression

While standard neural networks adapt a set of weights ω to describe a general function based
on some kind of training, Bayesian networks learn weight distributions [47–52]. Sampling
over those ω-distributions gives us access to uncertainties in the network output, induced by
limitations of the training data. After studying the effect of limited training statistics on jet
classification [28], we now generalize our approach to include limited training statistics as
well as the systematic effects from stochastic or smeared training data.

As an example, we want to extract the transverse momentum pT of a hadronically decaying
top quark from a fat top jet. If we define p(pT | j) as the probability over possible pT values for
a given top jet, j, we can extract the mean value as:

〈pT 〉=
∫

dpT pT p(pT | j) . (1)

For a Bayesian network p(pT | j) is generated by sampling over the trained weight distributions
p(ω|M),

p(pT | j) =
∫

dω p(pT |ω, j) p(ω|M) , (2)

where M is the training data set. Obviously, we do not know the closed form of p(ω|M). In the
sense of a distribution [53], the network training will approximate it with the learned function
q(ω),

p(pT | j) =
∫

dω p(pT |ω, j) p(ω|M)≈
∫

dω p(pT |ω, j) q(ω) . (3)

If we exchange the two integrals, the mean transverse momentum becomes

〈pT 〉 ≡
∫

dω q(ω)〈pT 〉ω with 〈pT 〉ω =
∫

dpT pT p(pT |ω, j) . (4)
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Correspondingly, the variance of the pT extraction can be extracted as

σ2
tot = 〈(pT − 〈pT 〉)

2〉

=

∫

dω q(ω)
�

〈p2
T 〉ω − 2〈pT 〉〈pT 〉ω + 〈pT 〉2

�

=

∫

dω q(ω)
�

〈p2
T 〉ω − 〈pT 〉2ω + (〈pT 〉ω − 〈pT 〉)

2�≡ σ2
stoch +σ

2
pred . (5)

This is the critical step which allows us to identify two contributions to the jet-wise uncertainty
from the Bayesian network. First, a finite σstoch occurs without even sampling the network
weights, so it describes a systematic effect from the stochastic nature of the training sample,

σ2
stoch ≡ 〈σ

2
stoch,ω〉=

∫

dω q(ω) σ2
stoch,ω

=

∫

dω q(ω)
�

〈p2
T 〉ω − 〈pT 〉2ω

�

. (6)

Second, σpred is defined in terms of theω-integrated expectation value 〈pT 〉, so there does not
exist an ω-dependent version,

σ2
pred =

∫

dω q(ω) (〈pT 〉ω − 〈pT 〉)
2 . (7)

Only this second contribution will vanish in the limit of an infinitely large training sample,
because in that case the network weight distributions become delta distributions. We will
discuss the nature of these two contributions in detail in our analysis.

The two contributions to σtot can also be identified in the loss function. The standard
approach for Bayesian networks is to start with Eq.(3) implemented as a Kullback-Leibler
divergence,

KL[q(ω), p(ω|M)] =
∫

dω q(ω) log
q(ω)

p(ω|M)

=

∫

dω q(ω) log
q(ω)p(M)

p(M |ω)p(ω)

= KL[q(ω), p(ω)]−
∫

dω q(ω) log p(M |ω)
︸ ︷︷ ︸

≡LKL

+ log p(M)

∫

dω q(ω) . (8)

In this derivation we use Bayes’ theorem. The prior p(ω) describes the model parameters
before training. The model evidence p(M) guarantees the correct normalization of p(ω|M).
Turning Eq.(8) into a loss function we can omit it just as the normalization condition for
q(ω). The relevant loss function of the Bayesian network, LKL, then consists of two terms, the
regularization for q(ω) in reference to the prior p(ω) and the likelihood p(M |ω), which we
can work with in a frequentist sense. For a Gaussian prior the regularization term becomes
the standard L2-regularization.

For illustration purposes or to improve the numerical performance we can now make a set
of assumptions. In Ref. [28]we have shown, by varying priors over several order of magnitude,
that assuming a Gaussian prior p(ω) had no visible effect on the network output. To get
analytic control, we can approximate the likelihood p(M |ω) as Gaussian,

log p(M |ω)≈ −

�

ptruth
T − 〈pT 〉ω

�2

2σ2
stoch,ω

−
1
2

logσ2
stoch,ω + const . , (9)
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Figure 1: Illustration of our Bayesian network setup. The Bayesian network provides
us with an uncertainty estimate for a single input jet x .

where ptruth
T is the truth label provided by the training data set M . The width of this Gaussian

corresponds to a systematic uncertainty, so we identify it with σstoch,ω. The loss function

LKL ≈ KL[q(ω), p(ω)] +

∫

dω q(ω)





�

ptruth
T − 〈pT 〉ω

�2

2σ2
stoch,ω

+
1
2

logσ2
stoch,ω



 , (10)

now has to be minimized with respect to the parameters of q(ω). Because we have assumed
q(ω) to be Gaussian that gives us two trainable parameters per weight, and our neural network
gives

NN(ω) =

�

〈pT 〉ω
σstoch,ω

�

(11)

per jet. To extract the per-jet probability distribution p(pT |x) following Eq.(3), we usually
rely on Monte Carlo integration by sampling weights from the weight distributions. As in
Eq.(10) we assume that p(pT |ω, x) is a Gaussian with the above-defined mean 〈pT 〉ω and
width σstoch,ω. Moreover, for large training statistics the distribution q(ω) should become
narrow. According to Eq.(7) the effect of a finite width of q(ω) can be tracked by σpred, so in
the limit σpred� σstoch we can approximate p(pT |x) as a Gaussian with weight-independent
mean 〈pT 〉 and width σstoch. This network structure is illustrated in Fig. 1.

3 Data set and network

The correct and precise reconstruction of the momentum of tagged top quarks is important for
instance in top resonance searches and has influenced the design of many top taggers [54].
Our data set is therefore similar to standard top tagging references, with some modifications
which simplify our regression task. We generate a sample of R = 1.2 top jets in the range
ptruth

T,t = 400 ... 1000 GeV with PYTHIA [55] at 14 TeV collider energy and the standard ATLAS
card for DELPHES [56]. We always neglect multi-parton interactions and always include final
state radiation. Given initial state radiation we work with two event samples, one with ISR
switched on and one with ISR switched off. We require the jets to be central |η j| < 2 and
truth-matched in the sense that each fat jet has to have a top quark within the jet area. These
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settings essentially correspond to the public top tagging data set from Refs. [20] and [27].
The difference to the standard tagging reference sets is that we flatten our data set in ptruth

T,t ,
such that even accounting for bin migration effects we can safely assume that in the fat jet
momentum the sample is flat for pT, j = 500 ... 800 GeV.

The final result of our Bayesian network will be a probability distribution over possible
pT,t values for a given jet. For our labelled data we know the corresponding ptruth

T,t . However,
the fact that we will modify this truth label as part of the calibration training makes it the less
attractive option to organize our samples. The closest alternative observable is the momentum
of the fat jet, so we can think of pT, j as representing the complete fat jet input to the network.
So unless explicitly mentioned we train our networks on a large data set defined in terms of
the fat jet momentum,

pT, j = 400 ... 1000 GeV (training sample) . (12)

Whenever we need a homogeneous sample without boundary effects we choose a narrow test
sample with

pT, j = 600 ... 620 GeV (narrow test sample) . (13)

The data format for the fat jet information is a pT -ordered list of up to 200 constituent
4-vectors (~p and E) with ISR and 100 constituents without. Our total sample size is 2.2M jets
without ISR, of which we use 400k jet for validation and testing, each. The training size is
varied throughout our analysis.

Our regression network is a simple 5-layer fully connected dense network. Its first two
layers each consist of 100 units, the next two 50 units, followed by a 2-unit output layer,
unless mentioned otherwise. For the prior we choose a Gaussian around zero and with width
0.1. We have confirmed that our results are width-independent over a wide range [28]. The
typical sizes and widths of the weights depends on the input data. The input is a flattened
set of 4-vectors where we re-scale the pT values by a factor 1000 to end up between zero and
one. The activation function is ReLU, except for the output layer. That one predicts the mean
value 〈pT 〉 without any need for an activation function and the SoftPlus function for the error
to have a smooth function which guarantees positive values for the error. We have checked
that this setup with these hyper-parameters is not fine-tuned.

For the Bayesian network features we rely on Tensorflow Probability [57] with Flipout
Dense layers [58] replacing the dense layer of the deterministic network. All networks are
trained with the Adam optimizer [59] and a learning rate of 10−4, determined by early stopping
when the loss function evaluated on the training dataset does not improve for a certain number
of epochs. This patience was set to 10 for a training size of 1M jets and to larger values for
smaller training sizes because the loss function is more fluctuating. For the Bayesian network
with a training batch size of 100 we observe no over-fitting.

4 Momentum determination and statistics

As a first part of our Bayesian regression analysis we need to show how well the networks
reconstructs the top momentum and what the limiting factors are. We then have to separate
the statistical and systematic uncertainties. In analogy to Ref. [28] we first study how the size
of the training sample affects the regression output, i.e. how well the Bayesian network keeps
track of the statistical uncertainty.

To illustrate the output of our Bayesian network for a single jet we shoe an example in
Fig. 2. Sampling from the weight distributions, q(ω), provides us with a Gaussian per sampled

6

https://scipost.org
https://scipost.org/SciPostPhys.9.6.089


SciPost Phys. 9, 089 (2020)

400 450 500 550 600 650 700
pT, t [GeV]

0.000

0.002

0.004

0.006

0.008

0.010

No
rm

al
ize

d

ptruth
T, t

weight samples
    p(pT| i, C)

full prediction
     p(pT|C)

tot

Figure 2: Illustration of the predicted distribution from our Bayesian setup for a single
top jet. We show the individual predictions from sampling the weights (petrol) as
well as the aggregate prediction (red) and the corresponding per-jet uncertaintyσtot.

set of weights, shown in petrol. The combination of these distributions is shown in red. The
width of the combined distribution is the predicted per-jet uncertainty σtot, defined in Eq.(5).
For illustration purposes we pick a top jet where ptruth

T,t coincides with the peak of the predicted
distribution.

Regression performance

To begin, we show in the left panel of Fig. 3 the correlation between the measurable pT, j

and the MC label ptruth
T,t . We see that over the entire range the two values are aligned well.

This allows us to use pT, j as a proxy to the truth information, keeping in mind that we will
eventually smear the truth label to describe the jet calibration. In the right panel of Fig. 3
we show the correlation between the central extracted pT,t value, which in Sec. 2 is properly
denoted as the expectation value 〈pT 〉, and the label ptruth

T,t .
In the left panel of Fig. 4 we show the ptruth

T,t distribution for the narrow slice
pT, j = 600 ... 620 GeV. In the absence of initial state radiation the distribution is asymmet-
ric. The simple reason is that the jet clustering can only miss top decay constituents, so we
are more likely to observe pT, j < ptruth

T,t . Aside from that we see a clear peak, suggesting that
we can indeed represent ptruth

T,t with pT, j . Because the peak is washed out by ISR, we switch
off ISR to make it easier to understand the physics behind our network task. In practice, this
could be done through a pre-processing and grooming step.

Table 1: Performance of pT,t regression, uncertainty representing the standard devi-
ation of 5 trainings. The narrow pT, j range refers to the 5k test jets, not the 500k
training jets.

pT, j = 600 ... 620 GeV
p

MSE
p

MSE/pT, j
p

MSE
p

MSE/pT, j
With ISR Without ISR

All jets 69.7± 0.2 (11.43± 0.03)% 50.6± 0.1 (8.30± 0.02)%
75% most top-like 67.8± 0.2 (11.11± 0.01)% 45.5± 0.1 (7.47± 0.02)%
50% most top-like 66.5± 0.1 (10.89± 0.01)% 41.8± 0.1 (6.85± 0.01)%
25% most top-like 66.5± 0.1 (10.89± 0.02)% 40.4± 0.1 (6.63± 0.02)%
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Figure 3: Correlation between the fat jet’s pT, j and the truth label ptruth
T,t (left) and

between the extracted pT,t and the truth label ptruth
T,t (right). Both correlations are

shown with initial state radiation in the training and test samples switched off.

Whenever we have access to MC truth, we can measure the performance of the regression
network for each top jet as (pT,t − ptruth

T,t )
2. The squared difference measure only uses the

mean or central value reported by a Bayesian or deterministic network, not the additional
uncertainty information from the Bayesian network. For a given test sample with N top jets t i
we construct the mean quadratic error as

p
MSE=





1
N

∑

jets i

�

pT,t i
− ptruth

T,t i

�2





1/2

. (14)

We evaluate it over homogeneous samples, for example our usual slice in pT, j . In Tab. 1 we
contrast results with and without ISR and show what happens if we limit ourselves to the most
top-like jets based on a standard LoLa tagger [20], trained on events with ISR. To estimate the
effect of different trainings we also give an error bar based on five independent trainings
and the resulting standard deviation. Expectedly, the pT -measurement benefits from more
top-like events, but the effect is not as significant as in the HEPTOPTAGGER analysis [54].
One of the reasons is that we are using relatively large R = 1.2 jets for the high transverse
momentum range. Similarly, we confirm that additional ISR jets have the potential to affect
the top momentum measurement whenever hard extra jets enter the fat jet area.

In the right panel of Fig. 4 we show
p

MSE as a function of pT, j for a bin width of 40 GeV.
While the absolute error increases, the relative error on the extracted pT,t shrinks for more
boosted jets. If we assume that an improved jet pre-selection can efficiently remove ISR con-
tributions our regression network can measure the top momentum to roughly 4%. This result
is only a rough benchmark to confirm that the regression network performs in a meaningful
manner. It would surely be possible to improve the network performance, but we deliberately
keep the network simple, to understand the way it processes information and the related un-
certainties. From the right panel of Fig. 4 we know that boundary effects will appear already
around 200 GeV away from the actual boundaries. Indeed, around pT, j we see such effects
indicating the phase space boundary of pT, j < 1 TeV in our training sample.

In the same Fig. 4 we also show this uncertainty estimate of the Bayesian network, σtot
as defined in Eq.(5). It follows the

p
MSE estimate of the network error, indicating that the

Bayesian output captures the same physics as the frequentist-defined spread of the central
values.
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Figure 4: Left: distribution of the truth label ptruth
T,t for jets with pT, j = 600 ... 620 GeV,

without and with initial state radiation. Right: regression uncertainty as a function
of pT, j (solid), compared with the average σstoch as the network output (dashed).
The most top-like events are defined with a simple LoLa tagger [20].

Training sample size and σpred

As discussed in Sec. 2 the contribution σpred to the uncertainty reported by the network can be
identified as a statistical uncertainty in the sense that it should vanish in the limit of infinitely
many training jets. In complete analogy to the classification task described in Ref. [28] we
confirm this by training Bayesian networks on 2k, 5k, 10k, 15k, 20k, 30k, 50k, 100k, 200k,
500k, and 1M jets. We test these networks on the narrow range pT, j = 600 ... 620 GeV,
similar to the results shown in Tab. 1. The uncertainties quoted by the Bayesian network
are shown in Fig. 5. In the lower part of the figure we first see that the statistical error σpred
indeed asymptotically approaches zero for 1M training jets. The error bars on the extracted
uncertainty are given by the standard deviation of five independent trainings. As expected,
they grow for smaller training samples, where the Bayesian networks also give fluctuating
results.

In the same figure we also show the systematic σstoch and the combined σtot, defined
in Eq.(5). We confirm that the extracted σstoch hardly depends on the size of the training
sample. Once we have a reasonably number of training events it reaches a plateau of around
50 GeV or 8%, while for less than 10000 training events the network simply fails to capture
the full information. We can compare the plateau value for σstoch to the

p
MSE value and find

again that the two values agree.This allows us to conclude that σstoch describes a systematic
uncertainty and that it is related to the truth-based

p
MSE estimate. We will discuss it in more

detail in Sec. 5.
After observing the average effect of the training sample size on σpred the obvious question

is if we can understand this behavior. In the left panel of Fig. 6 we show the distribution of
σpred values for a sample of 400k jets. The network is trained on 100k jets with an extended
range pT, j = 500 ... 900 GeV. We see a clear maximum around σpred ≈ 5 GeV, with a large tail
towards large uncertainties. It is induced by the constraint that no network should quote an
uncertainty close to zero.

The jet property we can relate to the σpred behavior is the number of particle-flow con-
stituents. As mentioned before, we cover up to 100 constituents for jets without ISR. Their
effect on top tagging is discussed for instance in Ref. [20]. The center panel of Fig. 6 shows
how the number of constituents in the test sample jets peaks at around 25, but with a tail
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Figure 5: Uncertainty contributions σpred and σstoch as a function of the size of the
training sample. The error bar represents the standard deviation of five different
trainings. In addition we include

p
MSE as defined in Eq.(14).

extending to 60. Jets with a larger quoted uncertainty have significantly more constituents.
The same information is shown in the right panel, where we see the average number of jets
increases with the range of quoted statistical uncertainties. The reason for this pattern is that
also within the training sample the number of constituents will peak around 25, limiting the
number of training jets with higher constituent numbers. We note that we could use the same
argument using the jet mass.

Frequentist approach

From a practical point of view it is crucial to validate the Bayesian network using a frequentist
approach. We do this by showing that predictions from many trainings of a deterministic
network reproduce our Bayesian network results for the statistical uncertainty σpred.

For the deterministic networks we use the same architecture as for the Bayesian network.
The loss function of the deterministic networks is the negative log-likelihood given in Eq.(9),
and we fix the L2-regularization to match the Bayesian network in Eq.(8),

λL2 =
1

2σpriorN
, (15)

where N is the total training size and σprior = 0.1 is our prior width. We then train 40 de-
terministic networks on statistically independent samples, which we sample from the total of
2.2M training jets. Each set of deterministic network then predicts a mean and a standard
deviation, in analogy to Eq.(11). The difference between the Bayesian evaluation and the fre-
quentist networks is that we replace the integral over weights with a sum over independent
networks.

For deterministic networks we need to avoid over-training. An over-trained set of networks
will underestimate σstoch, while the spread represented by σpred increases. However, it is not
guaranteed that these two effects compensate each other for finite training time. This is why
we introduce dropout for each inner layer with a rate of 0.1. This value is a compromise
between network performance and over-training. Unlike in our earlier study [28] we do not
use a MAP modification of the Bayesian network.

In Fig. 7 we compare the Bayesian and frequentist uncertainties for different training sam-
ple size. While the results agree well for properly trained networks or large training samples,
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Figure 6: Left: distribution of the statistical uncertainty σpred for 400k jets. Cen-
ter: number of constituents per jet for different σpred. Right: average number of
constituents per jet as a function of the extracted statistical uncertainty.

the frequentist approach slightly underestimates the uncertainty for small training samples.
The plateau value of σstoch depends on the chosen dropout value. Accounting for this effect
we see that the training-size-dependent σpred and the plateau value of σstoch, agree well be-
tween the Bayesian network and the frequentist sanity check.

5 Systematics and calibration

In our original paper [28] we have shown that the Bayesian setup propagates uncertainties
from statistical and systematic limitations of the training data through a neural network. In
addition to the usual output the Bayesian network provides event-by-event error bars. A lim-
itation we encounter in Ref. [28] is that forcing the network output onto a closed interval,
like a probability p ∈ [0, 1], strongly correlates the the central value and the error bars in the
network output. This makes it difficult to track systematic uncertainties.

We circumvent this problem by extracting the transverse momentum, which does not live
on a closed interval. In the previous section this allowed us to decompose σtot into a statistical
component, σpred, and a systematic component, σstoch. What we still need to study is the
actual output distribution of the Bayesian network, p(pT |M), and how it compared to the
truth information from the test data.

Variance of training data and σstoch

In the upper left panel of Fig. 8 we show the correlation of ptruth
T,t and pT, j . The orange curves

represent the maximum and the 68% CL interval in 20 GeV bin. The corresponding maximum
and 68% CL interval of the BNN output are illustrated in blue. Both confidence intervals are
constructed by requiring equal functional values at both ends. In the lower left panel we see
why the two sets of curves agree very poorly: for the narrow pT, j slide the ptruth

T,t distribution
is all but Gaussian, while the Bayesian output in our naive approach is forced to be Gaussian,
as seen in Eq.(11).

From Sec. 2 we know that it is not necessary to assume that the Bayesian network output
is Gaussian. As a simple generalization we can replace the two-parameter Gaussian form of
p(M |ω) in Eq.(10) with a mixture of Gaussians,

p(M |ω) =
∑

i

αi,ω G(〈pT 〉(i)ω ,σ(i)stoch,ω) , (16)

11

https://scipost.org
https://scipost.org/SciPostPhys.9.6.089


SciPost Phys. 9, 089 (2020)

104 105

Training size
0

10

20

30

40

50

60
 [G

eV
]

pT, j = 600...620 GeVBNN

MSE
tot
stoch
pred

104 105

Training size
0

10

20

30

40

50

60

 [G
eV

]

Frequentist
   Dropout

pT, j = 600...620 GeV

MSE
tot
stoch
pred

MSE
tot
stoch
pred

Figure 7: All uncertainties as a function of the training size, comparing the Bayesian
network (left) with a (frequentist) set of deterministic networks (right). The left
panel corresponds to Fig. 5, and the ranges indicate the standard deviation for five
trainings.

with
∑

i αi,ω = 1. The network output from Eq.(11) then becomes

NN(ω) =





α1,ω α2,ω · · ·
〈pT 〉(1)ω 〈pT 〉(1)ω · · ·
σ
(1)
stoch,ω σ

(2)
stoch,ω · · ·



 . (17)

To guarantee
∑

i αi,ω = 1 we use SoftMax as an activation function for αi,ω and the SoftPlus

function forσ(i)stoch,ω to ensure positive values. In the center and right sets of panels in Fig. 8 we
see what happens if we use two or three Gaussians, specifically with the parameters averaged
over weights and jets in a bin. For three Gaussians the BNN output and the ptruth

T,t distribution
agree perfectly. The corresponding parameters are shown in Tab. 2.

Technically, we follow Sec. 2 in extractingσstoch andσpred independently of the form of the
underlying assumption. Two aspects render this computation slightly expensive: the integra-
tion over all weights and, if required, the combination of different predictions in one pT, j bin.
On the other hand we know that σpred� σstoch and we can always use narrow bin sizes. This
means that in both cases we can replace the integrals by simply averaging over the parameters
of the Gaussian mixture model. This implementation is computationally less expensive and
gives us simple analytic expressions from which we extract the maximum and 68% CL interval.

Noisy labels

A crucial question in experimental physics is how we include a systematic uncertainty for
instance on the jet energy scale in the training procedure. We can understand such an energy
calibration when we remind ourselves that the jets in the calibration sample come with a
measured reference value for their energies and the corresponding error bar; and that the
calibration sample in our case is the training sample. There are two ways we can include the
error on the calibration measurements in our analysis:

1A. fix the label or ‘true energy’ and smear the jets in the training sample;
1B. fix the jets and smear the continuous label in the training sample;

2. train the Bayesian network on the smeared label-jet combination;
3. extract a systematics error bar for each jet in the test sample.
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Figure 8: Upper: 2-dimensional distribution of ptruth
T,t vs pT, j including its 68% CL

around the maximum. In blue we show the BNN results. Lower: ptruth
T,t -distribution

for a narrow slice in pT, j . From left to right we approximate ptruth
T,t with one, two, and

three Gaussians.

In Ref. [28] we have followed the option 1A and encountered some practical/numerical prob-
lems when tracing the corresponding systematics to the network output. In this study we shift
to the less standard and yet straightforward option 1B. We assume that jet calibration incor-
porates external information on the training sample, be it another measurement or a theory
requirement (one-shell Z-decays) or a MC prediction. This information defines a label to-
gether with a corresponding error bar. This means we train our network on a fixed sample of
jets with a smeared label representing the full reference measurement. In this approach we
can trivially include additional uncertainties from pre-processing the training data, like run-
ning a jet algorithm of the Z-sample, removing underlying event and pile-up, etc. As a side
effect our setup also allows us to capture possible transfer uncertainties, whenever our test
sample cannot easily be linked to the training sample. In the ML literature such uncertainties
are referred to as out-of-sample error.

To illustrate and test our setup we smear ptruth
T,t , the label in the training data, according to

Gaussians with widths of

σsmear = (4 ... 10)%× ptruth
T,t . (18)

In Fig. 9. we see that for a small amount of smearing the non-Gaussian shape of Fig. 8 remains,
so we use two Gaussians in the BNN. For sizeable Gaussian smearing we see that the resulting
distributions all assume a Gaussian shape and we can stick to the single-Gauss standard BNN.
In both cases the distribution of the BNN output and the (smeared) label ptruth

T,t agree almost
perfectly.

From the previous sections we know that the reported uncertainty by the BNN includes a
statistical uncertainty vanishing with an increasing amount of training data and a systematic
uncertainty representing the stochastic nature of the training data. When we introduce another
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Table 2: Parameters used in Fig. 8, specifically pT, j = 600...620 GeV.

α(i) 〈pT 〉(i) σ
(i)
stoch σstoch

p
MSE 〈pT,t〉 〈ptruth

T,t 〉 Max 68%CL 68%CL (truth)

1 1 644.4 51.43 51.4 644.4 644.4 593.0...695.9

2
0.72
0.28

623.4
698.3

20.4
65.6 51.1 644.1 623.4 592.4...657.3

3
0.59
0.30
0.11

617.8
659.8
738.6

16.6
33.7
78.6

51.5 52.2 643.8 643.8 619.1 592.4...656.8 590.0...654.0

uncertainty induced by smeared labels we expand Eq.(5) to

σ2
tot = σ

2
stoch +σ

2
pred

= σ2
stoch,0 +σ

2
cal +σ

2
pred ⇔ σ2

cal = σ
2
stoch −σ

2
stoch,0 , (19)

added in quadrature because of the central limit theorem. The baseline valueσstoch,0 is defined
as σstoch in the limit of no smearing. In Fig. 10 we show how σcal correlates with the input
σsmear over a wide range of scale uncertainties. As usually, the error bar represents the standard
deviation from five independent trainings. This correlation shows that our network picks up
the systematic uncertainties from smeared training labels perfectly. We note that, as before,
this analysis does not require a Gaussian shape of the network output.

6 Outlook

We have shown that Bayesian networks keep track of statistical and systematic uncertainties in
the training data and translate them into a jet-by-jet error budget for instance in a momentum
measurement. Outside particle physics it is not unusual to treat uncertainties as a smearing
of labels, whereas in particle physics we usually model them by smearing the input data. We
show that smearing labels is a natural, feasible, and self-consistent strategy in combination
with deep learning. An advantage of this approach is that the treatment of uncertainties is
moved from the evaluation time to the training time and so-trained networks accurately report
predictions of the central value as well as systematic uncertainties.

We have shown that the corresponding Bayesian networks allow us to cleanly separate
statistical and systematic uncertainties. In addition, the smeared labels are ideally suited to
translate uncertainties from reference or calibration data to the network output.

Technically, we have modified the Bayesian network approach of Ref. [28] to include non-
Gaussian behavior. This step is crucial for modeling systematic uncertainties in general.

We emphasize that before this approach can be generally adapted, open questions such as
multiple correlated uncertainties and the translation between input-uncertainties and label-
uncertainties need to be answered. However, our first results show great promise for smeared
labels describing uncertainties in particle physics applications of deep learning.
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A Comparison to smeared data

To further validate the proposed approach, Fig. 11 compares the performance of the BNN
approach with a more traditional smearing of the input objects. For smearing the objects we
use a Bayesian neural network trained on data without smearing and evaluate this network
on a test dataset with modified inputs. Each jet in the test sample is smeared once up and
once down, then the difference of the two network outputs is evaluated and divided by two.
We then show the average in the given pT, j-range. The BNN prediction is in good agreement
with modified inputs, giving additional confidence in uncertainty predicted by the Bayesian
network.
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