
SciPost Phys. Codebases 17 (2023)

xSPDE3: Extensible software for stochastic ordinary
and partial differential equations

Simon Kiesewetter1, Ria R. Joseph1,2 and Peter D. Drummond1⋆

1 Centre for Quantum Science and Technology Theory,
Swinburne University of Technology, Melbourne, Victoria, Australia.

2 School of Information Technology, Deakin University, Melbourne, Victoria, Australia.

⋆ peterddrummond@protonmail.com

Abstract

The xSPDE toolbox treats stochastic partial and ordinary differential equations, with
applications in biology, chemistry, engineering, medicine, physics and quantum tech-
nologies. It computes statistical averages, including time-step and/or sampling error
estimation. xSPDE can provide higher order convergence, Fourier spectra and probabil-
ity densities. The toolbox has graphical output and χ2 statistics, as well as weighted,
projected, or forward-backward equations. It can generate input-output quantum spec-
tra. All equations may have independent periodic, Dirichlet, and Neumann or Robin
boundary conditions in any dimension, for any vector field component, and at either
end of any interval.

Copyright S. Kiesewetter et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 19-12-2022
Accepted 22-05-2023
Published 02-10-2023

Check for
updates

doi:10.21468/SciPostPhysCodeb.17

This publication is part of a bundle: Please cite both the article and the release you used.

DOI
doi:10.21468/SciPostPhysCodeb.17
doi:10.21468/SciPostPhysCodeb.17-r3.44

Type
Article
Codebase release

Contents

1 Introduction 8
1.1 The xSPDE distribution 8
1.2 Structure of the user’s guide 9

2 SDE theory 10
2.1 General form 10

2.1.1 Observables 10
2.2 Stochastic calculus 11

2.2.1 Types of stochastic calculus 11

1

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
mailto:peterddrummond@protonmail.com
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCodeb.17&domain=pdf&date_stamp=2023-10-02
https://doi.org/10.21468/SciPostPhysCodeb.17
https://doi.org/10.21468/SciPostPhysCodeb.17
https://doi.org/10.21468/SciPostPhysCodeb.17-r3.44

SciPost Phys. Codebases 17 (2023)

2.3 Interaction picture 12
2.3.1 Linear propagator 12

2.4 Probability distributions 12
2.4.1 Distribution averages 13

2.5 Example: random walk 13
2.5.1 Variance solution 13

2.6 Probability densities 14
2.6.1 Distributions of functions 14

2.7 Fourier transforms 15
2.7.1 Discrete Fourier transforms 15

2.8 Quantum phase-space 16
2.8.1 Positive-P representation 16
2.8.2 Master equations 16

2.9 Damped harmonic oscillator 17
2.9.1 Wigner representation 18
2.9.2 Internal spectrum 18

2.10 Input-output spectra 19
2.10.1 Steady-state result 19

3 SPDE theory 20
3.1 SPDE definitions 20
3.2 Boundary conditions 20
3.3 Spatial grid and boundaries 21

3.3.1 Periodic boundary 21
3.3.2 Dirichlet/Robin boundary 22

3.4 Multidimensional walk 22
3.4.1 Variance solution 22

3.5 Interaction picture 23
3.5.1 Linear propagator 23

3.6 Fourier transforms 24
3.6.1 Normalization 24

3.7 Trigonometric transforms 25
3.7.1 Propagator solution 25

3.8 Transforms and boundaries 26
3.8.1 D-D case: Discrete map (DST-I) 27
3.8.2 R-R case: Discrete map (DCT-I) 27
3.8.3 D-R case: Discrete map (DST-II) 27
3.8.4 R-D case Discrete map (DCT-II) 27

3.9 Frequency or momentum grid 27
3.10 Derivatives 28

3.10.1 Spectral derivatives 28
3.10.2 Finite difference derivatives 29

4 Solving an SDE 30
4.1 Using xSPDE 30

4.1.1 Wiener process 30
4.1.2 General derivatives 31

4.2 Input parameters 32
4.2.1 Simulation parameters table 32
4.2.2 Graphics parameters 33

4.3 Fields and noises 33

2

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4.3.1 Initial values, points and ranges 34
4.3.2 Observables 34
4.3.3 Using the dot 35

4.4 Advanced random walk 35
4.4.1 Simple xSPDE example 35

4.5 Probability binning 36
4.5.1 Multivariate probabilities 37

4.6 Auxiliary fields and noises 37
4.6.1 Outputting the noise 37

4.7 Time-domain spectra 38
4.7.1 Error-checking 39

4.8 Examples 40
4.8.1 Complex damped spectrum 40
4.8.2 Laser amplification noise 40
4.8.3 Saturated laser noise 41
4.8.4 Financial calculus 42
4.8.5 Nonlinear quantum simulation 43

5 Solving an SPDE 44
5.1 Multidimensional Wiener process 44
5.2 SPDE parameters 44

5.2.1 SPDE spatial lattice 45
5.2.2 Initial conditions 46

5.3 Next example 46
5.4 Transverse lattice 47

5.4.1 Linear operator 48
5.4.2 Integrals and averages 48
5.4.3 One space-dimensional example 49
5.4.4 Two space-dimensional example 49

5.5 Finite differences 50
5.5.1 Finite difference first derivatives 50
5.5.2 Finite difference second derivatives 50

5.6 Boundary conditions 51
5.6.1 Transverse boundaries 51
5.6.2 Transverse boundary values 52
5.6.3 Example: boundaries in a 2-dimensional PDE 52
5.6.4 Transverse plots 53

5.7 Output transforms 53
5.8 Initial random fields 54
5.9 Examples 55

5.9.1 Stochastic Ginzburg-Landau 55
5.9.2 NLS soliton 56
5.9.3 Planar noise 57
5.9.4 Gross-Pitaevskii equation 58
5.9.5 Characteristic equation 60
5.9.6 Nonlinear Anderson localization 60

6 xSIM and xGRAPH 61
6.1 Output data storage and batch jobs 61

6.1.1 Batch input template 61
6.2 Graphical data 62

3

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

6.2.1 Check index uses 63
6.3 Scanned parameter plots 63

6.3.1 Example: Scanned diffusion 63
6.4 Project examples 65

6.4.1 Kubo project 65
6.4.2 Gaussian diffraction 65

6.5 Hints 66

7 Stochastic methods 67
7.1 Introduction to algorithms 67

7.1.1 Standard methods 67
7.2 General differential form 67

7.2.1 Linear propagator 68
7.3 Standard methods 68

7.3.1 Euler: Ito-Euler 68
7.3.2 Implicit: implicit Ito-Euler 68
7.3.3 MP: Midpoint 69
7.3.4 MPadapt: adaptive midpoint 69
7.3.5 RK2: second order Runge-Kutta 69
7.3.6 RK4: fourth order Runge-Kutta 70

7.4 Advanced methods 70
7.4.1 Additional inputs 71

7.5 Weighted library 71
7.5.1 Example 71

7.6 Projection library 72
7.6.1 Calling the project function 73
7.6.2 The predefined manifold geometries 73

7.7 Forward-backward library 73
7.7.1 Example: 75

8 Integration errors 75
8.1 Discretization errors 75

8.1.1 Discretization error outputs 76
8.2 Higher order convergence 76

8.2.1 Extrapolation 76
8.2.2 Extrapolated error-bars 77

8.3 Statistical errors 78
8.3.1 Sampling error 78

8.4 Convergence tests 79
8.4.1 Comparisons: compare 79
8.4.2 Convergence: xcheck 79

8.5 Chi-squared estimates 80
8.5.1 Probability comparisons 81
8.5.2 Scaling of χ2 errors 81

8.6 Error outputs 82
8.6.1 Numerical error outputs 82
8.6.2 Graphical error outputs 83
8.6.3 Printed error outputs 83
8.6.4 Goodness of fit (χ2) 83
8.6.5 Error vector output 84
8.6.6 Error summaries 84

4

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9 xSIM reference 84
9.1 Overview 84

9.1.1 Input and data structures 84
9.1.2 Parameters and functions 85

9.2 Parameter table 85
9.3 Function tables 86

9.3.1 User function table 86
9.3.2 Internal function table 86

9.4 Parameter reference 86
9.4.1 auxfields 86
9.4.2 axes{n} 86
9.4.3 backfields 89
9.4.4 binranges{n} 89
9.4.5 boundaries{dir} 89
9.4.6 c... 90
9.4.7 checks 90
9.4.8 dimensions 90
9.4.9 ensembles 90
9.4.10 fields 90
9.4.11 file 91
9.4.12 functions 91
9.4.13 ipsteps 91
9.4.14 iterations 91
9.4.15 name 91
9.4.16 noises 92
9.4.17 order 92
9.4.18 origins 92
9.4.19 points 92
9.4.20 inrandoms 93
9.4.21 ranges 93
9.4.22 rawdata 93
9.4.23 scatters{n} 94
9.4.24 seed 94
9.4.25 steps 94
9.4.26 transforms{n} 94
9.4.27 verbose 94
9.4.28 version 95

9.5 Function reference 95
9.5.1 User function reference 95
9.5.2 boundfun(a, d, p) 95
9.5.3 compare(p) 96
9.5.4 define(a, w, p) 96
9.5.5 deriv(a,w,p) 96
9.5.6 firstfb(a0,nc,p) 96
9.5.7 function(o,p) 96
9.5.8 grid 96
9.5.9 initial(rv, p) 97
9.5.10 linear(p) 97
9.5.11 nfilter (w,p) 97
9.5.12 noisegen(p) 97

5

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.5.13 observe(a, p) 97
9.5.14 prop(a, p) 98
9.5.15 propfactor(nc, p) 98
9.5.16 randomgen(xp) 98
9.5.17 rfilter(w, p) 98
9.5.18 method(a, w, p) 98
9.5.19 transfer(v, p, a0, p0) 98

9.6 Internal function reference 99
9.6.1 Ave(o[, av], p) 99
9.6.2 Bin(o[, dx], p) 99
9.6.3 D1(a[, dir,ind], p) 99
9.6.4 D2(a[, dir,ind], p) 99
9.6.5 Int(o[, dx, bounds], p) 99

9.7 Arrays and indices 100
9.7.1 Array tables 100
9.7.2 Simulation data in xSIM 101

9.8 Internal parameter table 102
9.9 xSIM structure 102

9.9.1 xSPDE 102
9.9.2 xSIM 102

10 xGRAPH reference 104
10.1 Overview 104

10.1.1 Parameter and data structures 104
10.1.2 Comparisons 105

10.2 Parameter table 105
10.3 Example 107
10.4 xGRAPH data arrays 107

10.4.1 Input parameters and defaults 108
10.5 Cascaded plots 109

10.5.1 Plot dimensions 109
10.5.2 Plot axes 110

10.6 Probabilities and parametric plots 111
10.6.1 Chi-squared plots 111
10.6.2 Comparisons with variances 112
10.6.3 Maximum likelihood 112
10.6.4 Parametric plots 112

10.7 Parameter reference 113
10.7.1 axes{n} 113
10.7.2 diffplot{n} 113
10.7.3 errors 113
10.7.4 esample{n} 113
10.7.5 font{n} 114
10.7.6 functions 114
10.7.7 glabels{n} 114
10.7.8 graphs 114
10.7.9 gtransforms{n} 114
10.7.10 headers{n} 115
10.7.11 images{n} 115
10.7.12 imagetype{n} 115

6

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7.13 klabels 115
10.7.14 legends{n} 115
10.7.15 limits{n} 116
10.7.16 linestyle{n} 116
10.7.17 linewidth{n} 116
10.7.18 minbar{n} 116
10.7.19 name 117
10.7.20 olabels{n} 117
10.7.21 parametric{n} 117
10.7.22 pdimension{n} 117
10.7.23 saveeps 118
10.7.24 savefig 118
10.7.25 transverse{n} 118
10.7.26 verbose 118
10.7.27 xlabels 118

10.8 User function reference 119
10.8.1 gfunction{n} (d,p) 119
10.8.2 xfunctions{n} {nd} (ax,p) 119

10.9 xGRAPH structure 119
10.9.1 xgraph(data,input) 119
10.9.2 input = xgpreferences (input,oldinput) 120

11 Examples and batch testing 120
11.1 SDE examples 120

11.1.1 Kubo 120
11.1.2 Loss/Gain with noise 121

11.2 Spectral examples 122
11.2.1 Equilibrium 122
11.2.2 Quantum 124

11.3 Probability examples 125
11.3.1 Probability density, Wiener process 125

11.4 SPDE examples 127
11.4.1 Nonlinear Schrodinger equation with Dirichlet boundary conditions 127
11.4.2 Planar noise growth 128
11.4.3 Gross-Pitaevskii equation with vortex formation 131
11.4.4 Heat equation with finite-difference and propagators 133

11.5 Projection examples 136
11.5.1 SDE with catenoid projection 136

12 Conclusion 138

References 139

7

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

1 Introduction

1.1 The xSPDE distribution

xSPDE is an eXtensible Stochastic Partial Differential Equation solver [1].
xSPDE has functions that can numerically solve both ordinary and partial differential

stochastic equations of any type, obtaining correlations, probabilities and averages. There
are many equations of this type [2–6] in physics, chemistry, engineering, biology, medicine,
and finance.

Previous applications are in physics and quantum technology [7–26], but the code has
general applicability. The emphasis in xSPDE is on combining a simple user interface with a
wide range of useful functions, including the essential features of averaging and global error
estimates. The code enables an efficient use memory and parallelism, which is vital for large
stochastic models, and it is able to be further extended if needed.

The extensible structure of the code-base permits drop-in replacements of the algorithms.
Different simulations can be carried out sequentially. This models different stages in an ex-
periment or simulated environment. It can be used with or without noise terms, and can use
a range of either built-in or user defined integration algorithms. This user guide describes
xSPDE3, which is an improved version of an earlier toolbox [1].

xSPDE calculates and plots averages and probabilities of arbitrary functions of any number
of complex or real fields, as well as Fourier transforms in time or space with any given dimen-
sionality. Importantly, it gives error estimates for both the discretization and sampling error,
but the algorithm, the step-size and the number of samples used is up to the user to control to
obtain the required error levels.

Ordinary and stochastic differential equations of many types can be treated numerically
[27,28], including stochastic partial differential equations with space dependence [29]. Com-
parative χ2 statistical tests are available. Additional libraries exist for projected, forward-
backward, and weighted equations.

The algorithms included are designed to be useful and fast in many practical applications.
Higher order convergence is obtained through order extrapolation. This allows higher-order
convergence to be realized in a uniform way. More complex higher-order algorithms are known
[28,30], which can be included if preferred, as the code is extensible.

The code can be used interactively or in batch mode. All graphs, data, and input param-
eters, including default values, can be stored permanently using standard file-types. It has a
fully integrated graphics program, xGRAPH. This is able to handle data of any dimensions,
with multiple types of graphical output, error-bars and comparisons.

xSPDE supports parallelism at both vector instruction and multiple core level using ar-
ray and parallel loop syntax. This version is Octave/Matlab based. Matlab is a commercial
product, GNU Octave [31] is free and open-source. They each have excellent user interfaces
and reliable implementations. Full parallel operation currently requires the Matlab parallel
toolbox.

Using the toolbox can be compared to dining in a very friendly restaurant. It allows you to
choose recipes from a large menu. It does the work of solving equations and doing averages.
Estimating errors and graphing results is carried out as well. But it has a communal kitchen
too. If you want more choice, you can add your own dishes.

See: www.github.com/peterddrummond/xspde_matlab. For those familiar with earlier
versions, a list of the main xSPDE changes since the documentation of the previously published
version (v1.04) [1] is as follows:

8

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

1. More graphics options, color-mapped contours, batch graph storage

2. Computational arrays with the ensemble index last for more speed.

3. Scatter plots with multiple lines for individual trajectories

4. Expansion of packed internal arrays combined with index broadcasting

5. Extended documentation with new examples, key-words and error-messages

6. Auxiliary fields for storing random noises and quantum input-output spectra

7. Methods for weighted and projected stochastic differential equations

8. Computational methods for forward-backward stochastic equations

9. Finite-difference solutions to SPDEs with nonlinear boundaries

10. Fast DST and DCT spectral methods for SPDEs with non-periodic boundaries

11. Multidimensional comparison functions and experimental data input

12. Chi-squared tests and probability densities of arbitrary functions

There are some internal keyword changes. Older keywords are deprecated, although they
are still compatible in this release. The removal of packed arrays means that some high-
dimensional equations in earlier inputs will require changes to unpacked arrays. For example,
a(i,:) may have to be replaced by correctly dimensioned, unpacked arrays like a(i,:,:,..), al-
though the internal xSPDE code unpacks these if possible.

xSPDE is distributed with no guarantee, under an open-source license. Contributions and
bug reports are welcome. An alternative approach to SPDEs [32, 33] is available in C++ at
http://www.xmds.org/.

1.2 Structure of the user’s guide

Sections 2 and 3 give background information. Readers who are simply interested in how to
use the code can go directly to section 4.

Section 2 has definitions and notations for stochastic differential equations (SDEs). This
is useful for understanding later sections. The section includes Ito and Stratonovich calculus,
probability distributions and Fokker-Planck equations. It also explains and defines the Fourier
input-output spectra used in quantum technology.

Section 3 gives the concepts of stochastic partial differential equations (SPDEs). It includes
details of spectral methods and the interaction picture approach. It has an explanation of how
Fourier transforms and discrete sine or cosine transforms are implemented. It also explains
how boundary conditions can be implemented using finite differences.

Section 4 describes the numerical solution of SDEs with xSPDE. This includes an explana-
tion of the user interface, how to input parameters and equations, how to define the output
in terms of functional averages or probabilities, and how to define and access auxiliary fields
and noises. This section uses the default algorithms, because a more detailed explanation is
given in section 7.

In section 5, the practical approach to solving stochastic partial differential equations with
xSPDE is explained. The techniques used in section 5 are an extension of the previous one,
so a thorough understanding of section 4 is strongly recommended. Both sections contain
examples. Section 6 explains how to create projects with separated computation and graphics,
as well as workflow and data storage.

9

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Section 7 outlines the integration algorithms used in the manual. It includes a number
of extended integration libraries, applicable to more specialized problems. Section 8 outlines
how integration errors, including time-step and stochastic errors, can be estimated and dis-
played.

Section 9 provides a reference for the details of the internals as well as a comprehen-
sive explanation of the input parameters useful in xSPDE simulations. Section 10 provides
an extensive description of the visualization aspects of xSPDE, using the integrated xGRAPH
function. This includes an automatic ‘cascade’ of graphic output, where high dimensional data
is successively reduced to lower dimensional, visualizable data through projections.

Input parameters related to this are described as well. Data can also be graphed externally
or stored for later analysis if preferred. Both average and raw trajectory data can be stored.
However, the storage of raw data is generally not recommended, due to the large storage
requirements. Additional examples in section 11 demonstrate how to obtain parametric plots
against input parameters. Plots of one component value against another can be graphed. A
function that analyses convergence rates is also available.

2 SDE theory

This section describes the basics of stochastic differential equation (SDE) theory, in order
to explain the background to the numerical methods.

2.1 General form

A stochastic differential equation (SDE) is an equation with random noise terms. These were
introduced by Langevin to treat small particles in fluids [4], and extended by Wiener, Ito
and Stratonovich [34–36]. The theory and its applications to biology, chemistry, engineering,
economics, physics, meteorology and other disciplines are treated in many texts [2,3,5,37–39].

An ordinary stochastic differential equation in one time dimension is,

∂ a
∂ t
= A (a, t) +B (a, t) ·w(t) . (1)

Here a is a real or complex vector, A is a vector function, B a matrix function and w is usually
a delta-correlated real Gaussian noise vector such that:

wi (t)w j

�

t ′
��

= δ
�

t − t ′
�

δi j . (2)

One can also have non-Gaussian noise or noise that is not delta-correlated. Although these
are somewhat less commonly treated, these alternatives are often found in real applications.

2.1.1 Observables

In all cases, there are multiple independent trajectories, and one is interested in probabilistic
averages, where the unweighted average of an observable O (a), for Ns trajectories a(n) is:

〈O〉Ns
=

1
Ns

∑

n

O
�

a(n)
�

. (3)

In other types of stochastic equation [40, 41], there is a weight Ω (t) for each trajectory. This
has an additional equation of motion, where:

∂Ω

∂ t
= AΩ (a,Ω, t) + BΩ (a,Ω, t) ·w(t) . (4)

10

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

The results for all mean values are then weighted by the term exp (Ω (t)), so that:

〈O〉Ω =

∑

n O
�

a(n)
�

exp
�

Ω(n) (t)
�

∑

n exp
�

Ω(n) (t)
� . (5)

This expression reduces to the usual average if the weights are zero, i.e, Ω = 0. Apart from
the way that averages are treated, the weight can simply be regarded as an additional term in
the stochastic differential equations. This simply means that one now has an equation with an
extra random field, so that a→ [a,Ω], together with a modified expression for the averages.
This, in fact, is how these equations are solved.

For reasons of efficiency, it is best to use “breeding” algorithms to treat these numerically.
This replicates highly weighted trajectories with Ω(n) (t) ≫ 0 and removes trajectories with
Ω(n) ≪ 0, that have negligible weight. The numerical method is described in section 7. The
remainder of this section will focus on the most commonly treated case of unweighted, Gaus-
sian, delta-correlated noise.

2.2 Stochastic calculus

In the case of delta-correlated noise, the trajectories are not differentiable. As a result,
there are two main variants of stochastic calculus used to define the derivatives, called Ito
or Stratonovich [2, 39], and xSPDE can be used for either type. The default algorithms are
designed for Stratonovich cases, since this is just ordinary calculus. Ito calculus can be treated
also, either using the directly applicable Euler method, or else by appropriate transformations
to a Stratonovich form. One can also have a time-reversed or implicit Ito calculus [27], which
is directly solved using an implicit Ito-Euler method.

A single step in time of duration ∆t uses finite noises w which are defined to be delta-
correlated in the small time-step limit, so that

wiw j

�

= δi j/∆t.

2.2.1 Types of stochastic calculus

The limits as ∆t → 0 are taken differently for the different types of stochastic calculus. Let
a0 = a (t0), t1 = t0+∆t, a1 = a (t1), ā= (a1 + a0)/2, and t̄ = t +∆t/2, then the next step in
time is:

• Ito calculus - uses initial-time derivative evaluations

a1 = a0 +
�

A(I) (a0, t0) +B (a0, t0) ·w
�

∆t . (6)

• Stratonovich calculus - uses midpoint derivative evaluations

a1 = a0 +
�

A (ā, t̄) +B (ā, t̄) ·w
�

∆t . (7)

• Implicit Ito calculus - uses final-time derivative evaluations

a1 = a0 +
�

A(I+) (a1, t1) +B (a1, t1) ·w
�

∆t . (8)

The drift term A is changed in Ito or implicit Ito calculus, if the noise coefficient B depends on
the stochastic variable:

A(I)i = Ai +
1
2

B jk∂ jBik , (9)

A(I+)i = Ai −
1
2

B jk∂ jBik . (10)

Here we define ∂n ≡ ∂ /∂ an and we use an Einstein convention of summing over all re-
peated indices.

11

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

2.3 Interaction picture

The interaction picture allows one to eliminate linear terms in the time derivatives. It is es-
pecially useful for stochastic partial differential equations, but it is applicable to stochastic
equations as well. Suppose there are linear terms L, so that A (a, t) = A1 (a, t) + L · a , where
L is a constant matrix. The interaction picture defines local variables ã for the fields a.

It is convenient to introduce an abbreviated notation as:

D (a) = A1 (a, t) +B (a, t) ·w(t) , (11)

so that one can write the differential equation as:

∂ a
∂ t
= D (a) + L · a . (12)

2.3.1 Linear propagator

Next, we define a linear propagator. This is given formally by:

P (∆t) = exp
�

∆tL
�

, (13)

where ∆t = t − t̄, and t̄ is the interaction picture origin. Transforming the field a to an
interaction picture is achieved on defining:

ã= P−1 (∆t)a . (14)

As a result, the equation of motion is:

∂ ã
∂ t
= D

�

P (∆t) ã
�

. (15)

This removes linear terms, which can cause stiffness in the equations, increasing the dis-
cretization error. Given the case of a completely linear ODE or SDE, the trajectory solutions
will be exact up to round-off errors.

2.4 Probability distributions

Stochastic equations generate trajectories distributed with a probability density P (a). These
can be defined as an average and hence can be evaluated stochastically, since:

P
�

a′
�

=

δ
�

a′ − a
��

. (16)

Here 〈..〉 ≡ 〈..〉∞ is the infinite ensemble limit of the average over many trajectories. The
probability can be shown to follow a Fokker-Planck equation (FPE) with positive semi-definite
diffusion matrix, [2,42]:

∂ P
∂ t
= LP =

�

−∂nA(I)n +
1
2
∂n∂mBnkBmk

�

P , (17)

where the differential operators act on all terms to their right.

12

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

2.4.1 Distribution averages

The average of any observable O (a) is obtained either by averaging over the stochastic trajec-
tories numerically, or by analytic calculations, using:

〈O〉 =
∫

O (a) P (a) da . (18)

The dynamics of an observable or moment follows an adjoint equation, where L̃ is the
adjoint of L:

∂O
∂ t

·

=

L̃O
�

, (19)

where:

L̃O
�

=
�

A(I)n ∂n +
1
2

BnkBmk∂n∂m

�

O
·

. (20)

This equation allows the time-evolution of averages to be calculated analytically in simple
cases, given an initial distribution. However, in more complex cases, a numerical simulation
of the stochastic equations is more practical, and this can be carried out with xSPDE or other
software.

2.5 Example: random walk

The first example of an SDE is the simplest possible stochastic equation or Wiener process:

ȧ = w(t) . (21)

This has the solution that

a (t) = a (0) +

∫ t

0

w (τ) dτ , (22)

which means that the initial mean value does not change in time:

〈a (t)〉= 〈a (0)〉 . (23)

2.5.1 Variance solution

The noise correlation is non-vanishing from Eq (2), so the variance must increase with time:

a2 (t)
�

=

a2 (0)
�

+

∫ t

0

∫ t

0

w (τ)w
�

τ′
��

dτdτ′

=

a2 (0)
�

+

∫ t

0

∫ t

0

δ
�

τ−τ′
�

dτdτ′ . (24)

Integrating the delta function gives unity, which means that the second moment and the
variance both increase linearly with time:

a2 (t)
�

=

a2 (0)
�

+

∫ t

0

dτ

=

a2 (0)
�

+ t . (25)

The probability follows an elementary diffusion equation:

∂ P
∂ t
=

1
2
∂ 2P
∂ a2

, (26)

13

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

which is an example of Eq (17). From this equation and using Eq (19), the first two corre-
sponding moment equations in this case are

∂

∂ t
〈a〉=

�

1
2
∂ 2

∂ a2
a

�

= 0 ,

∂

∂ t

a2
�

=

�

1
2
∂ 2

∂ a2
a2

�

= 1 . (27)

These differential equations are satisfied by the solutions obtained directly from the
stochastic equations, namely Eq (23) and Eq (25).

2.6 Probability densities

The Wiener process with an arbitrary noise strength has the stochastic equation:

ȧ = bw (t) . (28)

The probability density satisfies the Fokker-Planck equation for diffusion,

∂ P
∂ t
=

b2

2
∂ 2

∂ a2
P . (29)

Then, if x initially is Gaussian distributed, this has a Gaussian distribution at time t with:

P (a) =
1

p

2πσ2 (t)
exp

�

−
(a− ā (t))2

2σ2 (t)

�

. (30)

Here:

ā (t) = ā (0) , (31)

σ2 (t) = σ2 (0) + b2 t .

2.6.1 Distributions of functions

Any function of the stochastic variables has a corresponding probability density. For exam-
ple, the distribution of a2 has a χ2 distribution with a single degree of freedom, such that if
y = (a− ā (t))2 /σ2 (t), then:

P (y) =
1

p

2πy
exp

h

−
y
2

i

. (32)

Hence:

P
�

a2
�

=
1

|a− ā (t)|
p

2πσ2 (t)
exp

�

−
(a− ā (t))2

2σ2 (t)

�

. (33)

More generally, it is often not known what the exact analytic solutions are, and a numerical
solution is employed. This can either use the stochastic equation directly, or the Fokker-Planck
equation, although it is generally difficult to scale this to many variables or to partial differen-
tial equations,

That is why we focus on the stochastic equation approach here, which can be used to
numerically calculate either the mean values or the probability distributions in general cases.

14

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

2.7 Fourier transforms

Frequency spectra have many uses, especially for understanding the steady-state fluctua-
tions of any physical system in the presence of noise, typically either thermal or quantum-
mechanical, although the noise could have other sources.

The time-domain spectral definition used here is:

ã(ω) =
1
p

2π

∫

eiωt a(t)d t ,

a(t) =
1
p

2π

∫

e−iωt ã(ω)dω . (34)

As a simple example, a sinusoidal oscillation in the form

a(t) = cos (ω0 t) (35)

between t = −T/2 and t = T/2 has a Fourier transform given by:

ã(ω) =
1

2
p

2π

∫ T/2

−T/2

�

ei(ω−ω0)t + ei(ω+ω0)t
�

d t (36)

=
T

2
p

2π

�

sinc
�

(ω−ω0)
T
2

�

+ sinc
�

(ω+ω0)
T
2

��

.

2.7.1 Discrete Fourier transforms

While exact in this analytic case, the definition above is impractical for numerical calculations.
In taking measurements and doing simulations, one has a discrete set of data-points. Assuming
the samples are at fixed intervals, the best one can do in practical cases is a discrete Fourier
transform, with samples ā(t̄ j) that are defined as integrals over each small interval d t:

Let ā(t̄ j) be the average over a small time interval:

ā(t̄ j) =

∫ t̄ j+d t/2

t̄ j−d t/2
a(t)d t , (37)

then to a good approximation as d t → 0, provided ωn is not too large,

ã(ωn) =
∆t
p

2π

N
∑

j=1

eiωn t̄ j ā(t̄ j) ,

ā(t̄ j) =
∆ω
p

2π

N
∑

n=1

e−iωn t̄ j ã(ωn) . (38)

These also form an invertible pair provided that ∆t∆ω = 2π/N . As well as being more
practical, this is very efficient due to the fast Cooley-Tukey (FFT) algorithm [43], allowing
computation on time-scales of O (N ln N) rather than O

�

N2
�

as one might expect.
When taking Fourier transforms in the time-domain, xSPDE does a time-averaging of all

fields over the current time-step, using the available coarse and fine time-samples. This is done
by averaging the field before and after the stochastic time-step. The methods used for this are
described in greater detail in Subsection (4.7).

15

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

2.8 Quantum phase-space

One useful application of stochastic equations is in quantum technologies, where stochastic
methods are generally much more scalable than other methods [44,45]. This approach started
when Schrodinger [46] pointed out that quantum oscillators can have classical equations.
Wigner, Moyal and Glauber extended this to other systems [47–49]. In lasers and quantum
optics [3,50–52], it is used to obtain SDEs for quantum systems coupled to reservoirs.

For the case of bosons, any M -mode quantum density matrix ρ̂ may be written in a unified
quantum phase-space form as:

ρ̂ =

∫

d2Mαd2MβPσ (α,β) Λ̂σ (α,β) , (39)

where Pσ is the σ-ordered phase-space distribution function, and α= [α1, . . .αM]. The basis,
Λ̂σ, is a Gaussian function of annihilation and creation operators ([53]), whose variance
depends onσ. This is defined as the variance of αβ due to vacuum fluctuations, in the operator
ordering of the representation.

For clarity, we hats like â are used here to indicate operators that do not commute with
each other, as opposed to stochastic variables like α that do commute. For any given operator
ordering, it is always possible to find a probability distribution such that the expectation of an
operator product equals the stochastic variable correlations [54].

2.8.1 Positive-P representation

The above expansion leads to different statistics and noise terms depending on the operator
ordering. For example, in the normally ordered positive P-representation where σ = 0, the
operator basis is

Λ̂ (α,β)≡
|α〉 〈β∗|
〈β∗| α〉

. (40)

Here β = α† ∼ â† is a stochastic variable conjugate in the mean to α∗. Any quantum state
has a positive representation of this type [55], and normally ordered coherence functions are
moments of the distribution with:

¬

â†
m1

. . . âmn

¶

=

∫

d2Mαd2Mβ
�

βm1
. . .αmn

�

P (α,β) . (41)

The Glauber-Sudarshan representation used in laser physics is obtained for β = α∗, so that
the two variables are exactly conjugate:

ρ̂ =

∫

d2MαP (α) |α〉 〈α| . (42)

In this case, the total number of stochastic variables is halved, but nonclassical squeezed or
entangled states cannot be represented as a positive distribution. Two additional frequently
utilized representations are the Wigner (σ = 1/2) and Husimi (σ = 1) representations, char-
acterized by symmetric ordering and anti-normal ordering, respectively. These also have a
classical phase-space with β = α∗.

2.8.2 Master equations

The dynamics of a quantum system coupled to a reservoir is described by a master equation. In
the Markovian (high-frequency) limit, the general quantum master equation for a dissipative

16

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Table 1: Typical types of quantum damping term.

Damping operator (Â j) Γ j Physical interpretation

â j γ j Linear amplitude loss (units s−1)

â†
j g j Linear amplitude gain (units s−1)

â†
j â j γ

p
j Phase decay rate gain (units s−1)

â2
j κ j/2 nonlinear amplitude loss (units s−1).

quantum system with damping rates Γ j is

∂ ρ̂

∂ t
=

1
iħh
�

Ĥs ys, ρ̂
�

+
∑

j

Γ j

�

n̄ j + 1
�

�

2Â jρ̂Â†
j − Â†

jÂ jρ̂ − ρ̂Â†
jÂ j

�

+
∑

j

Γ j n̄ j

�

2Â†
jρ̂Â j − Â jÂ

†
jρ̂ − ρ̂Â jÂ

†
j

�

, (43)

where Γ j is a damping rate for reservoir couplings to the operator Â j , n̄ j is the finite temperature
reservoir occupation, and the typical damping operators are:

The operator equations are mapped to differential equations with the equivalences:

â†
nρ̂ →

�

βn + (σ− 1)
∂

∂ αn

�

Pσ ,

ânρ̂ →
�

αn +σ
∂

∂ βn

�

Pσ ,

ρ̂ân →
�

αn + (σ− 1)
∂

∂ βn

�

Pσ ,

ρ̂â†
n →

�

βn +σ
∂

∂ αn

�

Pσ . (44)

The operator mappings give a differential equation. If it has a second-order positive-
definite form it is a Fokker-Planck equation equivalent to an SDE, or an SPDE for quantum
fields [56]. The noise can be additive or multiplicative, depending on the problem. Not all
cases give stable FPE equations [57], and truncation is required for the Wigner representation
if the Hamiltonian is nonlinear [58].

The total noise includes internal quantum noise generated from the Hamiltonian term
Ĥs ys, as well as reservoir noise terms generated from the coupling to the reservoir operators,
which is proportional to Γ j . There is a similar behavior in classical systems, except that these
correspond to a high-temperature limit, and in most cases only have external reservoir noise
from thermal fluctuations.

2.9 Damped harmonic oscillator

As an example, take the damped quantum harmonic oscillator. This has the Hamiltonian
H =ω0â†â. If damping is added, it obeys the master equation

dρ̂
d t
=
−i
ħh
[ω0â†â,ρ] + γ (1+ n̄) (2âρâ† − â†âρ −ρâ†â)

+ γn̄(2â†ρâ− ââ†ρ −ρââ†) . (45)

17

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

This leads to a random walk in a complex space [2,3],

dα
d t
= − (γ+ iω0)α+

Æ

2γ (σ+ n̄)ζ(t) ,

dβ
d t
= − (γ− iω0)β +

Æ

2γ (σ+ n̄)ζ∗(t) , (46)

where the noise is complex and ζ(t) = (w1(t) + iw2(t))/
p

2. The correlations are

ζ(t)
�

ζ(t ′)
�∗�
= δ

�

t − t ′
�

,

ζ(ω)
�

ζ
�

ω′
��∗�

= δ
�

ω−ω′
�

. (47)

2.9.1 Wigner representation

In the zero temperature Wigner case with γ =1, σ = 1/2, and in a rotating frame so that
ω0 = 0, the probability follows the Fokker-Planck equation:

∂ P
∂ t
=

�

∂

∂ αx
αx +

∂

∂ αy
αy +

1
4

�

∂ 2

∂ α2
x
+
∂ 2

∂ α2
y

��

P , (48)

which is an example of Eq (17). Ignoring terms that vanish or can be obtained from symmetry,
the first corresponding moment equations in each of the real and imaginary directions are

∂

∂ t
〈αx〉=

−αx
∂

∂ αx
αx

·

= −〈αx 〉 ,

∂

∂ t

αxαy

�

=

�

−
�

αx
∂

∂ αx
+αy

∂

∂ αy

�

αxαy

�

= −

αxαy

�

,

∂

∂ t

α2
x

�

=

��

−αx
∂

∂ αx
+

1
4
∂ 2

∂ α2
x

�

α2
x

�

=
1
2
− 2

α2
x

�

. (49)

The steady-state is therefore a Gaussian distribution with

αx ,y

�

= 0,

αxαy

�

= 0 and
¬

α2
x ,y

¶

= 1/4. One can use an initial condition of α= (v1+iv2)/2, with

v2
i

�

= 1/2, in order to

replicate the steady state, which is a Gaussian with〈αx 〉=

αy

�

= 0 and

α2
x

�

=
¬

α2
y

¶

= 1/4.

2.9.2 Internal spectrum

Neglecting any boundary terms, the equation in frequency space is:

−iωα̃(ω) = −α̃(ω) + ζ̃(ω) . (50)

For sufficiently long times, the solution in frequency space - whereω= 2π f is the angular
frequency - is therefore given by:

α̃ (ω) =
ζ̃(ω)

1− iω
. (51)

The expectation value of the noise spectrum,

|α̃(ω)|2
�

in the long time limit, is:

|α̃(ω)|2
�

=
1

2π (1+ω2)

∫ ∫

e−iω(t−t ′)

ζ(t)ζ∗(t ′)
�

d td t ′

=
T

2π (1+ω2)
. (52)

This equation can also be used for some classical problems, which correspond to the high-
temperature limit of n̄≫ 1.

18

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

2.10 Input-output spectra

The spectrum of an internal field variable is not the one that is usually measured. An impor-
tant application of stochastic equations is therefore in calculating output, measured spectra
of lasers, quantum optics, opto-mechanics and quantum circuits [51,59]. These have the fea-
ture that the measured output spectrum may also include noise from reflected fields at the
input/output ports. If the quantum noise term in the Heisenberg equations for a cavity opera-
tor âc is given by: ˙̂ac ∼ ..+

p

2γâin(t), then the corresponding operator input-output relations
are âout(t) + âin(t) =

p

2γâc .
In quantum phase-space for the case of the harmonic oscillator or similar systems,

αin =
p
σ+ n̄ζ is the noise term in the Langevin equation. The output fields αout that are

measured are given by:

αout =
p

2γα−αin . (53)

Hence one must include in the spectrum both the internal mode variables and the noise
terms themselves. Solving for the spectra, one obtains auxiliary fields with

α̃in(ω) =
p
σ+ n̄ζ̃(ω) , (54)

α̃out(ω) =
p

2γã(ω)−
p
σ+ n̄ζ̃(ω) .

In summary, it is the output fields that are amplified and measured. Hence one must be
able to compute the spectra of the output fields for experimental comparisons. These have
the additional feature that they include the reservoir noise ζ̃(ω), evaluated at the same time
as the field is evaluated, since the reservoir noise is the input here. In xSPDE these are called
auxfields.

2.10.1 Steady-state result

Consider the example of Subsection (2.9), in the Wigner representation case with γ = 1,
σ = 1/2 and n̄ = 0. Over long time-scales, so that one is in the steady state, the solution for
ãout is that:

α̃out(ω) =
p

2
�

1
1− iω

−
1
2

�

ζ̃(ω)

=
1
p

2

�

1+ iω
1− iω

�

ζ̃(ω) . (55)

This gives the following expectation values:

α̃out(ω)
�

α̃out(ω)
�

ω′
��∗�

=
1
2
δ
�

ω−ω′
�

,

α̃in(ω)
�

α̃in(ω)
�

ω′
��∗�

=
1
2
δ
�

ω−ω′
�

. (56)

These are the expectation values of the zero temperature quantum fluctuations in the input and
output channels. This means that the harmonic oscillator in its ground state is in equilibrium
with an external vacuum field reservoir, also in its ground state. However, from Eq (52), the
internal spectral correlations of the harmonic oscillator are modified by the coupling.

While this is a simple result, exactly the same general type of behavior occurs in more
sophisticated cases. These may include many coupled modes with nonlinearities. Additional or
auxiliary fields that depend both on noise terms and internal stochastic variables are required.
The soluble case given above is a useful test case, and it is treated numerically later in the
manual.

19

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

3 SPDE theory

This section describes the basics of stochastic partial differential equation (SPDE) theory,
in order to explain the background to the numerical methods.

3.1 SPDE definitions

A stochastic partial differential equation or SPDE is defined in both time t and one or more
space dimensions x. We suppose there are d total space-time dimensions. The space-time
coordinate is denoted as r=

�

r1, . . . rd
�

= (t,x) = (t, x , y, z, ...).
The stochastic partial differential equation solved is written in differential form as

∂ a
∂ t
= A [∇,a, r] +B [∇,a, r] ·w(r) + L [∇,a, r] · a . (57)

Here, a=
�

a1, . . . a f

�

is a real or complex vector field, A is a vector function of fields and space
and B a matrix function. The new feature is that terms can now include the operator∇, which
is a differential term in a real space x. The exact structure of these terms is important, and not
all such equations have well-behaved solutions [60,61].

In many common cases, the noise term w is delta-correlated in time and space:

wi (r)w j

�

r′
��

= δ
�

t − t ′
�

δ
�

x− x′
�

δi j . (58)

One can also have noise with a finite correlation length defined by a noise correlation function
Ni j

�

x− x′
�

in space so that:

wi (r)w j

�

r′
��

= δ
�

t − t ′
�

Ni j

�

x− x′
�

. (59)

It is even possible to have noise with a finite correlation time. Currently, these are not directly
treated in xSPDE, although user definitions of this are possible by adding a customized noise
function.

Additionally, the initial field has a probability distribution. In most examples, we suppose
that this initial random field distribution can be generated as a function of Gaussian distributed
initial random fields v (x), where:

vi (x) v j

�

x′
��

= δ
�

x− x′
�

δi j . (60)

However, it is also possible that the initial random fields are also not delta-correlated, so
that

vi (x) v j

�

x′
��

= Ri j

�

x− x′
�

. (61)

Both finite correlation length and delta-correlated noise and random terms can be used in
xSPDE simulations, with finite correlation lengths defined through a Fourier transform method.

3.2 Boundary conditions

There are three types of boundaries that are available in xSPDE. They are specified indepen-
dently for each space dimension j = 2, . . . d, field component i = 1, . . . f , and lower or upper
location ℓ = 1,2. Each has an xSPDE boundary type. These are specified with a numerical
code bt, as:

Dirichlet (specified value, bt = 1): ai

�

r1, r2, . . . r̂ j
ℓ
, . . .

�

= fi jℓ (r,a) .

20

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Periodic (bt = 0): ai

�

r1, r2, . . . r̂ j
ℓ
, . . .

�

= ai

�

r1, r2, . . . r̂ j
3−ℓ, . . .

�

.

Robin/Neumann (specified derivative, bt = −1): ∂
∂ r j ai

�

r1, r2, . . . r̂ j
ℓ
, . . .

�

= gi jℓ (r,a).

The coordinates r̂ j
ℓ
=
�

r j
1, r j

2

�

are locations where boundary conditions are enforced. There are
five types of boundary combinations of these for each dimension and field variable. Note that
the boundary type can change the error stability properties of an equation. The most general
boundaries can only be specified using finite differences currently, as the spectral method
boundary types are more limited.

Periodic boundaries can’t be combined with other types, as this defines both boundaries:

a) periodic-periodic- P-P: "0,0"

b) Dirichlet-Dirichlet- D-D: "1,1"

c) Robin-Robin- R-R: "-1,-1"

d) Robin-Dirichlet- R-D: "-1,1"

e) Dirichlet-Robin- D-R: "1,-1"

Just as with the derivative term, each of these types can change with dimension and field com-
ponent. Specified field or derivative values can be any user-defined functions of space, time,
and field amplitude or simply have fixed values. Currently, all combinations of boundaries
can be treated in xSPDE using finite difference derivatives. Spectral methods are restricted to
periodic or zero Dirichlet/Neumann boundary conditions.

3.3 Spatial grid and boundaries

The precise location of the boundary at r̂ j
ℓ

is important in solving (S)PDEs, especially if high
accuracy is required, or if field values at the boundary are needed.

Suppose the spatial grid spacing is ∆x and the number of grid points in a particular di-
mension d is points(d) = N , then the maximum range from the first to last computed point is
always:

R= (N − 1)∆x = ranges(d) . (62)

Noting that r= (t,x), and ∆r= (∆t,∆x) ,this means that the space-time points are at:

ri = Oi + (i − 1)∆ri . (63)

There are two distinct spatial boundary locations used in xSPDE, depending on the type of
boundary conditions specified, as follows:

3.3.1 Periodic boundary

Due to periodicity, the logical boundary location is arbitrary. For the default case of a periodic
boundary, the indices are arranged as though on a circle from 1 : N . It is useful to suppose the
boundary as at both r̂ j

1 = r j
1 −∆r j/2 and at r̂ j

2 = r j
N j
+∆r j/2. Neither upper or lower logical

‘boundary’ is at a grid point. The effective range of the domain is R j +∆r j . Only the values
at N points are computed, and one must regard the point where the periodicity is enforced as
interpolating between the last and first point.

21

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

3.3.2 Dirichlet/Robin boundary

For the case of a non-periodic boundary, including Dirichlet, Robin and Neumann boundary
conditions, the indices are simply in a line from 1 : N . The lower and upper lower boundaries
are at r̂ j

1 = r j
1 and at r̂ j

2 = r j
N j

. In some PDE methods the logical boundaries are outside the grid
boundaries, but that is not the case here. Unlike the periodic case, boundaries are enforced at
the first and last point. This is different to what is found in standard trigonometric transform
software, but this approach allows for a unified and simpler treatment of multiple types of
algorithm.

3.4 Multidimensional walk

The simplest example of an SPDE is the multidimensional Wiener process:

ȧ = w(t,x) . (64)

This has a solution that is identical in appearance to an SDE:

a (t,x) = a (0,x) +

∫ t

0

w (τ,x) dτ . (65)

Just as for an SDE, this means that the initial mean value does not change in time:

〈a (t,x)〉= 〈a (0,x)〉 . (66)

Since there are no spatial derivatives here, boundary values are not important. One can
regard this as having periodic boundaries, which by the xSPDE conventions means that no
boundary conditions are enforced - since periodic boundaries do not alter computed values
when there are no derivatives.

3.4.1 Variance solution

The noise correlation is non-vanishing from Eq (2), so the variance must increase with time:

a2 (t,x)
�

=

a2 (0,x)
�

+

∫ t

0

∫ t

0

w (τ,x)w
�

τ′,x
��

dτdτ′

=

a2 (0,x)
�

+δd−1 (0)

∫ t

0

∫ t

0

δ
�

τ−τ′
�

dτdτ′ . (67)

Integrating the temporal delta function gives unity. The spatial delta-function is replaced
by 1/∆V in a discretized lattice calculation at points x j with cell volume∆V =

∏

∆x j , which
means that the second moment and the variance both increase linearly with time:

a2
�

t,x j

��

=

a2
�

0,x j

��

+ t/∆V . (68)

The probability on the lattice for observing lattice field values a j follows an elementary
diffusion equation:

∂ P
∂ t
=

1
2∆V

∑

j

∂ 2P
∂ a2

j

, (69)

22

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

which is an example of Eq (17). From this equation and using Eq (19), the first two corre-
sponding moment equations in this case are

∂

∂ t

a j

�

=

®

1
2
∂ 2

∂ a2
j

a j

¸

= 0 ,

∂

∂ t

¬

a2
j

¶

=

®

1
2∆V

∂ 2

∂ a2
j

a2
j

¸

=
1
∆V

. (70)

These differential equations are satisfied by the solutions obtained directly from the
stochastic equations, but as one can see, the coupling between the lattice points provides
more interesting behavior. This requires derivative terms such as Laplacians.

3.5 Interaction picture

To treat Laplacians, spectral or interaction-picture methods can be very efficient, and in certain
cases give both much lower errors and much faster run-times. They do not have the large errors
and stability problems of finite difference methods, which allows much larger time-steps to be
used.

To explain the algorithm, (S)PDEs often contain terms which are linear in the field variables
a, including derivative operators acting on a. This can be treated using an interaction picture,
which leads to dramatically reduced time-step errors and higher stability [29, 62]. In the
literature on partial differential equations, this is called a spectral method.

The interaction picture provides a means to solve for linear terms in the time derivatives
in a very efficient way. This is based on introducing local variables ã for the field variables a.
It is convenient for the purposes of describing such interaction picture methods to introduce
an abbreviated notation as:

D [a, r] = A [∇,a, r] +B [∇,a, r] ·w(r) . (71)

Hence, provided that L [∇] has no explicit space-dependence, we can write the differential
equation as:

∂ a
∂ t
=D [a, r] + L [∇] · a . (72)

3.5.1 Linear propagator

Next, we define a linear propagator. This is given formally by:

P (∆t) = exp
�

∆tL [∇]
�

, (73)

where ∆t = t − t̄, and t̄ is the interaction picture origin. Transforming the field a to an
interaction picture is achieved on defining:

ã= P−1 (∆t)a . (74)

As a result, the equation of motion is:

∂ ã
∂ t
=D [P (∆t) ã, t] . (75)

This allows an SPDE to be treated like an SDE, if transformations are used. These can
be efficiently implemented using Fourier or discrete sine or cosine transforms. The xSPDE

23

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

implementation of this currently requires either periodic or zero boundary conditions and
a diagonal linear operator L without space-dependence. The linear operator can have any
derivative in the periodic case, but only even order derivatives in the Dirichlet and Neumann
case.

As well as the linear term, derivatives and nonlinear functions that are not tractable with
spectral methods can appear in the residual term D [a, r], where they are treated using finite
difference techniques. As a result, while the interaction picture does not handle all derivative
terms, it also does not restrict them from being used elsewhere in the equations.

Other methods exist in the literature. Improved convergence properties are obtained for
some problems in a spectral picture using an exact solution of a linear part of the drift term
[63, 64], or stochastic noise terms [65], as well as the Laplacian terms. The xSPDE code has
user-definable functions that can be adapted to include these.

3.6 Fourier transforms

It is often useful to transform a field to implement the interaction picture, or to extract nonlocal
correlation properties in space. The Fourier transforms or spectrum definitions used in xSPDE
are given by the symmetric Fourier transform definition:

ã(k) = F (a(x))

=
1

[2π](d−1)/2

∫

e−ik·xa(x)dx . (76)

The inverse Fourier transform is the function:

a(x) = F−1 (ã)

=
1

[2π](D−1)/2

∫

eik·xã(k)dk . (77)

In simulations, this is not combined with any time (or space) averaging as in the temporal
Fourier transforms. The reason for this is that the interaction picture transformations must be
invertible, which is the case for a point-based discrete Fourier transform.

3.6.1 Normalization

During propagation, we define temporary internal fields A(kn), that are normalized using FFT
conventions:

A(kn) =
N2
∑

j2=1

. . .
Nd
∑

jd=1

e−ikn·xj a
�

xj

�

,

a
�

xj

�

=
1

∏D
k=2 Nk

N2
∑

n2=1

. . .
ND
∑

nD=1

eikn·xjA(kn) . (78)

Otherwise, for graphical and output averages, we define Fourier transforms using physics and
mathematics conventions:

ã (kn) =
D
∏

d=2

�

∆xdp
2π

� N2
∑

j2=1

. . .
ND
∑

jd=1

e−ikn·xj a
�

xj

�

,

a
�

xj

�

=
D
∏

d=2

�

∆kdp
2π

� N2
∑

n2=1

. . .
ND
∑

nd=1

eikn·xj ã (kn) . (79)

24

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Note that this rescaling is consistent, because

∆xd∆kd =
2π
Nd

. (80)

3.7 Trigonometric transforms

Taking the interaction picture approach, we now consider other types of boundary conditions,
which we assume here are either a zero field (Dirichlet) or a zero derivative (Neumann). We
will only treat cases of even order derivatives, which do not change the trigonometric function.
Any odd order derivatives are taken to be included in the finite difference (D) term.

In the spectral transform method in one space dimension, one uses a trigonometric func-
tion, T (kx) = T1 sin (kx) + T2 cos (kx) to expand as:

ai (t, x) =
∑

n

ai,n(t)T (ki,n x) . (81)

The discrete inverse transform allows evaluation at sample points x j , in order to satisfy the
boundary conditions:

ai,n(t) =
∑

j

ai(t, x j)T̃ (kn x j) . (82)

The trigonometrical function is defined such that:

∂ 2p
x T (kx) =

�

−k2
�p

T (kx) . (83)

3.7.1 Propagator solution

This means that the propagator equation is now soluble for the sampled points, since for each
component

L · a(t, x j) =
∑

i jn

Lan(t)T (kn x j)

= −
∑

i jnp

Lp

�

−k2
n

�p
an(t)T

�

kn x j

�

. (84)

Hence,
an(t) = exp

�∑

Lp

�

−k2
n t
�p

t
�

an(0) . (85)

This is an exact solution, provided the initial condition has the given expansion. There are
no approximations made on the transverse derivative. Provided the k values are the same, this
propagator is identical for all types of trigonometric and Fourier transforms.

As explained above in (3.2), there are five types of boundary combinations that are possible
in each dimension and field component. Each has a corresponding xSPDE boundary type and
spectral integrator. Just as with the derivative term, each of these types can change with
dimension and field component.

Currently, all can be treated in xSPDE using finite differences, and each type of boundary
has a particular spectral method that preserves the boundary requirement. In principle, more
than one transform can be used. It is possible to define the relevant trigonometric transforms
to correspond to whole symmetries whose boundary is either at a grid point, or half symmetries
which are half-way between two grid points.

Differential equations can also have first order terms, which currently require using finite
differences or periodic boundaries. These make use of boundaries at a grid point, in order to
compute the relevant terms, which means that there is greater compatibility with the finite

25

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

difference methods when the boundaries are at the grid points. With this restriction, the
available transforms are reduced.

It is possible to compute first-order derivatives with spectral methods, but these turn sine
transforms into cosine transforms. This is not compatible with simple interaction picture trans-
formations, except for the periodic case.

In summary, spectral transforms can all be implemented using fast FTT, discrete sine (DST)
or cosine (DCT) transforms, but the trigonometric method to be used is specific to the boundary
type. The definitions used here mostly correspond to the definitions used in the FFTW [66,67]
software.

3.8 Transforms and boundaries

Suppose that there are Dirichlet or Neumann boundaries, then the following expansion can be
employed in each dimension. We only describe one space dimension for simplicity with:

a =
∞
∑

n=1

[Sn sin (kn x) + Cn cos (kn x)] e
∑

Lp(−k2
n)

p
t , (86)

where kn, Cn, Sn are chosen to satisfy the initial and boundary conditions. Boundaries are
taken, for the purposes of explanation, as being from x = 0 to x = R. This is not quite the case
in the actual code, which can treat arbitrary boundary locations due to the use of the optional
origins input to change the origin.

Suppose there are N computational grid-points. For the spatial grid (1-based), this corre-
sponds to xn = (n− 1)∆x , n= 1, ..., N with ∆x = R

N−1 , so we have x1 = 0 and xN = R.
In carrying out a discrete transform on NT points, using standard trigonometric transform

definitions, there may be less grid points required, so we may have NT ≤ N if some of the
boundary values are defined due to Dirichlet boundaries. Internal xSPDE definitions always
use the full computational grid range, N , which includes boundary values.

An unnormalized inverse results in the original array multiplied by NF T/2 = (N − 1)/2,
where NF T = N−1 is the FFTW ‘logical’ size, so our definitions include a factor of

p

2/ (N − 1).
Here NT , the number of points in the standard DST/DCT definitions, can differ from both the
xSPDE computation grid size N that includes both boundaries, and also from the FFTW ‘logical’
size, which always includes one (periodic) boundary.

The notation in this section is based on the usual discrete sine and cosine transform
(FFTW) definitions. However, we use 1−based indices, often found in mathematics and in Oc-
tave/Matlab/Julia/Fortran. For all coordinates, including these examples of discrete Fourier
transforms, we remind the reader that:

rd
n = Rd (n− 1)/(N d − 1) . (87)

If we regard the transforms as having arguments of form kn (x0 + xn), the momentum
spacings given below are such that:

∆k =
π

R
,

∆x∆k =
π

N − 1
. (88)

These internal definitions used in the propagator calculations are therefore different to those
used in external graphs and in periodic boundary cases.

The following lists the inverse trigonometric transforms required to obtain a(x) from
ak, for the four different non-periodic boundary types in each dimension and field index.

26

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

3.8.1 D-D case: Discrete map (DST-I)

Take a(0) = a(R) = 0, with a sine transform. The representation of a is

a (xn, t) =

√

√ 2
N − 1

N−1
∑

j=2

a j (t) sin
�

π
(j − 1) (n− 1)

N − 1

�

. (89)

Forward transform: this is also DST-I

3.8.2 R-R case: Discrete map (DCT-I)

Take a′(0) = a′(R) = 0. The representation of a is

a (xn, t) =

√

√ 2
N − 1

1
2

�

a1 + (−1)n−1aN

�

+
N−1
∑

j=2

a j (t) cos
�

π
(j − 1) (n− 1)

N − 1

�

!

. (90)

Forward transform: this is also DCT-I

3.8.3 D-R case: Discrete map (DST-II)

Take a(0) = a′(R) = 0. The representation of a is:

a (t, xn) =

√

√ 2
N − 1

N−1
∑

j=1

a j (t) sin
�

π

N − 1

�

j −
1
2

�

n
�

!

. (91)

Forward transform: this is DST-III.

3.8.4 R-D case Discrete map (DCT-II)

Take a′(0) = a(R) = 0. The representation of a is:

a (t, xn) =

√

√ 2
N − 1

N−1
∑

j=1

a j (t) cos
�

π

N − 1

�

j −
1
2

�

(n− 1)
�

. (92)

Forward transform: this is DCT-III.

3.9 Frequency or momentum grid

The frequency or momentum grid spacing is defined for all output graphs and periodic Fourier
transforms as

∆k =
2π

N∆x
. (93)

However, the internal momentum grid spacing used can differ from this, depending on
the transforms used in the interaction picture. As explained above in Subsection (3.8), the
internal momenta for trigonometric transforms are:

∆k =
π

(N − 1)∆x . (94)

27

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

These transformations are needed because the xSPDE algorithms allow the use of a sequence
of interaction pictures. Each successive interaction picture is referenced to t = tn, for the n-th
step starting at t = tn, so aI(tn) = a(tn) ≡ an. It is also possible to solve stochastic partial
differential equations in xSPDE using explicit derivatives, but this is less efficient.

A discrete Fourier transform (DFT) using a fast Fourier transform method is employed
for the interaction picture (IP) transforms used with periodic boundaries. This is normal-
ized differently to the graphed Fourier transforms, but the difference is not computationally
significant. However, the ∆k used internally changes with the precise type of trigonometric
transform used in other cases.

In one dimension, the DFT is usually defined by a sum over indices starting with zero,
rather than the Matlab convention of one. Hence, if m̃= m− 1:

Añ = F (a) =
N−1
∑

m̃=0

am̃ exp [−2πim̃ñ/N] . (95)

For periodic boundaries, the IP Fourier transform can be written in terms of an FFT as

A (kn) =
∏

j

∑

m̃ j

exp
�

−i
�

dk jd x j

�

m̃ j ñ j

�

 . (96)

The inverse FFT Fourier transforms divide by the correct factors of
∏

j N j to ensure invertibil-
ity. Due to the periodicity of the exponential function, negative momenta are obtained if we
consider an ordered lattice such that:

k j = (j − 1)∆k (j ≤ N/2) ,

k j = (j − 1− N)∆k (j > N/2) .
(97)

This Fourier transform is then multiplied by the appropriate factor to propagate in the interac-
tion picture, then an inverse Fourier transform is applied. While it is not scaled for interaction
picture transforms, an additional scaling factor is applied to obtain transformed fields in any
averages for output plots.

In other words, in the averages

ãn =
∆x
p

2π
Añ′ , (98)

where the indexing change indicates that graphed momenta are stored from negative to posi-
tive values. For plotted frequency spectra a positive sign is used in the frequency exponent of
the transform to frequency space, to agree with common physics conventions.

3.10 Derivatives

3.10.1 Spectral derivatives

For spectral derivatives in the interaction picture, we define Dx (k) to obtain a derivative. To
explain, one integrates by parts:

Dp
x ã (k) = [ikx]

p ã (k) =
1

(2π)d/2

∫

dx e−ik·x
�

∂

∂ x

�p

a (x) . (99)

This means, for example, that to calculate a one dimensional space derivative in a Fourier
interaction picture routine, one uses:

28

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

∇x → Dx . (100)

Here Dx is an array of momenta in cyclic order in dimension d as defined above, suitable
for an FFT calculation. The imaginary i is not needed to give the correct sign, as it is included
in the derivative array. In two dimensions, a full two-dimensional Laplacian is:

∇2 =∇2
x +∇

2
y → D2

x + D2
y . (101)

Then, on inverting the transform

�

∂

∂ x

�p

a (x) =
1

(2π)d/2

∫

dx eik·x [Dx (k)]
p ã (k) . (102)

3.10.2 Finite difference derivatives

For calculating derivatives using finite differences, the following central differencing method
is used, away from the boundaries:

∇x a (x i)→
1

2∆x
[a (x i+1)− a (x i−1)] ,

∇2
x a (x i)→

1
∆x2

[a (x i+1)− 2a (x i) + a (x i−1)] . (103)

This raises the question of how to calculate derivatives at the boundary, for example at
the lower boundary x1, where a (x0) is not known, and similarly at the upper boundary. The
answer depends on the boundary type [68], and is obtained by extending the boundary to
additional points a (x0) and a (xN+1) that are assumed to extend the boundary condition:

Periodic: a (x0) = a (xN)

∇x a (x1)→
1

2∆x
[a (x2)− a (xN)] ,

∇2
x a (x1)→

1
∆x2

[a (x2)− 2a (x2) + a (xN)] . (104)

Dirichlet: ã (x1) specified: a (x0) = ã (x1)

∇x a (x1)→
1

2∆x
[a (x2)− ã (x1)] ,

∇2
x a (x1)→

1
∆x2

[a (x2)− ã (x1)] . (105)

Robin/Neumann: ã′ (x1) specified: a (x0) = a (x2)− 2ã′ (x1)∆x

∇x a (x1)→ ã′ (x1) ,

∇2
x a (x1)→

2
∆x2

�

a (x2)− a (x1)− ã′ (x1)∆x
�

. (106)

In all cases the boundary value is evaluated as part of the derivative evaluation, so it can
be a nonlinear function of a.

29

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4 Solving an SDE

This section describes how to use the xSPDE numerical toolbox to solve an SDE to obtain
and graph averages, spectra or probability distributions.

4.1 Using xSPDE

Stochastic equations have very few analytic solutions, except in unusually simple cases. They
generally require numerical solutions. A stochastic toolbox helps to streamline the job of
writing and executing code. The xSPDE simulation program is straightforward to use, and
provides many options. To run it, an Octave or Matlab environment is needed.

The current xSPDE distribution includes:

• The toolbox: xspde.ml t bx , or a folder: xSPDE.

• simulation (xSIM) and graphics (xGRAPH) functions.

• xAMPLES: examples that can also be used as templates

• xDOC: should contain the current user guide

xSPDE can be run interactively as a script, or as a function in batch mode, either at a local
workstation or on a remote cluster. Data can be either plotted immediately, or saved then
plotted later. To simulate a stochastic equation interactively, first check that the xSPDE toolbox
is installed.

If you have the toolbox file, xspde.ml t bx , just open it and click on instal l. Otherwise
the Octave/Matlab path must point to the xSPDE folder and subfolders. If you have the folders,
but not the toolbox, proceed as follows:

• Click on the Octave/Matlab HOME tab (top left), then Set Path

• Click on Add with Subfolders

• Find the xSPDE folder in the drop-down menu, and select it

• Click on close to save the path.

Type clear to clear old data, and enter the xSPDE inputs and functions into the command
window. For the simplest cases, one can do this by cutting and pasting from an electronic file
of this manual. You may have to change quotation marks to Matlab quotes, (’) or (").

For more advanced cases, it is best to create a function that calls xSPDE. The Octave/Matlab
built-in editor is also useful. There are many examples listed in this manual, and there are
more in the xAMPLES folder. Any of these can be used as templates for building your own
simulation.

4.1.1 Wiener process

To solve for a single trajectory of Eq (21) with xSPDE, just type in:

p.deriv = @(a,w,p) w;
xspde(p);

Here p.deriv defines the time derivative ȧ in the input parameter structure p, while w is a
delta-correlated Gaussian noise generated internally. There are no other parameters, so default
values are used. This produces the graph shown in Fig (1), which gives a single trajectory.

30

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

t

0 2 4 6 8 10

a
1

-2

-1

0

1

2

3

4

5

6

Figure 1: The simplest example: a random walk.

At the end of the run, xSPDE reports the RMS errors. There are discretization, sampling
and comparison errors, all normalized by the maximum observable value, unless compared to
a result of zero. In the present simulation, the discretization or step error is about 10−16, due
to round-off. This is just a single trajectory, but more can be added.

4.1.2 General derivatives

All important xSPDE procedures use functions. Functions can be specified inline, which is the
simplest, or externally. The last argument of any xSPDE function is the parameter structure.
An example already introduced is the derivative function, labeled p.deriv.

For example, consider the stochastic differential equation,

da
d t
= −ga+w . (107)

The corresponding derivative code definition is:

p.deriv = @(a,w,p) - p.G*a + w;

This code defines the function handle p.deriv, which gives the derivative function, da/d t.
In this example, it simply returns the derivative, in terms of the variable a, loss parameter
p.G, and stochastic noise term w. This user specified inline function is known internally by the
function handle p.deriv.

Inside a complete xSPDE simulation input with a parameter values, it would look like:

p.G = 0.25;
p.deriv = @(a,w,p) - p.G*a + w;
xspde(p);

31

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

External function handles can also be used. They are useful for complex functions with
more internal logic.

A typical script first defines parameters and function specifications, in a structure, then
runs the simulation code with the parameter structure as an input, as follows:

p.[label1] = [parameter1];
...
p.[label2] = [parameter2];
p.deriv = @(a,w,p) [derivative];
xspde(p);

Note the following points to remember:

• p.[label1] = [parameter1] defines a parameter in the structure p.

• There are many possible inputs, which all have default values.

• You don’t have to save the data if you want an immediate plot.

• The notation p.deriv=@(a,w,p) [derivative] defines a function, da/d t.

• In this example, a is the stochastic variable, w the random noise, p a structure.

• Other labels can be used instead of (a,w,p) if preferred.

4.2 Input parameters

All xSPDE simulations use a structure for input data. Most functions also require a param-
eter structure, combining the data input with additional internal parameters. Any naming
convention will do for either structure, as long as you are consistent.

User-defined parameters can be added freely. To ensure that there is no clash with internal
variables, it is best if user defined parameters start with a capital letter.

The xSPDE inputs have default values, which are used if the input values are omitted. If
you only need the first element of a vector or array, just input the value required. Parameters
can be output with the verbose switch, p.verbose. This has four levels of output: −1,0, 1 or
2, with p.verbose=0 as default, giving final error reports. To get more progress details and
individual errors, use p.verbose=1. To eliminate almost everything, use p.verbose=-1.
For maximum information, including all the internal parameter values, use;

p.verbose = 2;

While this level of detail is not usually needed, it can be useful to print out all the internal
parameters and default values to understand how the program operates.

4.2.1 Simulation parameters table

The most common xSPDE input parameters used to define the equations in a simulation, to-
gether with their default values are:

32

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Label Type Default value Description

fields integer vector 1 Number of stochastic fields
noises integer vector 1 Number of noises
name string ’ ’ Simulation name
deriv function 0 The stochastic derivative
initial function 0 Function to initialize variables

method function [see 7] Integration method
ensembles integer vector [1,1,1] Stochastic ensemble sizes

ranges real vector [10] Time and space ranges
points integer vector [51] Output lattice points in [t,x,y,z,..]
steps integer [1] Intermediate steps per time point

observe{n} function a Observable function for averages
compare{n} function 0 Comparison function for averages

binranges{n}{m} vector [0] Binning ranges for probabilities

A more detailed explanation of these parameters is found below, and a complete table is
given in section 9.2.

4.2.2 Graphics parameters

The generated average data can be graphed using any graphics editors, or else using the inter-
nal xGRAPH function defined for this purpose. An xSPDE simulation can return many different
averages. These are defined in a cell array with indices in braces. The index is used to address
the output data produced.

For each index, one can define parameters that define the quantity stored, together with
corresponding graphics outputs. Some commonly used options are:

Label Type Default value Description

olabels{n} string ’a’ Observable label
transverse{n} integer 0 Transverse slices in time
transforms{n} vector 0 Set to 1 for Fourier transforms in time

scatters{n} integer 0 Set to s for s scatter plots in the observable

The full definition of the options is given in the user guide in sections 9.4 and 10, although
most will be clear from examples.

4.3 Fields and noises

Stochastic variables in an SDE are fields, stored in a real or complex matrix, a(i, j). Here, i is
an internal field index, while e is the ensemble index.

fields gives the range of the first internal index. This is the total number of SDE variables or
fields. It has a default value of f ields = 1.

ensembles allows multiple trajectories to be integrated. This has up to three components.
The first component, ensembles(1), gives a vector of local trajectories, so
e = 1, . . .ensembles(1). The two other ensemble values specify serial or parallel pro-
cessing, as explained below.

noises are noise dimensions, similar to fields, and used as w(i, j), where the first noise index
has noises components. The default value is noises = f ields.

33

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

In the example above, we could add the fields, dimensions, ensembles and noises:

p.fields = 1;
p.dimensions = 1;
p.noises = 1;
p.ensembles = 1;

As these are all default values, this is superfluous in a simple case. The full definition of
ensembles as a vector is given below, and in some cases uses the parallel toolbox in Matlab.

4.3.1 Initial values, points and ranges

Initial values are required to define any differential equation, and in a numerical calculation
one must also have a defined lattice.

initial The initial value is defined by a function p.ini t ial. This must return either an initial
vector of size fields, or else a random array of size f ields × ensembles(1). The default
function simply returns zero.

inrandoms are initial random number dimensions, similar to fields, and used as v(i, j), where
the first random dimension has randoms components. The default value is
randoms = noises. Specifies the first argument of the function p.ini t ial(v, p) as a real
Gaussian noise vector v with unit variance. The same noise is used when error-checking,
so that changes are from the step-size, not from random fluctuations.

points The number of integration points. The default setting is currently 51.

steps The number of integration steps used for each output time-step. The default is 1.

ranges The total integration range in each dimension, the first element being the maximum
integration time T . The default setting is currently 10.

4.3.2 Observables

observe is a cell array of functions of stochastic fields, each defining an average. xSPDE
expects a (named or anonymous) function that takes two parameters, namely the field
matrix a and the input structure p. The function must return a real or complex matrix
of dimension (ℓ, ensembles(1)), where ℓ indexes over a vector observable. xSPDE then
averages over the second index, to calculate the observable.
To plot the variance, for example:

p.observe{1} = @(a,p) (a(1,:)-mean(a,2)).^2;

rawdata By setting p.rawdata=1 (see section 9.4), one can also store every trajectory includ-
ing both fine and coarse time-step values, and but this is very memory-intensive for large
simulations.

olabels is cell array of graph labels associated with each average, although one can also define
a function of the averages to be graphed with this label.

Observables are computed as a two-dimensional packed array, then unpacked for storage,
giving an array of dimension (d1, dspacet ime, ensembles(1)). Here d1 is the local observable
dimension, so d1 = 1 for a scalar observable. The space-time dimension is dspacet ime = 1
for an SDE, otherwise a vector for a SPDE, and ensembles(1) is the size of the ensemble of
trajectories computed in each processor. Once data is averaged internally over ensembles(1),
further transforms of the resulting averages are available.

34

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4.3.3 Using the dot

All equations entered in xSPDE utilize the Matlab syntax. This is designed to handle scientific
or mathematical matrix and array-based formulae. It has features to simplify matrix or array
equations which often require a ‘dot’ or a ‘colon’.

• Stochastic variables in xSPDE are matrices or arrays, where the last index is used to
treat parallel stochastic trajectories, for greater efficiency. This requires use of the ‘dot’
notation to perform multiplication inside equations.

• To multiply vectors, matrices or arrays element-wise, like ai j = bi jci j , the notation
a = b. ∗ c indicates that all the elements are multiplied. This is used to speed up calcu-
lations in parallel.

• An equation in xSPDE can apply to many stochastic trajectories in parallel. Using the
dot shortens the equation, and it also means that a fast parallel arithmetic will be used.
The same principle holds for larger arrays with spatial lattices, treated in in section 5.

• Broadcasting occurs if one or more dimensions has a unit size. For example, arrays of
size (1,100) and (6,1) can be added or multiplied to give a (6,100) matrix.

• A formula for a stochastic field may require you to address the first index - which is the
field component - and treat all the other elements in parallel. To do this in a compact
way, one may use the notation a(1, :), which indicates that all the subsequent index
elements are being addressed as well.

• For an an SPDE this can “flatten” a larger array into a matrix. This requires care to
make sure all the terms have the same dimensionality as described in section 5. xSPDE
includes routines to help this issue.

In summary, whenever a formula combines multiplication operations over spatial lattices or
ensembles, USE THE DOT.

4.4 Advanced random walk

We now return to the random walk, but with some more advanced features:

ȧ = w(t) . (108)

This is integrated numerically and graphed with N = points(1) points. The first point
stored is the initial value, so there are N−1 integration steps, of length d t = ranges(1)/(N−1).
Numerical graphs have discrete steps, and more detail is obtained if more time steps are used.
The default value is N = 51, which is predefined in the x pre f erences file. This is adjustable
by the user. It can also be changed for a simulation, by inputting a new value of points.

4.4.1 Simple xSPDE example

Unless you type clear first, any changes to the input structure are additive; so in the exercises
you should get the combination of all the previous structure inputs as well as your new input.

• Run the complete xSPDE script of Example 1 in Matlab.

It is simple to cut and paste from an electronic file to the command window. Be careful;
pasting can cause subtle changes that may require correction. Some generated characters
may be invalid input characters, and these will need retyping if this occurs.

You should get the output in Fig (1).

35

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

• What do you see if you average over 10000 trajectories ?

p.ensembles = 10000;
xspde(p);

• What do you see if you plot the mean square distance? Note that variances should
increase linearly with t.

p.observe = @(a,p) a.^2;
p.olabels = '<a^2>';
xspde(p);

• What if you add a force that takes the particle back to the origin?

ȧ = −a+w(t) . (109)

p.deriv = @(a,w,p) -a+w;
xspde(p);

The corresponding Fokker-Planck equation from Eq (17) is:

∂ P (a)
∂ t

=

�

∂

∂ a
+

1
2
∂ 2

∂ a2

�

P (a) . (110)

It is easy to verify that inserting this dynamical equation into Eq (19) gives the result:

∂

∂ t

a2
�

= 1− 2

a2
�

. (111)

• Solve for

a2 (t)
�

and use xSPDE to compare the numerical and analytic solutions. The
current time is accessible as the parameter p.t. Can you explain the graph differences?

4.5 Probability binning

It is possible to graph probability densities of real observables instead of averages, if
p.ensembles is large. This is achieved by inputting the observable number and binning range:

p.binranges{n}= {oa : ostep : ob} ; (112)

If present, this returns probability density of the n-th observable o{n}, through binning
into ranges of width ostep around the centers of each bin, starting at oa, and ending at ob.
The simulation returns a result of 1/ostep in the j− th bin if the trajectory is inside the bin, so
that o(j)− ostep/2< o < o(j)+ ostep/2, and zero otherwise. This gives a probability density
on output, plotted against time. Note that on graphing, an extra dimension is added for the
variable o. The probability density at ntimes equally spaced simulation times can be plotted
with p.transverse{n}=ntimes.

The probability can be plotted for any observe function of the stochastic variable.

36

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4.5.1 Multivariate probabilities

The probability density is multivariate for vector observables. This is possible because the bin-
ning ranges are stored in a cell array, which may contain several bin vectors. If the observable
o{n} is two-dimensional, then one can input:

p.binranges{n}= {oa(1) : ostep(1) : ob(1), oa(2) : ostep(2) : ob(2)} ; (113)

On graphing, two extra dimensions are added for the variable o in this case. The graph-
ics program xGRAPH will attempt to graph them, but it is limited by graphical visualization
constraints. In general, an arbitrary observable dimension is possible, but this is also limited
by the sampling and memory, since the number of samples per bin will decrease rapidly with
dimensionality.

The graphics program extracts slices and windows of probabilities if required. To plot the
probabilities of two observables, one for a range of −5 : 5 and the other for 0:25 for a range
of 0:1, add the following inputs before the xsim or xspde command:

p.binranges{1} = {-5:0.25:5};
p.binranges{2} = {0:0.5:25};

In the case of a two-dimensional probability density, plotted against time, there are a total
of four graphics dimensions. That is, one dimension for time, two for the observable dimen-
sions, and one for the probability itself. One can also plot how the probability density changes
in space for the case of a stochastic partial differential equation, as described in section 5.

4.6 Auxiliary fields and noises

In some problems, it is useful to access the noise terms, or functions of the noises and their
correlations with the fields at the same time. This is handled in xSPDE with auxiliary fields
or auxfields. These are fields that are functions of noise terms and the integrated fields. The
number of these is defined in the input structures using the parameter p.auxfields, which is
arbitrary.

Auxiliary fields are calculated using a function p.define, which is similar to p.deriv, except
that it returns the current value of the auxiliary field, not the derivative. These fields are
defined as the average over the previous step in time of the auxiliary function. This is essential
in calculating spectra, in order to eliminate systematic errors in Fourier transforms.

More details on this are given in Subsection (4.7). To access the auxiliary fields, one
can compute any observable average using a p.observe function as usual, or else store the raw
trajectories including auxiliary fields by setting p.rawdata=1. In either case, the auxiliary fields
are appended to the integrated fields by adding extra rows to the field matrix. The number of
variables or matrix rows for calculating averages in observe or rawdata is fields+auxfields.

4.6.1 Outputting the noise

As a simple example, suppose one wishes to calculate the noise terms and compare them with
the field trajectories in a simple Wiener process. The following code can be used:

37

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 2 4 6 8 10

t

-6

-4

-2

0

2

4

6

a
,

w

 #1

Figure 2: A single trajectory of a random walk, with the noise terms w graphed using
dashed lines, and the integrated variable a plotted as the solid line.

clear
p.auxfields = 1;
p.deriv = @(a,w,p) w;
p.define = @(a,w,p) w;
p.olabels = {'a, w'};
xspde(p);

The default observe function is used. This plots both rows of the field array, including
the auxiliary field which is defined as the noise term and plotted as a dashed line. There is
no ensemble averaging, and hence no ensemble error-bars. This is simply because because
no ensembles were specified in the input parameters. Similarly, there are no time-step error-
bars for this observable, because the fine and coarse noises are equal to each other after time
averaging.

The result that is plotted is therefore the coarse noise, whose correlation time equals the
time step. This is plotted below in Fig (2), which plots the same Wiener process as before,
except adding the driving noise term as well. The standard deviation of the noise in a single
step here is

p

1/d t, where 1/d t = 50/10 = 5 for the default range of 10 and default time
points of 51. Note that noise terms do not converge at small time-steps for delta-correlated
noise, even when the integrated stochastic process does converge. This is why it is necessary
to choose to plot one or the other, or else to time-average to obtain a converged result.

If multiple steps are used, the noise during the last step prior to the time-point is plotted.

4.7 Time-domain spectra

To get an output from a temporally Fourier transformed field, set t rans f orms{n}= 1 for the
observable (n) you need to calculate in transform space. This parameter is a cell array. It can

38

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

have a different value for every observable and for every dimension in space-time, if you have
space dimensions as well.

To obtain spectra from Eq (37) with greater accuracy, all fields are must be averaged inter-
nally. The code will use trapezoidal integration in time over the integration interval, to give
the average midpoint value. This employs the same interval for fine and coarse integration,
to allow comparisons for error-checking. After this, the resulting step-averaged fields are then
Fourier transformed.

In the simplest case of just one internal step, with no error-checking, this means that the
field used to calculate a spectrum is:

ā j =
�

a j+1 + a j

�

/2 , (114)

which corresponds to the time in the spectral Fourier transform of:

t̄ j =
�

t j+1 + t j

�

/2 . (115)

Note that if any temporal Fourier transform is specified, all the field variables are time-
averaged over a step. This is not strictly necessary, but it means that there is a reduced code
complexity for cases where there is a Fourier transform for some but not all variables. As
described above, the auxiliary variables are always time-averaged to allow error-checking, so
there is no change for these.

4.7.1 Error-checking

For an error-checking calculation with two internal steps, there are three successive valuations:
a j , a j+1/2, a j+1. In this case, for spectral calculations one averages according to:

ā j =
�

a j+1 + 2a j+1/2 + a j

�

/4 . (116)

In addition, one must define the last field āN . Due to the cyclic nature of discrete Fourier
transforms, this is also logically the zero-th field value. This is set equal to the corresponding
average of the N -th and (N + 1)-th field value, in order to reduce potential aliasing errors at
high frequencies in the resulting spectrum:

āN =
1
2
(aN + aN+1) , (117)

which corresponds to a time in the spectral Fourier transform of:

t̄N = tN + d t/2 . (118)

The time integral is carried out numerically as a sum which has N = points(1) time points of
interval d t. In xSPDE, d t = T/(N −1), where T = ranges(1). The ‘effective’ integration time
for the Fourier transform time integrals is Te f f = Ndt = 2π/dω = T × N/(N − 1) = T + d t.
Aliasing of virtual times higher and lower than the integration time is due to the discrete
Fourier transform.

When there are larger numbers of steps, from using the internal steps parameter, there are
more points to Fourier transform. These additional frequencies are computed while carrying
out the Fourier transform, but only the low frequency points near zero are saved. The unused
high frequency results are not stored or plotted, to conserve memory.

39

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4.8 Examples

4.8.1 Complex damped spectrum

Consider the spectrum of Eq (109), with a complex noise,

w (t)w∗
�

t ′
��

= δ
�

t − t ′
�

, (119)

a random initial equation near the equilibrium value, and a range of t = 100, with 640 points.
Here there are two real noises.

The input parameters are given below. There are parallel operations here, for ensemble
averaging, so we USE THE DOT.

clear
p.points = 640;
p.ranges = 100;
p.noises = 2;
p.ensembles = 10000;
p.initial = @(v,p) (v(1,:)+1i*v(2,:))/sqrt(2);
p.deriv = @(a,w,p) -a + w(1,:)+1i*w(2,:);
p.observe = @(a,p) a.*conj(a);
p.transforms = 1;
p.olabels = '|a(\omega)|^2';
xspde(p);

Note that p.transforms = 1 tells xSPDE to Fourier transform the field over the time
coordinate before averaging, to give a spectrum. Both observe and transforms could be cell
arrays, but the this is not needed with a single observable. The first argument v of the initial
function is a random field, used to initialize the stochastic variable.

To define as many observables as you like, use a Matlab cell array;

p.observe{1} = ..;
p.observe{2} = ..;

To learn more, try the following:

• Simulate over a range of t = 200. What changes do you see? Why?

• Change the equation to the laser noise equations introduced in the next section
(Laser quantum noise). Why is the spectrum much narrower?

4.8.2 Laser amplification noise

Laser quantum noise is commonly modeled [50–52] using SDEs in a normally ordered quan-
tum phase-space representation. Consider a model for the quantum noise of a single mode
laser as it turns on, near threshold:

ȧ = ga+ bw(t) , (120)

where the noise is complex, w= (w1 + iw2), so that:

w(t)w∗(t ′)
�

= 2δ
�

t − t ′
�

. (121)

Here the coefficient b describes the quantum noise of the laser, and is inversely proportional
to the equilibrium photon number.

Try the following, noting that you should type clear first when starting new simulations.

40

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

t
0 2 4 6 8 10

|a
|2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Simulation of the stochastic equation describing a laser turning on.

• Solve for the case of g = 0.1, b = 0.01

Most lasers have more than 100 photons and hence much less noise than this.
For this exercise, small error-bars will display on the graph. These are calculated from the

difference between using steps of size d t and steps of size d t/2. They only appear if greater
than a minimum relative size, typically 1% of the graph size, which can be set by the user.

clear
p.noises = 2;
p.observe = @(a,p) abs(a)^2;
p.olabels = '|a|^2';
p.deriv = @(a,w,p) a + 0.01*(w(1)+1i*w(2));
xspde(p);

4.8.3 Saturated laser noise

Consider the case where the laser saturates to a steady state:

ȧ =
�

1− |a|2
�

a+ bw(t) . (122)

To learn how to use the function inputs, try the following:

• Solve for the saturated laser case

You should get the output graph in Fig (3).

p.deriv = @(a,w,p) (1-abs(a)^2)*a+0.01*(w(1)+1i*w(2));
xspde(p);

41

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

t

0 2 4 6 8 10

a
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4: Simulation of the Black-Scholes equation describing stock prices.

4.8.4 Financial calculus

A well-known Ito-type stochastic equation is called the Black-Scholes equation [69], used to
price financial options. It describes the fluctuations in a stock or commodity value:

da = µa d t + aσ dw , (123)

where

dw2
�

= d t. As the noise is multiplicative, the equation is different in Ito and
Stratonovich calculus. The corresponding Stratonovich equation, as used in xSPDE for the
standard default integration routine is:

ȧ =
�

µ−σ2/2
�

a+ aσw(t) . (124)

An interactive xSPDE script in Matlab is given below with an output graph in Fig (4). This
is for a startup with a volatile stock having µ = 0.1, σ = 1. The spiky behavior is typical of
multiplicative noise, and also of the more risky stocks in the small capitalization portions of
the stock market.

clear
p.initial = @(v,p) 1;
p.deriv = @(a,w,p) -0.4*a+a.*w;
xspde(p);

Here p.ini t ial describes the initialization function. The first argument of @(v, p) is v, an
initial random variable with unit variance. The error-bars are estimates of step-size error. Errors
can be reduced by using more time-steps.

To learn more, try the following:

• Solve for a more mature stock having µ= 0.1, σ = 0.1.

42

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4.8.5 Nonlinear quantum simulation

This example involves a full nonlinear quantum phase-space simulation using the positive-P
representation described in Sec (2.8), in which the two variables are only conjugate in the
mean. This allows quantum superpositions of coherent states to be represented, or in fact any
state, including squeezed or entangled states in more general cases.

A simple example is the nonlinear driven quantum subharmonic generator - for example,
an opto-mechanical, superconducting or nonlinear optical medium in a driven cavity [70–73].
This is derived from the Hamiltonian for a resonant, coupled two-mode nonlinear interferom-
eter, with â2 driven externally at twice the frequency of â1:

Ĥ = iħh
hκ

2
â2â†2

1 + E2â†
2 − h.c.

i

. (125)

After including losses in both modes in the positive P-representation, assuming zero tem-
perature reservoirs, and adiabatically eliminating α2 with γ2 ≫ γ1, one has the following Ito
equation:

dα1

d t
= −γ1α1 +α

†
1
κε2

γ2

�

1−
κ

2ε2
α2

1

�

+

√

√κε2

γ2
−
κ2

2γ2
α2

1w1 (t) ,

dα†
1

d t
= −γ1α

†
1 +α1

κε2

γ2

�

1−
κ

2ε2
α†2

1

�

+

√

√κε2

γ2
−
κ2

2γ2
α†2

1 w1 (t) .

Rescaling the fields so that α1 = a1
p

nc , α
†
1 = a2

p
nc , where nc =

2ε2
κ , then rescaling time by

letting τ= κε2
γ2

t, defining c = γ1γ2
κε2

, and using Eq (9) to transform from an Ito to a Stratonovich
equation gives:

da1

dτ
= −(c −

1
2nc
)a1 + a2

�

1− a2
1

�

+
1
p

nc

q

1− a2
1w1 (τ) ,

da2

dτ
= −(c −

1
2nc
)a2 + a1

�

1− a2
2

�

+
1
p

nc

q

1− a2
2w2 (τ) , (126)

where w1, w2 are delta-correlated real Gaussian noises.
There is a bistable region, which leads to a discrete time symmetry breaking. The solution

in the steady-state is
P =

�

1− a2
1

�cnc−1 �
1− a2

2

�cnc−1
e2nc a1a2 . (127)

The integration manifold is the region of real a1, a2, such that a2
1 ≤ 1 , a2

2 ≤ 1. There are
two physically possible metastable values of the amplitudes. The physically observed quantity
is the amplitude and number:

〈â〉= 〈a1 + a2〉
s

nc

2
,

〈n̂〉= nc 〈a1a2〉 . (128)

Parameters that show bistable behavior on reasonable time-scales of T = 100 are c = 0.6,
nc = 4. To learn more, try the following:

• Simulate the nonlinear oscillator by creating a file, say, NonlinearQ.m

• Can you observe quantum tunneling in the bistable regime?

• Do you see transient Schrodinger ‘cat states’ with a negative n= α1α2 value?

43

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

A negative value of α1α2 is evidence for a quantum superposition! For experimental compar-
isons, one would measure correlation functions and spectra. These calculations require long
time scales, p.ranges, to observe tunneling, and of order 100 time steps per plotted time
point, p.steps, to maintain good accuracy in the quantum simulations.

For lower damping and large nonlinearity, other methods should be used, as the stochastic
equations can become unstable in this limit.

The model is a simplified version of more recent quantum technologies used to investigate
Schrodinger cat formation in superconducting quantum circuits [74], and the CIM machine
used to solve NP-hard optimization problems with photonic circuits [75–77], although there
are greater complexities in both these cases.

Similar methods can also be used to investigate quantum and chemical non-equilibrium
phase transitions [78], tunneling in open systems [79], quantum entanglement [80], Einstein-
Podolsky-Rosen paradoxes [81,82], Bell violations [83,84], and many other problems treated
in the literature [3,51].

5 Solving an SPDE

This section describes how to simulate a PDE or SPDE, including choosing spectral or finite
difference methods and specifying boundary conditions.

5.1 Multidimensional Wiener process

To solve for a single four-dimensional trajectory with three space dimensions, as in Eq (64),
just type in:

p.dimensions = 4;
p.deriv = @(a,w,p) w;
xspde(p);

Here p.deriv defines the time derivative ȧ in the input parameter structure p, while w is
a delta-correlated Gaussian noise generated internally. Apart from the dimensions, there are
no other parameters, so default values are used. This produces the graph shown in Fig (5),
which gives a single trajectory.

For more interesting problems than this, more parameters are needed, as explained next.

5.2 SPDE parameters

A stochastic partial differential equation or SPDE for a complex vector field is defined in both
time t and space dimension(s) x. The total dimensions d includes both time and space. To
solve a stochastic partial differential equation xSPDE involves a similar procedure to the case
of the SDE, covered in section 4.

The numerical solutions require additional parameters to define the spatial grid, and to
define the linear transformations in an interaction picture, if spectral methods are used. The
SPDE input parameters extend those already introduced in (4.2.1). Some new and extended
parameters are listed in the table below:

44

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Label Type Typical value Description

dimensions integer 2 Space-time dimensions
linear function @(p) p.Dx Linear interaction picture function
ranges real vector [10,10,...] Ranges in time and space

transforms{n} integer vector [1,0, 1, ..] Space-time transform switch
points integer vector [51,35,..] Output lattice points in [t,x,y,z,..]
origins real vector [0,-5,..] Space-time integration origin

boundaries{i} integer array [0,0; 0,0] Boundary type per field index

Setting dimensions > 1 defines an (S)PDE as opposed to an ordinary (S)DE. Here the cell
index i indicates a field index, and the cell index n gives the observable output or graph index.

In the xSPDE implementation, the total space-time dimensions is unlimited, although, large
space-time dimensions become memory-intensive and slow. There is a practical limit of about
ten space-time dimensions with current digital computers, unless you have a very large, fast
computer.

5.2.1 SPDE spatial lattice

Stochastic variables in an SPDE are stored in a real or complex array, a(i,ℓ, e). Here i is the
internal field index, ℓ is a d − 1 dimensional spatial lattice index for d space-time dimensions,
and e is the ensemble index. To specify the spatial lattice, one must define:

dimensions The dimensionality in time and space. The default is an SDE: d = 1.

points The number of integration points. The default is N= [51, 35,35..].

ranges The integration ranges in each dimension. The default is R= [10, 10,10..].

origins The origins of the space-time integration domains. By default, the origin is O (1) = 0
for the time coordinate and O = −R/2 for the space coordinates (R is the ranges vari-
able) such that the spatial grid is symmetric around r= 0.

Figure 5: A multidimensional random walk of a three-dimensional field projected
onto y = z = 0.

45

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

5.2.2 Initial conditions

Initial conditions are set at the initial time of t = O1 with a user-defined function so that:

a(O1) = ini t ial(v, p) . (129)

The initial function includes initial random fields v =
�

v x , vk
�

. Their correlations are either
delta correlated or spatially correlated. To allow this, the input parameter randoms is a vector
such that: randoms(1) is the number of delta-correlated random fields, v x , and randoms(2)
is the number of correlated random fields, vk. All random fields in the initial function, even if
correlated using filters in momentum space, are transformed to position space before use. If
there is no filtering, v x and vk have the same correlations.

5.3 Next example

As another very simple example, consider the SPDE

∂ a
∂ t

= −
1
4

a+ x ·w . (130)

The system has one spatial dimension, or d = 2 space-time dimensions, one field and one
noise variable. We suppose that the initial noise variance is Gaussian, with:

a(0, x) = 10v(x) . (131)

We want to consider 10,000 stochastic trajectories per sub-ensemble with10 sub-ensembles.
We will set the origin for x to 0. The variable a will be initialized as delta-correlated in space
with a gaussian standard deviation on the lattice of σ = 10/

p
∆V . As our observable, we

consider the second moment of a.
This is simulated through the following xSPDE code:

clear;
p.name = 'simple SPDE';
p.dimensions = 2;
p.ensembles = [10000,10];
p.origins = [0,0];
p.noises = 1;
p.initial = @(v,p) 10*v;
p.observe = @(a,~) a.^2;
p.olabels = '<a^2>';
p.deriv = @(a,w,p) -0.25*a + p.x .* w;
xspde(p);

With this input, Matlab produces two output graphs:
The second graph shows the time evolution for x at the mid-point, x = 5. The variances

are larger than they would be in the SDE case, where one might expect an initial variance of

a2(0)
�

= 100. The reason for this is that the initial noise random and noise fields are replaced
by a lattice with a variance of 1/∆V . In the default case, this causes an increase in the local
noise.

46

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0

200

10

400

<
a

2
>

600

800

simple SPDE #1

10

x

5

t

5
0 0 0 5 10

t

150

200

250

300

350

<
a

2
>

simple SPDE #1

Figure 6: Example: simple SPDE output graphs.

5.4 Transverse lattice

In the functions deriv, ini t ial and observe, the field and noise variables a and w now have
extended dimensionality compared to the 1-dimensional case, to index the transverse lattice.
The indices are a (f , i, e), where the:

field index f corresponds to the field index for a and the noise index for w.

intermediate indices i, which are absent in the 1-dimensional case, correspond to the spa-
tial grid and have the same structure. For example, in the case with dimensions = 3,
indicating one time index and two spatial dimension, i corresponds to the two space
indices.

last index e corresponds to the stochastic trajectory.

For storing space coordinates like p.x , the first and last index are f = e = 1. Where Fourier
transforms are used internally, the momentum arrays have zero momentum as the first index
to follow standard discrete Fourier transform conventions. This is changed to a symmetric
convention in all stored graphics data outputs.

As explained in section 3.9, the general equation solved can be written in differential form
as

∂ a
∂ t
= A [a] +B [a] ·w(t) + L [∇,a] . (132)

The linear function L can be input either inside the derivative function using finite differ-
ence operators described below, or as a separate linear function, to allow for an interaction
picture in which case:

L [∇,a] = L [∇]a . (133)

This depends on momentum space coordinates, which involves Fourier transforms and means
that no space dependence is allowed. Spectral methods in xSPDE are currently restricted to
cases with linear derivative terms and periodic or zero boundary conditions. It is also possible
to use finite differences, in which case the derivative terms are included as part of the derivative
function deriv.

The usual FFT spectral methods require periodicity. The four other boundary methods
can currently only be used with the default boundary values of zero, and with an interaction
picture derivative that only has even powers of derivatives. Additional spectral methods will
be included in a subsequent release: xSPDE4.

47

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

5.4.1 Linear operator

The field x is provided by the parameter structure, and corresponds to the variable x in Eq
(130). All parameters are preceded by the parameter structure label. Likewise, for higher
dimensional problems, the variables y and z exist. These are placeholders for r{1}, r{2}, r{3},
so the spatial variables of even higher dimensional problems can be accessed through r{n}.

Using a linear operator in an SPDE gives better accuracy, and allows use of the interac-
tion picture. This is included automatically for all built-in xSPDE algorithms, provided the
linear function is defined in the parameter structure. Variables p.D{i} (with placeholders
p.Dx , p.D y, p.Dz for the first 3 spatial dimensions) provide access to the derivative operator.
Higher-order derivatives are found through potentiating p.Dx accordingly.

For example, the 2-dimensional Laplacian operator

∇2 =
∂ 2

∂ x2
+
∂ 2

∂ y2
(134)

corresponds to a linear differential operator specified as:

p.l inear =@(p) p.Dx .2 + p.D y2 ; (135)

For a comprehensive list of variables accessible through the p-structure, refer to sec. 9.8.

5.4.2 Integrals and averages

There are functions available in xSPDE for spatial grid averages and integrals, to handle the
spatial grid. These are Ave and Int, which are used to calculate observables for plotting. They
operate in parallel over the lattice dimensions, by taking a vector or scalar quantity, for example
a single field component, and returning an average or a space integral. In each case the first
argument is the field, the second argument is a vector defining the type of operation, and the
last argument is the parameter structure. If there are two arguments, the operation vector is
replaced by its default value.

Integrals over the spatial grid allow calculation of global quantities. To take an integral
over the spatial grid, use the xSPDE function Int with arguments (o, [dx,] p).

This function takes a scalar or vector quantity o, and returns a trapezoidal space integral
over selected dimensions with vector measure dx. If d x(j) > 0 an integral is taken over
dimension j. Dimensions are labelled from j = 1,2,3 ... as in all xSPDE standards. Time
integrals are ignored at present. Integrals are returned at all lattice locations. To integrate
over an entire lattice, set dx = p.dx, otherwise set dx(j) = p.dx(j) for selected dimensions j.

If momentum-space integrals are needed, first use the transforms switch to make sure that
the field is Fourier transformed before being averaged, and input dk instead of dx.

Spatial grid averages can be used to obtain stochastic results with reduced sampling errors
if the overall grid is homogeneous. An average is carried out using the builtin xSPDE function
Ave() with arguments (o, [av,] p).

This takes a vector or scalar field or observable, defined on the lattice, and returns an
average over the spatial lattice. The input is a field a or observable o, and an optional averaging
switch av. If av(j) > 0, an average is taken over dimension j. Space dimensions are labelled
from j = 2,3... as elsewhere. If the av vector is omitted, the average is taken over all space
directions.

48

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

5.4.3 One space-dimensional example

A famous partial differential equation is an exactly soluble equation for a soliton, the nonlinear
Schrödinger equation (NLSE):

da
d t
=

i
2

�

∇2a− a
�

+ ia |a|2 . (136)

Together with the initial condition that a(0, x) = sech(x), this has a soliton, an exact
solution that doesn’t change in time:

a(t, x) = sech(x) . (137)

The spatial integral is simply:
∫

sech(x)d x = π . (138)

An xSPDE code that solves this is given below, together with code that compares the nu-
merical solution with the exact solutions for the soliton and the integral:

p.name = 'NLS soliton';
p.dimensions = 2;
p.initial = @(v,p) sech(p.x);
p.deriv = @(a,~,p) 1i*a.*(conj(a).*a);
p.linear = @(p) 0.5*1i*(p.Dx.^2-1.0);
p.olabels = {'a(x)','\int a(x) dx'};
p.observe{2} = @(a,p) Int(a, p);
p.compare{1} = @(p) sech(p.x);
p.compare{2} = @(p) pi;
e = xspde(p);

Due to finite boundaries and discrete spatial lattice, the agreement is not perfect. The
errors can be reduced by increasing the range of the integration domain and improving the
resolution with more points.

5.4.4 Two space-dimensional example

As another example, consider the two-dimensional nonlinear stochastic equation, with peri-
odic boundary conditions:

∂ a
∂ t
=∇2a (x, t) + a (x, t)− a (x, t)3 +η (x, t) . (139)

Using the interaction picture allows for the absorption of both the Laplacian and the first-
order term by the p.linear parameter, which results in

...
p.linear = @(p) (p.Dx.^2+p.Dy.^2) + 1;
p.deriv = @(a,w,~) -a.^3 + w;
xspde(p);

With this input, Matlab produces two output graphs:

49

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 2 4 6 8 10

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

a

 #1

Figure 7: Two space-dimensional example graphs.

5.5 Finite differences

Instead of using the interaction picture, xSPDE also has finite difference methods for direct
differentiation. These derivatives are obtained through function calls D1 and D2 respectively
for first and second derivatives, which use a fixed grid spacing. As elsewhere, they can be
replaced by user-written functions if preferred. Generally they require smaller steps in time
than spectral methods, when used to define the derivative.

5.5.1 Finite difference first derivatives

The code to take a first order spatial derivative with finite difference methods is carried out
using the xSPDE function D1() with arguments (o, [dir,] p).

This takes a scalar or vector o and returns a first derivative in an axis direction dir. Set dir
= 2 for an x-derivative, dir = 3 for a y-derivative, and so on. Time derivatives are ignored at
present. Derivatives are returned at all lattice locations.

If the direction is omitted, an x-derivative is returned. These derivatives can be used both
in calculating propagation and in calculating observables. The boundary condition is set by
the boundaries input. It can be made periodic, which is the default, or Neumann with zero
derivative, or Dirichlet with zero field.

5.5.2 Finite difference second derivatives

The code to take a second order spatial derivative with finite difference methods is carried out
using the xSPDE D2 function with arguments (o, [dir,] p).

This takes a scalar or vector o and returns the second derivative in axis direction dir. Set
dir= 2 for an x-derivative, dir= 3 for a y-derivative and so on. All other properties are exactly
the same as D1.

Without using the interaction picture, the stochastic equation of Eq (139) is specified in
xSPDE using finite differences as

p.dimensions = 3;
p.steps = 50;
p.deriv = @(a,w,p) D2(a,2,p)+D2(a,3,p)+a - a.^3 +...
w/10;
xspde(p);

50

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 2 4 6 8 10

t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

a

 #1

Figure 8: Two space-dimensional example graphs, direct differentiation.

This gives the same result as with the linear propagator, although requiring smaller step-
sizes for numerical stability, with an output graph shown in Fig (8). Note that the parameters
and noises are slightly different!

5.6 Boundary conditions

5.6.1 Transverse boundaries

Transverse boundary conditions must be given for all partial differential equations. Common
transverse boundary types are of three types: Neumann (specified derivative), periodic, or
Dirichlet (specified field). These are obtained using boundaries{d}= −1,0, 1, which is spec-
ified for each space dimension d > 1, field index and boundary.

If boundaries are omitted for any dimension the default is 0, which gives periodic bound-
aries in that dimension for all field indices, and permits the use of Fourier transforms and an
interaction picture as described above.

The value of boundaries{d} is a matrix whose column index (i) is the field index, and
whose row index (j) is given by j = 1,2 for the lower and upper boundary type respectively.

Spatial derivatives or other functions linking different spatial points can be specified either
in the functionals A [a, r], B [a, r] or else in the l inear function, provided the derivative terms
are linear functions of the fields. Use of the l inear function allows an interaction picture algo-
rithm, with increased efficiency. The l inear function is currently only available with periodic
boundary conditions.

The default boundary conditions are periodic. The implicit setting of this is that periodicity
is enforced such that a (oi − d x i/2) = a (oi + ri + d x i/2) , which is the usual discrete Fourier
transform requirement.

Otherwise, the differential equation boundaries are specified at a (oi), a (oi + ri), using
the cell-array input boundaries{d}(i, j), which is defined per space dimension (d = 2,3..),
field index (i = 1, 2..) and boundary j = (1,2). Here d > 1 is the transverse dimension, not
including time, which only has an initial condition.

In summary the available boundary types are:

Neumann: For specified derivative boundaries, boundaries{d}(i, j) = −1

Periodic: For periodic boundaries, boundaries{d}(i, j) = 0

Dirichlet: For specified field boundaries, boundaries{d}(i, j) = 1

51

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

These are specified in a cell array: boundaries{d}(i, 1) sets the lower boundary type in di-
mension d, for the i -th field component while boundaries{d}(i, 2) gives the upper boundary
type. Each space dimension, variable and boundary is set independently. In xSPDE, the equa-
tions are always initial value problems in time, so the time dimension boundary specification
for d = 1 is not included.

Example: boundary types in a 2-dimensional PDE Suppose there are two fields, and we
wish to set mixed boundaries in space, with Dirichlet in the past and Neumann in the future
for the first field a(1, :), with the opposite combination in the second field component, a(2, :):

p.boundaries{2} = [1,-1;-1,1];

5.6.2 Transverse boundary values

For non-vanishing, specified boundary conditions, the boundary function bound f un(a, d, p)
is called. This returns the boundary values used for the fields or derivatives in a particular
dimension d > 1 as an array of dimension b(j, e)), where j= i,k.

Here i = j1 is the field index, and k is the space index, where jd is the index of the dimension
whose boundary values are specified. For this dimension, only two values are needed: jd = 1, 2
for the lower and upper boundary values, which could either be field values or their derivatives.
An ensemble index e is also needed if the boundary values are stochastic.

Boundary values can be a function of both the fields (a) and internal variables like the cur-
rent time (t). These may have stochastic initial values at t = 0 which are calculated only once.
In such cases the boundary values must first be initialized, so the routine bound f un(a, d, p) is
first internally initialized with time t < origins(1), and with random Gaussian values in the
input field a. These are delta-correlated in space, i.e., with the same definition as “inrandoms”.
The xSDPE program stores the returned values b for the boundaries in an internal cell array,
boundval{d}, for later use if required.

The default boundary value is zero, set by the default boundary function
x bound f un(a, d, p).

NOTE: Current xSPDE code requires finite-difference methods to be used with
bound f un. Spectral methods use the default boundary conditions.

5.6.3 Example: boundaries in a 2-dimensional PDE

Suppose there are two fields, and we wish to set boundary values.
We take boundary values as Dirichlet for x = 0 and Neumann for x = 1 in field variable 1,

and Neumann for x = 0 and Dirichlet for x = 1 in field variable 2, that are different from the
default values of a = 0, ∂x a = 0, so that:

a1 (x = 0) = 1 ,

∂x a1 (x = 1) = a1 (x = 1) ,

∂x a2 (x = 0) = −a2 (x = 0) ,

a2 (x = 1) = −1 . (140)

These are set in the following code:

52

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

p.boundfun = @mybfun
p.boundaries{2} = [1,-1;-1,1];
...
function b = mybfun(a,d,p)
% b = mybfun(a,d,p) calculates boundary values
b(1,2,:) = a(1,end,:);
b(2,1,:) = -a(2,end,:);
b(1,1,:) = 1;
b(2,2,:) = -1;
end

5.6.4 Transverse plots

A number of plots at equally spaced points in time can be generated through p.t ransverse
(see section 10). For example, adding the line below creates 3 time-sliced plots at t = 0, 5,10:

p.transverse{1} = 3;

5.7 Output transforms

For graphical output, Fourier transforms involve a sum over the lattice points using a discrete
Fourier transform at the lattice points x i , so that:

ã(ωi ,ki) =
d tdx

[2π]d/2

∑

j1... jd

exp
�

i
�

ωi1 t j1 − ki · xj

��

a(t j1 ,xj) . (141)

The momenta ki have an interval of

dki =
2π

nid x i
, (142)

with ki values given for even n by:

ki =
�

1−
ni

2

�

dki , . . .
ni

2
dki , (143)

and for odd n by:

ki =
1− ni

2
dki , . . .

ni − 1
2

dki . (144)

Once Fourier transformed, the observe function can be used to take any further functions
or combinations of Fourier transformed fields prior to averaging. Important points to keep in
mind are as follows:

• Fourier transforms are specified for the k-th observe function independently of all other
functions, by specifying t rans f orms{k}=

�

ℓ1, . . .ℓd,

�

.

• Here ℓ j = 0, 1 is a logical switch, set to to ℓ j = 1 if the j− th dimension requires a Fourier
transform, and ℓ j = 0 if there is no Fourier transform.

• The internal fields p.k{1}, . . . p.k{d} are available for use in making functions of mo-
mentum for use with observations.

• In propagation calculations, the momentum lattice values start with k = 0, . . ., following
standard Matlab and FFT conventions.

• For storing and graphing, momentum lattice values are reordered to start with
k = −kmax , . . ., following standard graphics and mathematical conventions.

53

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

5.8 Initial random fields

Fourier transforms are available for use both on initial random values and on noise fields during
time-evolution. This is controlled by the second element of randoms and noises, respectively.

When randoms(1) > 0, an initial random field vx is generated with delta-correlations in
x-space. When randoms(2)> 0, an initial random field ṽk is generated with delta-correlations
in k-space. This can be filtered with a user-specified filter function to give ṽk f , then inverse
Fourier transformed to give vk. Both random fields are passed to the ini t ial function as an
extended vector

�

v x , vk
�

, for field initialization in space.
There is a user specified filter function available, to modify random fields ṽk, that are delta-

correlated in momentum space using a filter function, ‘rfilter’ so that vk f
i (k) = f (r)i

�

vk (k)
�

,
before being used. The corresponding correlations are:

¬

v x
i (x) v

x
j

�

x′
�

¶

= δ
�

x− x′
�

δi j ∼
1
∆V

δx,x′δi j ,
¬

ṽk
i (k) ṽ

k
j

�

k′
�

¶

= δ
�

k− k′
�

δi j ∼
1
∆K

δk,k′δi j ,
¬

ṽk f
i (k) ṽ

k f
j

�

k′
�

¶

=
¬

f (r)i

�

ṽk (k)
�

f (r)j

�

ṽk
�

k′
��

¶

. (145)

Note that on a lattice, we replace the Dirac continuous delta-function by a discrete Kro-
necker delta function scaled by an inverse volume element either in space (∆V) or momentum
(∆K) . The xSPDE Fourier transforms are given by a symmetric Fourier transform, so that if
we inverse Fourier-transform the k−space inrandoms, without filtering, then:

vk(x) =
1

[2π](d−1)/2

∫

eik·x ṽk(k)dk . (146)

These have random initial values that are real and delta-correlated in space, so that:

v x (x) v x
�

x′
��

= δ
�

x− x′
�

. (147)

The corresponding noises in position space are correlated according to:

vk (x)
�

vk
�

x′
��∗�

=
1

[2π](d−1)

∫

ei(k·x−k′·x′)
ṽk (k) ṽk
�

k′
��

dkdk′

=
1

[2π](d−1)

∫

ei(x−x′)·kdk

= δ
�

x− x′
�

. (148)

Similarly, if we don’t conjugate the k-noise, then:

vk (x) vk
�

x′
��

= δ
�

x+ x′
�

. (149)

However, if we define ṽc (k) =
�

ṽk
1 (k) + i ṽk

2 (k)
�

/
p

2 , then we obtain complex noise that
is only delta correlated when conjugated.

vc (x)
�

vc
�

x′
��∗�

= δ
�

x− x′
�

,

vc (x) vc
�

x′
��

= 0 . (150)

This is obtainable with the x-space noise as well, but the utility of the k-space noise is that it
can be filtered to have nonlocal correlations in space if required.

54

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

During propagation in time, w=
�

wx ,wk
�

are real noise fields that are delta-correlated in
space-time. They are calculated in an analogies way, except with an additional factor of 1/

p
d t

because they are delta correlated in time as well.There is a user specified scaling function
available, to take random noises wk in momentum space that are then scaled using a filter
function, ’nfilter’ so that wk f

i (k) = f (n)i

�

wk (k)
�

, before being used:

¬

wx
i (t,x)w

x
j

�

t,x′
�

¶

= δ
�

x− x′
�

δ
�

t − t ′
�

δi j ,
¬

w̃k
i (t,k) w̃

k
j

�

t,k′
�

¶

= δ
�

k− k′
�

δ
�

t − t ′
�

δi j ,
¬

w̃k f
i (t,k) w̃

k f
j

�

t ′,k′
�

¶

=
¬

f (n)i

�

w̃k (t,k)
�

f (n)j

�

w̃k
�

t ′,k′
��

¶

. (151)

5.9 Examples

5.9.1 Stochastic Ginzburg-Landau

Including two space dimensions, or space-time dimensions of d = 3, an example of a SPDE
is the stochastic Ginzburg-Landau equation. This describes symmetry breaking. The system
develops a spontaneous phase which varies spatially as well. The model is used to describe
lasers, magnetism, superconductivity, superfluidity and particle physics:

ȧ =
�

1− |a|2
�

a+ bw(t) + c∇2a , (152)

where

w(x)w∗(x ′)
�

= 2δ
�

t − t ′
�

δ
�

x − x ′
�

. (153)

The following new ideas are introduced for this problem:

1. dimensions is the space-time dimension.

2. The ’dot’ notation used for parallel operations over lattices.

3. linear is the linear operator - a Laplacian in these cases.

4. images produces movie-style images at discrete time slices.

5. Dx indicates a derivative operation, ∂ /∂ x .

6. −5< x < 5 is the default xSPDE coordinate range in space.

Exercises

1. Solve the stochastic G-L equation for b = 0.001 and c = 0.01i.

2. Change to a real diffusion so that c = 0.1.

In the first case, you should get the output graphed in Fig (9) .

55

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10

5

t0-5x

0

1.5

2

0

0.5

1

5

|a
|2

Figure 9: Simulation of the stochastic equation describing symmetry breaking in
two dimensions. Spatial fluctuations are caused by the different phase-domains that
interfere. The graph obtained here is projected onto the y = 0 plane.

clear;
p.name = 'Extended laser gain equation';
p.noises = 2;
p.dimensions = 3;
p.steps = 10;
p.linear = @(p) 1i*0.01*(p.Dx.^2+p.Dy.^2);
p.observe = @(a,~) abs(a).^2;
p.images = 6;
p.olabels = '|a|^2';
p.deriv = @(a,w,~) (1-abs(a(1,:).^2)).*a(1,:)+...

0.001*(w(1,:)+1i*w(2,:));
xspde(p)

Here the notation a(1, :) means that the operation is repeated over all values of the subse-
quent indices, which are the two spatial lattice indices in this case.

5.9.2 NLS soliton

The famous nonlinear Schrödinger equation (NLSE) is:

da
d t
=

i
2

�

∇2a− a
�

+ ia |a|2 . (154)

Together with the initial condition that a(0, x) = sech(x), this has a soliton [85], an exact
solution that doesn’t change in time:

a(t, x) = sech(x) . (155)

The Fourier transform at k = 0 is simply:

ã(t, 0) =
1
p

2π

∫

sech(x)d x =
s

π

2
. (156)

56

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Exercises

• Solve the NLSE for a soliton using a function instead of a script, then include an
additive complex noise of 0.01(w1+iw2) to the differential equation, and plot again
with an average over 1000 samples.

5.9.3 Planar noise

The next example is growth of thermal noise of a two-component complex field in a plane,
given by the equation

da
d t
=

i
2
∇2a+w(t, x) , (157)

where ζ is a delta-correlated complex noise vector field:

w j(t,x) =
�

wre
j (t,x) + iζim

j (t,x)
�

/
p

2 , (158)

with the initial condition that the initial noise is delta-correlated in position space

a(0,x) = ζ(in)(x) , (159)

where:
ζ(in)(x) =

�

ζre(in)(x) + iζim(in)(x)
�

/
p

2 . (160)

This has an exact solution for the noise intensity in either ordinary space or momentum
space:

¬
�

�a j (t,x)
�

�

2¶
= (1+ t)/dV ,

¬
�

�ã j (t,k)
�

�

2¶
= (1+ t)/dVk ,

ã1 (t,k) ã
∗
2 (t,k)

�

= 0 . (161)

Here, the noise is delta-correlated, and dV , dVk are the cartesian space and momentum
space lattice cell volumes, respectively. Suppose that n = nx ny is the total number of spatial
points, and there are nx(y) points in the x(y)-direction, so then:

dV = d xd y , (162)

dVk = dkx dky =
(2π)2

ndV
.

In the simulations, two planar noise fields are propagated, one using delta-correlated noise,
the other with noise transformed to momentum space to allow filtering. This allows use of
finite correlation lengths when needed, by including a frequency filter function that is used to
multiply the noise in Fourier-space. The Fourier-space noise variance is the square of the filter
function.

The first noise index, p.noises(1), indicates how many noise fields are generated, while
p.noises(2) indicates how many of these are spatially correlated, via Fourier transform, filter
and inverse Fourier transform. These appear to the user as additional noises, so the total
is p.noises(1) + p.noises(2). The filtered noises have a finite correlation length. They are
correlated with the first p.noises(1) x-space noises they are generated from, as this can be
useful.

57

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Exercises

• Solve the planar noise growth equation

function [e] = Planar()
p.name = 'Planar noise growth';
p.dimensions = 3;
p.fields = 2;
p.ranges = [1,5,5];
p.steps = 2;
p.noises = [2,2];
p.ensembles = [10,4,4];
p.initial = @Initial;
p.deriv = @Da;
p.linear = @Linear;
p.observe = @(a,p) a(1,:).*conj(a(1,:));
p.olabels = '<|a_1(x)|^2>';
p.compare = @(p) [1+p.t]/p.dv;
p.images = 4;
e = xspde(p);
end

function a0 = Initial(v,p)
a0(1,:) = (v(1,:)+1i*v(2,:))/sqrt(2);
a0(2,:) = (v(3,:)+1i*v(4,:))/sqrt(2);
end

function da = Da(a,w,p)
da(1,:) = (w(1,:)+1i*w(2,:))/sqrt(2);
da(2,:) = (w(3,:)+1i*w(4,:))/sqrt(2);
end

function L = Linear(p)
lap = p.Dx.^2+p.Dy.^2;
L(1,:) = 1i*0.5*lap(:);
L(2,:) = 1i*0.5*lap(:);
end

• Add a decay rate of −a to the differential equation, then plot again

• Add growth and nonlinear saturation terms

5.9.4 Gross-Pitaevskii equation

The next example is a stochastic Gross-Pitaevskii (GP) equation [86] in two dimensions,

da
d t
=

i
2
∇2a− ia(V (r)− iκ(r) + |a|2) + εη , (163)

where η is a correlated complex noise vector field:

η(t,x) = w1(t,x) + iw2(t,x) , (164)

58

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

with the initial condition that the initial random field and the noise are both filtered in mo-
mentum space

a(0,x) = a0(x) + εζ
(in)(x) , (165)

where:
ζ(in)(x) = v1(x) + iv2(x) . (166)

We add a Gaussian filter in momentum space for both the initial random field and noise
so that, if w̃ (k) is a delta-correlated noise in momentum space:

w (k) = w̃ (k)exp
�

−|k|2
�

,

v (k) = ṽ (k)exp
�

−|k|2
�

. (167)

This allows use of finite correlation lengths when needed, by including a frequency filter
function that is used to multiply the noise in Fourier-space. The Fourier-space noise variance
is the square of the filter function.

The first noise index, p.noises(1), indicates how many noise fields are generated that are
delta-correlated in x , while p.noises(2) indicates how many of these are spatially correlated,
via Fourier transform, filter and inverse Fourier transform. These appear to the user as addi-
tional noises, so the total is p.noises(1) + p.noises(2). The filtered noises have a finite corre-
lation length.

Exercises

• Solve the stochastic GP equation (163), with a noise coefficient of b = 0.1,
V = 0.01 |x|2 , κ= 0.001 |x|4, and a stored output data file.

function [e] = GPE()
p.name = 'GPE';
p.dimensions = 3;
p.points = [101,64,64];
p.ranges = [1,20,20];
p.noises = [0,2];
p.rfilter = @(w,p) w.*exp(-p.kx.^2-p.ky.^2);
p.nfilter = @(v,p) v.*exp(-p.kx.^2-p.ky.^2);
b = @(xi) .1*(xi(1,:,:)+1i*xi(2,:,:));
p.initial = @(v,p) (p.x+1i*p.y)./(1+10*(p.x.^2 +...
p.y.^2))+b(v);
V = @(p) 0.01*(p.x.^2 + p.y.^2)-0.001*1i*(p.x.^2 +...
p.y.^2).^2;
p.deriv = @(a,w,p) -1i*a.*(V(p)+conj(a).*a)+b(w);
p.linear = @(p) 0.5*1i*(p.Dx.^2+p.Dy.^2);
p.observe{1} = @(a,p) a.*conj(a);
p.images = {2};
p.imagetype = {2};
p.olabels = {'|a|^2'};
p.file = 'GPE.mat';
e = xsim(p);
xgraph(p.file,p);
end

59

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

5.9.5 Characteristic equation

The next example is the characteristic equation for a traveling wave at constant velocity [87].
It is included to illustrate what happens at periodic boundaries, when Fourier-transform meth-
ods are used for propagation. There are a number of methods known to prevent this effect,
including addition of absorbers - called apodization - at the boundaries. The equation is:

da
d t
+

da
d x
= 0 . (168)

Together with the initial condition that a(0, x) = sech(2x + 5), this has an exact solution
that propagates at a constant velocity:

a(t, x) = sech(2(x − t) + 5) . (169)

The time evolution at x = 0 is simply:

a(t, 0) = sech(2(t − 5/2)) . (170)

Exercises

• Solve the characteristic equation given above, noting the effects of periodic bound-
aries.

function [e] = Characteristic()
p.name = 'Characteristic';
p.dimensions = 2;
p.initial = @(v,p) sech(2.*(p.x+2.5));
p.deriv = @(a,z,p) 0*a;
p.linear = @(p) -p.Dx;
p.olabels = {'a_1(x)'};
p.compare = @(p) sech(2.*(p.t-2.5));
e = xspde(p);
end

• Recalculate with the opposite velocity, and a new exact solution.

5.9.6 Nonlinear Anderson localization

A random potential prevents normal wave-packet spreading in quantum-mechanics. This is
Anderson localization [88]: a famous property of quantum mechanics in a random potential.
A typical experimental method is to confine an ultra-cold Bose-Einstein condensate (BEC)
in a trap, then release the BEC in a random external potential produced by a laser [89]. The
expansion rate of the BEC is reduced by the Anderson localization due to the random potential.
Physically, the observable quantity is the particle density n= |ψ|2, but there is a complication,
which is that there are nonlinearities from atomic scattering [90].

This can be treated either using a Schrodinger equation with a random potential, at low
density, or using the Gross-Pitaevskii (GP) equation to include atom-atom interactions at the
mean field level. In this example of a problem where strong localization occurs, the general
equations are:

∂ψ

∂ t
=

1
iħh

�

−
ħh2

2m
∇2 + V (r) + g |ψ|2

�

ψ . (171)

60

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

In calculations, it is best to use a dimensionless form by rescaling coordinates and fields.
A simple way to simulate this with xSPDE is to treat ψ as a scaled field a(1), and to assume
the random potential field V (r) as caused by interactions with second random field |a(2)|2.
This has the advantage that it is similar to the actual experiment and allows one to treat time-
dependent potentials as well, if desired.

With the rescaling, this simplifies to:

∂ a1

∂ τ
= i

�

∂

∂ ζ2

2

− |a2|
2 − |a1|

2

�

a1 . (172)

A convenient initial condition is to use:

a1 = a0 exp(−ζ2) ,

a2(ζ)a2(ζ
′)
�

= vδ
�

ζ− ζ′
�

. (173)

Exercise

• Solve Schrodinger’s equation without a random potential, to observe expansion.

• Include a random potential v, to observe localization.

• Experiment with nonlinear terms and higher dimensions.

Note that the GP equation is a mean field approximation; this is still not a full solution of the
many-body problem! Also, the experiments are somewhat more complicated than this, and
actually observe the momentum distribution.

6 xSIM and xGRAPH

This section describes how to use xSPDE to run in a batch mode, as well as details of data
storage and methods for graphing scanned parameters.

6.1 Output data storage and batch jobs

An xSPDE session can either run simulations interactively, described in section 4, or else using
a function file called a project file. In either case, the Matlab path must include the xSPDE
folder. For generating graphs automatically, the script input or project function should end
with the combined function xspde.

Alternatively, it can be useful to divide xSPDE into its simulation function, xSIM, and its
graphics function, xGRAPH, to allow graphs to be made at a later time from the simulation. In
this case the function xsim runs the simulation, and x graph makes the graphs. The two-stage
option is better for running batch jobs which you can graph at a later time.

6.1.1 Batch input template

To create a data file, you must enter the filename when running the simulation, using the
p. f ile = f ilename input. A typical xSPDE project function of this type, where all the data is
stored is as follows:

61

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function e = project.m
p.[label1] = [parameter1];
p.[label2] = ...;
p.file = '[myfile].mat'
[e,~,p] = xsim(p);
xgraph(p.file);
end

Alternatively, for an interactive session one can use the commands:

...
[e,data,p] = xsim(p);
xgraph(data,p);
...

This is specially useful if one wishes to have direct access to the data and graphics options,
with possible multiple trials. When preparing a project file using the editor, click on the Run
arrow above the editor window to run the job.

A batch job workflow is as follows:

• Create the metadata p, including a file name, eg, p.file=’myfile.mat’.

• Change the Matlab directory path to your preferred directory.

• Run the simulation with [e,data, p] = xsim(p), or just xsim(p).

• Run xgraph(p.file), and the data will be graphed.

• Alternatively, xgraph(p.file,p) allows you to change the inputs in the structure p.

• Graph outputs can be stored using the p.saveeps=1 and/or p.savefig=1 options.

You can use either Matlab (.mat) or standard HDF5 (.h5) file-types for data storage. If raw
data is generated it will be stored too, but the files can be large. For stored graphics files the
options are encapsulated postscript (.eps) files or Matlab graphics (.fig) files, obtained using
the graphics input switches p.saveeps and/or p.savefig.

6.2 Graphical data

The following table show how xSPDE output data is stored, which helps customize and extend
the code. There are several different types of arrays used. The observed averages are generated
internally from the observe functions, p.observe. These are then modified by user functions
p.function, and exported as graphics data.

The internal averages and the exported graphics data are as follows:

Label Indices Description

av {n}(ℓ, j) Observed averages
d {s}{n}(ℓ, j, c) Graph data

Here:

• s is the sequence index

• n is the graph index

62

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

• ℓ is the graphics line index

• j1 is the time index

• j= j1, j2, . . . jd is the space-time index

• c is the check index

6.2.1 Check index uses

There are multiple uses for the last index, c. It can be omitted if needed. If present, it stores
data for errors and comparisons. This is indicated by the input parameter field p.er rors > 0,
which is the index of the largest error field. If there are no input parameters, or p.er rors = 0,
there is no error or comparison index. The standard value that xSIM outputs is p.er rors = 3.

When the check index present, the usual index values are defined as follows:

c = 1 for the average of the n-th output function

c = 2 for the time-step error,

c = 3 for the sampling error.

c = 4 for (optional) comparisons

c = 5 for (optional) systematic comparison errors

c = 6 for (optional) statistical comparison errors

Finally, if xGRAPH is used with data from an other source, with no simulation error fields, but
with comparisons, then one simply puts p.er rors = 1, or if there is just one input error field
p.er rors = 2.

6.3 Scanned parameter plots

Since xSIM is a function that can be called, plots of results against simulation parameters are
possible. This requires repeated calls to xSIM with different parameter values, together with
data storage in an xGRAPH compatible form, and a call to xGRAPH. If different random seeds
are required, the seed needs to be reset in each call. The relevant axes points plotted, labels
and the values of scanned parameters also need to be input.

The simulation function xSIM uses the last data array index, c, to store the data values and
up to two corresponding errors. This takes up three index values. A value of c = 4 is used to
store comparison data, and its errors if there are any in c = 5,6. This can be used for exact
results, approximations, or experimental data.

6.3.1 Example: Scanned diffusion

As an example, consider the simplest possible stochastic equation, with a scanned diffusion:

ȧ = Bw(t) . (174)

The equation is integrated over the interval t = 0 : 10, with a = 0 initially, using 104

trajectories to give an expected error of around ±1%. The variance of a at t = 10 is plotted
as a function of D = B2, then compared to an exact value. The result is in Fig (10). The
corresponding code is given as well.

63

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 0.5 1 1.5 2

D

0

5

10

15

20

25

<
a

2
>

Figure 10: Scanned parameter output with a variable diffusion, for the case of a pure
Wiener process, ȧ = Bw(t). Exact value is the dashed line.

function e = WienerScan()
p.name = 'Wiener process';
p.ensembles = [1000,10];
p.points = 12;
p.deriv = @(a,z,p) z*p.B;
p.observe = @(a,p) a.^2;
p.olabels = {'<a^2>'};
p.glabels{1} = {'D'};
scanpoints = 25;
data{1}{1} = zeros(1,scanpoints,4);
for j = 1:scanpoints
p.seed = j;
p.B = sqrt((j-1)*0.1);
[e,data1,input,~] = xsim(p);
data{1}{1}(1,j,1:3) = data1{1}{1}(1,p.points,:);
xk{1}{1}(j) = p.B^2;
D(j) = p.B^2;

end
data{1}{1}(1,:,4) = input.ranges(1)*D(:);
input.xk = xk;
input.axes{1}{1} = 1:scanpoints;
xgraph(data,input);
end

Here p.deriv defines the time derivative function ȧ, with w being the delta-correlated
Gaussian noise that is generated internally.

64

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

6.4 Project examples

6.4.1 Kubo project

To get started on more complex programs, we next simulate the Kubo oscillator, which is an
oscillator with a random frequency:

ȧ = iaw . (175)

Exercises

• Simulate the Kubo oscillator using a file, Kubo.m, with two ensemble levels to allow
sampling error estimates. The error vector er ror gives the total time-step error plus the
sampling error.

• Increase the first ensemble size to check how it modifies the sampling errors.

function [error] = Kubo()
p.name = 'Kubo oscillator';
p.ensembles = [400,16];
p.initial = @(v,p) 1;
p.deriv = @(a,w,~) 1i*a.*w;
p.olabels = {'<a_1>'};
p.file = 'kubo.mat';
[error,~,~,~] = xsim(p);
xgraph(p.file);
end

This function generates a data file, kubo.mat. If you run this twice without deleting
the earlier file, you will get a warning and the old file will be moved to a backup file-name,
kubo_1.mat, to protect the earlier data. Note that xGRAPH will graph the data in the most
recent file saved.

You can also include modified graphics parameters as a second input when running
xGRAPH, just in case the first graphs you generate need further changes.

6.4.2 Gaussian diffraction

Free diffraction and absorption of a Gaussian wave-function in d − 1= s space dimensions, is
given by the partial differential equation (PDE):

da
d t
= −

γ

2
a+

i
2

D∇2a . (176)

The corresponding stochastic partial differential equation (SPDE) includes additional noise,
so that:

da
d t
= −

γ

2
a+

i
2

D∇2a+ bw(t, x) . (177)

The xSPDE spectral definition in space is:

ã(t,k) =
1

[2π]s/2

∫

eik·xa(t,x)dx . (178)

65

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Together with the initial condition that a(0, x) = ex p(−|x|2 /2), this has an exact solution
for the diffracted intensity with b = 0, in either ordinary space or momentum space:

|a (t,x)|2 =
1

�

1+ (Dt)2
�s/2

ex p
�

−|x|2 /
�

1+ (Dt)2
�

− γt
�

,

|ã (t,k)|2 = ex p
�

−|k|2 − γt
�

. (179)

Exercises

• Simulate Gaussian diffraction in three dimensions using an xSPDE function

• Check your results against the exact solution

• The example below stores data in a standard HDF5 file.

function [e] = Gaussian()
p.dimensions = 4;
p.initial = @(v,p) exp(-0.5*(p.x.^2+p.y.^2+p.z.^2));
p.linear = @(p) 1i*0.05*(p.Dx.^2+p.Dy.^2+p.Dz.^2);
p.observe = @(a,p) a.*conj(a);
p.olabels = '|a(x)|^2';
p.file = 'Gaussian.h5';
p.images = 4;
e = xsim(p);
xgraph(p.file);
end

• Add an additive complex noise of 0.01(w1+ iw2) to the Gaussian differential equa-
tion, then replot with an average over 100 samples.

• Work out the exact solution and repeat the comparisons.

Note that for this, you’ll need to add: p.deriv =@(a, w, p) ..+ 0.01 ∗ (w(1, :) + i ∗w(2, :))

6.5 Hints

• When first using xSPDE, it is a good idea to run the batch test script, Batchtest.

• Batchtest uses the Matlab parallel toolbox installation. If you have no license for this,
omit the third ensemble setting.

• To create a project file, it is often easiest to start with an existing example function using
a similar equation: see the xAMPLES folder.

• Graphics parameters can be included in the xSIM inputs to modify graphs.

• Comparison functions can be included if you want to compare with analytic results.

• Sections 9 and 10 list the input parameters.

66

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

7 Stochastic methods

This section describes the general background to the choices of methods available, and
how to add custom numerical algorithms if required.

7.1 Introduction to algorithms

Stochastic, partial and ordinary differential equations are central to numerical mathematics.
Ordinary differential equations have been known in some form ever since calculus was in-
vented. There are a truly extraordinary number of algorithms used to solve these equations.
One program cannot possibly provide all of them. This section provides an overview of the
included algorithms, for the more advanced and expert user.
xSPDE has six built-in choices of algorithm, with defaults. All built-in methods have an inter-
action picture and can be used with any space dimension, including dimensions = 1, which is
an ordinary stochastic equation. All can be used with stochastic or with non-stochastic equa-
tions, and with order extrapolation.
For stochastic equations, the Euler method requires an Ito form of stochastic equation, the
implicit Euler method requires an implicit Ito form, while the others should be used with the
Stratonovich form of calculus. Each uses the interaction picture to take care of exactly soluble
linear terms.

7.1.1 Standard methods

The standard xSIM algorithms given below are available for ODEs, PDEs, SDEs and SPDEs.
More advanced algorithms for specialized cases are described in section 7.

For stochastic differential equations, which are non-differentiable, the usual rules of calcu-
lus do not apply because stochastic noise is non-differentiable. It has fluctuations proportional
to 1/
p

d tdV , for noise defined on a lattice with temporal cell-size d t and spatial cell-size
dV . Hence, the usual differentiability and smoothness properties required to give high-order
convergence for standard Runge-Kutta methods are simply not present. Instead, xSPDE has a
built-in extrapolation to zero step-size for high-order stochastic convergence.

Many more complex higher order algorithms for stochastic integration exist but are not in-
cluded in the current xSPDE distribution, and users are encouraged to contribute their favorite
methods.

We note here that there are multiple error sources possible. SDE/SPDE errors are often
dominated by the sampling error, not discretization. In addition, all convergence theorems
only apply to the limit of zero step-size. One may be very far from this regime in a given
practical calculation. Analytic error estimates also have prefactors which are hard to calculate.
However, xSPDE can numerically estimate both the discretization and sampling error for any
given average observable.

7.2 General differential form

The general equation treated is given in differential form as

∂ a
∂ t
= A [∇, a, t] +B [∇, a, t] · ζ(t) + L [∇] · a . (180)

It is convenient for the purposes of describing interaction picture methods, to introduce an
abbreviated notation as:

D [a, t] = A [a, t] +B [a, t] · ζ(t) . (181)

67

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Hence, we can rewrite the differential equation in the form:

∂ a
∂ t
=D [a, t] + L [∇] · a . (182)

7.2.1 Linear propagator

Next, we define a linear propagator. This is given formally by:

P (∆t) = exp
�

∆tL [∇]
�

. (183)

Typically, but not necessarily, this is evaluated in Fourier space, where it should be just a diag-
onal term in the momentum vector conjugate to the transverse space coordinate. It will then
involve a Fourier transform, multiplication by an appropriate function of the momentum, and
then an inverse Fourier transform afterwards. For simplicity, the stochastic noise is assumed
constant throughout the interval d t. The reader is referred to the literature for more details.

It is simple to add your own algorithm if you prefer a different one. Note that if they use
an interaction picture, then ipsteps must be given explicitly to specify the interaction picture
duration, where ipsteps gives the number of sequential propagator steps in time required for
the method.

7.3 Standard methods

The standard methods are listed below. All of these can be used with any equation: ODE, SDE,
PDE or SPDE, either with or without a linear interaction picture term.

7.3.1 Euler: Ito-Euler

This is an explicit Ito-Euler method using an interaction picture. While traditional, it is not
generally recommended. If it is used, very small step-sizes will generally be necessary to reduce
errors to a usable level. This is because it is is only convergent to first order deterministically
and tends to have large errors.

It is designed for use with an Ito form of stochastic equation. It requires one IP trans-
form per step (p.ipsteps = 1). Starting from time t = tn, to get the next time point at
t = tn+1 = tn +∆t, one calculates:

∆an =∆tD [an, tn] ,

an+1 = P (∆t) · [an +∆an] .
(184)

7.3.2 Implicit: implicit Ito-Euler

This is a fully implicit Ito-Euler method using an interaction picture. It is more robust, though
slower, than the explicit form. If it is used, very small step-sizes will generally be necessary to
reduce errors to a usable level.

This is because it is is only convergent to first order, and therefore tends to have large
errors. It is designed for use with an implicit Ito form of stochastic equation. Note that this
implies double the usual Stratonovich correction!

It requires one IP transform per step (p.ipsteps = 1). Starting from time t = tn, to get the
next time point at t = tn+1 = tn +∆t, one calculates, using iteration to get the implicit result
of the next time-point:

68

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

ā(0) = P (∆t) · [an] ,

ā(i) = ā(0) +∆tD
�

ā(i−1), tn+1

�

,

an+1 = ā(i ter) ,

ãn = P (∆t) · [an] ,

∆an =∆tD [ãn +∆an, tn] ,

an+1 = ãn +∆an .

(185)

7.3.3 MP: Midpoint

This is a semi-implicit midpoint method using an interaction picture. It gives good results for
stochastic and stochastic partial differential equations. It is convergent to second order in time
for deterministic equations and for stochastic equations with commuting noise. It is strongly
convergent and robust. It requires two half-length IP transforms per step (p.ipsteps = 2).

To get the next time point, one calculates a midpoint derivative iteratively at time to get
the next time point at t = tn+1/2 = tn+∆t/2, to give an estimated midpoint field ā(i), usually
with four iterations. The number of iterations can be changed:

ā(0) = P
�

∆t
2

�

· [an] ,

ā(i) = ā(0) +
∆t
2

D
�

ā(i−1), tn+1/2

�

,

an+1 = P
�

∆t
2

�

·
�

2ā(i ter) − ā(0)
�

.

(186)

This is the default method for stochastic cases.

7.3.4 MPadapt: adaptive midpoint

This is an implicit midpoint method using an interaction picture, together with an adaptive
technique for integrating highly nonlinear equations. At low amplitudes it is identical to the
standard midpoint method. For amplitudes |ai|2 above a critical value, p.adapt, the amplitude
is inverted and propagated using the differential equation for its inverse.

Initially a switch p is set to 1 for low amplitudes, and −1 for high amplitudes. To get the
next time point, one calculates a midpoint derivative iteratively at time to get the next time
point at t = tn+1/2 = tn +∆t/2, to give an estimated midpoint field ā(i), as above, but with
the derivative modified to give the derivative of ap

i :

ā(0) = P
�

∆t
2

�

· [an] ,

ã(0) = ap
n ,

ã(i) = ã(0) +
∆t
2

p
�

ã(i−1)
�

1−p
�

D
�

[ã(i−1)]p, tn+1/2

��

,

an+1 = P
�

∆t
2

�

·
�

2ã(i ter) − ã(0)
�p

.

(187)

7.3.5 RK2: second order Runge-Kutta

This is a second order Runge-Kutta method using an interaction picture. It is convergent to
second order in time for non-stochastic equations, and for stochastic equations with additive

69

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

noise, but otherwise it is first order. It often has higher errors than midpoint methods. It
requires two IP transforms per step, but each is a full time-step long (p.ipsteps = 1).

To get the next time point, one calculates:

ā= P (∆t) · [an] ,

d(1) =∆tP (∆t) ·D [an, tn] ,

d(2) =∆tD
�

ā+ d(1), tn+1

�

,

an+1 = ā+
�

d(1) + d(2)
�

/2 .

(188)

7.3.6 RK4: fourth order Runge-Kutta

This is a fourth order Runge-Kutta method using an interaction picture. It is convergent to
fourth order in time for non-stochastic equations, but for stochastic equations it can be more
slowly convergent than the midpoint method. It requires four half-length IP transforms per
step (ipsteps = 2). To get the next time point, one calculates four derivatives sequentially:

ā= P
�

∆t
2

�

· [an] ,

d(1) =
∆t
2

P
�

∆t
2

�

·D [an, tn] ,

d(2) =
∆t
2

D
�

ā+ d(1), tn+1/2

�

,

d(3) =
∆t
2

D
�

ā+ d(2), tn+1/2

�

,

d(4) =
∆t
2

D
�

P
�

∆t
2

�

�

ā+ 2d(3), tn+1

�

�

,

an+1 = P
�

∆t
2

�

·
�

ā+
�

d(1) + 2
�

d(2) + d(3)
��

/3
�

+ d(4)/3 .

(189)

This might seem the obvious choice, having the highest order. However, it can converge at a
range of apparent rates, depending on the relative importance of stochastic and non-stochastic
terms. Due to its use of differentiability, it may converge more slowly than the midpoint
method with stochastic terms present. It is the default for ODE and PDE cases.

7.4 Advanced methods

Three more advanced method libraries are included here, namely weighted, projected and
forward-backward stochastic differential equations. If you have a favorite algorithm that is
not included, user-defined algorithms and libraries can be added. The existing methods are
listed below, and the corresponding .m-files can be used as a model.

Define the routine, for example "myalgorithm.m", set p.method =@myal gori thm, then
adjust the input value of ipsteps and order if these need be changed to a new value. The
interaction-picture transform, prop, can also be changed if the built-in choice is not suffi-
cient.The xSPDE algorithms available currently treat

• ordinary (and partial) differential equations

• stochastic differential equations

• stochastic partial differential equations

• weighted stochastic differential equations

70

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

• projected stochastic differential equations,

• forward-backward stochastic differential equations

The first three have already been treated. In this section, we explain the last three cases, which
involve more specialized libraries of functions.

7.4.1 Additional inputs

Some of the more advanced features of the libraries require additional input parameters. In
particular:

backfields is used for forward-backward stochastic equations, describing backward time com-
ponents. These are described in the Forward-backward section. Note that fields is still
used, and it gives the total number of forward+backward fields.

auxfields gives the number of auxiliary fields. These have a functional definition (defines)
that includes both a field and noise variable, as needed for spectral observables. Field
index numbers i greater than f ields access the auxiliary fields in the observe function.

7.5 Weighted library

In some types of stochastic equation, there is a weight associated with each trajectory, which is
used to weight the probability of the trajectory [91]. This type of equation is sometimes found
when dealing with quantum trajectories [92,93] and feedback [94].

The equations still have the standard form of Eq (1), with an extra weight equation, Eq
(4). However, the results for mean values are weighted by a term exp (Ω (t)), so that:

〈O〉Ω =

∑

n O
�

a(n)
�

exp
�

Ω(n) (t)
�

∑

n exp
�

Ω(n) (t)
� . (190)

This reduces to the standard expression of Eq (3) in the case that Ω (t) = 0. To simulate
these equations automatically, the weight exponentΩ is integrated as the last field in the vector
a, which must have at least two components. A nonzero threshold weight, thresholdw, must
be entered to allow calculation of breeding.

With these changes, averages in each vector ensemble are calculated using Eq (190). Be-
fore each plotted step in the calculation, a breeding calculation is carried out. There are
p.steps(1) − 1 of these in total. During breeding, any weight such that
exp

�

Ω(n)
�

< thresholdw/ 〈exp (Ω)〉 is removed.
The most probable trajectory is then duplicated to replace the low-weight trajectory. Both

exponential weights are halved, so the total weight of the remaining trajectories is unchanged.
If they are complex, weights such that exp

�

Re
�

Ω(n)
��

< thresholdw/ 〈exp (Re (Ω))〉 are re-
moved, and the real weight of the bred trajectory is reduced, which removes any low-weight
trajectories that don’t contribute. When used, the internal variable p.breedw is set to allow the
fraction of trajectories that are bred per step to be monitored. For weighted SPDEs, the spatial
weights Ω(x j) are summed over space points to obtain Ω.

7.5.1 Example

The following example shows how weights are implemented.

71

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function [e] = Weightcheck()
p.name = 'Weightcheck';
p.ensembles = [10000,10,1];
p.fields = 2;
p.points = 6;
p.order = 2;
p.thresholdw = 0.1;
p.diffplot = 1;
p.initial = @(w,p) [1+w(1,:);0*w(2,:)];
p.deriv = @(a,z,p) [-a(1,:)+ z(1,:);-a(2,:)+...
z(2,:)];
p.observe{1} = @(a,p) a(1,:);
p.observe{2} = @(a,p) p.breedw;
p.compare{1} = @(p) exp(-p.t);
p.olabels{1} = '<a>';
p.olabels{2} = '<fractional breeds per step>';
e = xcheck(2,p);
end

This algorithm converges with second-order accuracy for this exercise, due to the structure
of the equation. The example also demonstrates how to use the xcheck function instead of
xspde, to check convergence.

7.6 Projection library

It is sometimes necessary to constrain an equation to a sub-manifold [95], with an equation
of form:

f (a) = 0 , (191)

where f (a) is a scalar or vector function that defines the relevant manifold in Euclidean space.
The projected SDE then has the form of a Stratonovich SDE, where:

∂ a
∂ t
= P∥a

�

A [a] +B [a] ·w(t)
�

, (192)

where P∥a is a tangential projection operator at location a on the sub-manifold, and as usual, A
is a vector, B a matrix and w is a real Gaussian noise vector, delta-correlated in time. Similarly,
the general stochastic partial differential equation can be written in projected form as

∂ a
∂ t
= P∥a

�

A [a] +B [a] ·w(t,x) + L [∇,a]
�

. (193)

When numerically integrating these, it is also useful to have a normal projection
P⊥available. This is used to normally project to the nearest point on the manifold, to eliminate
constraint errors. These are solved using functions collected in a projection library, to provide
the specialized methods that are needed for this purpose.

The projection library has three predefined algorithms,

• Enproj,

• MPproj,

• MPnproj.

72

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Here the capital E stands for Euler, MP for midpoint. All use tangential projection. The letter
n=normal indicates if an additional normal projection is used. In all cases, if it is present,
a normal projection is used last. The recommended type is MPnproj, due to its much lower
errors.

Tangential and normal projections are needed to define the geometry of any sub-manifold.
These are input by setting the variable project equal to a function handle that defines the pro-
jection. These can be user provided if required. There are three different predefined manifold
geometry types, which need different inputs, given below.

7.6.1 Calling the project function

The calling arguments for the project function are: (d,a,n,p), where d is a vector to be tangen-
tially projected at location a, a is the current (near)-manifold location, n is an option switch,
and p is the parameter structure.

The options available in any project implementation are defined as:

• n = 0 returns the tangent vector for testing

• n = 1 returns the tangential projection of d at a

• n = 2 returns the normal projection of a, where d is not used

• n = 4 returns the constraint function at a for testing

The projections defined in an xSPDE project function can be of any type. Arbitrary dimension
reduction and manifold geometry is possible. Currently in the examples, dimensionality is
reduced by 1, and normal projections use fixed point iterations, defined by iterproj.

7.6.2 The predefined manifold geometries

The current manifolds, by setting p.project =@Quadproj ..., are as follows:

1. Quadratic - Quadproj - needs: qcproj defined by f =
∑

qi j x
i x j − 1= 0

2. Polynomial - Polproj - needs: vcproj defined by f =
∑

vi(x i)p − 1= 0

3. Catenoid - Catproj - uses fixed coefficients defined by f = (x1)2+(x2)2−(sinh(x3))2−1= 0 .

Any other manifold can be used by replacing these predefined manifolds with an appropriate
project function.

7.7 Forward-backward library

The xSPDE forward-backward library implements an iterative stochastic method which prop-
agates an SDE or PSDE forward and backward in time. This is used to treat Q-function phase-
space methods, which do not have a positive-definite diffusion [96]. The iteration converges
in simple cases, typically with no cross-coupling apart from boundary conditions. It uses the
algorithm MPfb.

The general FB equations have the following structure, written as an integral equation to
make it clear what the relevant boundary conditions are:

p (t) = p (0,q (0)) +

∫ t

0

�

Ap
�

a
�

t ′
��

d t ′ +Bp
�

a
�

t ′
��

· dwp(t ′)
	

,

q (t) = q (T,p (T)) +

∫ T

t

�

Aq
�

a
�

t ′
��

d t ′ +Bq
�

a
�

t ′
��

· dwq(t ′)
	

. (194)

73

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Here, a = [p,q] includes forward components p and backwards components q. These have
“initial” conditions in the past and the future, respectively, and can depend on random inputs,
just as with ordinary stochastic equations.

The library includes the xpathfb function which replaces the xpath function, which is used
automatically. However, the user must specify a modified step integrator, either Eulerfb or
MPfb. The initial and deriv routines require additional arguments, which are described in the
table below, and are used during the iteration scheme.

The noise terms w= [wp,wq] are uncorrelated real Gaussian noises:
¬

dwαi (x) dwβj
�

x′
�

¶

= δi jδαβd t . (195)

This is solved in differential form, where t− = T − t, as:

∂ p
∂ t
= Ap [a] +Bp [a] ·wp(t) ,

∂ q
∂ t−

= Aq [a] +Bq [a] ·wq(t) . (196)

Each equation is solved by iteration. The previous value of the counter-propagating field,
ie a(n−1), is used to solve for a(n) in step n, since the current value is not yet known. That is,
the algorithm is:

∂ p(n)

∂ t
= Ap

�

p(n) (t) ,q(n−1) (t)
�

+Bp
�

p(n) (t) ,q(n−1) (t)
�

·wp (t) , (197)

∂ q(n)

∂ t−
= Aq

�

p(n−1) (t−) ,q
(n) (t−)

�

+Bq
�

p(n−1) (t−) ,q
(n) (t−)

�

·wq (t−) .

Convergence is the responsibility of the user, and the algorithm has a fixed number of itera-
tions. The starting point of the iteration is the path function f b f irst. The simulation requires
the following additional inputs, including back f ields, defining the backward components.

Label Type Typical value Description

backfields integer vector 1 Number of backward variables
initialfb function handle @(a0, a1, w, p) Initial value for a
firstfb function handle @(a0, nc, p) First trajectory estimate
iterfb integer 2 Forward-backward iterations

method function handle @x M P f b Forward-backward algorithm
deriv function handle @(a, a−, w, p) Derivative function

In initialfb, the a0 fields from the previous iteration are at the first times computed pre-
viously, so a0 =

�

p(n−1) (0) ,q(n−1) (T)
�

, while the a1 fields are evaluated at the last times
computed from the previous iteration, so a1=

�

p(n−1) (T) ,q(n−1) (0)
�

.
On the first call to initialfb, with p.i ter = 1, a startup procedure is used. In the startup

procedure, a0 is generated internally by initialfb. However, a1 is obtained in the internal
calling function xpathfb using the output of firstfb, which gives an initial iterative path estimate
of a. It returns a default path equal to the initial boundary value a0, if not defined by the
user. More generally, it should be set to a value to allow iterations to converge. The calling
arguments of firstfb include the initial boundaries a0 and the usual check index (nc = 1,2).

The initial function returns a0, giving the current initial values. On the first iteration
initial returns an internally defined a0. Subsequently it requires a0, the stored first iteration
boundaries as well as a1, the previous iteration end-points. The estimate for the previous path
in the deriv function is obtained from the iteration starter function firstfb on the first iteration,
and subsequently from a stored value.

74

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Internally, the raw fields a= [p,q] are stored in complementary time-orders, with p solved
normally in forward time, and q solved in reverse temporal order.

When the previous iteration field is passed to deriv, the time-orders of the previous iter-
ation are reversed so that previous iteration q times are the same as p times, and vice-versa.
The previous fields are therefore at the same time as those of the complementary present field.
When passed to observe, both p,q are given in time-increasing order to allow synchronized
observations.

7.7.1 Example:

This is a trivial example, to illustrate the code structure. It has two counter-propagating
stochastic processes, one decaying in the forward time direction, and one decaying in the
backward time direction.

function [e] = Fbcheck()
p.ranges = 1;
p.fields = 2;
p.backfields = 1;
p.initialfb = @(~,~,w,p) 1+0.5*w;
p.ensembles = [400,1,1];
p.method = @MPfb;
p.deriv = @(a,~,w,p) -a + w;
e = xspde(p);
end

8 Integration errors

This section describes how xSPDE estimates errors from time discretization and statistical
sampling. Other numerical errors require manual checks.

Errors and the need for error-checking are an integral part of numerical calculations. This
is more subtle in stochastic equations, because there are both multiple sources of errors and
multiple outputs. The xSPDE philosophy is to compute the most relevant errors for every
average output, since each output average may have quite different errors.

8.1 Discretization errors

To check convergence, xSPDE repeats the calculations at least twice for checking step-sizes,
and many times more in stochastic cases to estimate sampling errors. These checks can be
turned on and off. If you think the checks make xSPDE slow, turn them off - but you won’t get
any error-estimates. Whatever the application, you will find the error-estimates useful.

If the errors are too large relative to the application, you should decrease the time-steps or
increase the number of samples. Which is needed depends on the type of error.

Errors caused by the finite time-domain step-size are checked automatically provided that
checks = 1 is specified, which is the default option. If checks = 0 is used, there is no time-
domain error check.

Errors due to a finite step-size are estimated by running a check simulations with half the
initial step-size and the same random sequence, extrapolating to zero step-size if order > 0
is specified, then returning an error bound as the difference of the two most accurate results.
Any 2D output graphs plot error-bars if checks = 1 was specified, provided they are large

75

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

enough to plot. RMS output errors are also reported. Individual error bounds e (o) are given
in the output data, and the plots give ō± e (o).

Error-bars below a minimum relative size compared to the vertical range of the plot, spec-
ified by the graphics variable minbar, are not plotted. The default for this is minbar = 0.01.
All error bars are calculated individually for each type of data average. Minbar is a cell array
that can can be set for each type of average or graph. If the cell argument is omitted, it applies
globally. Error estimates are also given for functional transforms of averages.

If the errors are too large, one can either increase the points, which gives more plotted
points and lower errors, or increase the steps, which reduces the step size without changing
the data resolution. The default algorithm and extrapolation order can also be changed. Error
bars on graphs can be removed by setting checks = 0 or increasing minbar.

Discretization errors caused by the finite spatial lattice are not currently checked in the
xSIM code. They must be checked by comparing results with different transverse lattice ranges
and step-size. Similarly, errors from probability binning are not checked.

8.1.1 Discretization error outputs

In xSPDE, the discretization or step-size error due to finite time-step sizes is called the “step”
error. For checking step errors, xSPDE allows the user to specify checks = 1, which is the
default option. This gives one integration at the specified step-size, and one at half the specified
step-size. The data is plotted using the more accurate fine step-size results, but with the coarse
time lattice in order to calculate the estimated discretization errors.

The RMS value of the step error for each computed function, normalized by the maxi-
mum modulus of the observable, is printed out after each xSPDE simulation. If the expected
comparison value is zero, the absolute value is given.

Both fine and coarse time-step results employ identical underlying random noise processes,
from the same initial random seed. To compensate for the grid size, the coarse time-step uses
a sum of two successive fine noise increments. This has the advantage that any differences are
only from the effects of the time-step on the integration accuracy.

If different noises were used, part of the measured error-bar would be from sampling
errors. Where there is 2D graphical output, the error bars give the step error, if you set
p.checks = 1. The standard error-bar, with no extrapolation, has a half-size equal to the
difference of the two most accurate results.

If computed, the discretization error is included in the graphical data outputs for all observ-
ables. It is accessed by setting the last index for the output data equal 2. The raw discretization
error is generally a very cautious estimate, and may overestimate the errors. This estimate can
be improved using extrapolation, explained next.

8.2 Higher order convergence

xSPDE uses extrapolation to improve convergence, which requires an input of the order. If this
is non-zero, and checks are set to 1 to allow successive integration with two different step-sizes,
the output of all data graphed will be extrapolated by assuming the method has the specified
order. To remove extrapolation and obtain a more conservative mean and error-bar result, set
p.order = 0.

8.2.1 Extrapolation

Extrapolation is valuable for improving the accuracy of a differential equation solver. It is valid
for small time-steps. Suppose an algorithm has a correct solution R0, but returns a numerical

76

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

result R with an error order n. For small step-size, integration results R (d t) with step-size d t
have an error of order d tn, that is:

R (d t) = R0 + e (R) = R0 + k.d tn . (198)

Hence, from two results at different values of d t, differing by a factor of 2, one would obtain

R1 = R (d t) = R0 + k.d tn ,

R2 = R (2d t) = R0 + 2nk.d tn.
(199)

The true result, extrapolated to the small-step size limit, is obtained by giving more weight
to the fine step-size result, while subtracting from this a correction due to the coarse step-size
calculation, to cancel the leading error term:

R0 =

�

R1 − R22−n
�

[1− 2−n]
. (200)

Thus, if we define a factor ε as

ε (n) =
1

[2n − 1]
=
�

1,
1
3

,
1
7

. . .
�

, (201)

the true results are obtained from extrapolation to zero step-size as:

R0 = (1+ ε)R1 − εR2 . (202)

The built-in algorithms have an order as ordinary differential equation integrators of 1, 1,
2, 2, 2, 4 respectively and will converge to this order at small step-sizes. Weak first order
convergence is always obtainable for these single noise-step SDE methods [30]. Second order
convergence is obtained in some cases with midpoint, RK2 and RK4 algorithms.

Higher order convergence for the raw data is not guaranteed for the built-in SDE algo-
rithms. The algorithms used do not always converge to the standard ODE order when used
for stochastic equations. Hence extrapolation higher than first order should be used with cau-
tion in stochastic calculations, unless more complex methods are used [28].

8.2.2 Extrapolated error-bars

If extrapolation is used, the error bar half-size is the difference of the best raw estimate and the
extrapolation. Extrapolated results are usually inside those given by the error-bars, however,
note that:

• extrapolation with too high an order may under-estimate error bars

• extrapolation with too low an order reduces the accuracy

Hence, xSPDE assumes a default order of order = 1 for all SDE and SPDE cases. This gives
an extrapolated weak order of 2 for stochastic cases. One can set order = 0 to remove the
default, or use a higher order if preferred, although, as explained above, it requires some
caution. For an ODE or PDE the default order is the usual deterministic order. For the default
RK4 deterministic method, the default is order = 4. All orders are improved by one with
extrapolation.

High-order convergence without extrapolation can also be obtained, either in special cases
using the xSPDE methods, or by adding user-specified techniques. The xSPDE libraries can be
readily extended by the user to include these, through defining a modified method function
appropriately.

77

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

8.3 Statistical errors

Sampling error estimation in xSIM uses three different techniques.

• xSIM uses sub-ensemble averaging, requiring high-level ensembles.

• For probability estimates, a Poissonian sampling error is used, based on counts.

• If there is a comparison probability, this is used for sampling error estimates.

This procedure leads to reliable sampling error estimates, and makes efficient use of the vector
instruction sets used by Matlab. Ensembles are specified in three levels. The first, ensembles(1),
is called the number of samples for brevity. All computed quantities returned by the observe
functions are first averaged over the samples, which are calculated efficiently using a paral-
lel vector of trajectories. By the central limit theorem, these low-level sample averages are
distributed as a normal distribution at large sample number.

Next, the sample averages are averaged again over the two higher level ensembles, if
specified. This time, the variance is accumulated. The variance of these distributions is used
to estimate a standard deviation in the mean, since each computed quantity is now a normally
distributed result. This method is applied to all the observables. The two lines generated
represent ō ±σ (o), where o is the observe function output, and σ is the standard deviation
in the mean.

Here, ensembles(2) specifies ensembles computed in series. The highest level ensemble,
ensembles(3), is used for parallel simulations. This is faster for a multiple core CPU or when the
codes are run in a supercomputing environment, which requires the Matlab parallel toolbox.
Either type of high-level ensemble, or both together, can be used to calculate sampling errors.

If ensembles(2) > 1 or ensembles(3) > 1, which allows xSPDE to calculate sampling
errors, it will plot upper and lower limits of one standard deviation. If the sampling errors are
too large, try increasing ensembles(1), which increases the trajectories in a single thread. An
alternative is to increase ensembles(2), which is slower, but is only limited by the compute
time, or else to increase ensembles(3), which gives higher level parallelization.

Each is limited in different ways: the first by memory, the second by time, the third by the
number of cores. Sampling error control helps ensures accuracy.

8.3.1 Sampling error

Quantitative sampling error estimation in xSPDE uses sub-ensemble averaging. Ensembles
are specified in three levels, using vector, serial and parallel methods, respectively. The vector
ensemble length, p.ensembles(1), is called the number of samples for brevity. All quantities re-
turned by the observe functions are averaged over the samples, which are calculated efficiently
using a vector of trajectories.

By the central limit theorem, the sample averages are distributed as a normal distribution
at large sample number. Next, the sample averages are averaged over the two higher level
ensembles, if specified. The variance of this data is used to estimate a standard deviation in
the mean, since each is normally distributed.

The next level, p.ensembles(2), is for serial calculations of ensembles. The highest level
ensemble, p.ensembles(3), is used for parallel simulations. This requires the Matlab parallel
toolbox. Either type of high-level ensemble, or both together, can be used to calculate sampling
errors.

Note that one standard deviation is not a strong bound; errors are expected to exceed this
value in 32% of observed measurements. Another point to remember is that stochastic errors
are often correlated, so that a group of points may all have similar errors due to statistical
sampling.

78

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

The statistical error due to finite samples of trajectories is called the sampling error. The
RMS value of the relative sampling error for each computed function, normalized by the max-
imum modulus of the observable, is printed out after each xSPDE simulation. If the expected
comparison value is zero, the absolute value is given.

Averages over stochastic ensembles are the specialty of xSPDE, which requires specification
of the ensemble size. A hierarchy of ensemble specifications in three levels allows maximum
resource utilization, so that:

p.ensembles = [ensembles(1), ensembles(2), ensembles(3)] .

The local ensemble, ensembles (1), gives within-thread parallelism, allowing vector instruc-
tion use for single-core efficiency. The serial ensemble, ensembles (2), gives the number of
independent sub-ensembles of trajectories calculated serially.

The parallel ensemble, ensembles (3), gives multi-core parallelism, and requires the Matlab
parallel toolbox. This improves speed when there are multiple cores. One should optimally
put ensembles (3) equal to the available number of CPU cores.

The total number of stochastic trajectories or samples is

ensembles(1)× ensembles(2)× ensembles(3) .

Either ensembles(2) or ensembles(3) are required if sampling error-bars are to be cal-
culated, owing to the sub-ensemble averaging method used in xSPDE to calculate sampling
errors accurately.

Two lines are graphed for an upper and lower standard deviation departure from the mean.
This is only plotted if the total number of serial or parallel ensembles is greater than one, prefer-
ably at least 10–20 to give reliable estimates. The sampling error is reasonably accurate, but
may underestimate errors for observe function results that have highly non-Gaussian trajectory
distributions, especially with asymmetries or unusual distributions. These estimates are avail-
able for all observables in any dimension. The two lines generated in the graphs represent
ō±σ, where o is the mean output, and σ is the computed standard deviation in the mean.

8.4 Convergence tests

8.4.1 Comparisons: compare

Every observe function can be accompanied by a comparison function, with a function handle
compare{n}. This generates a vector of analytic solutions or experimental data-points which
is compared to the average of the stochastic results. Results are plotted as additional lines on
the two-dimensional graphical outputs, and a summary of comparison differences is printed.

A cell array of functions is used to obtain comparison results. These are calculated from
the user-specified compare{n}(p) handle where the function argument is the parameter struc-
ture p, giving a extra dashed line on the two-dimensional graphs. Other graphics options are
available as well. These optional comparisons can be input in all dimensions. When there are
error estimates, a chi-squared test is carried out to determine if the difference is within the
expected step-size and sampling error bars. If the comparison has errors, for example from
experimental data, the chi-squared test will include the experimental errors.

8.4.2 Convergence: xcheck

The convergence checker, xcheck(checks,p), is designed for use where there are analytic results
available for comparisons. This will automatically run xSIM a total of checks times, increasing
the initial steps by 2 after each run, to reduce the step-size by 2. It then runs xGRAPH to
display the most accurate result. It prints the time-step, the maximum difference with an
input compare and the estimated errors found at the relevant point.

79

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Exercise

• Simulate the Kubo oscillator using the file, Kubocheck.m, with xcheck.

function [e] = Kubocheck()
p.name = 'Kubo with convergence checks';
p.ensembles = [1000,10];
p.initial = @(w,p) 1;
p.range = 2;
p.deriv = @(a,xi,p) 1i*xi.*a;
p.observe{1} = @(a,p) real(a(1,:));
p.observe{2} = @(a,p) a(1,:).*conj(a(1,:));
p.olabels = {'<a> ','< a^2> '};
p.xlabels = {'\tau'};
p.compare{1} = @(p) exp(-p.t/2);
p.compare{2} = @(p) 1;
e = xcheck(2,p);
end

8.5 Chi-squared estimates

Chi-squared error estimates are reported in cases that have statistical sampling errors and
comparison functions. These allow estimates of goodness of fit for probabilities. For Np in-
dependent points graphed or measured, if Oi is an observable with measured mean Ōi and
statistical fluctuations ∆Oi , one has that:

χ2/Np =
1

Np

∑

i

¬

��

Ōi +∆Oi

�

−Oa
i

�2¶

σ2
i

. (203)

Here σ2
i is an estimated variance. Provided that

∆O2
i

�

= σ2
i and Ōi = Oa

i , one should
obtain the expected result of χ2/Np ≈ 1. The exact distribution is known in special cases, but
this requires that all data is independent and has a Gaussian distribution, which is not the case
for stochastic trajectories.

Because of the variety of error-sources, and the lack of independence from point to point,
these error sums are not identical to Pearson’s original definition of χ2, and therefore should
be used with caution. Nevertheless, the definition provides a way of evaluating goodness of
fit that is useful.

Here, the value of σ2
i is obtained by including all known error sources, so

σ2
i =

4
∑

n=1

�

σ
(n)
i

�2
. (204)

These are:

1. If sub-ensemble measures are used, the estimated σ2
i includes sampling errors.

2. If checks are included, the estimated σ2
i includes discretization errors.

3. If comparisons have systematic errors, e.g. from experimental data,

4. If comparisons have known statistical errors.

80

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

In the case of sampled probabilities where there is a comparison probability, the estimated
statistical variance in the data is obtained following Pearson’s original method. That is, from
estimated counts given the comparison probability, rather than a computed variance. This allows
the use of standard χ2 comparisons.

8.5.1 Probability comparisons

Comparisons of trajectory probabilities and analytic probabilities do not always result in per-
fect agreement. This is because the limitations of memory and simulation time mean that
trajectories have to be binned, which leads to an additional discretization error. Note that
xSPDE approximates the comparison analytic probability of a bin by the central bin value of
the probability, which is the simplest procedure.

To explain this, comparisons of probabilities ought to use the average probability density
over the bin, which is different from the central value. Suppose one has a comparison distri-
bution pa (x). Using Simpson’s rule, the average analytic probability density integrated over
a bin size ∆x is approximately:

pa
o =

1
∆x

∫ x0+∆x/2

x0−∆x/2
pa(x)d x (205)

≈
1
6

�

4pa(x0) + pa
�

x0 +
∆x
2

�

+ pa
�

x0 −
∆x
2

��

.

This is equivalent to a cubic polynomial fit. It can be used to improve the analytic binning
comparisons. It is especially important for multi-dimensional comparisons. It results in 9 dis-
tinct terms for two dimensions. This correction must be inserted manually in the comparison
functions.

8.5.2 Scaling of χ2 errors

Because chi-squared probability tests are sensitive, it helps to understand how they scale with
bin-size. With Ns total samples, the estimated probability Pi in a bin with probability density
p (a) and sampled counts of Ni is given by Pi = Ni/Ns = piA for a bin bi with area A, where:

pi =
1
A

∫

bi

p (a) dA . (206)

The Poissonian variance of the counts in the bin is 〈∆Ni〉 = 〈Ni〉. The expected probability
variance is therefore

∆P2
�

=

∆N2
i /N

2
s

�

= 〈Ni〉/N2
s . (207)

Let 〈Ni〉 = N a
i , the analytic or expected count number. The expected probability density

variance at a point is therefore

∆p2
i

�

=

∆N2
i /A

2N2
s

�

= N a
i /A

2N2
s = pa

i /ANs . (208)

Here pa
i is the analytic or comparison probability density, and

∆p2
i

�a
= pa

i /ANs is the expected
analytic variance. The χ2 variable, that follows the Pearson χ2 distribution, is defined as
follows:

χ2/Np =
1

Np

∑

i

¬

�

pi − pa
i

�2¶

∆p2
i

� . (209)

81

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Here, pa
i is obtained by integrating over the i-th probability bin. It can be estimated by

using the central value, pa
i ≈ p (ai), although cubic interpolation is more precise.

This could lead to a fixed error in the analytic probability density pa
i , so pa

i → pa
i + εi ,

possibly localized to some fraction of bins f which may change with the bin size. Suppose,
for simplicity, that ε is due to an integration error in integrating the exact distribution or any
other error in the ‘exact’ distribution, and it does not change with changes to the bin area A.

From the definition of χ2, if the generated samples have negligible step-size errors:

χ2/Np =
1

Np

∑

i

¬

��

pa
i +∆pi

�

− pa
i − εi

�2¶

∆p2
i

� . (210)

For simplicity, if we consider the large sample limit with uniform probabilities,

χ2/Np = 1+
f ε2

〈∆p2〉
= 1+

f ε2ANs

pa
. (211)

Increasing the bin area A will increase χ2/Np above its usual value of 1 by an amount
proportional to A. This is simply because smaller bins have less intrinsic accuracy, due to
a larger sampling error. As a result, it is often preferable to use more accurate probability
estimates with larger bins having more counts, since these are much more sensitive to effects
like this.

Often, simulated and comparison graphs may appear identical visually, but even if they
have small errors they may still be very significant. Such comparison binning errors can be
reduced by using cubic spline interpolations, as explained above.

8.6 Error outputs

There are six types of data outputs: data, errors, comparisons and the comparison errors.
Summaries will appear in the printed outputs if available. Step errors and sampling errors,
as well as comparison data are stored in all the output data arrays. These are also available
graphically in two-dimensional graphs.

8.6.1 Numerical error outputs

The last data index c is used to obtain errors and comparisons in data outputs. To obtain
comparison data, a comparison function is defined for each output function. This can include,
for example, experimental data, experimental errors or exact analytic comparisons where they
are available.

1. Means are in c = 1 data, except if scatters>1, which gives individual trajectories.

2. If checks>0, the step errors are in c = 2 data.

3. If ensembles(2,3)> 1, the sampling errors are in c = 3 data.

4. Comparison values from compare functions are in c = 4 data.

5. Comparison systematic errors can be included in c = 5 data.

6. Comparison statistical errors can be included in c = 6 data.

82

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

8.6.2 Graphical error outputs

These are explained in detail in the xGRAPH reference section 10.

1. Mean values or trajectories are graphed as separate data lines.

2. Step errors generate graph error bars

3. Sampling errors are graphed as parallel solid lines

4. Dashed lines indicate comparison values from compare functions.

5. Comparison systematic errors give additional error bars

6. Comparison statistical errors can be included as parallel lines

Because multiple errors can generate very complex graphs, there is additional control of error
bar generation, explained in the xGRAPH reference section. One can also obtain difference
graphs with comparisons, which allow errors to be examined more closely, and error bars can
be combined in different ways.

Graphics data is only available for two-dimensional graphs, and is subject to selection using
the axes inputs.

8.6.3 Printed error outputs

Printed error summaries are generated in each xSIM run, in addition to the data outputs.
These are normalized, root mean square (RMS) errors. Normalization is carried out using the
modulus of the largest data value. If the comparison results are all zero for a function, there
is no normalization carried out.

After computing RMS values over each graph function, a second RMS average is taken
over all totals, weighting each total equally, and including all functions and sequence datasets
where there are nonzero errors reported. Data with no errors are not included in the totals
for each category.

There is a final RMS average taken over the step, sampling and comparison totals. This
again ignores categories with no errors. The purpose is to allow a rapid comparison to ensure
that there are no higher than expected errors, which might require a new simulation with more
steps or increased trajectories.

Printed errors are summarized in three main categories

1. Discretization or step errors

2. Sampling errors

3. Comparison errors

Comparison data may not be available over an entire lattice. If this is the case, the axes point
selections can be used to restrict the relevant datas points used for these comparisons. This
also applies to the goodness of fit and error-vector outputs, since they make use of comparison
data where it is available.

8.6.4 Goodness of fit (χ2)

The χ2 statistics are obtained by normalizing the comparison squared differences by the sum
of squares of all the data and comparison errors at that point. These are summed over every
data point with relevant data, and the number of relevant data points, k, is stored. The ratio
of χ2/k should be order 1 for statistical errors.

These are summarized for each functional data output type, as well as giving rise to an
error total.

83

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

8.6.5 Error vector output

When used as a function call in batch mode, the first type of data returned by xSIM is a
six-component error vector. This can be used for summarizing error data in a batch job, to
determine if a specified error-threshold is reached, to allow an iterative increase in the number
of time-steps or trajectories.

The error-vector components are:

1. Total error overall, including step, discretization and comparisons

2. Total step-size error

3. Total sampling error

4. Total comparison error

5. Total χ2/k goodness of fit

6. Simulation elapsed time

8.6.6 Error summaries

There are six types of data outputs: data, errors, comparisons and comparison errors. Sum-
maries will appear in the printed outputs, depending on the verbosity setting. Step errors and
sampling errors, as well as comparison data are stored in output data arrays. These are also
available graphically in two-dimensional graphs.

9 xSIM reference

This section gives a reference guide to the xSIM parameters and functions.

9.1 Overview

Simulations carried out by xSIM are performed by other specialized internal functions. Input
parameters come from an input cell array of structures, while output is saved in a data array,
and optionally in a file. During the simulation, global averages and error-bars are calculated
for time-step and sampling errors. When completed, timing and errors are printed.

The xsim function call syntax is: [error,data,output(,rawdata)] = xsim(input);

9.1.1 Input and data structures

To explain xSPDE in full detail,

• Simulation parameters are stored in the input cell array.

• This describes a sequence of parameter structures, so that input={p1,p2,...} .

• Each structure p1,p2,... generates an output which is the input of the next.

• The main simulation function is called using xsim(input).

• The RMS errors and integration time are returned in the error vector

• Parameters including defaults are returned in the output cell array.

• Averages are recorded sequentially in the data cell array.

84

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

• Raw trajectory data is optionally stored in the rawdata cell array.

The sequence input defines a sequence of individual simulations, with parameters that specify
the simulation functions and give the equations and observables. If there is only one simula-
tion, just one data structure is needed, without a cell array. In addition, xSPDE can generates
graphs with its own graphics program, xGRAPH.

For convergence checking, a useful alternative to xspde which repeats the calculation checks
times while halving the time-step each time, and reports the resulting errors for averaged
observables, is:

• xcheck (checks,p)

9.1.2 Parameters and functions

The xSIM input objects include parameters and functions, with an extensible object-oriented
architecture. All xSIM functions are modular and replaceable. In many cases this is as easy as
just defining a new function handle to replace the default value.

There are two types of functions:

• User functions define the simulation, and have default values. The defaults are usually
obtained by adding ‘x’ in front of the name. In the special case of method, the default
depends on the problem.

• Helper functions usually start with ‘x’. In some cases these are defaults for user functions.
In all cases they have well-defined roles, like the reserved functions in C, Python, Matlab
or Julia.

• All arguments in square brackets are optional, but may be needed only in specific cases.

• The last argument, p, is the parameter structure.

For example, to define your own integration function, include in the xSPDE/xSIM input the
line:

p.method = @Mystep;

Next, include anywhere on your Matlab path the function definition, for example:

function a = Mystep(a,w,p)
% a = Mystep(a,w,p) propagates a step my way.
..
a = ...;
end

9.2 Parameter table

Simulation parameters are stored in a parameter structure which is passed to the xsim pro-
gram. Constants can be included, but must not be reserved names. Names starting with a
capital letter like ‘A...’ - except the reserved ‘D’ for derivatives - are always available. Globals
are incompatible with the Matlab parallel toolbox. Graphics data is stored for the graphics
program to use.

Standard inputs have default values, which are user-modifiable through the xpreferences
function. Defaults can be checked by including the input ver bose = 2. All the inputs are

85

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

part of a structure passed to xSPDE. If a cell array of multiple structures are input, these are
executed in sequence, with the output of the first simulation passed to the second, then the
third, and so on.

Library functions inputs do not have defaults, as these are subject to change.

9.3 Function tables

9.3.1 User function table

The user-defined functions, calling arguments, and purpose, are:

9.3.2 Internal function table

For details of the internal functions, see section 9.6 and sections 7 and 7. All xSPDE internal
functions are capitalized. They are:

• Projection algorithms with a ‘proj’ suffix require a project function.

• Forward-backward algorithms with an ‘fb’ suffix require a second field in the user deriv
function.

• For Int, one can integrate either with respect to d x or dk, in either ordinary space or
momentum space, by changing the second argument passed to x int as required.

• For integration in momentum space, fields that are passed to Int are transformed if the
observe function is used with Fourier transforms selected using transforms.

• For integrating functions like function{n} with transforms, the transform flags trans-
forms{n} should be used both for the function and any observe averages used.

• Average data is not Fourier transformed after averaging. If this is required, it is best to
output the data first.

9.4 Parameter reference

9.4.1 auxfields

Default: 0

These are real or complex auxiliary fields stored at each lattice point, specified using define.
They are useful for input/output spectral calculations, and can be functions of the noise.

Example: p.auxfields = 2

9.4.2 axes{n}

Default: {0,0,0,..}

Gives the axis points used for comparisons in the n-th output function, in each dimension.
For each function, the axes can be individually specified in each dimension. Each entry value
is a vector range for a particular dimension, for d=1,...p.dimensions. Thus, 5 gives the fifth
point only in that dimension, and an input 1:4:41 plots every fourth point. Zero or negative
values are shorthand: -1 generates a default point at the midpoint, -2 the endpoint, and 0 is
the default value that gives the vector for the every axis point. This data is also used to control
graphics outputs. It can be input separately for the graphs if required.

86

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Label Default value Description

version ’xSIM3.xx’ Current version number
name ” Simulation name

dimensions 1 Space-time dimensions
fields 1 Total number of stochastic fields

backfields 0 Number of backward fields
auxfields 0 Number of auxiliary fields
ranges [10, ..] Range of coordinates in [t,x,y,z,..]
origins [0,..] Origin of coordinates in [t,x,y,z,..]
points [51,... Output lattice points in [t,x,y,z,..]
noises [1, 0] Number of noise fields in [x,k]

inrandoms [1, 0] Initial random fields in [x,k]
ensembles [1, 1, 1] Size of [vector, serial, parallel] ensembles

steps 1 Integration steps per output point
iterations 4 Maximum implicit or midpoint iterations

order 1 Extrapolation order: 0,1,2,..
checks 1 Check time-step errors: 0 or 1
seed 0 Seed for random number generator
file ” File-name: ’f.mat’ = Matlab, ’f.h5’ = HDF5

boundaries{n} [0,0; 0,0] Boundary: ’-1,0,1’=Neum, periodic, Dirichlet boundary.
binranges{n} {0,0,...} Observable binning ranges for probabilities

cutoffs{n} 0 Lower graph cutoff for chi-squared estimates
mincount 0 Lower count cutoff for chi-squared estimates

ipsteps 1 IP transforms per time-step
numberaxis 0 If 1, forces use of numerical axis labels

verbose 0 0 for brief, 1 for informative, 2 for full output
A, B, C , . . . - User specified static parameters

olabels {’a_1’,..} Observable labels
transforms {[0 0 0 0],..} Fourier transforms in [t,x,y,z,..] per observable
rawdata 0 Raw data switch: 1 for raw output
scatters {0,..} Specify to obtain scatter plots, not averages
octave 0 Force octave syntax: 1 for octave

thresholdw 0 Threshold for weighted simulation breeding
iterfb 2 Iterations of forward-backward algorithm

iterproj 2 Iterations of projector algorithm
qcproj - Quadratic projection coefficients
vcproj - Vector projection coefficients

87

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Label Arguments Purpose

deriv (a, [a−,]w, p) Stochastic derivative
initial (r, p) Function to initialize fields
linear (p) Linear derivative function
rfilter (r, p) Random filter function in k-space
nfilter (w, p) Noise filter function in k-space

transfer (a, p, a0, p0) Transfer inside a sequence
method (a, w, p) Algorithm defining a time-step

grid (p) Grid calculator for the lattice
prop (a, p) Interaction picture propagator

propfactor (nc, p) Propagator array calculation
observe (a, p) Observable function cell array
function (o, p) Functions of average observables
compare (p) Comparisons, for differences and χ2

define (a, w, p) Defines an auxiliary field value
randomgen (p) Initial random generator

noisegen (p) Noise generator
rfilter (v, p) Initial random kspace filter
nfilter (w, p) Noise kspace filter
project (d, a, n, p) Defines the projection
firstfb (a0, nc, p) First forward-backward path

Label Arguments Purpose

Ave (a, [av,]p) Averages over a spatial lattice
Bin (a, [d x ,]p) Bins results onto an axis

Catproj (d, a, n, p) Catenoid projector
D1 (a, [dir,]p) First derivative
D2 (a, [dir,]p) Second derivative

Euler (a, w, p) Euler algorithm
Implicit (a, w, p) Implicit Euler algorithm

MP (a, w, p) Midpoint algorithm
MPadapt (a, w, p) Midpoint adaptive algorithm

RK2 (a, w, p) Runge-Kutta (2) algorithm
RK4 (a, w, p) Runge-Kutta (4) algorithm
MPfb (a, w, p) Midpoint forward-backward algorithm

Quadproj (d, a, n, p) General quadratic projector
Polproj (d, a, n, p) Diagonal polynomial projector

Int (a, [d x or dk], p) Integrates over space or momentum
Enproj (a, w, p) Euler normal projection algorithm
MPproj (a, w, p) Midpoint projection algorithm
MPnproj (a, w, p) Midpoint normal projection algorithm

88

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Example: p.axes{4} = {1:2:10,0,0,-1}

9.4.3 backfields

Default: 0

The optional input backfields is the number of backward-time stochastic fields that are in-
tegrated, as part of the overall vector of integrated fields components. Requires a forward-
backward method like MPfb.

Example: p.backfields = 2

9.4.4 binranges{n}

Default: {}

Nested cell array, binranges{n}{m}, that defines the probability plotted for observable n.
If null or zero, the mean of the observable is calculated as usual. The second cell index,
m = 1, . . . M , corresponds to the line index returned by the corresponding n-th observe func-
tion. When nonzero, the probability of the n-th observable is calculated and plotted according
to the specified vector of axis points. This sets extra dimensions in the data, depending on
the range of m values, with [o1, o2, . . . oK], being the start and end of each of the bins used
to accumulate probabilities. The k − th bin is centered at (ok + ok+1)/2. In this version of
xSPDE, each bin must have the same width for an observable and line number. The output
is the average probability density versus the (vector) value of the observable. Hence M extra
output dimensions are added to the generated probability data.

Example: p.binranges{n}{1} = {-5:0.1:5,-2:0.1:2}

9.4.5 boundaries{dir}

Default: [0, 0]

Cell array for type of spatial boundary conditions used, set for each dimension and field com-
ponent independently, and used in the equation solutions. The cell index is dir = 2, 3, ..,
indicating the dimension. The boundary conditions are defined as a matrix. The first index is
the field index i and the second index the boundary j, with j = 1 for the lower and j = 2 for
the upper boundary. The options are b = −1, 0,1.

• The default option, or 0, is periodic.

• If -1, Robin/Neumann boundaries are used, with derivatives set to prescribed values.

• If 1, Dirichlet boundaries are used, with fields set to prescribed values.

In the current code, only default boundaries are available using spectral (linear) methods.
Using arbitrary non-periodic boundaries requires the use of finite difference derivatives, with-
out the option of an interaction picture derivative. In such general cases, arbitrary boundary
values are set by boundfun(a,d,p).

Example: p.boundaries{d} = [-1,1;0,0;1,-1]

89

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.4.6 c...

The starting letter c is always reserved to store user-specified constants and parameters. It is
passed to user functions and can be any data. All inputs — including c data — are copied
into the stored data files via the lattice structure p, to give a permanent record of simulation
parameter values along with the output data.

Example: p.constant = 2*pi

9.4.7 checks

Default: 1

This defines if a repeat integration is carried out for error-checking purposes. If p.checks =
0, there is one integration, with no checking at smaller time-steps. For error checking, set
p.checks = 1, which repeats the calculation at half the time-step — but with identical noise
— to obtain error bars. This is the default value, taking three times longer overall, but with
increased accuracy and error-estimates.

Also see the order parameter, below.

Example: p.checks = 0

9.4.8 dimensions

Default: 1

This is the space-time dimension for an SPDE. If omitted, dimensions=1, giving an SDE. It is
arbitrary apart from the obvious memory requirements at large dimensionality.

Example: p.dimensions = 4

9.4.9 ensembles

Default: [1, 1, 1]

Number of independent stochastic trajectories simulated. This has three levels to maximize
efficiency. The first is within-thread parallelism, allowing vector instructions. The second
gives a number of independent trajectories calculated serially. The third gives multi-core par-
allelism and requires the Matlab parallel toolbox. Either p.ensembles(2) or p.ensembles(3) are
required to obtain sampling error-bars. The total number of stochastic trajectories or samples
is ensembles(1) × ensembles(2) × ensembles(3). The second and third ensembles cannot be
changed during a sequence of simulations.

Example: p.ensembles = [1000,100,10]

9.4.10 fields

Default: 1

These are real or complex variables stored at each lattice point that are the independent vari-
ables for integration. The fields are vectors that can have any number of components and any
number of dimensions. The fields input is the number of real or complex components that are
initialized by the initial function and integrated using the deriv derivative.

Example: p.fields = 2

90

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.4.11 file

Default: ’ ’

Matlab or HDF5 file name for output data. Includes all data and parameter values, including
raw trajectories if p.rawdata = 1. If not needed just omit this. A Matlab filename should
end in .mat, while an HDF5 file requires the filename to end in .h5. For a sequence of inputs,
the filename should be given in the first structure of the sequence, and the entire sequence is
stored. This cannot be changed for successive parts of the overall sequence.

Example: p.file = ’file-name’

9.4.12 functions

Default: number of defined functions or observables

This gives the maximum number of output datasets which are functions of the observables.
The default number of functional transformations is the greater of the length of the cell arrays
of observe and function definitions. Normally, this is not initialized, as the default is typically
used, unless one wishes to reduce the data output without changing an input script.

Example: p.functions = 1

9.4.13 ipsteps

Default: 1 for Euler, Implicit and RK2; 2 for MP, MPadapt and RK4; 0 otherwise

This specifies the number of interaction picture time-steps needed in an integration time-step.
Default values are chosen according to the setting of method. Can be changed for custom
integration methods. This must be initialized if a non-standard integration method is used
that requires an interaction picture as well.

Example: p.ipsteps = 1

9.4.14 iterations

Default: 4

For iterative algorithms like the implicit midpoint method, the iteration count is set here,
typically around 3-4. Will increase the integration accuracy if set higher, but it may be better
to increase steps if this is needed. With non-iterated algorithms, this input is not used:

Example: p.iterations = 3

9.4.15 name

Default: ’ ’

Name used to label simulation, usually corresponding to the equation or problem solved. This
can be removed from graphs using headers equal to a single blank space when running xgraph.

Example: p.name = ’your project name’

91

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.4.16 noises

Default: fields (1)

This gives the number of stochastic noises generated per lattice point, in coordinate and mo-
mentum space, respectively. Set to zero (noises = 0) for no noises. This is the number of
rows in the noise-vector. Noises can be delta-correlated in x-space or in k-space. The second
input is the dimension of noises in k-space. It can be omitted if zero. This allows use of finite
correlation lengths, by including a frequency filter function that is used to modify the noise in
Fourier-space. The Fourier-space random variance is defined by the filter function. This takes
the noises in Fourier space and returns a filtered version, which is inverse Fourier transformed
before use. The first noise index, noises(1), indicates how many independent noise fields are
generated, while noises(2) indicates how many noises are Fourier-transformed, filtered and
then inverse Fourier transformed to give correlations. These are extra noises, so the total is
noises(1) + noises(2). Filtered noises have a finite correlation length.

Example: p.noises = [2,4].

9.4.17 order

Default: 1 for ensembles ̸= 1, otherwise the deterministic order.

This is the extrapolation order, which is only used if p.checks = 1. The program uses the
estimated convergence order to extrapolate to zero step-size, with reduced errors. If p.order =
0, no extrapolation is used, which is the most conservative input. The default order is usually
acceptable, especially when combined with the default midpoint algorithm.

The extrapolation order cannot be changed during a sequence. The default deterministic
orders of the six preset methods used without stochastic ensembles are:

1 for Euler and Implicit;

2 for RK2, MP and MPadapt;

4 for RK4.

Example: p.order = 0

9.4.18 origins

Default: [0, -p.ranges/2]

This displaces the graph origin for each simulation to a user-defined value. If omitted, all
initial times in a sequence are zero, and the space origin is set to -p.ranges/2 to give results
that are symmetric about the origin. As an example, for the x-dimension, the problem is solved
on an interval of x = [O2, O2+R2], with a default origin of −R2/2, so that x = [−R2/2, R2/2].

Example: p.origins = [0,-20,-20]

9.4.19 points

Default: [51, 35, ..., 35]

92

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

The rectangular lattice of points plotted for each dimension are defined by a vector giving the
number of points in each dimension. The default values are given as a rough guide for initial
calculations. Large, high dimensional lattices take more time to integrate. Increasing points
improves graphics resolution and gives better accuracy in each relevant dimension as well,
but requires more memory. Speed is improved when the lattice points are a product of small
prime factors. In order to discretize the problem, the pi lattice points are fitted into the range
Ri so that d x i = Ri/(pi − 1), ie:

x i = Oi + (i − 1)d x i . (212)

Example: p.points = [30,40,40]

9.4.20 inrandoms

Default: noises

This gives the number of initial random fields generated per lattice point in coordinate and
momentum space. Set to zero (p.inrandoms = 0) for no random fields. Random fields can
be delta-correlated in x-space or in k-space. The second input is the dimension of random
fields that are delta-correlated in momentum space. It can be left out if zero. The Fourier-
space random variance is modified by the filter function. This takes the initial random fields
in Fourier space and returns a filtered version, which is inverse Fourier transformed before
use. The first noise index, p.inrandoms(1), indicates how many independent random fields
delta-correlated in space are generated, while p.inrandoms(2) indicates how many additional
random fields are Fourier-transformed, filtered and then inverse Fourier transformed. These
are additional random fields, so the total is p.inrandoms(1)+p.inrandoms(2). The filtered
random inputs have a finite correlation length.

Example: p.inrandoms = [2, 0]

9.4.21 ranges

Default: [10, 10, ...]

Each lattice dimension has a coordinate range. The default value is 10 in each dimension. In
the temporal graphs, the first coordinate is plotted over 0 : p.ranges(1). All other coordinates
are plotted over −p.ranges(n)/2 : p.ranges(n)/2. The starting value can be changed using
the origins variable.

Example: p.ranges = [1, 10]

9.4.22 rawdata

Default: 0

Flag for storing raw trajectory data. If this flag is turned on, raw trajectories are stored in
memory. The raw data is returned in function calls and also written to a file on completion, if
a file-name is included.

Example: p.rawdata = 1

93

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.4.23 scatters{n}

Default: 0

Cell array that defines the number of scatter trajectories plotted for observable n. If absent or
zero, the mean of the observable is calculated as usual. If nonzero, a set of s observables that
correspond to independent stochastic fields are accumulated, with no averaging. This cannot
be combined with probabilities or with parallel ensembles. There must be at least s trajectories
in ensembles(1), otherwise the number of stored trajectories is reduced.

Example: p.scatters{n} = 20

9.4.24 seed

Default: 0

Random noise generation seed, for obtaining reproducible noise sequences. Set to unique and
distinct values for the different parallel ensembles. Used if p.noises > 0 or p.inrandoms > 0.

Example: p.seed = 42

9.4.25 steps

Default: 1

Number of time-steps per plotted point. The total number of integration time-steps in a sim-
ulation is therefore p.steps×(p.points(1)-1). Thus, steps can be increased to improve the ac-
curacy, but gives no change in graphics resolution. Increasing the steps will give a lower
time-discretization error.

Example: p.steps = 1, 2, ...

9.4.26 transforms{n}

Default: [0,0,..]

Cell array defining the Fourier transforms used for an observable n. There is one transform
vector per observable. The j-th flag, tr(j), indicates a Fourier transform on the j-th axis if
set to one, starting with the time axis. The default value is zero, indicating no transform.
The normalization of the Fourier transform is such that the k = 0 value in momentum space
corresponds to the integral over space with a factor of 1/

p
2π in each transformed dimension.

The Fourier transform that is graphed has k = 0 as the central value. The default is no Fourier
transform. Must be set for any functional transform of a Fourier observable, to give the correct
graph axes.

Example: p.transforms{n} = [1,0,0,1]

9.4.27 verbose

Default: 0

Print flag for output information while running xSIM. Print options are:

• Minimal if verbose = -1: Prints just the start-up time and hard error messages

• Brief if verbose = 0: Additionally prints the final, total integration errors

94

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

• Informative if verbose = 1: Also prints the individual function RMS errors and progress
indicators

• Full if verbose = 2: Prints everything, including the internal parameter structure data.

In summary, if verbose = 0, most output is suppressed except the final data, while verbose = 1
displays a progress report, and verbose = 2 additionally generates a readable summary of the
parameter input as a record.

Example: p.verbose = 2

9.4.28 version

Default: ’xSIM3.44’

Sets the current version number of the simulation program. There is no need to input this
except for project documentation for a customized version.

Example: p.version = ’current version name’

9.5 Function reference

9.5.1 User function reference

The following function inputs define the differential equation that is integrated or solved.
They are specified in an xSPDE/xSIM input file using p.(fun) = @(Myfun), either as inline or
externally defined functions. Externally defined functions must be in the same file as the input
parameters, or on the execution path.

9.5.2 boundfun(a, d, p)

Default: xboundfun()

The boundary function boundfun(a,d,p) is called for specified boundary conditions in the d-th
dimension. This returns the boundary values used for the fields or their first derivatives in
space dimension d > 1, as an array indexed as b(f , i, e) in the standard way. Here f is the
field index, i≡ [j2, . . . jd] are the space indices, and e is the ensemble index.

Only two values are needed for jd , which is the index of the dimension whose boundary
values are specified. These are jd = 1, 2, for the lower and upper boundary values, which are
either field values or derivatives. Boundary values may be constant or a function of the fields
a and space-time t,x.

If boundary values have stochastic values which are calculated only once, they must be
initialized. To allow for this, boundfun(a,d,p) is initially called with time t = origins(1)− 1,
snd the input field a set to random values from randomgen, which are independent of those
that initialize the field at t = origins(1).

They are reproducible for different check cycles, to allow noise-independent error-
checking. The initial results for the boundaries are stored in an array boundval{d} for later
use by boundfun if required.

The default boundary value is zero, set by the default boundary function xboundfun(a,d,p).

95

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.5.3 compare(p)

Default: compare{n}= []

This is for comparisons to experimental or analytic data. The output is an array with d + 2
dimensions. The first dimension is the line index, the next d dimensions are time and space,
while the last index is an error index. This can have up to two additional entries for systematic
and/or statistical error bars in the comparison data, from analytic or experimental results.
Error-bars are optional if not available.

9.5.4 define(a, w, p)

Default: xdefine()

Calculates auxiliary fields, which are combinations of fields and noises. If used they are ac-
cessed in observe functions as a(n, :), where n> f ields. The default, xdefine(), sets the auxil-
iary fields to zero.

9.5.5 deriv(a,w,p)

Default: deriv()= 0

This defines the stochastic equation time derivative, given the current field a, delta-correlated
noise terms w, and parameters p. It is defined explicitly in (71). This is the right-hand-side of
(1) or (57), without the linear term if it is specified separately.

9.5.6 firstfb(a0,nc,p)

Default: xfirstfb()

Returns the zero-th order field estimates in a forward-backward iteration. Here nc is the time-
step check index. This is needed because the number of time-points to be initialized depends
on nc. The default function is xfirstfb, which sets each field in either direction equal to its initial
value at the time boundaries, given by a0. Other estimates may give faster convergence.

9.5.7 function(o,p)

Default: xfunction{n}=@(o,p) o{n}

This is a user-defined array of functions of the observe outputs after averaging over ensem-
bles(1), possibly involving combinations of several observed averages. The input to the n-th
function is the cell array of all averages, and the output is the data for the n-th graph. This
function is compatible with all error estimates. The default values generate all the observe
averages that are in the data. The output data format is an array with d + 1 dimensions. The
first dimension is the line index, the next d dimensions are time and space.

9.5.8 grid

default xgrid

Calculates the spatial grid for specialized purposes like non-uniform grids. The default, xgrid,
returns a homogeneous rectangular grid in both ordinary and momentum space.

96

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.5.9 initial(rv, p)

Default: xinitial()

This is used to initialize each integration in time. It is a user-defined function which can involve
random numbers for an initial probability distribution. This creates a stochastic field on the
lattice, called a. The returned first dimension should be p.fields. The initial Gaussian random
field variable, rv, has unit variance if dimension is 1 or else is delta-correlated in space, with
variance 1/p.dv = 1/(d x2...d xd)) for d space-time dimensions. If inrandoms is given in the
input parameter structure, rv has a first dimension of inrandoms(1) + inrandoms(2). If not
specified, the default for inrandoms is noises. The default function is xinitial, which sets fields
to zero, returning a= 0.

9.5.10 linear(p)

Default: xlinear()

A user-definable function for the linear response, which is a matrix for an SDE or ODE. For
an SPDE or PDE, it includes transverse derivatives in space, returning the linear coefficients L
in FFT/DST/DCT space, which are assumed diagonal in the field index. These are functions
of differential terms Dx, Dy, Dz, which correspond to ∂ /∂ x , ∂ /∂ y , ∂ /∂ z, respectively. Each
component has a dimension the same as the coordinate lattice. For axes that are numbered,
use D{2}, D{3} etc. The default, xlinear, sets L to zero.

9.5.11 nfilter (w,p)

Default: xnfilter()

Returns the momentum-space filter function for the propagation noise terms in momentum-
space. Each component has an array dimension the same as the random noises in momentum
space, that is, the return dimension is [noises(2), d.lattice].

9.5.12 noisegen(p)

Default: xnoisegen(p)

Generates arrays of noise terms for each point in time. The default, xnoisegen() returns
noises(1) + noises(2) Gaussian real noises that are delta-correlated in time, space and mo-
mentum space, unless nfilter is used to modify momentum space correlations.

9.5.13 observe(a, p)

Default: xobserve{1}=@(a,p) a

Cell array of function handles that take the current field and returns an observable o. Note the
use of braces for cell arrays! One can input these as p.observe{n} =@(a,p) f(a,p). An omitted
function less than the maximum index is replaced by the default, which is the vector a of real
field amplitudes.

97

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.5.14 prop(a, p)

Default: xprop()

Returns the fields propagated for one step in the interaction picture, given an initial field a,
using the propagator array. The time-step used in propagator depends on the input time-
step, the error-checking and the algorithm. The default, xprop, takes a Fourier transform of a,
multiplies by propfactor to propagate in time, then takes an inverse Fourier transform.

9.5.15 propfactor(nc, p)

Default: xpropfactor()

Returns the interaction picture propagator used by the prop function. The time propagated is
a fraction of the current integration time-step, dt. It is equal to 1/ipsteps of the integration
time-step. It uses data from the linear function to calculate this.

9.5.16 randomgen(xp)

Default: xrandomgen()

Generates a set of initial random fields v to initialize the fields simulated. The default,
xrandomgen, returns Gaussian real fields that are delta-correlated in space or momentum
space. The default uses rfilter to modify spatial correlations in momentum space if specified.

9.5.17 rfilter(w, p)

Default: xrfilter()

Returns the momentum-space filter function for the momentum-space random terms. Each
component has an array dimension the same as the input random fields in momentum space,
that is, the return dimension is [inrandoms(2), nlattice].

9.5.18 method(a, w, p)

Default: MP (stochastic); RK4 (deterministic)

Specifies the stochastic integration method for the field a, noise w, parameters p. It returns
the new field a. It uses the current reduced step in time p.dtr and current time p.t. This
function can be set to any of the predefined stochastic integration routines provided with
xSPDE, described in the Algorithms section. User-written functions can also be used. The
default deterministic method, RK4, is a fourth-order interaction picture Runge-Kutta. The
default stochastic method, MP, is an interaction picture midpoint integrator and is used if
ensembles is not [1,1,1].

9.5.19 transfer(v, p, a0, p0)

Default: xtransfer()

This function initializes sequential simulations, where the previous field a0 and parameter
structure p0 are inputs to the next stage in the integration sequence. The default, xtransfer(),
takes the output, a0 of the previous simulation to initialize the fields a. Otherwise, this function
is identical to initial(). The default set by xtransfer is a = a0.

98

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.6 Internal function reference

The following xSIM predefined functions are available to define the differential equations and
averages. They all start with a capital letter. Algorithms are documented in section 7. Fields
can be differentiated or integrated only in space, observables in space or time.

9.6.1 Ave(o[, av], p)

This function takes a field or observable and returns an average over one or more dimensions.
The input includes an optional averaging switch av. If av(j) > 0, an average is taken over
dimension j. If the av vector is omitted, the average is taken over all space directions.

9.6.2 Bin(o[, dx], p)

The Bin function takes a field o and returns probabilities on space axes that are defined by a
vector dx. This allows binning of position probabilities if the observable is a mean position that
is plotted on an axis. If j is the first index with d x(j)> 0, the binning is taken over dimension
j. The results returned are the probability of o in the bin, normalized by 1/d x (j). If the input
array is Fourier transformed, by using the transforms attribute in the observe function, then
one must set d x(j) = p.dk(j) for transformed dimensions j. If the dx vector is omitted, or a
scalar dx is used, the binning is over the first space direction.

9.6.3 D1(a[, dir,ind], p)

Takes a scalar or vector field a and returns a derivative with direction dir using finite differ-
ences. Set dir = 2 for an x-derivative, dir = 3 for a y-derivative, and so on. The default value
is dir = 2, which is an x-derivative. If the direction is input, an index ind can be included
to take a derivative of one component. If this is omitted, derivatives of all components are
returned. Boundary conditions are from the boundaries input. The D1 input uses the entire
field to identify components and boundary values. It can be made periodic (boundaries = 0),
which is the default, or Neumann/Robin with specified derivatives using boundaries = -1, or
Dirichlet with specified field using boundaries = 1.

9.6.4 D2(a[, dir,ind], p)

This takes a scalar or vector field a and returns the second derivative in direction dir. Set dir
= 2 for an x-derivative, dir = 3 for a y-derivative, and so on. Other properties are the same as
D1().

9.6.5 Int(o[, dx, bounds], p)

This function takes any vector or scalar field or observable and returns a space integral over
selected dimensions with vector measure dx. If d x(j)> 0, dimension j is integrated. Time in-
tegrals are only possible for observables. Space dimensions are labelled from j = 2,3,...dimen-
sions. To integrate over the lattice, set dx = p.dx, otherwise set dx(j) = p.dx(j) for integrated
dimensions and dx(j) = 0 for non-integrated dimensions.

If the input array is Fourier transformed by using the p.transforms attribute, one must
set dx(j) = p.dk(j) for transformed dimensions j, to get correct results. If the dx vector is
omitted, the integral is over all available space dimensions, assuming no Fourier transforms.
The optional input bounds is an array of size [p.dimensions,2], which specifies lower and upper
integration bounds in each direction. This is only available if dx is input. If omitted, integration
is over the whole domain.

99

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.7 Arrays and indices

Knowing the details of array indexing inside xSPDE isn’t usually necessary. Yet it becomes
important if you want to write your own functions to extend xSPDE, interface xSPDE with
other functions, or read and write xSPDE data files with external programs. It also helps to
understand how the program works.

9.7.1 Array tables

There are two main internal xSPDE arrays:, fields labelled a and output data labelled d. The
fields contain stochastic variables, the data contains the averaged outputs and errors estimates.

Important array and index definitions are:

Label Indices Description

a [f , i, e] Stochastic field array
v [m1, i, e] Initial random variable array
w [m2, i, e] Noise field array

r{2},k{2}.... (1, i, 1) Numbered space/momentum coordinates
x,y,z,kx,ky,kz (1, i, 1) Labelled space/momentum coordinates

o {n}(ℓ, j) Cell array of all observed averages
d {s}{n}(ℓ, j, c) Cell array of data with errors

rawdata {s, c, h}(f , j, e) Raw trajectories
points [pt1, pt2 . . . ptd] Vector of lattice sizes:

ensembles [e, h1, h2] Vector of ensemble sizes:

Here:

• f is the field index, combining fields and auxiliary fields

• i is the space index

• e is the vector ensemble index

• m is the random or noise index

• j= [j1, i] is the space-time index

• ℓ is the line index

• n is the observe and/or function index

• h is the high-level ensemble index (combines h1, h2)

• s is the sequence index

• c is the check index

When fields are passed to observe, or to rawdata outputs, the defined or auxiliary fields are
included as well. Apart from the first dimension, the common dimensionality for internal
arrays used in computations is d.lat t ice = [d.space, ensembles(1)].

100

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

9.7.2 Simulation data in xSIM

In xSIM, the space-time dimension d is unlimited, although xGRAPH can only plot up to three
chosen axes at a time. All fields are stored in real or complex numerical arrays of rank 1+ d.
Average results are stored are stored in real or complex numerical arrays of rank 2+ d.

The array index ordering in xSPDE integrated fields is (fi , i, e), where:

• The first index is an integrated field index fi , not including auxiliary fields

• The next d − 1 indices are i, which is a space index with no time index.

• The last is an ensemble index e, to store low-level parallel trajectories.

The array index ordering in graphical averaged data is (ℓ, j, c)where:

• The first index is a line index ℓ.

• The next d indices are j= [j1, . . . jd] = [j, i], for time and space.

• The last is a check index c, for comparisons and errors.

Stored data uses heterogenous cell arrays to package numerical arrays with additional high
level indices. The first cell index is the sequence index, s. Inside each sequence, data cell arrays
all have a graph index n. This distinguishes the different averages generated for output graphs
and data. Raw data has cell indices for the sequence, time-step and high level ensembles.

In summary, the xSPDE internal arrays are as follows:

• Field arrays a(fi , i, e) - these have a field index, a space index and low-level ensemble
index e.

• Auxiliary arrays ax(fa, i, e) - these are appended to the field arrays for raw data and
observables.

• Random and noise arrays w(m, i, e) - these are initial random fields or noise fields. The
first index may have a different range to the field index.

• Coordinate arrays x(1, i) - these contain the coordinates at grid-points, with labels
x , y, z, and j1 = 1. Numeric labels x{l} are used for d > 4, where l = 2, . . . d. The
same sizes are used for:

– momentum coordinates kx , k y, kz (alternatively k{2}, k{3}, . . .)

– spectral derivative arrays Dx , D y, Dz (alternatively D{2}, D{3}, . . .) .

• Raw data arrays r{s, c, h}(f , j, e) - these are cell arrays of generated trajectories, includ-
ing integrated and defined field values. They are optional, as they use large amounts of
memory. These are saved in cell arrays with indices s for the sequence, c for the time-step
error-check and h for high level ensemble index. The cell indices are:

– s = 1, . . . S for the sequence number,

– c = 1,2 for the error-checking time-step used, first coarse then fine,

– h = 1, . . . p.ensembles(2) ∗ p.ensembles(3) for a high level parallel and serial en-
semble index.

• Observe data arrays o{n}(ℓ, j) - these are generated in xSIM by the observe functions,
then used to store generated average data at all time points. The cell index n is the
observe index, which indexes overs the observe functions.The internal index ℓ is a line
index generated by an observe function.

101

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

• Graphics data arrays g{s}{n}(ℓ, j, c)) - these store the final results. Check indices are
added to store error estimates and comparisons, where c = 1 for the average, c = 2 for
the time-step error, and c = 3 for the sampling error. If there is comparison data, it uses
c = 4 up to c = 6, to allow for error bars. Graphics cell data uses cell indices {s} for
the sequence index, and {n} for the graph index. This has a default of the index of the
observe function. Otherwise, if this is overwritten by an xSIM output function, the graph
index equals the function index.

9.8 Internal parameter table

The internal parameter structures in xSPDE are available to the user if required. Internally, all
xSPDE parameters are stored in the parameter structures passed to functions. This includes the
data given above from the input structures. In addition, it includes the computed parameters
given below, which includes internal array dimensions.

Data in k−space is stored in two alternative lattices, each having their own axis vectors.
The propagation grid is used while propagating, and is compatible with numerical FFT con-
ventions where the first index value is k = 0. The graphics grid is centered around k = 0, and
is used for graphics and data storage, following scientific conventions.

For more than four total dimensions, the spatial grid, momentum grid and derivative grid
notation of t, x , y, z, ω, kx , k y, kz and Dx , D y, Dz is changed to use numerical labels that
correspond to the dimension numbers, i.e., D{2}, . . . D{d}, r{1}, . . . r{d}, k{1}, . . . k{d}.

Numeric dimension labeling can also be used even for lower dimensionality if preferred.

9.9 xSIM structure

9.9.1 xSPDE

The control program, xspde, calls the xsim integration and xgraph graphics functions succes-
sively

xspde→

¨

xsim (simulations)
xgraph (graphics)

9.9.2 xSIM

The integration function, xsim, generates all data. It first carries out elementary checks in
xpreferences and constructs the grid of lattice points in xlattice. Then it generates the nested
ensembles in xensemble, and integrates each subensemble using xpath. The output data is
written to files, if required, in xwrite.

xsim→ xpreferences→ xlattice (checks inputs)

→ xensemble↔ xpath↔ xdata (simulates)

→ xwrite (stores data)

102

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Label Type Typical value Description

t, x , y, z array - Space-time grid of t, x , y, z
ω, kx , k y, kz array - Frequency-momentum grid of kx , ky , kz

Dx , D y, Dz array - Derivative grid of Dx , Dy , Dz

r{1}, . . . r{d} array - Space-time grid of r1, . . . rd

k{1}, . . . k{d} array - Graphics momentum grid of k1, . . . kd

D{2}, . . . D{d} array - Derivative grid of D2, . . . Dd

dx vector [0.2,..] Steps in [t, x , y, z]
dk vector [0.61,....] Steps in [ω, kx , ky , kz]
dt double 0.2000 Output time-step
dtr double 0.1000 Computational time-step
v real 1 Spatial lattice volume
kv real 1 Momentum lattice volume
dv real 1 Spatial cell volume
dkv real 1 Momentum cell volume

xc{d} cells of vectors [-5,... 5] Coordinate axes in t, x , y, z
kc{d} cells of vectors [-5,..5] Graphics axes in[ω, kx , ky , kz]
kcp{d} cells of vectors [0,...] Propagation axes in[ω, kx , ky , kz]

s.dx double 1 Initial stochastic normalization
s.dxt double 3.1623 Propagating stochastic normalization
s.dk double 1 Initial k stochastic normalization
s.dkt double 3.1623 Propagating k stochastic normalization

nspace integer 35 Number of spatial lattice points
nlattice integer 3500 Total lattice: ensembles(1) x n.space
ncopies integer 20 ensembles(2) x ensembles(3)

inrandoms vector [2,0] Number of initial random fields
noises vector [2,0] Number of noise fields
d.space vector [35, 35] Space dimensions: [points(2), points(3), ...]
d.lattice vector [1, 1] Lattice dimensions: [d.space, ensembles(1)]

d.a vector [1, 1] Dimensions for a field
d.r vector [1, 1] Dimensions for coordinates

d.fields vector [1, 1] Dimensions for a field (including time)
d.aplus vector [1, 1, 1] Dimensions for integrated plus defined fields

d.k vector [0, 1, 1] Dimensions for noise transforms
d.obs vector [1, 35] Dimensions for observations
d.data vector [1, 35, 3] Dimensions for average data
d.raw vector [1, 51, 35, 100] Dimensions for raw data

103

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10 xGRAPH reference

This section gives a reference explanation of the xGRAPH parameters and functions.

10.1 Overview

The graphics function provided is a general purpose multidimensional batch graphics code,
xGRAPH, which is automatically called by xSPDE when xSIM is finished. The results are
graphed and output if required. Alternatively, xGRAPH can be replaced by another graph-
ics code, or it can be used to process the data generated by the xSIM function at a later time.

The xgraph function call syntax is:

• xgraph (data [,input])

This takes simulation data and input cell arrays, then plots graphs. The data should have as
many cells as there are input cells, for sequences.

If data = ’filename.h5’ or ’filename.mat’, the specified file is read both for input and data.
Here .h5 indicates an HDF5 file, and .mat indicates a Matlab file.

When the data input is a filename, parameters in the file can be replaced by new input
parameters that are specified. Any stored input in the file is then overwritten when graphs are
generated. This allows graphs of data to be modified retrospectively, if the simulation takes
too long to be run again in a reasonable timeframe.

10.1.1 Parameter and data structures

This is a batch graphics function, intended to process quantities of graphics data, input as a cell
array of multi-dimensional data. Theoretical and/or experimental data is passed to the graph-
ics program, including the complete data cell array and a cell array of graphics parameters for
plotting each graph.

To explain xGRAPH in full detail,

• Data to be graphed are recorded sequentially in a cell array, with data={d1,d2,...}.

• Graphics parameters including defaults are given in the input cell array.

• This describes a sequence of graph parameters, so that input={p1,p2,...}.

• For a one member sequence, a dataset and parameter structure can be used on its own.

• Each dataset and parameter structure describes a set of graphs.

The data input to xGRAPH can either come from a file, or from data generated directly with
xSIM. The main graphics data is a nested cell array. It contains several numerical graphics
arrays. Each defines one independent set of averaged data, the observed data averages, stored
in a cell array indexed as data{s}{n}(ℓ, j, c). To graph these also requires a corresponding cell
array of structures of graphics parameters.

The output is unlimited, apart from memory limits. The program also generates error
comparisons and chi-squared values if required. The data structure for input is as follows:

1. The input data is a cell array of datasets, which can be collapsed to a single dataset

2. The parameters are also a cell array of parameter structures, which can be collapsed to
one structure

3. The dataset is a cell array of multidimensional graphs, each with arbitrary dimensionality.

104

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

4. The first or line index of each graph array allows multiple lines, with different line-styles

5. The last or check index of each graph array is optionally used for error and comparison
fields.

6. Each graph array can generate multiple graphic plots, as defined by the parameters.

10.1.2 Comparisons

For every type of observation in xSIM, the observe function can be accompanied by a com-
parison function, compare(p). This generates a vector of analytic solutions or experimental
data which is compared to the stochastic results. Results are plotted as additional lines on
the two-dimensional graphical outputs, and comparison differences can be graphed in any
dimension.

Comparisons are possible for either moments or probabilities, and can be input in any
number of dimensions. When there are error estimates, a chi-squared test is carried out to
determine if the difference is within the expected step-size and sampling error bars. If the
comparison has errors, for example from experimental data, the chi-squared test will include
the experimental errors.

Comparison data can be added to the graphics files from any source. It must match the
corresponding space-time lattice or probability bins that are in the graphed data. Note that the
compare functions are specified during the simulation. The graphics code does not generate
comparison data, as it is dedicated to graphics, not to generating data.

10.2 Parameter table

The complete cell array of the simulation data is passed to the xGRAPH program, along with
graphics parameters for each observable, to create an extended graphics data structure. Graph-
ics parameters have default values which are user-modifiable by editing the xgpreferences func-
tion.

Some input parameters are global parameters for all graphs. However, most xGRAPH pa-
rameters are cell arrays indexed by graph index. These graphics parameters are individually
set for each output that is plotted, using the cell index {n} in a curly bracket. If present they
replace the global parameters like labels.

If a graph index is omitted, and the parameter is not a nested array, the program will use
the same value for all graphs. The axes, glabels, legends, lines, logs, and xfunctions of each
graph are nested cell arrays, as there can be any number of lines and axis dimensions. In the
case of the logs switch, the observable axis is treated as an extra dimension.

The plotted result can be an arbitrary function of the generated average data, by using the
optional input gfunction. If this is omitted, the generated average data that is input is plotted.

Comparisons are plotted if present in the input data indexed by the last or check index c,
with c > er rors, where er rors = 3 is the usual maximum value.

A table of the graphics parameters is given below.

105

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Label Default value Description

axes{n} {0,..} Points plotted for each axis
chisqplot{n} 0 Chi-square plot options

cutoff 1.e-12 Global lower cutoff for chi-squares
cutoffs{n} cutoff Probability cutoff for n-th graph
diffplot{n} 0 Comparison difference plot options

errors 0 Index of last error field in data
esample{n} 1 Size and type of sampling error-bar

font{n} 18 Font size for graph labels
gfunction{n} @(d,~) d{n} Functions of graphics data
glabels{n} {’t’ ,’x’ ,’y’ ,’z’} Graph-specific axis labels

graphs [1 : max] Vector of all the required graphs
gsqplot{n} 0 G-square (likelihood) plot options
headers{n} ” Graph headers
images{n} 0 Number of movie images

imagetype{n} 0 Type of 3D image
klabels {’\omega’ ,’k_x’ ,’k_y’ ,’k_z’...} Global transformed axis labels

legends{n} {’label1’,..} Legends for multi-line graphs
limits{n} {[lc1,uc1],[lc2,uc2]} Axis limits, first lower then upper

linestyle{n} {’-’,..} Line styles for multiline 2D graphs
linewidth{n} 0.5 Line width for 2D graphs (in points)

logs{n} {0,..} Axis logarithmic switch: 0 linear, 1 log
minbar{n} 0.01 Minimum relative error-bar
mincount 10 Global counts for chi-square cutoffs

name ” Global graph header
olabels{n} ’a_1’ Observable labels

pdimension{n} 3 Maximum plot dimensions
saveeps 0 Switch, set to 1 to save eps files
savefig 0 Switch, set to 1 to save figure files

scale{n} 1 Scaling: Counts/ probability density
transverse{n} 0 Number of transverse plots
xfunctions{n} {@(t,~) t,@(x,~) x,..} Axis transformations

verbose 0 0 for brief, 1 for informative, 2 for full output
xlabels {’t’ ,’x’ ,’y’ ,’z’...} Global axis labels
octave 0 0 for Matlab, 1 for octave environment

• Up to 6 types of input data can occur, including errors and comparisons, indexed by the
last index. The original mean data always has c=1. If there are no errors or comparisons,
one graph is plotted for each dimensional reduction.

• The input data has up to two error bars (I and II), and optional comparisons also with
up to two error bars.

• Type I errors labeled c = 2 have standard vertical error bars. Type II errors labeled c = 3,
which are usually standard deviation errors from sampling, have two solid lines.

• If esample = -1, both error bars are combined and the RMS errors are plotted as a single
error bar.

• If di f f plot > 0, differences are plotted as unnormalized (di f f plot = 1), or normalized
(di f f plot = 2) by the total RMS errors. If di f f plot = 3, raw comparison data is
plotted.

• When differences are plotted, the total comparison errors are treated as type I error bars,
while total simulation errors are treated as type II errors with parallel lines in the graphs,

106

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

50 100 150 200 250 300

m
1

0

0.2

0.4

0.6

0.8

1

s
in

e
(m

1
/1

0
0

)
Sine and cosine functions #1

50 100 150 200 250 300

m
1

-1

-0.5

0

0.5

1

c
o

s
in

e
(m

1
/1

0
0

)

Sine and cosine functions #2

Figure 11: Example: xgraph output of two plots.

in order to distinguish them.

A detailed description of each parameter is listed in Sec (10.7).

10.3 Example

A simple example of data and input parameters, but without errors or comparisons is as follows

p.name = 'Sine and cosine functions';
p.olabels = {'sine(m_1π/100)','cosine(m_1π/100)'};
data = {sin([1:100*pi]/100),cos([1:100*pi]/100)};
xgraph(data,p);

Note that in this case the default setting of p.errors=0 is used, with no check index used
in the data arrays, because these are simple graphs without error-bars or comparisons.

10.4 xGRAPH data arrays

The data input to xGRAPH can come from a file, or from data generated directly from any
compatible program.

The data is stored in a cell array data with structure:

data{s}{n}(ℓ, j, c) .

Each member of the outer cell array data{s} defines a number of related sets of graphical data,
all described by common parameters input{s}. Comparisons and errors are plotted if there are
errors and comparison data in the input, indexed by c. This generates comparison plots, as
well as error totals and χ- squared error estimate when there are statistical variances available.

An individual member of data{s}{n} is a multidimensional array, called a graph in the
xSPDE User’s guide. For each graph, multiple different plots with different dimensionality can
be obtained from the dataset data{s}{n}, either through projections and slices or by generating
additional data defined with graphics functions. Either or both alternatives are available.

Note that:

• If a sequence has one member, the outer cell array can be omitted.

• In this simplified case, if there is only one graph array, the inner cell array can be omitted.

107

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

The graphics data for a single dataset is held in a multidimensional real array, where:

• ℓ is the index for lines in the graph. Even for one line, the first dimension is retained.

• j= j1, . . . jd is the array index in each dimension, where d ≥ 1.

• Averages in momentum space have the momentum origin as the central index.

• If integrals or spatial averages are used, the corresponding dimension has one index
jd = 1.

• With probabilities, extra dimensions are added to j to store the bin indices.

• c indexes error-checks and comparisons. If not present, omit p.errors and the last dimen-
sion.

• If c > p.er rors, the extra fields are comparison inputs, where p.er rors is the largest
data index.

When the optional comparison fields are used, an input parameter er rors is required to in-
dicate the maximum error index, to distinguish data from comparisons. Parameter structures
from xSIM have er rors = 3 set to allow for both sampling errors and discretization errors. If
this is omitted, the default is er rors = 0, which implies that there is no error or comparison
data

If er rors > 0, the last index can have larger values with c > er rors, for comparisons. The
special case of er rors = 1 is used if the data has no error bars, but there are comparisons in
the data. Larger indices are used to index the comparison data, which can also have two types
of errors. The largest usable last index is er rors+ 3.

It is possible to directly plot the raw data using xGRAPH. One can even combine the raw
data with a graphics parameter input. But since the raw data has no error estimates - it is raw
data - one must set p.er rors = 0, since the xsim output parameters have a normal setting of
p.er rors = 3. This will give a single trajectory.

However, the raw data from a simulation typically includes many trajectories if
ensembles(1) > 0. One must select particular trajectory datasets from the raw cell array,
to plot just one.

10.4.1 Input parameters and defaults

A sequence of graph parameters is obtained from inputs in a cell array, as input= {in1, in2, ...}.
The input parameters of each simulation in the sequence are specified in a Matlab structure.
The inputs are numbers, vectors, strings, functions and cell arrays. All metadata has preferred
values, so only changes from the preferences need to be input. The resulting data is stored
internally as a sequence of structures in a cell array, to describe the simulation sequence.

The graphics parameters are also stored in the cell array input as a sequence of structures
p. This only need to be input when the graphs are generated and can be changed at a later time
to alter the graphics output. A sequence of simulations is graphed from input specifications.

If there is one simulation, just one structure can be input, without the sequence braces.
The standard way to input each parameter value is:

p.label = parameter

The standard way to input a function handle is:

p.label =@ f unct ion

108

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

The inputs are scalar or vector parameters or function handles. Quantities relating to
graphed averages are cell arrays, indexed by the graph number. The available inputs, with
their default values in brackets, are given below.

Simulation metadata, including default values that were used in a particular simulation,
can be included in the input data files. This is done in both the .mat and the .h5 output files
generated by xSIM, so the entire graphics input can be reconstructed or changed.

Parameters can be numbers, vectors, strings or cell arrays. Conventions that are used are
that:

• All input parameters have default values

• Vector inputs of numbers are enclosed in square brackets, [...].

• Cell arrays of strings, functions or vectors are enclosed in curly brackets.

• Vector or cell array inputs with only one member don’t require brackets.

• Incomplete parameter inputs are completed with the last used default value.

• Function definitions can be handles pointing elsewhere, or defined inline.

If any inputs are omitted, there are default values which are set by the internal function xg-
preferences. The defaults can be changed by editing xgpreferences.

In the following descriptions, graphs is the total number of graphed variables of all types.
The space coordinate, image, image-type and transverse data can be omitted if there is no
spatial lattice, that is, if the dimension variable is set to one.

For uniformity, the graphics parameters that reference an individual data object are cell
arrays. These are indexed over the graph number using braces {}. If a different type of input
is used, like a scalar or matrix, xSPDE will attempt to convert the type to a cell array.

Axis labels are cell arrays, indexed over dimension. The graph number used to index
these cell arrays refers to the data object. In each case there can be multiple generated plots,
depending on the graphics input.

10.5 Cascaded plots

The xGRAPH function generates a default range of graphs, but this can be modified to suit
the user. In the simplest case of one dimension, one graph dataset will generate a single plot.
For higher dimensions, a cascade of plots is generated to allow visualization, starting from 3D
movies, then 3D static plots and finally 2D slices. These can also be user modified.

Note that for all probabilities, the plot dimension is increased by the bin range dimension-
ality.

10.5.1 Plot dimensions

The pdimension input sets the maximum plotted dimensions. For example, pdimension{1}= 1
means that only plots vs r1 are output for the first function plotted. Default values are used
for the non-plotted dimensions, unless there are axes specified, as indicated below.

The graphs cascade down from higher to lower dimensions, generating different types of
graphs. Each type of graph is generated once for each function index.

109

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.5.2 Plot axes

The graphics axes that are used for plotting and the points plotted are defined using the op-
tional axes input parameters, where axes{n} indicates the n-th specified graph or set of gen-
erated graph data.

If there are no axes inputs, or the axes inputs are zero - for example, axes{1} = {0, 0,0}
- only the lowest dimensions are plotted, up to 3. If either the data or axes inputs project
one point in a given dimension, - for example, axes{1} = {0,31,−1,0}, this dimension is
suppressed in the plots, which reduces the effective dimension of the data - in this case to two
dimensions.

Examples:

• axes{1} = {0} - For function 1, plot all the first dimensional points; higher dimensions
get defaults.

• axes{2} = {−2,0} - For function 2, plot the maximum value of r1 (the default) and all
higher-dimensional x-points.

• axes{3} = {1 : 4 : 51,32, 64} - For function 3, plot every 4-th x1 point at x2 point 32,
x3 point 64

• axes{4} = {0,2 : 4 : 48, 0} - For function 4, plot every x1 point , every 4-th x2 point,
and all x3-points.

Points labelled −1 indicates a default ‘typical’ point, which is the midpoint. If one uses −2,
this is the last point.

Lower dimensions are replaced by corresponding higher dimensions if there are dimensions
or axes that are suppressed. Slices can be taken at any desired point, not just the midpoint.
The notation of axes{1} = {6 : 3 : 81}, is used to modify the starting, interval, and finishing
points for complete control on the plot points.

The graphics results depend on the resulting effective dimension, which is equal to the
actual input data dimension unless there is an axes suppression, described above. Since the
plot has to include a data axis, the plot itself will usually have an extra data axis.

One can plot only three axes directly using standard graphics tools. The strategy to deal
with the higher effective dimensionality is as follows. For simplicity, “time” is used to label the
first effective dimension, although in fact any first dimension is possible:

dimensions = 1 For one lattice dimension, a 2D plot of observable vs t is plotted, with data
at each lattice point in time. Exact results, error bars and sampling error bounds are
included if available.

dimensions = 2 For two lattice dimensions, a 3D image of observable vs x,t is plotted. A
movie of distinct 2D graphic plots is also possible. Otherwise, a slice through x = 0 is
used tp reduce the lattice dimension to 1.

dimensions = 3 For three lattice dimensions, if images > 1, a movie of distinct 3D graphic
images of observables are plotted as images slices versus the first plot dimension. Oth-
erwise, a slice through the chosen point, is used at the highest dimension to reduce the
lattice dimension to 2.

dimensions = 4,5.. For higher lattice dimensions, a slice through a chosen point, or the de-
fault midpoint is used to reduce the lattice dimension to 3.

110

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

As explained above, in addition to graphs versus x1 the xGRAPH function can generate images
(3D) and transverse (2D) plots at specified points, up to a maximum given by the number of
points specified. The number of these can be individually specified for each graph number.
The images available are specified as imagetype= 1, . . . 4, giving:

1. 3D perspective plots (Matlab surf - the default)

2. 2D filled color plots (Matlab contourf)

3. contour plots (Matlab contour)

4. pseudo-color plots (Matlab pcolor)

Error bars, sampling errors and multiple lines for comparisons are only graphed for 2D plots.
Error-bars are not plotted when they are below a user-specified size, with a default of 1% of
the maximum range, to improve graphics quality. Higher dimensional graphs do not output
error-bar data, but they are still recorded in the data files.

10.6 Probabilities and parametric plots

Probability data can be input and plotted like any other data. It is typically generated from
simulation programs using the binranges data for binning. It is plotted like any other graph,
with any dimension, except that the total dimension is extended by the number of variables
or lines in the observe function.

10.6.1 Chi-squared plots

In addition the program can make a χ2 plot, which is a plot of the χ2 comparison with a
comparison probability density against space and/or time. This allows a test of the simulated
data against a known target probability distribution, provided that the following input data
conditions are satisfied:

• The input data dimension exceeds the p.dimensions parameter,

• The switch p.chisqplot is set to 1or 2, and

• The input data includes comparison function data.

The χ2 plots, depending on p.chisqplot are:

1. a plot of χ2 and k, where k is the number of valid data points,

2. a plot of
p

2χ2 and
p

2k− 1, which should have a unit variance.

Here, for one point in space and time, with m bins, N j counts per bin and E j expected counts:

χ2 =
m
∑

j=1

�

N j − E j

�2

E j
. (213)

The number k is the number of valid counts, with N j , E j > mincount. This is partly de-
termined from the requirement that the probability count data per bin is greater than the
p.mincount parameter. The default is set to give a number of samples > 10. The program
prints a summary that sums over of all the χ2 data.

The p.scale{n} parameter gives the number of counts per bin at unit probability density.
This is needed to set the scale of the χ2 results, ie, N j = scale{n} × p j , where p j is the prob-
ability density that is compared and plotted in the simulation data. Note that a uniform bin
size is assumed here, to give a uniform scaling.

111

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.6.2 Comparisons with variances

It can be useful to compare two probability distributions with different variances. For one point
in space and time, with m bins, p j probability density and e j expected probability density,

χ2 =
m
∑

j=1

�

p j − e j

�2

σ2
j +σ

2
e, j

. (214)

In this case, σ2
j andσ2

e, j are the sampling errors in the simulation data and comparison data, so

that built-in error fields in the data are used to work out the χ2 results. This option is chosen
if p.scale{n} = 0, and the cutoff for the data is then specified so that p j , e j > p.cuto f f s{n}.
This only has a χ2 distribution if points are independent.

10.6.3 Maximum likelihood

It is also possible to plot the G2 or maximum likelihood plot of the data, which is an alternative
means to compare distributions, where

G2 = 2
m
∑

j=1

N j ln
�

N j/E j

�

. (215)

The expected values E j are automatically scaled so that
∑

N j =
∑

E j ,with the same minimum
count cutoff that is used for the χ2 data. The result is similar to the χ2 results. It is obtained
if p.gsqplot is set to 1 or 2 and requires for the input that p.scale{n} > 0. It is sometimes
regarded as a preferred method for comparisons.

10.6.4 Parametric plots

Any input dataset can be converted to a parametric plot, where a second data input is plotted
along the horizontal axis instead of the time coordinate. It is also possible to substitute a
second data input for the x-axis data if a parametric plot in space is required instead. This
allows visualization of how one type of data changes as a function of a second type of data
input.

The two datasets that are plotted must have the same number of lines, that is, the first index
range should be the same, in order that multiple lines can be compared. This is achieved where
required using the p.scatters input in the simulation code. The details of the parametric plot
are specified using the input:

p.paramet ric{n}= [n1, p2] . (216)

Here n is the graph number which is plotted, and must correspond to an input dataset. The
number n1 is the graph number of the observable that is plotted on the horizontal axis, ignoring
functional transformations. The second number is the axis number where the parametric value
is substituted, which can be the time (axis 1) or the x-coordinate (axis 2), if present.

In all cases the vertical axis is used to plot the original data. The specified horizontal axis is
used for the parametric variable. Only vertical error-bars are available. An example is given in
xAMPLES/SDE_1/SHO, which is a noise-driven harmonic oscillator, with several lines plotted
of x vs y.

112

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7 Parameter reference

10.7.1 axes{n}

Default: {0,0,0,..}

Gives the axis points plotted for the n-th plotted function, in each dimension. Each entry value
is a vector range for a particular plot and dimension. Thus, p= 5 gives the fifth point only, and a
vector input p = 1:4:41 plots every fourth point. Single points generate graphics projections,
allowing the other dimensions to be plotted. Zero or negative values are shorthand. For
example, p = -1 generates a default point at the midpoint, p = -2 the endpoint, and p = 0
is the default value that gives the vector for the every axis point. For each graph type, i.e.
n=1,..graphs the axes can be individually specified in each dimension, d=1,..dimensions. If
more than three axes are specified to be vectors, only the first three are used, and others are
set to default values in the plots.

Example: p.axes{4} = {1:2:10,0,0,-1}

10.7.2 diffplot{n}

Default: 0

Differences are plotted as a comparison dashed line on 2D plots as a default. Otherwise,
a separate difference plot is obtained which is unnormalized (diffplot = 1), or normalized
(diffplot = 2) by the total RMS errors. If diffplot = 3, the comparison data is plotted directly
as an additional graph.

Example: p.diffplot{3} = 2

10.7.3 errors

Default: 0

Indicates if the last index in the graphics input data arrays is used for error-bars and/or com-
parisons. Should be set to zero if there is no error or comparison data. If non-zero, this will
give the highest last index used for errors. The standard xsim output sets p.er rors = 3 auto-
matically. As a special case, p.er rors = 1 is used to indicate that there is comparison data but
no error data.

If p.er rors > 0 , the data indexed up to p.errors gives the data, then a maximum of two
types of error bars. Up to three further index values, up to p.er rors+3, are available to index
all comparison data and its error fields. The maximum last index value used is 6.

Example: p.errors = 2

10.7.4 esample{n}

Default: 1

This sets the type and size of sampling errors that are plotted. If esample = 0, no sampling
error lines are plotted, just the mean. If esample = −n, ±nσ sampling errors are included
in the error-bars. If esample = n, separate upper and lower ±nσ sampling error lines are
plotted. In both cases, the magnitude of esample sets the number of standard deviations used.

Example: p.esample{3} = -1

113

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7.5 font{n}

Default: 18

This sets the default font sizes for the graph labels, indexed by graph. This can be changed
per graph.

Example: p.font{4}=18

10.7.6 functions

Default: number of functional transformations

This gives the maximum number of output graph functions and is available to restrict graphical
output. The default is the length of the cell array of input data. Normally, the default will be
used.

Example: p.functions = 10

10.7.7 glabels{n}

Default: xlabels or klabels

Graph-dependent labels for the independent variable labels. This is a nested cell array with
first dimension of graphs and second dimension of dimensions. This is used to replace the
global values of xlabels or klabels if the axis labels change from graph to graph, for example,
if the coordinates have a functional transform. These can be set for an individual coordinate
on one graph if needed.

Example: p.glabels{4}{2} = ’x^2’

10.7.8 graphs

Default: observables to plot

This gives the observables to plot. The default is a vector of indices from one to the length
of the cell array of observe functions. Normally not initialized, as the default is used. Mostly
used to reduce graphical output on a long file.

Example: p.graphs = 10

10.7.9 gtransforms{n}

Default: [0,0,...]

This switch specifies the Fourier transformed graphs and axes for graphics labeling. Auto-
matically equal to ftransforms if from an earlier xSIM input, but can be changed. If altered
for a given graph, all the axis Fourier switches should be reset. This is ignored if there is no
dimensions setting to indicate space dimensions.

Example: p.gtransforms{1} = [0,0,1]

114

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7.10 headers{n}

Default: ”

This is a string variable giving the graph headers for each type of function plotted. The default
value is an empty string. Otherwise, the header string that is input is used. Either is combined
with the simulation name and a graph number to identify the graph. This is used to include
simulation headers to identify graphs in simulation outputs. Graph headers may not be needed
in a final published result. For this, either edit the graph, or use a space to make plot headers
blank: p.headers{n} = ’ ’, or p.name = ’ ’ .

Example: p.headers{n} = ’my_graph_header’

10.7.11 images{n}

Default: 0

This is the number of 3D, transverse o-x-y images plotted as discrete time slices. Only valid if
the input data dimension is greater than 2. If present, the coordinates not plotted are set to
their central value when plotting the transverse images. This input should have a value from
zero up to a maximum value of the number of plotted points. It has a vector length equal to
graphs.

Example: p.images{4} = 5

10.7.12 imagetype{n}

Default: 1

This is the type of transverse o-x-y movie images plotted. It has a vector length equal to graphs.

• imagetype = 1 gives a perspective surface plot

• imagetype = 2, gives a 2D plot with colors

• imagetype = 3 gives a contour plot with 10 equally spaced contours

• imagetype = 4 gives a pseudo-color map

Example: p.imagetype{n} = 1, 2, 3, 4

10.7.13 klabels

Default: {’\omega’, ’k_x’, ’k_y’, ’k_z’}“ or “{’k_1’, ’k_2’, ’k_3’, ’k_4’,...}

Labels for the graph axis Fourier transform labels, vector length of dimensions. The numerical
labeling default is used when the “p.numberaxis“ option is set. Note, these are typeset in Latex
mathematics mode! When changing from the default values, all the required new labels must
be set.

Example: p.klabels= {’\Omega’, ’K_x’, ’K_y’,}

10.7.14 legends{n}

Default: {”,”}

Graph-dependent legends, specified as a nested cell array of strings for each line.

Example: p.legends{n} = {labels(1), ..., labels(lines)}

115

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7.15 limits{n}

Default: {0,0,0,0; ...}

Graph-dependent limits specified as a cell array with dimension graphs. Each entry is a cell
array of graph limits indexed by the dimension, starting from d = 1 for the time dimension.
The limits are vectors, indexed as 1,2 for the lower and upper plot limits. This is useful if the
limits required change from graph to graph. If an automatic limit is required for either the
upper or lower limit, it is set to inf.

An invalid, scalar or empty limit vector, like [0,0] or 0 or [] is ignored, and an automatic
graph limit is used.

Example: p.limits{n} = {[t1,t2],[x1,x2],[y1,y2] ...,}

10.7.16 linestyle{n}

Default: {’-k’,’--k’,’:k’,’-.k’,’-ok’,’--ok’,’:ok’,’-.ok’,’-+k’,’--+k’}

Line types for each line in every two-dimensional graph plotted. If a given line on a two-
dimensional line is to be removed completely, set the relevant line-style to zero. For example,
to remove the first line from graph 3, set p.linestyle{3} ={0}. This is useful when generating
and changing graphics output from a saved data file. The linestyle uses Matlab terminology.
It allows setting the line pattern, marker symbols and color for every line. The default lines
are black (‘k’), but any other color can be used instead.

The specifiers must be chosen from the list below, eg, ‘-ok’, although the marker can be
omitted if not required.

• Line patterns: ’-’ (solid), ’–’ (dashed), ’:’ (dotted) ,’-.’ (dash-dot)

• Marker symbols: ’+’,’o’,’*’,’.’,’x’,’s’,’d’,’^’,’v’,’>’,’<’,’p’

• Colors: ’r’,’g’,’b’,’c’,’m’,’y’,’k’,’w’

Example: p.linestyle{4} = {’-k’,’--ok’,’:g’,’-.b’,}

10.7.17 linewidth{n}

Default: 0.5

Line width for plotted lines in two-dimensional graphs. For example, to make the lines wider
in graph 3, set p.linewidth{3} =1. This is useful for changing graphics output appearance if
the default lines are too thin.

Example: p.linewidth{n} = 1

10.7.18 minbar{n}

Default: {0.01, ...}

This is the minimum relative error-bar that is plotted. Set to a large value to suppress unwanted
error-bars, although its best not to ignore the error-bar information! This can be changed per
graph.

Example: p.minbar{n} = 0

116

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7.19 name

Default: ”

Name used to label simulation graphs, usually corresponding to the equation or problem
solved. This can be removed from individual graphs by using headers{n} equal to a single
blank space. The default is a null string. To remove all headers globally, set name equal to a
single blank space: name = ’ ’.

Example: p.name = ’Wiener process simulation’

10.7.20 olabels{n}

Default: ’a’

Cell array of labels for the graph axis observables and functions. These are text labels that are
used on the graph axes. The default value is ’a_1’ if the default observable is used, otherwise
it is blank. This is overwritten by any subsequent label input when the graphics program is
run:

Example: p.olabels{4} = ’v’

10.7.21 parametric{n}

Default: [0,0]

Cell array that defines parametric plots, for each graph number. The first number is the graph
number of the alternative observable plotted on the horizontal axis. The second number is the
axis number where the parametric value is substituted, which can be the time (axis 1) or the
x-coordinate (axis 2), if present.

If both are zero, the plot against an independent space-time coordinate is calculated as
usual. If nonzero, a parametric plot is made for two-dimensional plots. In all cases the vertical
axis is used to plot the original data. The specified horizontal axis is used for the parametric
variable. Only vertical error-bars are available. Can be usefully combined with scatters{n} to
plot individual trajectories, but the number of scatters should be the same in each of the two
graphs that are parametrically plotted against each other.

Example: p.parametric{n} = [p1,p2] >= 0

10.7.22 pdimension{n}

Default: 3

This is the maximum plotted space-time dimension for each plotted quantity. The purpose is
eliminate unwanted graphs. For example, it is useful to reduce the maximum dimension when
averaging in space. Higher dimensional graphs are not needed, as the data is duplicated. Av-
eraging can be useful for checking conservation laws, or for averaging over homogeneous data
to reduce sampling errors. All graphs are suppressed if it is set to zero. Any three dimensions
can be chosen to be plotted, using the axes parameter to suppress the unwanted data points
in other dimensions.

Example: p.pdimension{4} = 2

117

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.7.23 saveeps

Default: 0

If set to 1, all plots are saved to the current folder as .eps files, numbered consecutively. It
is best to use the close all command first to remove unwanted displayed xFIGURES, before
running xgraph with this option.

Example: p.saveeps =1

10.7.24 savefig

Default: 0

If set to 1, all plots are saved to the current folder as .fig files, numbered consecutively. It is best
to use the close all command first to remove unwanted displayed xFIGURES, before running
xgraph with this option.

Example: p.savefig =1

10.7.25 transverse{n}

Default: 0

This is the number of 2D transverse images plotted as discrete time slices. Only valid if di-
mensions is greater than 2. If present, the y, z-coordinates are set to their central values when
plotting transverse images. Each element can be from 0 up to the number of plotted time-
points. The cell array has a vector length equal to graphs.

Example: p.transverse{n}= 6

10.7.26 verbose

Default: 0

Print flag for output information while running xGRAPH. Print options are:

• Minimal if verbose = -1: Prints just the start-up time and hard error messages

• Brief if verbose = 0: Additionally prints the final, total chi-squared errors where present

• Informative if verbose = 1: Also prints the graph progress indicators

• Full if verbose = 2: Prints everything including the internal parameter structure data.

In summary, if verbose= 0, most output is suppressed except the final data, verbose= 1 displays
a progress report, and verbose = 2 additionally generates a readable summary of the graphics
parameter input.

Example: p.verbose = 0

10.7.27 xlabels

Default: {’t’, ’x’, ’y’, ’z’} or {’x_1’, ’x_2’, ’x_3’, ’x_4’,...}

Global labels for the independent variable labels, vector length equal to dimensions. The nu-
merical labeling default is used when the numberaxis option is true. These are typeset in Latex
mathematics mode. When changing from the default values, all the required new labels must
be set.

Example: p.xlabels = {’tau’}

118

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.8 User function reference

It is possible to simply run xgraph as is, without much intervention. However, there are cus-
tomization options, including user defined functions. These are as follows:

10.8.1 gfunction{n} (d,p)

This is a cell array of graphics function handles. Use when a graph is needed that is a functional
transformation of the observed averages. The default value generates the n-th graph data array
directly from the n-th input data. The input is the data cell array for all the graphs in the current
sequence number with their graph parameters x, and the output is the n-th data array that is
plotted.

An arbitrary number of functions of these observables can be plotted, including vector
observables. The input to graphics functions is the observed data averages or functions of
averages in a given sequence, each stored in a cell array d{n}(ℓ, j, c). If there are more graphics
functions than input data cells, this generate additional data for plotting.

10.8.2 xfunctions{n} {nd} (ax,p)

This is a nested cell array of axis transformations. Use when a graph is needed with an axis
that is a function of the original axes. The input is the original axis coordinates, and the
output is the new coordinate set. The default value generates the input axes. Called as xfunc-
tions{n}{nd}(ax,p) for the n-th graph and axis direction dir, where ax is a vector of coordinates
for that axis.There is one graphics function for each separate graph dimension or axis. The
default value is the coordinate vector xk{nd} stored in the input parameter structure p, or else
the relevant index if xk{nd} is omitted.

10.9 xGRAPH structure

The graphics function, x graph, plots the simulation data. The general structure is:

xgraph→ xgpreferences (checks inputs)

→ xmultigraph↔ xreduce↔ xcompress (st ructures data arra ys)

→ ximages→ xtransverse→ xplot3→ xplot2 (graphs al l data)

Most graphics functions simply work, but two important functions are listed here for ref-
erence.

10.9.1 xgraph(data,input)

The xgraph function graphs multidimensional data files.

• Input: graphics data cells data, input parameter cells input.

• Output: graphs, displayed and/or stored as eps or fig files.

• If no numeric data present, reads data from a file named data.

• If data is present but without any input parameters it plots using default parameters.

• First data dimension is the line index, last dimension are the error-bars and comparisons

• Needs: xread, xmakecell, xgpreferences, xmultiplot

119

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

10.9.2 input = xgpreferences (input,oldinput)

The xgpreferences function sets default values for graphics inputs.

• Input: input cell array and optionally previous inputs from a datafile, oldinput.

• Note that each cell array is a sequence of graphics parameter structures

• Output: the updated plus default graphics parameters

• Called by: xgraph

• Needs: xprefer, xcprefer

11 Examples and batch testing

A variety of examples are given in the xAMPLES folder distributed with xSPDE. These can all
be run using Batchtest.m, which has a typical runtime of 50−100s, and runs 35 different case
studies. This shows your distribution is intact. All the graphs produced are deleted. It lists the
different examples available, some of which are given below.

The batch testing code will run each different example sequentially. It prints the RMS
relative errors for the step-size, sampling and difference error, as well as the total RMS error
combining all three, the chi-square error normalised by the number of points, and the timing.
The geometric mean of the 35 RMS total errors is computed as a benchmark.

As Matlab random noise is reproducible with a fixed seed, this geometric mean error is
fixed. The total is printed to more than six decimals for verification, and an error is indicated
if it varies by a factor of more than ±10−3. Due to different random noise algorithms used in
some Octave versions, the Octave error may vary by up to ±20%.

11.1 SDE examples

11.1.1 Kubo

This solves a multiplicative SDE with initial condition a (0) = 1 and:

∂ a
∂ t
= iaw(t) . (217)

The function uses the RK4 algorithm together with both vector and series ensembles, then
stores the computed averages with a comparison of the variance and an exact solution,

〈an〉= e−tn2/2 .

120

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function [e] = Kubo()
p.name = 'Kubo oscillator';
p.ensembles = [1000,8];
p.method = @RK4;
p.initial = @(w,p) 1;
p.deriv = @(a,w,p) 1i*w.*a(1,:) ;
p.file = 'Kubo.mat';
p.observe{2} = @(a,p) a.^2;
p.olabels{2} = {'<a^2>'};
p.compare = {@(p) exp(-p.t/2),@(p) exp(-2*p.t)};
e = xsim(p);
p2.name = 'Kubo oscillator edited title';
xgraph(p.file,p2);
end

Notes

• The algorithm is changed from the default to RK4.

• The data is stored to ’Kubo.mat’.

• This is re-read and edited using a second parameter structure, p2.

0 2 4 6 8 10

t

-0.2

0

0.2

0.4

0.6

0.8

1

<
a
>

Kubo oscillator edited title #1

0 2 4 6 8 10

t

-0.2

0

0.2

0.4

0.6

0.8

1

<
a

2
>

Kubo oscillator edited title #2

Figure 12: Example: Kubo oscillator. The graph shows the sampling error-bars as
two parallel lines. The discretization error-bars are less than the minimum, and are
not shown.

11.1.2 Loss/Gain with noise

This solves an SDE with a complex Gaussian distributed initial condition having

|a (0)|2
�

= 1
and a sequence of SDE equations, such that

∂ a
∂ t
=

¨

−a+w1(t) + iw2(t) 0< t < 4 ,

a+w1(t) + iw2(t) 4< t < 8 .
(218)

The computed variance is compared with an exact solution,

a2
�

=

¨

1 0< t < 4 ,

2e2(t−4)t − 1 4< t < 8 .

121

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function [e] = Gain()
p.name = 'Loss with noise';
p.ranges = 4;
p.noises = [2,0];
p.ensembles = [10000,1,10];
p.initial = @(w,~) (w(1,:)+1i*w(2,:))/sqrt(2);
p.deriv = @(a,w,p) -a + w(1,:)+1i*w(2,:);
p.observe = {@(a,~) a.*conj(a)};
p.olabels = {'|a|^2'};
p.compare = {@(p) 1};
p2 = p;
p2.steps = 2;
p2.name = 'Gain with noise';
p2.deriv = @(a,w,~) a + w(1,:)+1i*w(2,:);
p2.compare = {@(p) 2*exp(2*(p.t-4))-1};
e = xspde({p,p2});
end

Notes

• Low and high level parallel ensembles optimize use of multi-core vector hardware.

• Two distinct simulations are run in series, with a change in the equation.

• The simulation name is changed in sequence 2, to distinguish the graphical outputs

0 1 2 3 4

t

0.99

0.995

1

1.005

1.01

|a
|

2

Loss with noise 1#1

4 5 6 7 8

t

0

1000

2000

3000

4000

5000

6000

7000

<
|a

|2
>

Gain with noise 2#1

Figure 13: Left figure: amplitude squared with loss balanced by noise. Right figure,
amplitude squared with gain. Graphs show excellent agreement with theory up to
the sampling errors of less than ±0.005 in the initial phase, shown by the parallel
lines, with step errors of order ±0.001 indicated by error-bars.

11.2 Spectral examples

11.2.1 Equilibrium

This solves an SDE with a complex Gaussian initial condition having

|a (0)|2
�

= 1 and:

122

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

∂ a
∂ t
= −a+w1(t) + iw2(t) . (219)

The equation is such that the initial distribution is also the equilibrium probability distri-
bution. The computed ordinary and spectral variances are compared with exact solutions and
graphed, where

lim
t→∞

|a (t)|2
�

= 1 ,

|a (ω)|2
�

=
T

π (1+ω2)
.

function [e] = Equilibrium()
p.name = 'Equilibrium spectrum';
p.points = 101;
p.ranges = 100;
p.seed = 241;
p.noises = [2,0];
p.ensembles = [100,5];
p.initial = @(w,~) (w(1,:)+1i*w(2,:))/sqrt(2);
p.deriv = @(a,w,~) -a + w(1,:)+1i*w(2,:);
p.observe{1} = @(a,~) a.*conj(a);
p.observe{2} = @(a,~) a.*conj(a);
p.transforms = {0,1};
p.olabels = {'|a(t)|^2','|a(\omega)|^2'};
p.compare = {@(p) 1, @(p)p.ranges(1)./(pi*(1+p.w.^2))};
e = xspde(p);
end

Notes

• A fixed random seed is input using the p.seed parameter.

• The p.transforms cell array gives a Fourier transform for p.observe{2} only.

• A small number of ensembles and time-steps is used to improve error visibility.

123

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 10 20 30 40 50

t

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

|a
(t

)|2

Equilibrium spectrum #1

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

12

14

16

|a
(

)|
2

Equilibrium spectrum #2

Figure 14: Left figure: Mean amplitude squared, showing invariant behavior with
time, apart from sampling errors. Right figure: Mean spectrum as a function of fre-
quency. The dashed lines are exact results, solid lines are upper and lower sampling
error bounds (±σ), from sampling the stochastic equations, the error-bars are errors
due to the step-size. Error bars are less than the minimum size for graphics display
in the bottom figure.

11.2.2 Quantum

This solves an SDE for a quantum harmonic oscillator in the (truncated) Wigner phase-space
calculus. It is initialized as a vacuum state, corresponding to a complex Gaussian initial con-
dition having

|a (0)|2
�

= 1. It is subject to vacuum noise, here realized by the auxiliary field
ain. An output field is given through the input-output relations and is realized by the auxiliary
field aout .

∂ a
∂ t
= −a+

p
2ain ,

ain =
1
2
(w1(t) + iw2(t)) ,

aout =
p

2a− ain . (220)

The computed spectral variances are compared with exact solutions and graphed, where:

2π
T

|a (ω)|2
�

=
1

(1+ω2)
,

|ain (ω)|
2�=

1
2

,

|aout (ω)|
2�=

1
2

. (221)

Notes

• Demonstrates how to include defined fields

• There are 4 steps per point, to give better accuracy due to finite steps

• The observe functions are all transformed, and include defined fields.

124

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function e = Quantum()
p.name = 'Quantum harmonic oscillator spectrum';
p.points = 160;
p.steps = 4;
p.ranges = 120;
p.fields = 1;
p.auxfields = 2;
p.noises = 2;
p.ensembles = [400,1,12];
p.initial = @(w,~) (w(1,:)+1i*w(2,:))/(2);
p.a1 = @(w) (w(1,:)+1i*w(2,:))/2;
p.deriv = @(a,w,~) -a(1,:)+sqrt(2)*p.a1(w);
p.define = @(a,w,p) [p.a1(w);sqrt(2)*a(1,:)-p.a1(w)];
T = @(p) p.ranges(1);
p.observe{1} = @(a,p) (2.*pi/T(p))*a(1,:).*conj(a(1,:));
p.observe{2} = @(a,p) (2.*pi/T(p))*a(2,:).*conj(a(2,:));
p.observe{3} = @(a,p) (2.*pi/T(p))*a(3,:).*conj(a(3,:));
p.transforms = {1,1,1};
p.olabels{1} = '|a(\omega)|^2';
p.olabels{2} = '|a_{in}(\omega)|^2';
p.olabels{3} = '|a_{out}(\omega)|^2';
p.compare{1} = @(p) 1./(1+p.w.^2);
p.compare{2} = @(p) 0.5;
p.compare{3} = @(p) 0.5;
e = xspde(p);
end

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

|a
(

)|
2

Quantum harmonic oscillator spectrum #1

-4 -2 0 2 4
0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

|a
o
u
t(

)|
2

Quantum harmonic oscillator spectrum #3

Figure 15: Left figure: Spectral density of the quantum state. Right figure: Spectral
density of the output field. The solid lines indicate upper and lower sampling error
bounds (±σ), from sampling the stochastic equations. The dashed lines are exact
results, the error-bars indicate step-size errors. Error bars are less than the minimum
size for display in the top figure.

11.3 Probability examples

11.3.1 Probability density, Wiener process

Solves an SDE with an initial condition 〈a (0)〉2 = 1
4 and

125

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

ȧ = w(t) . (222)

Records the probability density and compares this with an exact solution:

P (x , t) =
1

p

2πσ2 (t)
e−

x2

2σ2(t) ,

σ2 (t) =
1
4
+ t . (223)

Notes

• The script outputs a 3D plot of P (x , t), together with the time evolution of P (0, t)

• There are 5 “transverse” plots of transient probabilities at intermediate times.

• Legends are plotted to identify the simulated and the analytic comparison lines.

function e = Wienerprob()
p.name = 'Wiener SDE distribution';
p.noises = 1;
p.points = 10;
p.ensembles = [10000,10];
p.initial = @(v,p) v/2;
p.sig = @(p) .25 + p.r{1};
p.deriv = @(a,w,p) w;
p.observe{1} = @(a,p) a;
p.compare{1} = @gaussprob;
p.transverse{1} = 5;
p.olabels{1} = 'P(x)';
p.binranges{1} = {-5:0.25:5};
p.legends{1} = {'Sampled P(x,\tau) \pm \sigma',...
'Exact P(x,\tau)'};
p.xlabels = {'\tau','x'};
e = xspde(p);
end
%
function p = gaussprob(p)
p = exp(-(p.r{2}.^2)./(2*p.sig(p)))./sqrt(2*pi*p.sig(p));
end

126

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 5 10
0

0.2

0.4

0.6

0.8

P
(x

)

Wiener SDE distribution #1

Sampled P(x,)

Exact P(x,)

Figure 16: Left figure: 3D plot of the computed probability density of the simulated
Wiener process as a function of time (τ) and “position” (x). Right figure: Time
evolution of the computed probability density for x = 0. The solid lines indicate
upper and lower sampling error bounds, while the dashed line indicates theoretical
predictions.

-4 -2 0 2 4

x

0

0.05

0.1

0.15

0.2

P
(x

)

Wiener SDE distribution #1 , = 5.556

Sampled P(x,)

Exact P(x,)

-4 -2 0 2 4

x

0.02

0.04

0.06

0.08

0.1

0.12

P
(x

)

Wiener SDE distribution #1 , = 10.000

Sampled P(x,)

Exact P(x,)

Figure 17: Left and right figure: Computed probability densities of the simulated
Wiener process at τ= 5.556 and τ= 10, respectively. In total, 5 of these transverse
plots are generated, however, only 2 are presented here.

11.4 SPDE examples

11.4.1 Nonlinear Schrodinger equation with Dirichlet boundary conditions

This solves a (1+1)-dimensional PSDE with an initial condition of a (t = 0, x) = sech (x) and

∂ a
∂ t
= i ·

�

a ·
�

|a|2 −
1
2

�

+
1
2
∂ 2a
∂ x2

�

. (224)

The solution is subject to Neumann boundary conditions with boundary values at zero

ax (t,±xm) = 0 . (225)

The equation is a deterministic nonlinear Schrodinger equation, which applies to nonlinear
optics, Bose-Einstein condensates and plasma physics. The observables are o1 ≡ |a|

2 and

o2 ≡
∫ xm

−xm

�

�

∂
∂ x a

�

�

2
d x ,

127

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Notes

• The boundary conditions are specified with p.boundaries

function [e] = SolitonDerivN()
p.dimensions = 2;
p.points = [101,101];
p.ranges = [10,15];
p.initial = @(v,p) sech(p.x);
p.observe{1} = @(a,p) a.*conj(a);
p.observe{2} = @(a,p) Int(abs(D1(a,2,p)).^2,p);
p.olabels = {'|a|^2','\int |da/dx|^2 dx'};
p.name = 'NLS soliton:spectral method + Neumann';
p.boundaries{2} = [-1,-1];
p.transverse = {3};
p.deriv = @(a,~,p) 1i*a.*(conj(a).*a);
p.linear = @(p) 0.5*1i*(p.Dx.^2-1);
e = xspde(p);
end

0 2 4 6 8 10

t

0.658

0.6585

0.659

0.6595

0.66

0.6605

 |
d
a
/d

x
|2

 d
x

NLS soliton:spectral method + Neumann #2

Figure 18: Left figure: 3D plot of the solution for |a|2 as a function of time and

position. Right figure: time evolution of
∫ xm

−xm

�

�

∂
∂ x a

�

�

2
d x .

11.4.2 Planar noise growth

This solves a (1+2)-dimensional PSDE describing the growth of noise in an extended planar
vector field with additive noise and a diffraction term giving rise to noise dispersion. There
are 240 trajectories in the total ensemble. The equation is:

∂ a
∂ t

=
i
2

�

∂ 2

∂ x2
+
∂ 2

∂ x2

�

a+η (t, x) . (226)

The initial conditions are that a=
�

vx + ivy

�

/
p

2, where:

vi (x) v j

�

x′
��

= δ
�

x− x′
�

δi j ,

the noise correlations are that η=
�

wx + iwy

�

/
p

2, where:

128

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

wi (r)w j

�

r′
��

= δ
�

t − t ′
�

δi j

�

x− x′
�

. (227)

The solution is subject to periodic boundary conditions. The noise correlations for the
second field are specified in momentum space. As there are no filters specified, the noise terms
are delta-correlated in both momentum (k) and in space (x). Using a Fourier transform, one
can show that the exact results for comparison for the correlations within each field are similar
in position and momentum space:

|ai (t,x)|
2�= (1+ t)/∆Ax ,

|ai (t,k)|
2�= (1+ t)/∆Ak .

Here, ∆Ax ,k is the area of a lattice cell in space or momentum space respectively. This is
∆Ax = 1/49 for the parameters used here. On integration over the whole lattice, the correla-
tion is proportional to Ns, the number of points in the spatial lattice, which is 352 = 1225 for
the default spatial lattice used here:

∫

|ai (t,x)|
2� dx=

∫

|ai (t,k)|
2� dk= Ns (1+ t) .

Notes

• All three types of ensemble are used

• The much lower sampling error after integration is evident in the graphs

• Spatially resolved graphs show larger sampling errors

129

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function [e] = Planar()
p.name = 'Planar noise growth';
p.dimensions = 3;
p.fields = 2;
p.ranges = [1,5,5];
p.points = 10;
p.noises = [2,2];
p.ensembles = [10,2,12];
p.initial = @Initial;
p.deriv = @D_planar;
p.linear = @Linear;
p.observe{1} = @(a,p) Int(a(1,:).*conj(a(1,:)),p);
p.observe{2} = @(a,p) Int(a(2,:).*conj(a(2,:)),p.dk,p);
p.observe{3} = @(a,p) real(Ave(a(1,:).*conj(a(2,:)),p));
p.observe{4} = @(a,p) a(2,:).*conj(a(2,:));
p.transforms = {[0,0,0],[0,1,1],[0,1,1]};
p.olabels{1} = '<\int|a_1(x)|^2 d^2x>';
p.olabels{2} = '<\int|a_2(k)|^2 d^2k>';
p.olabels{3} = '� a_1(k)a^*_2(k)�';
p.olabels{4} = '<|a_2(x)|^2>';
p.compare{1} = @(p) (1+p.t)*p.nspace;
p.compare{2} = @(p) (1+p.t)*p.nspace;
p.compare{3} = @(p) 0.0;
e = xspde(p);
end

function a0 = Initial(v,~)
a0(1,:) = (v(1,:)+1i*v(2,:))/sqrt(2);
a0(2,:) = (v(3,:)+1i*v(4,:))/sqrt(2);
end

function da = D_planar(~,w,~) %%Derivatives
da(1,:) = (w(1,:)+1i*w(2,:))/sqrt(2);
da(2,:) = (w(3,:)+1i*w(4,:))/sqrt(2);
end

function L = Linear(p)
lap = p.Dx.^2+p.Dy.^2;
L(1,:) = 1i*0.5*lap(:);
L(2,:) = 1i*0.5*lap(:);
end

130

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 0.2 0.4 0.6 0.8 1

t

1200

1400

1600

1800

2000

2200

2400

2600

<
|a

1
(x

)|2
 d

2
x
>

Planar noise growth #1

0 0.2 0.4 0.6 0.8 1

t

1200

1400

1600

1800

2000

2200

2400

2600

<
|a

2
(k

)|2
 d

2
k
>

Planar noise growth #2

Figure 19: Left and right figure: Time evolution of the integrated modulus square
of the first and second field, respectively. The solid lines indicate upper and lower
bounds of the stochastic error, which the dashed lines indicate theoretical predictions.

Figure 20: Left figure: 3D plot of the modulus square of a2 at t = 1 as a function of
x and y . Right figure: 3D plot of the modulus square of a2 for y = 0 as a function
of x and t.

11.4.3 Gross-Pitaevskii equation with vortex formation

This solves a (1+2)-dimensional PDE called the Gross-Pitaevskii equation. In addition to the
standard GPE terms, it includes the vortex forming term (x×∇) a. There is just one ensemble
member, to demonstrate how a single trajectory can be imaged. The equation is:

∂ a
∂ t
=
�

1
2
∇2a−

��

V (x) + 200 |a|2
�

+ 0.6i · (x×∇)
�

a

�

,

V (x) = 0.35
�

x2 + y2
�

,

∥b (x)∥=
b (x)

∫

|b|2 dx
. (228)

Here, ∥·∥ is the normalized derivative and × indicates the two-dimensional cross-product.
The system is initialized as

a (t = 0,x) = 0.1 · exp (−V (x)) . (229)

131

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Notes

• This is a deterministic partial differential equation case

• The 15 intermediate steps used are necessary to reduce integration errors

• The trap potential is an inline function, and is not a parameter

• Normalization is used because otherwise particle number is not conserved

• The output includes transverse images to show how the vortices develop

• Different imagetypes are used to show different 3D features

function [e] = GPEvortex2D()
p.name = 'GPEvortex2D';
p.dimensions = 3;
p.fields = 1;
p.points = [50,40,40];
p.ranges = [15,16,16];
p.steps = 15;
g = 200;
om = 0.6;
L = @(a,p) 1i*(p.x.*D1(a,3,p)-p.y.*D1(a,2,p));
V = @(p) 0.35*(p.x.^2+p.y.^2);
p.initial = @(v,p) 0.1*exp(-V(p));
rho = @(a) g*conj(a).*a;
p.deriv = @normda;
p.da1 = @(a,w,p) -a.*(V(p)+rho(a))+om*L(a,p);
p.linear = @(p) 0.5*(p.Dx.^2+p.Dy.^2);
p.observe{1} = @(a,p) a(1,:).*conj(a(1,:));
p.observe{2} = @(a,p) a(1,:).*conj(a(1,:));
p.images = {2,2};
p.imagetype = {1,2};
p.olabels = {'|a|^2','|a|^2'};
e = xspde(p);

function b = normda(a,w,p)
% b = NORMDA(a,w,p) is a normalized derivative
% Takes a derivative and returns a normalized step
b = a+p.da1(a,w,p)*p.dtr;
norm = sqrt(Int(abs(b).^2,p.dx,p));
b = (b./norm-a)/p.dtr;
end
end

132

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

GPEvortex2D #2 , t = 15.000

-5 0 5

x

-5

0

5

y

Figure 21: Left and right figure: The computed solution for |a|2 at t = 15 as a
function of x , y as a 3D plot (top) and as a color map (bottom).

GPEvortex2D #2

0 5 10 15

t

-5

0

5

x

Figure 22: Left and right figure: The computed solution for |a|2 for y = 0 as a
function of x , t as a 3D plot (top) and as a color map (bottom).

11.4.4 Heat equation with finite-difference and propagators

This very simple example solves a (1+1)-dimensional PDE with an initial condition of
a (t = 0, x) = f (x) and

∂ a
∂ t
=
∂ 2a
∂ x2

. (230)

The solution is subject to periodic boundary conditions or Dirichlet and/or Neumann with
boundary values at zero, so that a (t,±xm) = 0 or ∂ a/∂ x (t,±xm) = 0. Each component has
different combinations of boundary types. Using spectral methods the solutions here are exact,
up to round-off errors of order 10−15, and are also much faster than with finite differences,
which is demonstrated in the example.

In all cases the grid range is from x = 0 to x = π, and the time duration is from t = 0
to t = 4. In the examples, the spectral propagation error is reduced by more than 1010 and
the time is reduced by a factor of 20 compared to the finite-difference methods. The periodic
method has boundaries just outside the grid.

133

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Dirichlet-Dirichlet Here ax(0) = ax(π) = 0, then the exact solution has the form:

a =
∞
∑

n=1

Sn sin (nx) e−n2 t . (231)

Suppose that
a(x , 0) = 4sin (x) + sin (2x) . (232)

For this case:
a(x , t) = 4sin (x) e−t + sin (2x) e−4t . (233)

Neumann-Neumann with a(0) = a(π) = 0, then the exact solution has the form:

a =
∞
∑

n=0

Cn cos (nx) e−n2 t . (234)

Suppose that
a(x , 0) = 5+ 4 cos (x) + cos (2x) . (235)

For this case:
a(x , t) = 5+ 4 cos (x) e−t + cos (2x) e−4t . (236)

Dirichlet-Neumann Here a(0) = ax(π) = 0, then the exact solution has the form:

a =
∞
∑

n=1

Sn sin ((2n− 1)x/2) e−(2n−1)2 t/4 . (237)

Suppose that
a(x , 0) = 4sin (x/2) + sin (3x/2) . (238)

For this case:
u(x , 0) = 4sin (x/2) e−t/4 + sin (3x/2) e−9t/4 . (239)

Neumann-Dirichlet Here ax(0) = a(π) = 0, then the general solution has the form:

a =
∞
∑

n=1

Cn cos ((2n− 1)x/2) e−(2n−1)2 t/4. (240)

Suppose that
a(x , 0) = 4cos (x/2) + cos (3x/2) . (241)

For this case:
a(x , t) = 4cos (x/2) e−t/4 + cos (3x/2) e−9t/4 . (242)

Periodic Here a(0) = a(επ), where ε = N/ (N − 1) accounts for the periodic boundaries
being outside the grid range, then the general solution has the form:

a =
∞
∑

n=1

Sn sin (2nx) e−4n2 t/ε2

+
∞
∑

n=0

Cn cos (2nx) e−4n2 t/ε2
. (243)

Suppose that
a(x , 0) = 2+ cos (2x/ε) + sin (4x/ε) . (244)

For this case:

u(x , 0) = 2+ 2cos (2x/ε) e−4t/ε2
+ sin (4x/ε) e−16t/ε2

. (245)

134

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Notes

• This is another deterministic pde case, although noise can be added

• Different boundary conditions apply to each component

• Sequential integration is used, but the initial condition is just recycled.

• In p1, the 40 intermediate steps are necessary to reduce finite-difference errors

function [e] = Boundaries()
p.dimensions = 2;
p.points = [51,51];
p.order = 0;
p.verbose = 1;
p.fields = 5;
p.ranges = [4,pi];
p.origins = [0,0];
p.initial = @heat_in;
p.observe = {@(a,p) a(1,:),@(a,p) a(2,:),@(a,p) a(3,:)...
@(a,p) a(4,:),@(a,p) a(5,:)};
p.compare = {@heat_1,@heat_2,@heat_3,@heat_4,@heat_5};
p.diffplot = {1,1,1,1,1};
p.olabels = {'a, DD','a, NN','a, DN','a, ND','a, PP'};
p.name = 'Heat test, spectral';
p.boundaries{2}= [1,1;-1,-1;1,-1;-1,1;0,0];
p.linear = @(p) p.Dx.^2;
p1 = p;
p1.linear = @(p) [];
p1.deriv = @(a,w,p) D2(a,2,p);
p1.steps = 40;
p1.transfer = @(~,p,~,~) heat_in(0,p);
p1.name = 'Heat test, finite diffs';
e = xspde({p,p1});
end

function a = heat_in(~,p)
a(1,:) = 4*sin(p.x)+sin(2*p.x);
a(2,:) = 5+4*cos(p.x)+cos(2*p.x);
a(3,:) = 4*sin(p.x/2)+sin(3*p.x/2);
a(4,:) = 4*cos(p.x/2)+cos(3*p.x/2);
a(5,:) = 2+cos(2*p.x/1.02)+sin(4*p.x/1.02);
end

function o = heat_1(p)
o = 4*sin(p.x).*exp(-p.t)+sin(2*p.x).*exp(-4*p.t);
end
function o = heat_2(p)
o = 5+4*cos(p.x).*exp(-p.t)+cos(2*p.x).*exp(-4*p.t);
end
function o = heat_3(p)
o = 4*sin(p.x/2).*exp(-p.t/4)+sin(3*p.x/2).*exp(-9*p.t/4);
end
function o = heat_4(p)
o = 4*cos(p.x/2).*exp(-p.t/4)+cos(3*p.x/2).*exp(-9*p.t/4);
end
function o = heat_5(p)
o = 2+cos(2*p.x/1.02).*exp(-4*p.t/1.02^2)+...
sin(4*p.x/1.02).*exp(-16*p.t/1.02^2);
end

135

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

Figure 23: Left figure: Spectral solution for a as a function of time and position
with Dirichlet-Dirichlet boundaries. Right figure: Plot of the solution with Neumann-
Neumann boundaries.

11.5 Projection examples

11.5.1 SDE with catenoid projection

This solves an SDE with 3 field variables a= (a1, a2, a3)
T . The Stratonovich diffusion equation

is

∂ a
∂ t
= P∥a [w] , (246)

where P∥a [·] indicates a projected onto the surface of a catenoid manifold defined by

f = x2
1 + x2

2 − sinh2 (x3)− 1= 0 . (247)

The initial condition is given by a (o) = (1, 0,0)T . Here w = (w1, w2, w3)
T consists of 3 inde-

pendent noise variables

Notes

• This is a projected sde case

• The Euclidean distance from the initial point is computed

• This is compared with the predicted analytic value

R2
�

= 2t.

136

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

function [e] = Catenoid
p.name = '3D Catenoid diffusion';
p.iterproj = 3;
p.X0 = [1,0,0]';
p.fields = 3;
p.ranges = 5;
p.points = 51;
p.ensembles = [400, 10];
p.compare{2} = @(p) 2*p.t;
p.deriv = @(a, w, p) w;
p.initial = @(w, p) p.X0;
p.observe{2} = @(a, p) sum((p.X0-a).^2,1);
p.diffplot{2} = 1;
p.function{1} = @(o, p) o{2}.^2;
p.olabels = {'\langle R^2 \rangle^2','\langle R^2 \rangle'};
p.project = @Catproj;
p.method = @MPnproj;
e = xspde(p);
end

0 1 2 3 4 5

t

0

2

4

6

8

10

12

 R
2

3D catenoid diffusion #2

Figure 24: Computed time evolution of the catenoid squared Euclidean diffusion
distance |x0 − x (t)|2, where x0 = (1, 0,0)T , as a function of time. The solid lines
indicate the stochastic error bounds while the dashed line indicates the theoretical
prediction.

137

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

0 1 2 3 4 5

t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 R
2

3D Catenoid diffusion #2

Figure 25: Differences between the computed time evolution of the catenoid squared
Euclidean distance |x0 − x (t)|2 and the exact result. The solid lines indicate the
stochastic error bounds, error-bars are the time-step errors, while the dashed line
indicates the theoretical prediction.

12 Conclusion

We have introduced a framework compatible with Matlab and Octave for the numerical inte-
gration of an extremely wide variety of stochastic differential equations. As we hope has be-
come clear from this manual, xSPDE offers an extraordinarily clear and user-friendly interface.
Simulating stochastic partial differential equations (SPDEs) can be achieved with virtually no
extra effort compared to ordinary stochastic differential equations. Spatial derivatives can be
obtained in an efficient and numerically stable way using Fourier or trigonometric transform
techniques for many cases.

Finite difference methods are available in more complex cases, and different combinations
of boundary values can be imposed independently on any vector component and in any spatial
dimension. A number of algorithms for the integration of stochastic equations are included,
while the modular and transparent design of xSPDE makes it easy to implement other custom
algorithms as well if preferred.

Error estimations are included, and parallel operation is supported. Simulation results
are available both as graphical output and in an interoperable data format. Importantly, the
discretization and sampling error estimates are carried out at the level of the final estimated
probabilities and averages, providing much more compact and useful results than raw data.
However, raw data output is also available if needed.

With xSPDE, we aim to make stochastic simulations, particularly those involving SPDEs,
accessible to scientists, engineers and researchers. The software has been used in several
research works [8, 10, 11, 13–19, 21, 23, 25, 26, 41, 97]. Currently, the use of more efficient
spectral methods is limited to periodic boundaries, zero value Dirichlet, and/or zero derivative
Neumann boundary conditions.

138

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17

SciPost Phys. Codebases 17 (2023)

In future releases, we aim to support a more general class of boundary conditions and
integration methods, discrete networks, and more complex problems involving multiple spatial
grids with different dimensions. A Julia version is under development for those users without
Matlab licenses who find Octave too slow. Currently, xSPDE simulations are exclusively CPU
or cluster-based, which is suitable and efficient for many purposes. Support for GPU-enabled
simulations is a longer term goal for xSPDE.

Acknowledgements

We would like to thank the many users and researchers whose feedback was invaluable, includ-
ing Rodney Polkinghorne, Bogdan Opanchuk, King Ng, Alex Dellios, Run Yan Teh, Manushan
Thenabadu, Margaret Reid, Jesse van Rhijn and Thomas Rodriguez.

Funding information This work was funded through the Australian Research Council Dis-
covery Project scheme under Grants DP180102470 and DP190101480. The authors also wish
to thank NTT Research for their financial and technical support.

References

[1] S. Kiesewetter, R. Polkinghorne, B. Opanchuk and P. D. Drummond,
xSPDE: Extensible software for stochastic equations, SoftwareX 5, 12 (2016),
doi:10.1016/j.softx.2016.02.001.

[2] C. W. Gardiner, Stochastic methods: A handbook for the natural and social sciences,
Springer, Berlin, Heidelberg, Germany, ISBN 9783540707127 (2009).

[3] P. D. Drummond and M. Hillery, The quantum theory of nonlinear optics,
Cambridge University Press, Cambridge, UK, ISBN 9781107004214 (2014),
doi:10.1017/CBO9780511783616.

[4] P. Langevin, Sur la théorie du mouvement brownien, C. R. Acad. Sci. (Paris) 146, 530
(1908).

[5] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Springer, New York,
USA, ISBN 9780387976556 (1998), doi:10.1007/978-1-4612-0949-2.

[6] P. Glasserman, Monte Carlo methods in financial engineering, Springer, New York, USA,
ISBN 9781441918222 (2003), doi:10.1007/978-0-387-21617-1.

[7] B. Opanchuk, R. Polkinghorne, O. Fialko, J. Brand and P. D. Drummond, Quantum simu-
lations of the early Universe, Ann. Phys. 525, 866 (2013), doi:10.1002/andp.201300113.

[8] K. L. Ng, R. Polkinghorne, B. Opanchuk and P. D. Drummond, Phase-space representa-
tions of thermal Bose-Einstein condensates, J. Phys. A: Math. Theor. 52, 035302 (2018),
doi:10.1088/1751-8121/aaeeb1.

[9] V. G. Ramesh, K. J. H. Peters and S. R. K. Rodriguez, Arcsine laws of light, (arXiv preprint)
doi:10.48550/arXiv.2208.07432.

[10] K. J. H. Peters and S. R. K. Rodriguez, Limit cycles and chaos induced by a nonlinearity
with memory, Eur. Phys. J. Spec. Top. 231, 247 (2022), doi:10.1140/epjs/s11734-021-
00407-3.

139

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.1016/j.softx.2016.02.001
https://doi.org/10.1017/CBO9780511783616
https://doi.org/10.1007/978-1-4612-0949-2
https://doi.org/10.1007/978-0-387-21617-1
https://doi.org/10.1002/andp.201300113
https://doi.org/10.1088/1751-8121/aaeeb1
https://doi.org/10.48550/arXiv.2208.07432
https://doi.org/10.1140/epjs/s11734-021-00407-3
https://doi.org/10.1140/epjs/s11734-021-00407-3

SciPost Phys. Codebases 17 (2023)

[11] R. Y. Teh, S. Kiesewetter, M. D. Reid and P. D. Drummond, Simulation of an optome-
chanical quantum memory in the nonlinear regime, Phys. Rev. A 96, 013854 (2017),
doi:10.1103/PhysRevA.96.013854.

[12] R. Y. Teh, Quantum correlations in mesoscopic systems, PhD thesis, Swinburne Uni-
versity of Technology, Australia (2018), https://researchbank.swinburne.edu.au/file/
0b198293-8a5a-4951-9f57-3adaf28ae04a/1/run_yan_teh_thesis.pdf.

[13] S. Kiesewetter and P. D. Drummond, Phase-space simulations of feedback coherent Ising
machines, Opt. Lett. 47, 649 (2022), doi:10.1364/ol.434114.

[14] R. Y. Teh, S. Kiesewetter, P. D. Drummond and M. D. Reid, Creation, storage,
and retrieval of an optomechanical cat state, Phys. Rev. A 98, 063814 (2018),
doi:10.1103/physreva.98.063814.

[15] K. Dechoum, L. Rosales-Zárate and P. D. Drummond, Critical fluctuations in an optical
parametric oscillator: When light behaves like magnetism, J. Opt. Soc. Am. B 33, 871
(2016), doi:10.1364/josab.33.000871.

[16] P. D. Drummond and B. Opanchuk, Truncated Wigner dynamics and conservation laws,
Phys. Rev. A 96, 043616 (2017), doi:10.1103/physreva.96.043616.

[17] B. Opanchuk and P. D. Drummond, One-dimensional Bose gas dynamics: Breather relax-
ation, Phys. Rev. A 96, 053628 (2017), doi:10.1103/PhysRevA.96.053628.

[18] P. D. Drummond, Higher-order stochastic differential equations and the positive Wigner
function, Phys. Rev. A 96, 062104 (2017), doi:10.1103/physreva.96.062104.

[19] K. L. Ng, B. Opanchuk, M. Thenabadu, M. Reid and P. D. Drummond, Fate of the false
vacuum: Finite temperature, entropy, and topological phase in quantum simulations of the
early Universe, PRX Quantum 2, 010350 (2021), doi:10.1103/prxquantum.2.010350.

[20] R. R. Joseph, J. van Rhijn and P. D. Drummond, Midpoint projection algorithm
for stochastic differential equations on manifolds, Phys. Rev. E 107, 055307 (2023),
doi:10.1103/PhysRevE.107.055307.

[21] P. D. Drummond, Time evolution with symmetric stochastic action, Phys. Rev. Res. 3,
013240 (2021), doi:10.1103/physrevresearch.3.013240.

[22] P. D. Drummond and B. Opanchuk, Initial states for quantum field simulations in phase
space, Phys. Rev. Res. 2, 033304 (2020), doi:10.1103/physrevresearch.2.033304.

[23] K. L. Ng, B. Opanchuk, M. D. Reid and P. D. Drummond, Nonlocal pair corre-
lations in a Higher-order Bose gas soliton, Phys. Rev. Lett. 122, 203604 (2019),
doi:10.1103/physrevlett.122.203604.

[24] J. Busink, P. Ackermans, K. G. Cognee and S. R. K. Rodriguez, Stochastic
light in a cavity: A Brownian particle in a scalar potential?, (arXiv preprint)
doi:10.48550/arXiv.2107.01414.

[25] K. J. H. Peters, Z. Geng, K. Malmir, J. M. Smith and S. R. K. Rodriguez, Ex-
tremely broadband stochastic resonance of light and enhanced energy harvesting enabled
by memory effects in the nonlinear response, Phys. Rev. Lett. 126, 213901 (2021),
doi:10.1103/physrevlett.126.213901.

140

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.1103/PhysRevA.96.013854
https://researchbank.swinburne.edu.au/file/0b198293-8a5a-4951-9f57-3adaf28ae04a/1/run_yan_teh_thesis.pdf
https://researchbank.swinburne.edu.au/file/0b198293-8a5a-4951-9f57-3adaf28ae04a/1/run_yan_teh_thesis.pdf
https://doi.org/10.1364/ol.434114
https://doi.org/10.1103/physreva.98.063814
https://doi.org/10.1364/josab.33.000871
https://doi.org/10.1103/physreva.96.043616
https://doi.org/10.1103/PhysRevA.96.053628
https://doi.org/10.1103/physreva.96.062104
https://doi.org/10.1103/prxquantum.2.010350
https://doi.org/10.1103/PhysRevE.107.055307
https://doi.org/10.1103/physrevresearch.3.013240
https://doi.org/10.1103/physrevresearch.2.033304
https://doi.org/10.1103/physrevlett.122.203604
https://doi.org/10.48550/arXiv.2107.01414
https://doi.org/10.1103/physrevlett.126.213901

SciPost Phys. Codebases 17 (2023)

[26] K. J. H. Peters and S. R. K. Rodriguez, Exceptional precision of a nonlinear op-
tical sensor at a square-root singularity, Phys. Rev. Lett. 129, 013901 (2022),
doi:10.1364/np.2022.nptu4f.3.

[27] P. D. Drummond and I. K. Mortimer, Computer simulations of multiplicative stochas-
tic differential equations, J. Comput. Phys. 89, 252 (1990), doi:10.1016/0021-
9991(90)90131-j.

[28] P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations,
Springer, Berlin, Heidelberg, Germany, ISBN 9783662126165 (2016), doi:10.1007/978-
3-662-12616-5.

[29] M. J. Werner and P. D. Drummond, Robust algorithms for solving stochastic partial differ-
ential equations, J. Comput. Phys. 132, 312 (1997), doi:10.1006/jcph.1996.5638.

[30] K. Burrage, P. Burrage, D. J. Higham, P. E. Kloeden and E. Platen, Comment on “Nu-
merical methods for stochastic differential equations”, Phys. Rev. E 74, 068701 (2006),
doi:10.1103/physreve.74.068701.

[31] J. W. Eaton, GNU Octave and reproducible research, J. Process Control 22, 1433 (2012),
doi:10.1016/j.jprocont.2012.04.006.

[32] G. Collecutt and P. D. Drummond, xmds: eXtensible multi-dimensional simulator, Comput.
Phys. Commun. 142, 219 (2001), doi:10.1016/s0010-4655(01)00309-5.

[33] G. R. Dennis, J. J. Hope and M. T. Johnsson, XMDS2: Fast, scalable simulation of cou-
pled stochastic partial differential equations, Comput. Phys. Commun. 184, 201 (2013),
doi:10.1016/j.cpc.2012.08.016.

[34] N. Wiener, Generalized harmonic analysis, Acta Math. 55, 117 (1930),
doi:10.1007/bf02546511.

[35] K. Itô and H. P. McKean, Diffusion processes and their sample paths, Springer, Berlin, Hei-
delberg, Germany, ISBN 9783540606291 (1996), doi:10.1007/978-3-642-62025-6.

[36] R. L. Stratonovich, On the theory of non-equilibrium random processes, Sov. Phys. JETP
11, 598 (1960), http://jetp.ras.ru/cgi-bin/e/index/e/11/3/p598?a=list.

[37] N. G. Van Kampen, Stochastic processes in physics and chemistry, Elsevier, Amsterdam,
Netherlands, ISBN 9780444529657 (2007).

[38] F. C. Klebaner, Introduction to stochastic calculus with applications, World Scientific, Sin-
gapore, ISBN 9781911298670 (2012) doi:10.1142/p821.

[39] L. Arnold, Stochastic differential equations: Theory and applications, Wiley Interscience,
Hoboken, USA, ISBN 9780471033592 (1974)

[40] R. Graham, Path integral formulation of general diffusion processes, Z. Phys. B 26, 281
(1977), doi:10.1007/BF01312935.

[41] P. D. Drummond, Forward, backward, and weighted stochastic bridges, Phys. Rev. E 96,
042123 (2017), doi:10.1103/PhysRevE.96.042123.

[42] H. Risken, The Fokker-Planck equation, Springer, Berlin, Heidelberg, Germany, ISBN
9783540615309 (1996), doi:10.1007/978-3-642-61544-3.

141

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.1364/np.2022.nptu4f.3
https://doi.org/10.1016/0021-9991(90)90131-j
https://doi.org/10.1016/0021-9991(90)90131-j
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1006/jcph.1996.5638
https://doi.org/10.1103/physreve.74.068701
https://doi.org/10.1016/j.jprocont.2012.04.006
https://doi.org/10.1016/s0010-4655(01)00309-5
https://doi.org/10.1016/j.cpc.2012.08.016
https://doi.org/10.1007/bf02546511
https://doi.org/10.1007/978-3-642-62025-6
http://jetp.ras.ru/cgi-bin/e/index/e/11/3/p598?a=list
https://doi.org/10.1142/p821
https://doi.org/10.1007/BF01312935
https://doi.org/10.1103/PhysRevE.96.042123
https://doi.org/10.1007/978-3-642-61544-3

SciPost Phys. Codebases 17 (2023)

[43] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comput. 19, 297 (1965), doi:10.2307/2003354.

[44] B. Opanchuk, L. Rosales-Zárate, R. Y. Teh, B. J. Dalton, A. Sidorov, P. D. Drum-
mond and M. D. Reid, Mesoscopic two-mode entangled and steerable states of 40 000
atoms in a Bose-Einstein-condensate interferometer, Phys. Rev. A 100, 060102 (2019),
doi:10.1103/PhysRevA.100.060102.

[45] B. Opanchuk, L. Rosales-Zárate, M. D. Reid and P. D. Drummond, Robustness of quantum
Fourier transform interferometry, Opt. Lett. 44, 343 (2019), doi:10.1364/OL.44.000343.

[46] E. Schrödinger, The constant crossover of micro-to macro mechanics, Naturwissenschaften
14, 664 (1926).

[47] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749
(1932), doi:10.1103/PhysRev.40.749.

[48] J. E. Moyal, Quantum mechanics as a statistical theory, Math. Proc. Camb. Philos. Soc.
45, 99 (1949), doi:10.1017/S0305004100000487.

[49] R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766
(1963), doi:10.1103/PhysRev.131.2766.

[50] W. H. Louisell, Quantum statistical properties of radiation, Wiley, Hoboken, USA, ISBN
9780471523659 (1973).

[51] C. W. Gardiner and P. Zoller, Quantum noise: A handbook of Markovian and non-
Markovian quantum stochastic methods with applications to quantum optics, Springer,
Berlin, Heidelberg, Germany, ISBN 9783540223016 (2004).

[52] H. J. Carmichael, Statistical methods in quantum optics 1, Springer, Berlin, Heidelberg,
Germany, ISBN 9783642081330 (1999), doi:10.1007/978-3-662-03875-8.

[53] J. F. Corney and P. D. Drummond, Gaussian quantum operator representation for bosons,
Phys. Rev. A 68, 063822 (2003), doi:10.1103/PhysRevA.68.063822.

[54] P. A. M. Dirac, On the analogy between classical and quantum mechanics, Rev. Mod. Phys.
17, 195 (1945), doi:10.1103/RevModPhys.17.195.

[55] P. D. Drummond and C. W. Gardiner, Generalised P-representations in quantum optics, J.
Phys. A: Math. Gen. 13, 2353 (1980), doi:10.1088/0305-4470/13/7/018.

[56] S. J. Carter, P. D. Drummond, M. D. Reid and R. M. Shelby, Squeezing of quantum solitons,
Phys. Rev. Lett. 58, 1841 (1987), doi:10.1103/PhysRevLett.58.1841.

[57] P. Deuar and P. D. Drummond, Gauge P representations for quantum-dynamical
problems: Removal of boundary terms, Phys. Rev. A 66, 033812 (2002),
doi:10.1103/PhysRevA.66.033812.

[58] M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls
and R. Graham, Dynamical quantum noise in trapped Bose-Einstein condensates, Phys. Rev.
A 58, 4824 (1998), doi:10.1103/PhysRevA.58.4824.

[59] S. Kiesewetter, Q. Y. He, P. D. Drummond and M. D. Reid, Scalable quantum simulation
of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics, Phys. Rev.
A 90, 043805 (2014), doi:10.1103/PhysRevA.90.043805.

142

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.2307/2003354
https://doi.org/10.1103/PhysRevA.100.060102
https://doi.org/10.1364/OL.44.000343
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1007/978-3-662-03875-8
https://doi.org/10.1103/PhysRevA.68.063822
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1088/0305-4470/13/7/018
https://doi.org/10.1103/PhysRevLett.58.1841
https://doi.org/10.1103/PhysRevA.66.033812
https://doi.org/10.1103/PhysRevA.58.4824
https://doi.org/10.1103/PhysRevA.90.043805

SciPost Phys. Codebases 17 (2023)

[60] J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality class, J.
Stat. Phys. 160, 965 (2015), doi:10.1007/s10955-015-1250-9.

[61] C.-H. Lam and F. G. Shin, Improved discretization of the Kardar-Parisi-Zhang equation,
Phys. Rev. E 58, 5592 (1998), doi:10.1103/PhysRevE.58.5592.

[62] P. D. Drummond and A. D. Hardman, Simulation of quantum effects in Raman-active
waveguides, Europhys. Lett. 21, 279 (1993), doi:10.1209/0295-5075/21/3/005.

[63] W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral
method for Bose-Einstein condensates, SIAM J. Sci. Comput. 26, 2010 (2005),
doi:10.1137/030601211.

[64] P. B. Blakie and M. J. Davis, Projected Gross-Pitaevskii equation for harmoni-
cally confined Bose gases at finite temperature, Phys. Rev. A 72, 063608 (2005),
doi:10.1103/PhysRevA.72.063608.

[65] A. Jentzen and P. E. Kloeden, The numerical approximation of stochastic partial differential
equations, Milan J. Math. 77, 205 (2009), doi:10.1007/s00032-009-0100-0.

[66] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, Proc.
IEEE 3, 1381 (1998), doi:10.1109/ICASSP.1998.681704.

[67] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93, 216
(2005), doi:10.1109/JPROC.2004.840301.

[68] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type, Math. Proc. Camb. Philos. Soc. 43, 50
(1947), doi:10.1017/S0305004100023197.

[69] F. Black, The pricing of commodity contracts, J. Financ. Econ. 3, 167 (1976),
doi:10.1016/0304-405X(76)90024-6.

[70] P. D. Drummond, K. J. McNeil and D. F. Walls, Non-equilibrium transitions in sub/second
harmonic generation, Opt. Acta: Int. J. Opt. 27, 321 (1980), doi:10.1080/713820226.

[71] F.-X. Sun, Q. He, Q. Gong, R. Y. Teh, M. D. Reid and P. D. Drummond, Schrödinger cat
states and steady states in subharmonic generation with Kerr nonlinearities, Phys. Rev. A
100, 033827 (2019), doi:10.1103/PhysRevA.100.033827.

[72] F.-X. Sun, Q. He, Q. Gong, R. Y. Teh, M. D. Reid and P. D. Drummond, Discrete time
symmetry breaking in quantum circuits: Exact solutions and tunneling, New J. Phys. 21,
093035 (2019), doi:10.1088/1367-2630/ab3f5e.

[73] L. A. Lugiato, C. Oldano, C. Fabre, E. Giacobino and R. J. Horowicz, Bistability, self-
pulsing and chaos in optical parametric oscillators, Nuovo Cimento D 10, 959 (1988),
doi:10.1007/bf02450197.

[74] Z. Leghtas et al., Confining the state of light to a quantum manifold by engineered two-
photon loss, Science 347, 853 (2015), doi:10.1126/science.aaa2085.

[75] A. Marandi, Z. Wang, K. Takata, R. L. Byer and Y. Yamamoto, Network of time-multiplexed
optical parametric oscillators as a coherent Ising machine, Nature Photon. 8, 937 (2014),
doi:10.1038/nphoton.2014.249.

[76] P. L. McMahon et al., A fully programmable 100-spin coherent Ising machine with all-to-all
connections, Science 354, 614 (2016), doi:10.1126/science.aah5178.

143

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.1007/s10955-015-1250-9
https://doi.org/10.1103/PhysRevE.58.5592
https://doi.org/10.1209/0295-5075/21/3/005
https://doi.org/10.1137/030601211
https://doi.org/10.1103/PhysRevA.72.063608
https://doi.org/10.1007/s00032-009-0100-0
https://doi.org/10.1109/ICASSP.1998.681704
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1016/0304-405X(76)90024-6
https://doi.org/10.1080/713820226
https://doi.org/10.1103/PhysRevA.100.033827
https://doi.org/10.1088/1367-2630/ab3f5e
https://doi.org/10.1007/bf02450197
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1038/nphoton.2014.249
https://doi.org/10.1126/science.aah5178

SciPost Phys. Codebases 17 (2023)

[77] T. Inagaki et al., A coherent Ising machine for 2000-node optimization problems, Science
354, 603 (2016), doi:10.1126/science.aah4243.

[78] P. D. Drummond, C. W. Gardiner and D. F. Walls, Quasiprobability meth-
ods for nonlinear chemical and optical systems, Phys. Rev. A 24, 914 (1981),
doi:10.1103/PhysRevA.24.914.

[79] P. Kinsler and P. D. Drummond, Critical fluctuations in the quantum parametric oscillator,
Phys. Rev. A 52, 783 (1995), doi:10.1103/PhysRevA.52.783.

[80] S. Kiesewetter, R. Y. Teh, P. D. Drummond and M. D. Reid, Pulsed entanglement of two
optomechanical oscillators and Furry’s hypothesis, Phys. Rev. Lett. 119, 023601 (2017),
doi:10.1103/PhysRevLett.119.023601.

[81] M. D. Reid, Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate
parametric amplification, Phys. Rev. A 40, 913 (1989), doi:10.1103/PhysRevA.40.913.

[82] M. D. Reid and P. D. Drummond, Correlations in nondegenerate parametric oscilla-
tion: Squeezing in the presence of phase diffusion, Phys. Rev. A 40, 4493 (1989),
doi:10.1103/PhysRevA.40.4493.

[83] L. Rosales-Zárate, B. Opanchuk, P. D. Drummond and M. D. Reid, Probabilistic quantum
phase-space simulation of Bell violations and their dynamical evolution, Phys. Rev. A 90,
022109 (2014), doi:10.1103/PhysRevA.90.022109.

[84] M. D. Reid, B. Opanchuk, L. Rosales-Zárate and P. D. Drummond, Quantum probabilis-
tic sampling of multipartite 60-qubit Bell-inequality violations, Phys. Rev. A 90, 012111
(2014), doi:10.1103/PhysRevA.90.012111.

[85] A. C. Scott, F. Y. F. Chu and D. W. McLaughlin, The soliton: A new concept in applied science,
Proc. IEEE 61, 1443 (1973), doi:10.1109/proc.1973.9296.

[86] C. W. Gardiner and M. J. Davis, The stochastic Gross-Pitaevskii equation: II, J. Phys. B: At.
Mol. Opt. Phys. 36, 4731 (2003), doi:10.1088/0953-4075/36/23/010.

[87] R. Courant and D. Hilbert, Methods of mathematical physics: Partial differential equations,
Wiley, Hoboken, USA, ISBN 9780471504399 (2008).

[88] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492
(1958), doi:10.1103/PhysRev.109.1492.

[89] J. Billy et al., Direct observation of Anderson localization of matter waves in a controlled
disorder, Nature 453, 891 (2008), doi:10.1038/nature07000.

[90] A. S. Pikovsky and D. L. Shepelyansky, Destruction of Anderson localization by a weak non-
linearity, Phys. Rev. Lett. 100, 094101 (2008), doi:10.1103/PhysRevLett.100.094101.

[91] S. Kiesewetter and P. D. Drummond, Coherent Ising machine with quantum feedback:
The total and conditional master equation methods, Phys. Rev. A 106, 022409 (2022),
doi:10.1103/PhysRevA.106.022409.

[92] J. Dalibard, Y. Castin and K. Mølmer, Wave-function approach to dissipative processes in
quantum optics, Phys. Rev. Lett. 68, 580 (1992), doi:10.1103/PhysRevLett.68.580.

[93] H. J. Carmichael, Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett.
70, 2273 (1993), doi:10.1103/PhysRevLett.70.2273.

144

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1103/PhysRevA.24.914
https://doi.org/10.1103/PhysRevA.52.783
https://doi.org/10.1103/PhysRevLett.119.023601
https://doi.org/10.1103/PhysRevA.40.913
https://doi.org/10.1103/PhysRevA.40.4493
https://doi.org/10.1103/PhysRevA.90.022109
https://doi.org/10.1103/PhysRevA.90.012111
https://doi.org/10.1109/proc.1973.9296
https://doi.org/10.1088/0953-4075/36/23/010
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/nature07000
https://doi.org/10.1103/PhysRevLett.100.094101
https://doi.org/10.1103/PhysRevA.106.022409
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.70.2273

SciPost Phys. Codebases 17 (2023)

[94] M. R. Hush, S. S. Szigeti, A. R. R. Carvalho and J. J. Hope, Controlling spontaneous-
emission noise in measurement-based feedback cooling of a Bose-Einstein condensate, New
J. Phys. 15, 113060 (2013), doi:10.1088/1367-2630/15/11/113060.

[95] R. R. Joseph, J. van Rhijn and P. D. Drummond, Midpoint projection algorithm
for stochastic differential equations on manifolds, Phys. Rev. E 107, 055307 (2023),
doi:10.1103/PhysRevE.107.055307.

[96] P. D. Drummond and M. D. Reid, Retrocausal model of reality for quantum fields, Phys.
Rev. Res. 2, 033266 (2020), doi:10.1103/PhysRevResearch.2.033266.

[97] S. R. Rodriguez, Enhancing the speed and sensitivity of a nonlinear optical sensor with
noise, Phys. Rev. Appl. 13, 024032 (2020), doi:10.1103/PhysRevApplied.13.024032.

145

https://scipost.org
https://scipost.org/SciPostPhysCodeb.17
https://doi.org/10.1088/1367-2630/15/11/113060
https://doi.org/10.1103/PhysRevE.107.055307
https://doi.org/10.1103/PhysRevResearch.2.033266
https://doi.org/10.1103/PhysRevApplied.13.024032

	Introduction
	The xSPDE distribution
	Structure of the user's guide

	SDE theory
	General form
	Observables

	Stochastic calculus
	Types of stochastic calculus

	Interaction picture
	Linear propagator

	Probability distributions
	Distribution averages

	Example: random walk
	Variance solution

	Probability densities
	Distributions of functions

	Fourier transforms
	Discrete Fourier transforms

	Quantum phase-space
	Positive-P representation
	Master equations

	Damped harmonic oscillator
	Wigner representation
	Internal spectrum

	Input-output spectra
	Steady-state result

	SPDE theory
	SPDE definitions
	Boundary conditions
	Spatial grid and boundaries
	Periodic boundary
	Dirichlet/Robin boundary

	Multidimensional walk
	Variance solution

	Interaction picture
	Linear propagator

	Fourier transforms
	Normalization

	Trigonometric transforms
	Propagator solution

	Transforms and boundaries
	D-D case: Discrete map (DST-I)
	R-R case: Discrete map (DCT-I)
	D-R case: Discrete map (DST-II)
	R-D case Discrete map (DCT-II)

	Frequency or momentum grid
	Derivatives
	Spectral derivatives
	Finite difference derivatives

	Solving an SDE
	Using xSPDE
	Wiener process
	General derivatives

	Input parameters
	Simulation parameters table
	Graphics parameters

	Fields and noises
	Initial values, points and ranges
	Observables
	Using the dot

	Advanced random walk
	Simple xSPDE example

	Probability binning
	Multivariate probabilities

	Auxiliary fields and noises
	Outputting the noise

	Time-domain spectra
	Error-checking

	Examples
	Complex damped spectrum
	Laser amplification noise
	Saturated laser noise
	Financial calculus
	Nonlinear quantum simulation

	Solving an SPDE
	Multidimensional Wiener process
	SPDE parameters
	SPDE spatial lattice
	Initial conditions

	Next example
	Transverse lattice
	Linear operator
	Integrals and averages
	One space-dimensional example
	Two space-dimensional example

	Finite differences
	Finite difference first derivatives
	Finite difference second derivatives

	Boundary conditions
	Transverse boundaries
	Transverse boundary values
	Example: boundaries in a 2-dimensional PDE
	Transverse plots

	Output transforms
	Initial random fields
	Examples
	Stochastic Ginzburg-Landau
	NLS soliton
	Planar noise
	Gross-Pitaevskii equation
	Characteristic equation
	Nonlinear Anderson localization

	xSIM and xGRAPH
	Output data storage and batch jobs
	Batch input template

	Graphical data
	Check index uses

	Scanned parameter plots
	Example: Scanned diffusion

	Project examples
	Kubo project
	Gaussian diffraction

	Hints

	Stochastic methods
	Introduction to algorithms
	Standard methods

	General differential form
	Linear propagator

	Standard methods
	Euler: Ito-Euler
	Implicit: implicit Ito-Euler
	MP: Midpoint
	MPadapt: adaptive midpoint
	RK2: second order Runge-Kutta
	RK4: fourth order Runge-Kutta

	Advanced methods
	Additional inputs

	Weighted library
	Example

	Projection library
	Calling the project function
	The predefined manifold geometries

	Forward-backward library
	Example:

	Integration errors
	Discretization errors
	Discretization error outputs

	Higher order convergence
	Extrapolation
	Extrapolated error-bars

	Statistical errors
	Sampling error

	Convergence tests
	Comparisons: compare
	Convergence: xcheck

	Chi-squared estimates
	Probability comparisons
	Scaling of 2 errors

	Error outputs
	Numerical error outputs
	Graphical error outputs
	Printed error outputs
	Goodness of fit (2)
	Error vector output
	Error summaries

	xSIM reference
	Overview
	Input and data structures
	Parameters and functions

	Parameter table
	Function tables
	User function table
	Internal function table

	Parameter reference
	auxfields
	axes{n}
	backfields
	binranges{n}
	boundaries{dir}
	c...
	checks
	dimensions
	ensembles
	fields
	file
	functions
	ipsteps
	iterations
	name
	noises
	order
	origins
	points
	inrandoms
	ranges
	rawdata
	scatters{n}
	seed
	steps
	transforms{n}
	verbose
	version

	Function reference
	User function reference
	boundfun(a, d, p)
	compare(p)
	define(a, w, p)
	deriv(a,w,p)
	firstfb(a0,nc,p)
	function(o,p)
	grid
	initial(rv, p)
	linear(p)
	nfilter (w,p)
	noisegen(p)
	observe(a, p)
	prop(a, p)
	propfactor(nc, p)
	randomgen(xp)
	rfilter(w, p)
	method(a, w, p)
	transfer(v, p, a0, p0)

	Internal function reference
	Ave(o[, av], p)
	Bin(o[, dx], p)
	D1(a[, dir,ind], p)
	D2(a[, dir,ind], p)
	Int(o[, dx, bounds], p)

	Arrays and indices
	Array tables
	Simulation data in xSIM

	Internal parameter table
	xSIM structure
	xSPDE
	xSIM

	xGRAPH reference
	Overview
	Parameter and data structures
	Comparisons

	Parameter table
	Example
	xGRAPH data arrays
	Input parameters and defaults

	Cascaded plots
	Plot dimensions
	Plot axes

	Probabilities and parametric plots
	Chi-squared plots
	Comparisons with variances
	Maximum likelihood
	Parametric plots

	Parameter reference
	axes{n}
	diffplot{n}
	errors
	esample{n}
	font{n}
	functions
	glabels{n}
	graphs
	gtransforms{n}
	 headers{n}
	 images{n}
	 imagetype{n}
	 klabels
	 legends{n}
	 limits{n}
	 linestyle{n}
	 linewidth{n}
	 minbar{n}
	 name
	 olabels{n}
	 parametric{n}
	 pdimension{n}
	 saveeps
	 savefig
	 transverse{n}
	 verbose
	 xlabels

	User function reference
	gfunction{n} (d,p)
	xfunctions{n} {nd} (ax,p)

	xGRAPH structure
	xgraph(data,input)
	input = xgpreferences (input,oldinput)

	Examples and batch testing
	SDE examples
	Kubo
	Loss/Gain with noise

	Spectral examples
	Equilibrium
	Quantum

	Probability examples
	Probability density, Wiener process

	SPDE examples
	Nonlinear Schrodinger equation with Dirichlet boundary conditions
	Planar noise growth
	Gross-Pitaevskii equation with vortex formation
	Heat equation with finite-difference and propagators

	Projection examples
	SDE with catenoid projection

	Conclusion
	References

